Abstract

We propose a compact dual wavelength digital holographic Microscopy (DHM) based on a long working distance objective, which enabling quantitative phase imaging of opaque samples with extended measurement range in one shot. The compactness of the configuration is achieved by constructing a miniature modified Michelson interferometer between the objective and the sample, and as a result it provides higher temporal stability than conventional dual wavelength DHM. In the setup, the propagation directions of two reference beams of different wavelengths can be independently adjusted, and thus two off axis interferograms having orthogonal fringe directions can be simultaneously captured through a monochrome CCD camera. The unambiguous vertical measurement range in optical path length is extended to 8.338 μm, the length of a synthetic wavelength, by selecting two wavelengths with a gap of 52 nm. The capability of the proposed setup is demonstrated with measurements of a standard 1.8 μm height step as well as a moving micro staircase structure.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition

Jonas Kühn, Tristan Colomb, Frédéric Montfort, Florian Charrière, Yves Emery, Etienne Cuche, Pierre Marquet, and Christian Depeursinge
Opt. Express 15(12) 7231-7242 (2007)

Dual-wavelength common-path digital holographic microscopy for quantitative phase imaging based on lateral shearing interferometry

Jianglei Di, Ying Li, Min Xie, Jiwei Zhang, Chaojie Ma, Teli Xi, Enpu Li, and Jianlin Zhao
Appl. Opt. 55(26) 7287-7293 (2016)

Dual-wavelength slightly off-axis digital holographic microscopy

Junwei Min, Baoli Yao, Peng Gao, Rongli Guo, Baiheng Ma, Juanjuan Zheng, Ming Lei, Shaohui Yan, Dan Dan, Tao Duan, Yanlong Yang, and Tong Ye
Appl. Opt. 51(2) 191-196 (2012)

