Abstract

In this work, a novel and simple optical fiber hot-wire anemometer based on single-walled carbon nanotubes (SWCNTs) coated tilted fiber Bragg grating (TFBG) is proposed and demonstrated. For the hot-wire wind speed sensor design, TFBG is an ideal in-fiber sensing structure due to its unique features. It is utilized as both light coupling and temperature sensing element without using any geometry-modified or uncommon fiber, which simplifies the sensor structure. To further enhance the thermal conversion capability, SWCNTs are coated on the surface of the TFBG instead of traditional metallic materials, which have excellent thermal characteristics. When a laser light is pumped into the sensor, the pump light propagating in the core will be easily coupled into cladding of the fiber via the TFBG and strongly absorbed by the SWCNTs thin film. This absorption acts like a hot-wire raising the local temperature of the fiber, which is accurately detected by the TFBG resonance shift. In the experiments, the sensor’s performances were investigated and controlled by adjusting the inherent angle of the TFBG, the thickness of SWCNTs film, and the input power of the pump laser. It was demonstrated that the developed anemometer exhibited significant light absorption efficiency up to 93%, and the maximum temperature of the local area on the fiber was heated up to 146.1°C under the relatively low pump power of 97.76 mW. The sensitivity of −0.3667 nm/(m/s) at wind speed of 1.0 m/s was measured with the selected 12° TFBG and 1.6 μm film.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
All-optical fiber anemometer based on laser heated fiber Bragg gratings

Shaorui Gao, A. Ping Zhang, Hwa-Yaw Tam, L. H. Cho, and Chao Lu
Opt. Express 19(11) 10124-10130 (2011)

Long-range distributed optical fiber hot-wire anemometer based on chirped-pulse ΦOTDR

Andres Garcia-Ruiz, Alejandro Dominguez-Lopez, Juan Pastor-Graells, Hugo F. Martins, Sonia Martin-Lopez, and Miguel Gonzalez-Herraez
Opt. Express 26(1) 463-476 (2018)

Fiber optic hot-wire flowmeter based on a metallic coated hybrid long period grating/fiber Bragg grating structure

Paulo Caldas, Pedro A. S. Jorge, Gaspar Rego, Orlando Frazão, José Luís Santos, Luís Alberto Ferreira, and Francisco Araújo
Appl. Opt. 50(17) 2738-2743 (2011)