References

  • View by:
  • |
  • |
  • |

  1. S. Schedin, G. Pedrini, H. J. Tiziani, and F. M. Santoyo, “Simultaneous three-dimensional dynamic deformation measurements with pulsed digital holography,” Appl. Opt. 38(34), 7056–7062 (1999).
    [Crossref] [PubMed]
  2. P. Gao, B. Yao, J. Min, R. Guo, B. Ma, J. Zheng, M. Lei, S. Yan, D. Dan, and T. Ye, “Autofocusing of digital holographic microscopy based on off-axis illuminations,” Opt. Lett. 37(17), 3630–3632 (2012).
    [Crossref] [PubMed]
  3. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24(5), 291–293 (1999).
    [Crossref] [PubMed]
  4. P. Ferraro, C. Del Core, L. Miccio, S. Grilli, S. De Nicola, A. Finizio, and G. Coppola, “Phase map retrieval in digital holography: avoiding the undersampling effect by a lateral shear approach,” Opt. Lett. 32(15), 2233–2235 (2007).
    [Crossref] [PubMed]
  5. C. Minetti, V. Vitkova, F. Dubois, and I. Bivas, “Digital holographic microscopy as a tool to study the thermal shape fluctuations of lipid vesicles,” Opt. Lett. 41(8), 1833–1836 (2016).
    [Crossref] [PubMed]
  6. J. Zhang, C. Ma, S. Dai, J. Di, Y. Li, T. Xi, and J. Zhao, “Transmission and total internal reflection integrated digital holographic microscopy,” Opt. Lett. 41(16), 3844–3847 (2016).
    [Crossref] [PubMed]
  7. Q. Weijuan, Y. Yingjie, C. O. Choo, and A. Asundi, “Digital holographic microscopy with physical phase compensation,” Opt. Lett. 34(8), 1276–1278 (2009).
    [Crossref] [PubMed]
  8. B. Bhaduri, C. Edwards, H. Pham, R. Zhou, T. H. Nguyen, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photonics 6(1), 57–119 (2014).
    [Crossref]
  9. B. M. Kim and E. S. Kim, “Visual inspection of 3-D surface and refractive-index profiles of microscopic lenses using a single-arm off-axis holographic interferometer,” Opt. Express 24(10), 10326–10344 (2016).
    [Crossref] [PubMed]
  10. R. Guo, B. Yao, P. Gao, J. Min, M. Zhou, J. Han, X. Yu, X. Yu, M. Lei, S. Yan, Y. Yang, D. Dan, and T. Ye, “Off-axis digital holographic microscopy with LED illumination based on polarization filtering,” Appl. Opt. 52(34), 8233–8238 (2013).
    [Crossref] [PubMed]
  11. R. Guo, B. Yao, J. Min, M. Zhou, X. Yu, M. Lei, Sh. Yan, Y. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 16(12), 125408 (2014).
    [Crossref]
  12. J. Min, B. Yao, S. Ketelhut, C. Engwer, B. Greve, and B. Kemper, “Simple and fast spectral domain algorithm for quantitative phase imaging of living cells with digital holographic microscopy,” Opt. Lett. 42(2), 227–230 (2017).
    [Crossref] [PubMed]
  13. A. Doblas, E. Sánchez-Ortiga, M. Martínez-Corral, G. Saavedra, and J. Garcia-Sucerquia, “Accurate single-shot quantitative phase imaging of biological specimens with telecentric digital holographic microscopy,” J. Biomed. Opt. 19(4), 046022 (2014).
    [Crossref] [PubMed]
  14. G. Verma and A. Sinha, “Digital holographic-based cancellable biometric for personal authentication,” J. Opt. 18(5), 055705 (2016).
    [Crossref]
  15. M. A. Herráez, D. R. Burton, M. J. Lalor, and D. B. Clegg, “Robust, simple, and fast algorithm for phase unwrapping,” Appl. Opt. 35(29), 5847–5852 (1996).
    [Crossref] [PubMed]
  16. C. Polhemus, “Two-wavelength interferometry,” Appl. Opt. 12(9), 2071–2074 (1973).
    [Crossref] [PubMed]
  17. C. Wagner, W. Osten, and S. Seebacher, “Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring,” Opt. Eng. 39(1), 79–85 (2000).
    [Crossref]
  18. S. Jeon, J. Cho, J. N. Jin, N. C. Park, and Y. P. Park, “Dual-wavelength digital holography with a single low-coherence light source,” Opt. Express 24(16), 18408–18416 (2016).
    [Crossref] [PubMed]
  19. D. G. Abdelsalam and D. Kim, “Two-wavelength in-line phase-shifting interferometry based on polarizing separation for accurate surface profiling,” Appl. Opt. 50(33), 6153–6161 (2011).
    [Crossref] [PubMed]
  20. J. Gass, A. Dakoff, and M. K. Kim, “Phase imaging without 2π ambiguity by multiwavelength digital holography,” Opt. Lett. 28(13), 1141–1143 (2003).
    [Crossref] [PubMed]
  21. J. Min, B. Yao, P. Gao, R. Guo, B. Ma, J. Zheng, M. Lei, S. Yan, D. Dan, T. Duan, Y. Yang, and T. Ye, “Dual-wavelength slightly off-axis digital holographic microscopy,” Appl. Opt. 51(2), 191–196 (2012).
    [Crossref] [PubMed]
  22. M. T. Rinehart, N. T. Shaked, N. J. Jenness, R. L. Clark, and A. Wax, “Simultaneous two-wavelength transmission quantitative phase microscopy with a color camera,” Opt. Lett. 35(15), 2612–2614 (2010).
    [Crossref] [PubMed]
  23. P. Picart, D. Mounier, and J. M. Desse, “High-resolution digital two-color holographic metrology,” Opt. Lett. 33(3), 276–278 (2008).
    [Crossref] [PubMed]
  24. J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15(12), 7231–7242 (2007).
    [Crossref] [PubMed]
  25. A. Khmaladze, M. Kim, and C. M. Lo, “Phase imaging of cells by simultaneous dual-wavelength reflection digital holography,” Opt. Express 16(15), 10900–10911 (2008).
    [Crossref] [PubMed]
  26. Z. Monemhaghdoust, F. Montfort, Y. Emery, C. Depeursinge, and C. Moser, “Dual wavelength full field imaging in low coherence digital holographic microscopy,” Opt. Express 19(24), 24005–24022 (2011).
    [Crossref] [PubMed]
  27. N. A. Turko and N. T. Shaked, “Simultaneous two-wavelength phase unwrapping using an external module for multiplexing off-axis holography,” Opt. Lett. 42(1), 73–76 (2017).
    [Crossref] [PubMed]
  28. P. Gao, B. Yao, J. Min, R. Guo, J. Zheng, T. Ye, I. Harder, V. Nercissian, and K. Mantel, “Parallel two-step phase-shifting point-diffraction interferometry for microscopy based on a pair of cube beamsplitters,” Opt. Express 19(3), 1930–1935 (2011).
    [Crossref] [PubMed]
  29. N. T. Shaked, “Quantitative phase microscopy of biological samples using a portable interferometer,” Opt. Lett. 37(11), 2016–2018 (2012).
    [Crossref] [PubMed]
  30. B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett. 37(6), 1094–1096 (2012).
    [Crossref] [PubMed]
  31. H. Bai, M. Shan, Z. Zhong, L. Guo, and Y. Zhang, “Common path interferometer based on the modified Michelson configuration using a reflective grating,” Opt. Lasers Eng. 75, 1–4 (2015).
    [Crossref]
  32. Z. Monemhaghdoust, F. Montfort, Y. Emery, C. Depeursinge, and C. Moser, “Off-axis digital holographic camera for quantitative phase microscopy,” Biomed. Opt. Express 5(6), 1721–1730 (2014).
    [Crossref] [PubMed]
  33. S. Mahajan, V. Trivedi, P. Vora, V. Chhaniwal, B. Javidi, and A. Anand, “Highly stable digital holographic microscope using Sagnac interferometer,” Opt. Lett. 40(16), 3743–3746 (2015).
    [Crossref] [PubMed]
  34. D. Roitshtain, N. A. Turko, B. Javidi, and N. T. Shaked, “Flipping interferometry and its application for quantitative phase microscopy in a micro-channel,” Opt. Lett. 41(10), 2354–2357 (2016).
    [Crossref] [PubMed]
  35. C. Ma, Y. Li, J. Zhang, P. Li, T. Xi, J. Di, and J. Zhao, “Lateral shearing common-path digital holographic microscopy based on a slightly trapezoid Sagnac interferometer,” Opt. Express 25(12), 13659–13667 (2017).
    [Crossref] [PubMed]
  36. T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, “Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation,” Appl. Opt. 45(5), 851–863 (2006).
    [Crossref] [PubMed]