References

  • View by:
  • |
  • |
  • |

  1. M. Laghrouche, A. Adane, J. Boussey, S. Ameur, D. Meunier, and S. Tardu, “A miniature silicon hot wire sensor for automatic wind speed measurements,” Renew. Energy 30(12), 1881–1896 (2005).
    [Crossref]
  2. L. H. Piao, T. Zhang, Y. F. Ma, and J. P. Wang, “Structural optimization of mental cone rotameter based on CFD,” Transduc. Microsyst. Technol. 30(3), 90–97 (2011).
  3. J. Firth, F. Ladouceur, Z. Brodzeli, M. Wyres, and L. Silvestri, “A novel optical telemetry system applied to flowmeter networks,” Flow Meas. Instrum. 48, 15–19 (2016).
    [Crossref]
  4. J. Wu and W. Sansen, “Electrochemical time of flight flow sensor,” Sens. Actuators A Phys. 97–98(3), 68–74 (2002).
    [Crossref]
  5. H. Song, Y. P. Chen, G. Zhang, Y. Liu, P. C. Huang, H. W. Zhao, M. H. Yang, J. X. Dai, and Z. Li, “Optical fiber hydrogen sensor based on an annealing-stimulated Pd-Y thin film,” Sens. Actuators B Chem. 216, 11–16 (2015).
    [Crossref]
  6. X. D. Wang and O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors (2008-2012),” Anal. Chem. 85(2), 487–508 (2013).
    [Crossref] [PubMed]
  7. R. Jha, J. Villatoro, and G. Badenes, “Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing,” Appl. Phys. Lett. 93(19), 191106 (2008).
    [Crossref]
  8. F. Xu, P. Horak, and G. Brambilla, “Optical microfiber coil resonator refractometric sensor,” Opt. Express 15(12), 7888–7893 (2007).
    [Crossref] [PubMed]
  9. H. H. Brunn, Hot-Wire Anemometry: Principles and Signal Analysis (Oxford University, 1995).
  10. T. Chen, Q. Wang, B. Zhang, R. Chen, and K. P. Chen, “Distributed flow sensing using optical hot -wire grid,” Opt. Express 20(8), 8240–8249 (2012).
    [Crossref] [PubMed]
  11. V. Lien and F. Vollmer, “Microfluidic flow rate detection based on integrated optical fiber cantilever,” Lab Chip 7(10), 1352–1356 (2007).
    [Crossref] [PubMed]
  12. C. L. Lee, C. F. Lee, C. M. Li, T. C. Chiang, and Y. L. Hsiao, “Directional anemometer based on an anisotropic flat-clad tapered fiber Michelson interferometer,” Appl. Phys. Lett. 101(2), 023502 (2012).
    [Crossref]
  13. J. Wang, Z. Y. Liu, S. R. Gao, A. P. Zhang, Y. H. Shen, and H.-Y. Tam, “Fiber-Optic Anemometer Based on Bragg Grating Inscribed in Metal-Filled Microstructured Optical Fiber,” J. Lightwave Technol. 34(21), 4884–4889 (2016).
    [Crossref]
  14. Z. Liu, L. Htein, L. K. Cheng, Q. Martina, R. Jansen, and H.-Y. Tam, “Highly sensitive miniature fluidic flowmeter based on an FBG heated by Co2+-doped fiber,” Opt. Express 25(4), 4393–4402 (2017).
    [Crossref] [PubMed]
  15. S. Gao, A. P. Zhang, H.-Y. Tam, L. H. Cho, and C. Lu, “All-optical fiber anemometer based on laser heated fiber Bragg gratings,” Opt. Express 19(11), 10124–10130 (2011).
    [Crossref] [PubMed]
  16. P. Caldas, P. A. Jorge, G. Rego, O. Frazão, J. L. Santos, L. A. Ferreira, and F. Araújo, “Fiber optic hot-wire flowmeter based on a metallic coated hybrid long period grating/fiber Bragg grating structure,” Appl. Opt. 50(17), 2738–2743 (2011).
    [Crossref] [PubMed]
  17. G. Liu, W. Hou, W. Qiao, and M. Han, “Fast-response fiber-optic anemometer with temperature self-compensation,” Opt. Express 23(10), 13562–13570 (2015).
    [Crossref] [PubMed]
  18. T. Erdogan and J. E. Sipe, “Tilted fiber phase gratings,” J. Opt. Soc. Am. A 13(2), 296–313 (1996).
    [Crossref]
  19. J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
    [Crossref]
  20. C. Caucheteur, V. Voisin, and J. Albert, “Polarized spectral combs probe optical fiber surface plasmons,” Opt. Express 21(3), 3055–3066 (2013).
    [Crossref] [PubMed]
  21. W. Zhou, D. J. Mandia, S. T. Barry, and J. Albert, “Anisotropic effective permittivity of an ultrathin gold coating on optical fiber in air, water and saline solutions,” Opt. Express 22(26), 31665–31676 (2014).
    [Crossref] [PubMed]
  22. W. Zhou, D. J. Mandia, M. B. E. Griffiths, S. T. Barry, and J. Albert, “Effective Permittivity of Ultrathin Chemical Vapor Deposited Gold Films on Optical Fibers at Infrared Wavelengths,” J. Phys. Chem. C 118(1), 670–678 (2014).
    [Crossref]
  23. W. Zhou, D. J. Mandia, S. T. Barry, and J. Albert, “Absolute near-infrared refractometry with a calibrated tilted fiber Bragg grating,” Opt. Lett. 40(8), 1713–1716 (2015).
    [Crossref] [PubMed]
  24. C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
    [Crossref] [PubMed]
  25. T. Guo, F. Liu, X. Liang, X. Qiu, Y. Huang, C. Xie, P. Xu, W. Mao, B.-O. Guan, and J. Albert, “Highly sensitive detection of urinary protein variations using tilted fiber grating sensors with plasmonic nanocoatings,” Biosens. Bioelectron. 78, 221–228 (2016).
    [Crossref] [PubMed]
  26. S. Iijima and T. Ichihashi, “Single shell carbon nanotubes of 1-nm diameter,” Nature 363(6430), 603–605 (1993).
    [Crossref]

2017 (1)

2016 (3)

J. Wang, Z. Y. Liu, S. R. Gao, A. P. Zhang, Y. H. Shen, and H.-Y. Tam, “Fiber-Optic Anemometer Based on Bragg Grating Inscribed in Metal-Filled Microstructured Optical Fiber,” J. Lightwave Technol. 34(21), 4884–4889 (2016).
[Crossref]

J. Firth, F. Ladouceur, Z. Brodzeli, M. Wyres, and L. Silvestri, “A novel optical telemetry system applied to flowmeter networks,” Flow Meas. Instrum. 48, 15–19 (2016).
[Crossref]