2017 (3)

2016 (6)

2015 (2)

S. Mahajan, V. Trivedi, P. Vora, V. Chhaniwal, B. Javidi, and A. Anand, “Highly stable digital holographic microscope using Sagnac interferometer,” Opt. Lett. 40(16), 3743–3746 (2015).
[Crossref] [PubMed]

H. Bai, M. Shan, Z. Zhong, L. Guo, and Y. Zhang, “Common path interferometer based on the modified Michelson configuration using a reflective grating,” Opt. Lasers Eng. 75, 1–4 (2015).
[Crossref]

2014 (4)

Z. Monemhaghdoust, F. Montfort, Y. Emery, C. Depeursinge, and C. Moser, “Off-axis digital holographic camera for quantitative phase microscopy,” Biomed. Opt. Express 5(6), 1721–1730 (2014).
[Crossref] [PubMed]

A. Doblas, E. Sánchez-Ortiga, M. Martínez-Corral, G. Saavedra, and J. Garcia-Sucerquia, “Accurate single-shot quantitative phase imaging of biological specimens with telecentric digital holographic microscopy,” J. Biomed. Opt. 19(4), 046022 (2014).
[Crossref] [PubMed]

B. Bhaduri, C. Edwards, H. Pham, R. Zhou, T. H. Nguyen, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photonics 6(1), 57–119 (2014).
[Crossref]

R. Guo, B. Yao, J. Min, M. Zhou, X. Yu, M. Lei, Sh. Yan, Y. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 16(12), 125408 (2014).
[Crossref]

2013 (1)

2012 (4)

2011 (3)

2010 (1)

2009 (1)

2008 (2)

2007 (2)

2006 (1)

2003 (1)

2000 (1)

C. Wagner, W. Osten, and S. Seebacher, “Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring,” Opt. Eng. 39(1), 79–85 (2000).
[Crossref]

1999 (2)

1996 (1)

1973 (1)

Abdelsalam, D. G.