T. Guo, F. Liu, X. Liang, X. Qiu, Y. Huang, C. Xie, P. Xu, W. Mao, B.-O. Guan, and J. Albert, “Highly sensitive detection of urinary protein variations using tilted fiber grating sensors with plasmonic nanocoatings,” Biosens. Bioelectron. 78, 221–228 (2016).
[Crossref] [PubMed]

2015 (4)

W. Zhou, D. J. Mandia, S. T. Barry, and J. Albert, “Absolute near-infrared refractometry with a calibrated tilted fiber Bragg grating,” Opt. Lett. 40(8), 1713–1716 (2015).
[Crossref] [PubMed]

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
[Crossref] [PubMed]

H. Song, Y. P. Chen, G. Zhang, Y. Liu, P. C. Huang, H. W. Zhao, M. H. Yang, J. X. Dai, and Z. Li, “Optical fiber hydrogen sensor based on an annealing-stimulated Pd-Y thin film,” Sens. Actuators B Chem. 216, 11–16 (2015).
[Crossref]

G. Liu, W. Hou, W. Qiao, and M. Han, “Fast-response fiber-optic anemometer with temperature self-compensation,” Opt. Express 23(10), 13562–13570 (2015).
[Crossref] [PubMed]

2014 (2)

W. Zhou, D. J. Mandia, S. T. Barry, and J. Albert, “Anisotropic effective permittivity of an ultrathin gold coating on optical fiber in air, water and saline solutions,” Opt. Express 22(26), 31665–31676 (2014).
[Crossref] [PubMed]

W. Zhou, D. J. Mandia, M. B. E. Griffiths, S. T. Barry, and J. Albert, “Effective Permittivity of Ultrathin Chemical Vapor Deposited Gold Films on Optical Fibers at Infrared Wavelengths,” J. Phys. Chem. C 118(1), 670–678 (2014).
[Crossref]

2013 (3)

J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
[Crossref]

C. Caucheteur, V. Voisin, and J. Albert, “Polarized spectral combs probe optical fiber surface plasmons,” Opt. Express 21(3), 3055–3066 (2013).
[Crossref] [PubMed]

X. D. Wang and O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors (2008-2012),” Anal. Chem. 85(2), 487–508 (2013).
[Crossref] [PubMed]

2012 (2)

C. L. Lee, C. F. Lee, C. M. Li, T. C. Chiang, and Y. L. Hsiao, “Directional anemometer based on an anisotropic flat-clad tapered fiber Michelson interferometer,” Appl. Phys. Lett. 101(2), 023502 (2012).
[Crossref]

T. Chen, Q. Wang, B. Zhang, R. Chen, and K. P. Chen, “Distributed flow sensing using optical hot -wire grid,” Opt. Express 20(8), 8240–8249 (2012).
[Crossref] [PubMed]

2011 (3)

2008 (1)

R. Jha, J. Villatoro, and G. Badenes, “Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing,” Appl. Phys. Lett. 93(19), 191106 (2008).
[Crossref]

2007 (2)

F. Xu, P. Horak, and G. Brambilla, “Optical microfiber coil resonator refractometric sensor,” Opt. Express 15(12), 7888–7893 (2007).
[Crossref] [PubMed]

V. Lien and F. Vollmer, “Microfluidic flow rate detection based on integrated optical fiber cantilever,” Lab Chip 7(10), 1352–1356 (2007).
[Crossref] [PubMed]

2005 (1)

M. Laghrouche, A. Adane, J. Boussey, S. Ameur, D. Meunier, and S. Tardu, “A miniature silicon hot wire sensor for automatic wind speed measurements,” Renew. Energy 30(12), 1881–1896 (2005).
[Crossref]

2002 (1)

J. Wu and W. Sansen, “Electrochemical time of flight flow sensor,” Sens. Actuators A Phys. 97–98(3), 68–74 (2002).
[Crossref]

1996 (1)

1993 (1)

S. Iijima and T. Ichihashi, “Single shell carbon nanotubes of 1-nm diameter,” Nature 363(6430), 603–605 (1993).
[Crossref]

Adane, A.

M. Laghrouche, A. Adane, J. Boussey, S. Ameur, D. Meunier, and S. Tardu, “A miniature silicon hot wire sensor for automatic wind speed measurements,” Renew. Energy 30(12), 1881–1896 (2005).
[Crossref]

Albert, J.