Anand, A.

Aspert, N.

Asundi, A.

Bai, H.

H. Bai, M. Shan, Z. Zhong, L. Guo, and Y. Zhang, “Common path interferometer based on the modified Michelson configuration using a reflective grating,” Opt. Lasers Eng. 75, 1–4 (2015).
[Crossref]

Bevilacqua, F.

Bhaduri, B.

B. Bhaduri, C. Edwards, H. Pham, R. Zhou, T. H. Nguyen, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photonics 6(1), 57–119 (2014).
[Crossref]

B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett. 37(6), 1094–1096 (2012).
[Crossref] [PubMed]

Bivas, I.

Burton, D. R.

Charrière, F.

Chhaniwal, V.

Cho, J.

Choo, C. O.

Clark, R. L.

Clegg, D. B.

Colomb, T.

Coppola, G.

Cuche, E.

Dai, S.

Dakoff, A.

Dan, D.

De Nicola, S.

Del Core, C.

Depeursinge, C.

Desse, J. M.

Di, J.

Doblas, A.

A. Doblas, E. Sánchez-Ortiga, M. Martínez-Corral, G. Saavedra, and J. Garcia-Sucerquia, “Accurate single-shot quantitative phase imaging of biological specimens with telecentric digital holographic microscopy,” J. Biomed. Opt. 19(4), 046022 (2014).
[Crossref] [PubMed]

Duan, T.

Dubois, F.

Edwards, C.

B. Bhaduri, C. Edwards, H. Pham, R. Zhou, T. H. Nguyen, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photonics 6(1), 57–119 (2014).
[Crossref]

Emery, Y.

Engwer, C.

Ferraro, P.

Finizio, A.

Gao, P.

Garcia-Sucerquia, J.

A. Doblas, E. Sánchez-Ortiga, M. Martínez-Corral, G. Saavedra, and J. Garcia-Sucerquia, “Accurate single-shot quantitative phase imaging of biological specimens with telecentric digital holographic microscopy,” J. Biomed. Opt. 19(4), 046022 (2014).
[Crossref] [PubMed]

Gass, J.

Goddard, L. L.

B. Bhaduri, C. Edwards, H. Pham, R. Zhou, T. H. Nguyen, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photonics 6(1), 57–119 (2014).
[Crossref]

Greve, B.

Grilli, S.

Guo, L.

H. Bai, M. Shan, Z. Zhong, L. Guo, and Y. Zhang, “Common path interferometer based on the modified Michelson configuration using a reflective grating,” Opt. Lasers Eng. 75, 1–4 (2015).
[Crossref]

Guo, R.

Han, J.

Harder, I.

Herráez, M. A.

Javidi, B.

Jenness, N. J.

Jeon, S.

Jin, J. N.

Kemper, B.

Ketelhut, S.

Khmaladze, A.

Kim, B. M.

Kim, D.

Kim, E. S.

Kim, M.

Kim, M. K.

Kühn, J.

Lalor, M. J.

Lei, M.

Li, P.

Li, Y.

Lo, C. M.

Ma, B.

Ma, C.

Mahajan, S.

Mantel, K.

Marquet, P.

Martínez-Corral, M.

A. Doblas, E. Sánchez-Ortiga, M. Martínez-Corral, G. Saavedra, and J. Garcia-Sucerquia, “Accurate single-shot quantitative phase imaging of biological specimens with telecentric digital holographic microscopy,” J. Biomed. Opt. 19(4), 046022 (2014).
[Crossref] [PubMed]

Miccio, L.