T. Guo, F. Liu, X. Liang, X. Qiu, Y. Huang, C. Xie, P. Xu, W. Mao, B.-O. Guan, and J. Albert, “Highly sensitive detection of urinary protein variations using tilted fiber grating sensors with plasmonic nanocoatings,” Biosens. Bioelectron. 78, 221–228 (2016).
[Crossref] [PubMed]

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
[Crossref] [PubMed]

W. Zhou, D. J. Mandia, S. T. Barry, and J. Albert, “Absolute near-infrared refractometry with a calibrated tilted fiber Bragg grating,” Opt. Lett. 40(8), 1713–1716 (2015).
[Crossref] [PubMed]

W. Zhou, D. J. Mandia, S. T. Barry, and J. Albert, “Anisotropic effective permittivity of an ultrathin gold coating on optical fiber in air, water and saline solutions,” Opt. Express 22(26), 31665–31676 (2014).
[Crossref] [PubMed]

W. Zhou, D. J. Mandia, M. B. E. Griffiths, S. T. Barry, and J. Albert, “Effective Permittivity of Ultrathin Chemical Vapor Deposited Gold Films on Optical Fibers at Infrared Wavelengths,” J. Phys. Chem. C 118(1), 670–678 (2014).
[Crossref]

J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
[Crossref]

C. Caucheteur, V. Voisin, and J. Albert, “Polarized spectral combs probe optical fiber surface plasmons,” Opt. Express 21(3), 3055–3066 (2013).
[Crossref] [PubMed]

Ameur, S.

M. Laghrouche, A. Adane, J. Boussey, S. Ameur, D. Meunier, and S. Tardu, “A miniature silicon hot wire sensor for automatic wind speed measurements,” Renew. Energy 30(12), 1881–1896 (2005).
[Crossref]

Araújo, F.

Badenes, G.

R. Jha, J. Villatoro, and G. Badenes, “Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing,” Appl. Phys. Lett. 93(19), 191106 (2008).
[Crossref]

Barry, S. T.

Boussey, J.

M. Laghrouche, A. Adane, J. Boussey, S. Ameur, D. Meunier, and S. Tardu, “A miniature silicon hot wire sensor for automatic wind speed measurements,” Renew. Energy 30(12), 1881–1896 (2005).
[Crossref]

Brambilla, G.

Brodzeli, Z.

J. Firth, F. Ladouceur, Z. Brodzeli, M. Wyres, and L. Silvestri, “A novel optical telemetry system applied to flowmeter networks,” Flow Meas. Instrum. 48, 15–19 (2016).
[Crossref]

Caldas, P.

Caucheteur, C.

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
[Crossref] [PubMed]

J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
[Crossref]

C. Caucheteur, V. Voisin, and J. Albert, “Polarized spectral combs probe optical fiber surface plasmons,” Opt. Express 21(3), 3055–3066 (2013).
[Crossref] [PubMed]

Chen, K. P.

Chen, R.

Chen, T.

Chen, Y. P.

H. Song, Y. P. Chen, G. Zhang, Y. Liu, P. C. Huang, H. W. Zhao, M. H. Yang, J. X. Dai, and Z. Li, “Optical fiber hydrogen sensor based on an annealing-stimulated Pd-Y thin film,” Sens. Actuators B Chem. 216, 11–16 (2015).
[Crossref]

Cheng, L. K.

Chiang, T. C.

C. L. Lee, C. F. Lee, C. M. Li, T. C. Chiang, and Y. L. Hsiao, “Directional anemometer based on an anisotropic flat-clad tapered fiber Michelson interferometer,” Appl. Phys. Lett. 101(2), 023502 (2012).
[Crossref]

Cho, L. H.

Dai, J. X.

H. Song, Y. P. Chen, G. Zhang, Y. Liu, P. C. Huang, H. W. Zhao, M. H. Yang, J. X. Dai, and Z. Li, “Optical fiber hydrogen sensor based on an annealing-stimulated Pd-Y thin film,” Sens. Actuators B Chem. 216, 11–16 (2015).
[Crossref]

Erdogan, T.

Ferreira, L. A.

Firth, J.

J. Firth, F. Ladouceur, Z. Brodzeli, M. Wyres, and L. Silvestri, “A novel optical telemetry system applied to flowmeter networks,” Flow Meas. Instrum. 48, 15–19 (2016).
[Crossref]

Frazão, O.

Gao, S.

Gao, S. R.

Griffiths, M. B. E.

W. Zhou, D. J. Mandia, M. B. E. Griffiths, S. T. Barry, and J. Albert, “Effective Permittivity of Ultrathin Chemical Vapor Deposited Gold Films on Optical Fibers at Infrared Wavelengths,” J. Phys. Chem. C 118(1), 670–678 (2014).
[Crossref]

Guan, B.-O.

T. Guo, F. Liu, X. Liang, X. Qiu, Y. Huang, C. Xie, P. Xu, W. Mao, B.-O. Guan, and J. Albert, “Highly sensitive detection of urinary protein variations using tilted fiber grating sensors with plasmonic nanocoatings,” Biosens. Bioelectron. 78, 221–228 (2016).
[Crossref] [PubMed]

Guo, T.

T. Guo, F. Liu, X. Liang, X. Qiu, Y. Huang, C. Xie, P. Xu, W. Mao, B.-O. Guan, and J. Albert, “Highly sensitive detection of urinary protein variations using tilted fiber grating sensors with plasmonic nanocoatings,” Biosens. Bioelectron. 78, 221–228 (2016).
[Crossref] [PubMed]

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
[Crossref] [PubMed]

Han, M.

Horak, P.

Hou, W.

Hsiao, Y. L.

C. L. Lee, C. F. Lee, C. M. Li, T. C. Chiang, and Y. L. Hsiao, “Directional anemometer based on an anisotropic flat-clad tapered fiber Michelson interferometer,” Appl. Phys. Lett. 101(2), 023502 (2012).
[Crossref]

Htein, L.

Huang, P. C.

H. Song, Y. P. Chen, G. Zhang, Y. Liu, P. C. Huang, H. W. Zhao, M. H. Yang, J. X. Dai, and Z. Li, “Optical fiber hydrogen sensor based on an annealing-stimulated Pd-Y thin film,” Sens. Actuators B Chem. 216, 11–16 (2015).
[Crossref]

Huang, Y.

T. Guo, F. Liu, X. Liang, X. Qiu, Y. Huang, C. Xie, P. Xu, W. Mao, B.-O. Guan, and J. Albert, “Highly sensitive detection of urinary protein variations using tilted fiber grating sensors with plasmonic nanocoatings,” Biosens. Bioelectron. 78, 221–228 (2016).
[Crossref] [PubMed]

Ichihashi, T.

S. Iijima and T. Ichihashi, “Single shell carbon nanotubes of 1-nm diameter,” Nature 363(6430), 603–605 (1993).
[Crossref]

Iijima, S.

S. Iijima and T. Ichihashi, “Single shell carbon nanotubes of 1-nm diameter,” Nature 363(6430), 603–605 (1993).
[Crossref]

Jansen, R.

Jha, R.

R. Jha, J. Villatoro, and G. Badenes, “Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing,” Appl. Phys. Lett. 93(19), 191106 (2008).
[Crossref]

Jorge, P. A.

Ladouceur, F.

J. Firth, F. Ladouceur, Z. Brodzeli, M. Wyres, and L. Silvestri, “A novel optical telemetry system applied to flowmeter networks,” Flow Meas. Instrum. 48, 15–19 (2016).
[Crossref]

Laghrouche, M.

M. Laghrouche, A. Adane, J. Boussey, S. Ameur, D. Meunier, and S. Tardu, “A miniature silicon hot wire sensor for automatic wind speed measurements,” Renew. Energy 30(12), 1881–1896 (2005).
[Crossref]

Lee, C. F.

C. L. Lee, C. F. Lee, C. M. Li, T. C. Chiang, and Y. L. Hsiao, “Directional anemometer based on an anisotropic flat-clad tapered fiber Michelson interferometer,” Appl. Phys. Lett. 101(2), 023502 (2012).
[Crossref]

Lee, C. L.

C. L. Lee, C. F. Lee, C. M. Li, T. C. Chiang, and Y. L. Hsiao, “Directional anemometer based on an anisotropic flat-clad tapered fiber Michelson interferometer,” Appl. Phys. Lett. 101(2), 023502 (2012).
[Crossref]

Li, C. M.

C. L. Lee, C. F. Lee, C. M. Li, T. C. Chiang, and Y. L. Hsiao, “Directional anemometer based on an anisotropic flat-clad tapered fiber Michelson interferometer,” Appl. Phys. Lett. 101(2), 023502 (2012).
[Crossref]

Li, Z.

H. Song, Y. P. Chen, G. Zhang, Y. Liu, P. C. Huang, H. W. Zhao, M. H. Yang, J. X. Dai, and Z. Li, “Optical fiber hydrogen sensor based on an annealing-stimulated Pd-Y thin film,” Sens. Actuators B Chem. 216, 11–16 (2015).
[Crossref]

Liang, X.

T. Guo, F. Liu, X. Liang, X. Qiu, Y. Huang, C. Xie, P. Xu, W. Mao, B.-O. Guan, and J. Albert, “Highly sensitive detection of urinary protein variations using tilted fiber grating sensors with plasmonic nanocoatings,” Biosens. Bioelectron. 78, 221–228 (2016).
[Crossref] [PubMed]

Lien, V.