Min, J.

Minetti, C.

Mir, M.

Monemhaghdoust, Z.

Montfort, F.

Moser, C.

Mounier, D.

Nercissian, V.

Nguyen, T. H.

B. Bhaduri, C. Edwards, H. Pham, R. Zhou, T. H. Nguyen, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photonics 6(1), 57–119 (2014).
[Crossref]

Osten, W.

C. Wagner, W. Osten, and S. Seebacher, “Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring,” Opt. Eng. 39(1), 79–85 (2000).
[Crossref]

Park, N. C.

Park, Y. P.

Pedrini, G.

Pham, H.

B. Bhaduri, C. Edwards, H. Pham, R. Zhou, T. H. Nguyen, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photonics 6(1), 57–119 (2014).
[Crossref]

B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett. 37(6), 1094–1096 (2012).
[Crossref] [PubMed]

Picart, P.

Polhemus, C.

Popescu, G.

B. Bhaduri, C. Edwards, H. Pham, R. Zhou, T. H. Nguyen, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photonics 6(1), 57–119 (2014).
[Crossref]

B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett. 37(6), 1094–1096 (2012).
[Crossref] [PubMed]

Rinehart, M. T.

Roitshtain, D.

Saavedra, G.

A. Doblas, E. Sánchez-Ortiga, M. Martínez-Corral, G. Saavedra, and J. Garcia-Sucerquia, “Accurate single-shot quantitative phase imaging of biological specimens with telecentric digital holographic microscopy,” J. Biomed. Opt. 19(4), 046022 (2014).
[Crossref] [PubMed]

Sánchez-Ortiga, E.

A. Doblas, E. Sánchez-Ortiga, M. Martínez-Corral, G. Saavedra, and J. Garcia-Sucerquia, “Accurate single-shot quantitative phase imaging of biological specimens with telecentric digital holographic microscopy,” J. Biomed. Opt. 19(4), 046022 (2014).
[Crossref] [PubMed]

Santoyo, F. M.

Schedin, S.

Seebacher, S.

C. Wagner, W. Osten, and S. Seebacher, “Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring,” Opt. Eng. 39(1), 79–85 (2000).
[Crossref]

Shaked, N. T.

Shan, M.

H. Bai, M. Shan, Z. Zhong, L. Guo, and Y. Zhang, “Common path interferometer based on the modified Michelson configuration using a reflective grating,” Opt. Lasers Eng. 75, 1–4 (2015).
[Crossref]

Sinha, A.

G. Verma and A. Sinha, “Digital holographic-based cancellable biometric for personal authentication,” J. Opt. 18(5), 055705 (2016).
[Crossref]

Tiziani, H. J.

Trivedi, V.

Turko, N. A.

Verma, G.

G. Verma and A. Sinha, “Digital holographic-based cancellable biometric for personal authentication,” J. Opt. 18(5), 055705 (2016).
[Crossref]

Vitkova, V.

Vora, P.

Wagner, C.

C. Wagner, W. Osten, and S. Seebacher, “Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring,” Opt. Eng. 39(1), 79–85 (2000).
[Crossref]

Wax, A.

Weijuan, Q.

Xi, T.

Yan, S.

Yan, Sh.

R. Guo, B. Yao, J. Min, M. Zhou, X. Yu, M. Lei, Sh. Yan, Y. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 16(12), 125408 (2014).
[Crossref]

Yang, Y.

Yao, B.

Ye, T.

Yingjie, Y.

Yu, X.

Zhang, J.

Zhang, Y.

H. Bai, M. Shan, Z. Zhong, L. Guo, and Y. Zhang, “Common path interferometer based on the modified Michelson configuration using a reflective grating,” Opt. Lasers Eng. 75, 1–4 (2015).
[Crossref]

Zhao, J.

Zheng, J.

Zhong, Z.

H. Bai, M. Shan, Z. Zhong, L. Guo, and Y. Zhang, “Common path interferometer based on the modified Michelson configuration using a reflective grating,” Opt. Lasers Eng. 75, 1–4 (2015).
[Crossref]

Zhou, M.

R. Guo, B. Yao, J. Min, M. Zhou, X. Yu, M. Lei, Sh. Yan, Y. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 16(12), 125408 (2014).
[Crossref]

R. Guo, B. Yao, P. Gao, J. Min, M. Zhou, J. Han, X. Yu, X. Yu, M. Lei, S. Yan, Y. Yang, D. Dan, and T. Ye, “Off-axis digital holographic microscopy with LED illumination based on polarization filtering,” Appl. Opt. 52(34), 8233–8238 (2013).
[Crossref] [PubMed]

Zhou, R.

B. Bhaduri, C. Edwards, H. Pham, R. Zhou, T. H. Nguyen, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photonics 6(1), 57–119 (2014).
[Crossref]

Adv. Opt. Photonics (1)

B. Bhaduri, C. Edwards, H. Pham, R. Zhou, T. H. Nguyen, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photonics 6(1), 57–119 (2014).
[Crossref]

Appl. Opt. (7)

R. Guo, B. Yao, P. Gao, J. Min, M. Zhou, J. Han, X. Yu, X. Yu, M. Lei, S. Yan, Y. Yang, D. Dan, and T. Ye, “Off-axis digital holographic microscopy with LED illumination based on polarization filtering,” Appl. Opt. 52(34), 8233–8238 (2013).
[Crossref] [PubMed]

S. Schedin, G. Pedrini, H. J. Tiziani, and F. M. Santoyo, “Simultaneous three-dimensional dynamic deformation measurements with pulsed digital holography,” Appl. Opt. 38(34), 7056–7062 (1999).
[Crossref] [PubMed]

M. A. Herráez, D. R. Burton, M. J. Lalor, and D. B. Clegg, “Robust, simple, and fast algorithm for phase unwrapping,” Appl. Opt. 35(29), 5847–5852 (1996).
[Crossref] [PubMed]

C. Polhemus, “Two-wavelength interferometry,” Appl. Opt. 12(9), 2071–2074 (1973).
[Crossref] [PubMed]

D. G. Abdelsalam and D. Kim, “Two-wavelength in-line phase-shifting interferometry based on polarizing separation for accurate surface profiling,” Appl. Opt. 50(33), 6153–6161 (2011).
[Crossref] [PubMed]

J. Min, B. Yao, P. Gao, R. Guo, B. Ma, J. Zheng, M. Lei, S. Yan, D. Dan, T. Duan, Y. Yang, and T. Ye, “Dual-wavelength slightly off-axis digital holographic microscopy,” Appl. Opt. 51(2), 191–196 (2012).
[Crossref] [PubMed]

T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, “Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation,” Appl. Opt. 45(5), 851–863 (2006).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

J. Biomed. Opt. (1)

A. Doblas, E. Sánchez-Ortiga, M. Martínez-Corral, G. Saavedra, and J. Garcia-Sucerquia, “Accurate single-shot quantitative phase imaging of biological specimens with telecentric digital holographic microscopy,” J. Biomed. Opt. 19(4), 046022 (2014).
[Crossref] [PubMed]

J. Opt. (2)

G. Verma and A. Sinha, “Digital holographic-based cancellable biometric for personal authentication,” J. Opt. 18(5), 055705 (2016).
[Crossref]

R. Guo, B. Yao, J. Min, M. Zhou, X. Yu, M. Lei, Sh. Yan, Y. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 16(12), 125408 (2014).
[Crossref]

Opt. Eng. (1)

C. Wagner, W. Osten, and S. Seebacher, “Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring,” Opt. Eng. 39(1), 79–85 (2000).
[Crossref]

Opt. Express (7)

S. Jeon, J. Cho, J. N. Jin, N. C. Park, and Y. P. Park, “Dual-wavelength digital holography with a single low-coherence light source,” Opt. Express 24(16), 18408–18416 (2016).
[Crossref] [PubMed]