V. Lien and F. Vollmer, “Microfluidic flow rate detection based on integrated optical fiber cantilever,” Lab Chip 7(10), 1352–1356 (2007).
[Crossref] [PubMed]

Liu, F.

T. Guo, F. Liu, X. Liang, X. Qiu, Y. Huang, C. Xie, P. Xu, W. Mao, B.-O. Guan, and J. Albert, “Highly sensitive detection of urinary protein variations using tilted fiber grating sensors with plasmonic nanocoatings,” Biosens. Bioelectron. 78, 221–228 (2016).
[Crossref] [PubMed]

Liu, G.

Liu, Y.

H. Song, Y. P. Chen, G. Zhang, Y. Liu, P. C. Huang, H. W. Zhao, M. H. Yang, J. X. Dai, and Z. Li, “Optical fiber hydrogen sensor based on an annealing-stimulated Pd-Y thin film,” Sens. Actuators B Chem. 216, 11–16 (2015).
[Crossref]

Liu, Z.

Liu, Z. Y.

Lu, C.

Ma, Y. F.

L. H. Piao, T. Zhang, Y. F. Ma, and J. P. Wang, “Structural optimization of mental cone rotameter based on CFD,” Transduc. Microsyst. Technol. 30(3), 90–97 (2011).

Mandia, D. J.

Mao, W.

T. Guo, F. Liu, X. Liang, X. Qiu, Y. Huang, C. Xie, P. Xu, W. Mao, B.-O. Guan, and J. Albert, “Highly sensitive detection of urinary protein variations using tilted fiber grating sensors with plasmonic nanocoatings,” Biosens. Bioelectron. 78, 221–228 (2016).
[Crossref] [PubMed]

Martina, Q.

Meunier, D.

M. Laghrouche, A. Adane, J. Boussey, S. Ameur, D. Meunier, and S. Tardu, “A miniature silicon hot wire sensor for automatic wind speed measurements,” Renew. Energy 30(12), 1881–1896 (2005).
[Crossref]

Piao, L. H.

L. H. Piao, T. Zhang, Y. F. Ma, and J. P. Wang, “Structural optimization of mental cone rotameter based on CFD,” Transduc. Microsyst. Technol. 30(3), 90–97 (2011).

Qiao, W.

Qiu, X.

T. Guo, F. Liu, X. Liang, X. Qiu, Y. Huang, C. Xie, P. Xu, W. Mao, B.-O. Guan, and J. Albert, “Highly sensitive detection of urinary protein variations using tilted fiber grating sensors with plasmonic nanocoatings,” Biosens. Bioelectron. 78, 221–228 (2016).
[Crossref] [PubMed]

Rego, G.

Sansen, W.

J. Wu and W. Sansen, “Electrochemical time of flight flow sensor,” Sens. Actuators A Phys. 97–98(3), 68–74 (2002).
[Crossref]

Santos, J. L.

Shao, L. Y.

J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
[Crossref]

Shen, Y. H.

Silvestri, L.

J. Firth, F. Ladouceur, Z. Brodzeli, M. Wyres, and L. Silvestri, “A novel optical telemetry system applied to flowmeter networks,” Flow Meas. Instrum. 48, 15–19 (2016).
[Crossref]

Sipe, J. E.

Song, H.

H. Song, Y. P. Chen, G. Zhang, Y. Liu, P. C. Huang, H. W. Zhao, M. H. Yang, J. X. Dai, and Z. Li, “Optical fiber hydrogen sensor based on an annealing-stimulated Pd-Y thin film,” Sens. Actuators B Chem. 216, 11–16 (2015).
[Crossref]

Tam, H.-Y.

Tardu, S.

M. Laghrouche, A. Adane, J. Boussey, S. Ameur, D. Meunier, and S. Tardu, “A miniature silicon hot wire sensor for automatic wind speed measurements,” Renew. Energy 30(12), 1881–1896 (2005).
[Crossref]

Villatoro, J.

R. Jha, J. Villatoro, and G. Badenes, “Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing,” Appl. Phys. Lett. 93(19), 191106 (2008).
[Crossref]

Voisin, V.

Vollmer, F.

V. Lien and F. Vollmer, “Microfluidic flow rate detection based on integrated optical fiber cantilever,” Lab Chip 7(10), 1352–1356 (2007).
[Crossref] [PubMed]

Wang, J.

Wang, J. P.

L. H. Piao, T. Zhang, Y. F. Ma, and J. P. Wang, “Structural optimization of mental cone rotameter based on CFD,” Transduc. Microsyst. Technol. 30(3), 90–97 (2011).

Wang, Q.

Wang, X. D.

X. D. Wang and O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors (2008-2012),” Anal. Chem. 85(2), 487–508 (2013).
[Crossref] [PubMed]

Wolfbeis, O. S.

X. D. Wang and O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors (2008-2012),” Anal. Chem. 85(2), 487–508 (2013).
[Crossref] [PubMed]

Wu, J.

J. Wu and W. Sansen, “Electrochemical time of flight flow sensor,” Sens. Actuators A Phys. 97–98(3), 68–74 (2002).
[Crossref]

Wyres, M.

J. Firth, F. Ladouceur, Z. Brodzeli, M. Wyres, and L. Silvestri, “A novel optical telemetry system applied to flowmeter networks,” Flow Meas. Instrum. 48, 15–19 (2016).
[Crossref]

Xie, C.

T. Guo, F. Liu, X. Liang, X. Qiu, Y. Huang, C. Xie, P. Xu, W. Mao, B.-O. Guan, and J. Albert, “Highly sensitive detection of urinary protein variations using tilted fiber grating sensors with plasmonic nanocoatings,” Biosens. Bioelectron. 78, 221–228 (2016).
[Crossref] [PubMed]

Xu, F.

Xu, P.

T. Guo, F. Liu, X. Liang, X. Qiu, Y. Huang, C. Xie, P. Xu, W. Mao, B.-O. Guan, and J. Albert, “Highly sensitive detection of urinary protein variations using tilted fiber grating sensors with plasmonic nanocoatings,” Biosens. Bioelectron. 78, 221–228 (2016).
[Crossref] [PubMed]

Yang, M. H.

H. Song, Y. P. Chen, G. Zhang, Y. Liu, P. C. Huang, H. W. Zhao, M. H. Yang, J. X. Dai, and Z. Li, “Optical fiber hydrogen sensor based on an annealing-stimulated Pd-Y thin film,” Sens. Actuators B Chem. 216, 11–16 (2015).
[Crossref]

Zhang, A. P.

Zhang, B.

Zhang, G.

H. Song, Y. P. Chen, G. Zhang, Y. Liu, P. C. Huang, H. W. Zhao, M. H. Yang, J. X. Dai, and Z. Li, “Optical fiber hydrogen sensor based on an annealing-stimulated Pd-Y thin film,” Sens. Actuators B Chem. 216, 11–16 (2015).
[Crossref]

Zhang, T.

L. H. Piao, T. Zhang, Y. F. Ma, and J. P. Wang, “Structural optimization of mental cone rotameter based on CFD,” Transduc. Microsyst. Technol. 30(3), 90–97 (2011).

Zhao, H. W.

H. Song, Y. P. Chen, G. Zhang, Y. Liu, P. C. Huang, H. W. Zhao, M. H. Yang, J. X. Dai, and Z. Li, “Optical fiber hydrogen sensor based on an annealing-stimulated Pd-Y thin film,” Sens. Actuators B Chem. 216, 11–16 (2015).
[Crossref]

Zhou, W.

Anal. Bioanal. Chem. (1)

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
[Crossref] [PubMed]

Anal. Chem. (1)

X. D. Wang and O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors (2008-2012),” Anal. Chem. 85(2), 487–508 (2013).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

C. L. Lee, C. F. Lee, C. M. Li, T. C. Chiang, and Y. L. Hsiao, “Directional anemometer based on an anisotropic flat-clad tapered fiber Michelson interferometer,” Appl. Phys. Lett. 101(2), 023502 (2012).
[Crossref]

R. Jha, J. Villatoro, and G. Badenes, “Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing,” Appl. Phys. Lett. 93(19), 191106 (2008).
[Crossref]

Biosens. Bioelectron. (1)

T. Guo, F. Liu, X. Liang, X. Qiu, Y. Huang, C. Xie, P. Xu, W. Mao, B.-O. Guan, and J. Albert, “Highly sensitive detection of urinary protein variations using tilted fiber grating sensors with plasmonic nanocoatings,” Biosens. Bioelectron. 78, 221–228 (2016).
[Crossref] [PubMed]

Flow Meas. Instrum. (1)

J. Firth, F. Ladouceur, Z. Brodzeli, M. Wyres, and L. Silvestri, “A novel optical telemetry system applied to flowmeter networks,” Flow Meas. Instrum. 48, 15–19 (2016).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

J. Phys. Chem. C (1)

W. Zhou, D. J. Mandia, M. B. E. Griffiths, S. T. Barry, and J. Albert, “Effective Permittivity of Ultrathin Chemical Vapor Deposited Gold Films on Optical Fibers at Infrared Wavelengths,” J. Phys. Chem. C 118(1), 670–678 (2014).
[Crossref]

Lab Chip (1)

V. Lien and F. Vollmer, “Microfluidic flow rate detection based on integrated optical fiber cantilever,” Lab Chip 7(10), 1352–1356 (2007).
[Crossref] [PubMed]

Laser Photonics Rev. (1)

J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
[Crossref]

Nature (1)

S. Iijima and T. Ichihashi, “Single shell carbon nanotubes of 1-nm diameter,” Nature 363(6430), 603–605 (1993).
[Crossref]

Opt. Express (7)

Opt. Lett. (1)

Renew. Energy (1)

M. Laghrouche, A. Adane, J. Boussey, S. Ameur, D. Meunier, and S. Tardu, “A miniature silicon hot wire sensor for automatic wind speed measurements,” Renew. Energy 30(12), 1881–1896 (2005).
[Crossref]

Sens. Actuators A Phys. (1)

J. Wu and W. Sansen, “Electrochemical time of flight flow sensor,” Sens. Actuators A Phys. 97–98(3), 68–74 (2002).
[Crossref]

Sens. Actuators B Chem. (1)

H. Song, Y. P. Chen, G. Zhang, Y. Liu, P. C. Huang, H. W. Zhao, M. H. Yang, J. X. Dai, and Z. Li, “Optical fiber hydrogen sensor based on an annealing-stimulated Pd-Y thin film,” Sens. Actuators B Chem. 216, 11–16 (2015).
[Crossref]

Transduc. Microsyst. Technol. (1)

L. H. Piao, T. Zhang, Y. F. Ma, and J. P. Wang, “Structural optimization of mental cone rotameter based on CFD,” Transduc. Microsyst. Technol. 30(3), 90–97 (2011).

Other (1)

H. H. Brunn, Hot-Wire Anemometry: Principles and Signal Analysis (Oxford University, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) System setup for fiber-optic anemometer based on titled fiber Bragg grating coated with single wall carbon nanotubes; (b) Sensing principle of the anemometer.
Fig. 2
Fig. 2 (a) Output spectrum of the sensing system. The pump laser worked at 1550 nm which located near the deepest cladding mode of TFBG; (b) Simulation of the interactions between incident light and carbon nanotubes structure; (c) SEM images of the SWCNTs film.
Fig. 3
Fig. 3 (a) Temperature response of the fiber-optic anemometer; (b) The change of wavelength as a function of launched pumping power.
Fig. 4
Fig. 4 (a) The spectral responses of the resonance of cladding mode. Increasing the wind speed results in blue shift of wavelength from 1555.416 nm to 1554.366 nm; (b) The temperature image is detected by the MAG30 on-line thermal imager, and the maximum local temperature is up to 146.1°C.
Fig. 5
Fig. 5 Wavelength shifts with respect to the wind speed under the different pumping powers of 97.76 mW, 77.04 mW, 59.18 mW and 42.37 mW, respectively. The maximum wavelength changes are 0.620 nm, 0.412 nm, 0.326 nm, and 0.164 nm, respectively.
Fig. 6
Fig. 6 The transmission spectrums of TFBG with different titled angle coated by similar thickness of SWCNTs. The amount of compression is 1.587 dB, 2.511 dB, 3.02 dB and 6.758 dB respectively which measured by the upper envelope curve of the cladding resonance.
Fig. 7
Fig. 7 The wind speed response of TFBGs with different angle when coated with consistent film of 1.3 μm and pumped under the same power of 97.76 mW.
Fig. 8
Fig. 8 (a) The transmission spectrum of 12° TFBG with different coating thickness; (b) The SWCNT film thickness with respect to the deposition cycle.
Fig. 9
Fig. 9 (a) The wavelength responses to the wind speed for each TFBGs with different film thickness under the same pump power of 97.76 mW; (b) Sensitivity as a function of wind speed under different thickness of the SWCNTs film T = 1.6, 1.3, and 1.2 μm when the dipping cycles are 50, 30, and 20, respectively.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

H loss = Δ T ( A + B ν )
A = 0.42 π l λ f Pr 0.2 B = 0.57 π l λ f Pr 0.33 ( d / V ) 0.5
Δ λ c l a d d i n g i = ( ( n e f f c o r e + n c l a d d i n g i ) cos ( θ ) d Λ d T + Λ cos ( θ ) d ( n e f f c o r e + n c l a d d i n g i ) d T ) Δ T
λ c l a d d i n g i = λ c l a d d i n g 0 i + ( ( n e f f c o r e + n c l a d d i n g i ) cos ( θ ) d Λ d T + Λ cos ( θ ) d ( n e f f c o r e + n c l a d d i n g i ) d T ) H loss ( A + B ν )

Metrics