B. M. Kim and E. S. Kim, “Visual inspection of 3-D surface and refractive-index profiles of microscopic lenses using a single-arm off-axis holographic interferometer,” Opt. Express 24(10), 10326–10344 (2016).
[Crossref] [PubMed]

C. Ma, Y. Li, J. Zhang, P. Li, T. Xi, J. Di, and J. Zhao, “Lateral shearing common-path digital holographic microscopy based on a slightly trapezoid Sagnac interferometer,” Opt. Express 25(12), 13659–13667 (2017).
[Crossref] [PubMed]

P. Gao, B. Yao, J. Min, R. Guo, J. Zheng, T. Ye, I. Harder, V. Nercissian, and K. Mantel, “Parallel two-step phase-shifting point-diffraction interferometry for microscopy based on a pair of cube beamsplitters,” Opt. Express 19(3), 1930–1935 (2011).
[Crossref] [PubMed]

J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15(12), 7231–7242 (2007).
[Crossref] [PubMed]

A. Khmaladze, M. Kim, and C. M. Lo, “Phase imaging of cells by simultaneous dual-wavelength reflection digital holography,” Opt. Express 16(15), 10900–10911 (2008).
[Crossref] [PubMed]

Z. Monemhaghdoust, F. Montfort, Y. Emery, C. Depeursinge, and C. Moser, “Dual wavelength full field imaging in low coherence digital holographic microscopy,” Opt. Express 19(24), 24005–24022 (2011).
[Crossref] [PubMed]

Opt. Lasers Eng. (1)

H. Bai, M. Shan, Z. Zhong, L. Guo, and Y. Zhang, “Common path interferometer based on the modified Michelson configuration using a reflective grating,” Opt. Lasers Eng. 75, 1–4 (2015).
[Crossref]

Opt. Lett. (15)

S. Mahajan, V. Trivedi, P. Vora, V. Chhaniwal, B. Javidi, and A. Anand, “Highly stable digital holographic microscope using Sagnac interferometer,” Opt. Lett. 40(16), 3743–3746 (2015).
[Crossref] [PubMed]

D. Roitshtain, N. A. Turko, B. Javidi, and N. T. Shaked, “Flipping interferometry and its application for quantitative phase microscopy in a micro-channel,” Opt. Lett. 41(10), 2354–2357 (2016).
[Crossref] [PubMed]

N. A. Turko and N. T. Shaked, “Simultaneous two-wavelength phase unwrapping using an external module for multiplexing off-axis holography,” Opt. Lett. 42(1), 73–76 (2017).
[Crossref] [PubMed]

N. T. Shaked, “Quantitative phase microscopy of biological samples using a portable interferometer,” Opt. Lett. 37(11), 2016–2018 (2012).
[Crossref] [PubMed]

B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett. 37(6), 1094–1096 (2012).
[Crossref] [PubMed]

M. T. Rinehart, N. T. Shaked, N. J. Jenness, R. L. Clark, and A. Wax, “Simultaneous two-wavelength transmission quantitative phase microscopy with a color camera,” Opt. Lett. 35(15), 2612–2614 (2010).
[Crossref] [PubMed]

P. Picart, D. Mounier, and J. M. Desse, “High-resolution digital two-color holographic metrology,” Opt. Lett. 33(3), 276–278 (2008).
[Crossref] [PubMed]

J. Min, B. Yao, S. Ketelhut, C. Engwer, B. Greve, and B. Kemper, “Simple and fast spectral domain algorithm for quantitative phase imaging of living cells with digital holographic microscopy,” Opt. Lett. 42(2), 227–230 (2017).
[Crossref] [PubMed]

P. Gao, B. Yao, J. Min, R. Guo, B. Ma, J. Zheng, M. Lei, S. Yan, D. Dan, and T. Ye, “Autofocusing of digital holographic microscopy based on off-axis illuminations,” Opt. Lett. 37(17), 3630–3632 (2012).
[Crossref] [PubMed]

E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24(5), 291–293 (1999).
[Crossref] [PubMed]

P. Ferraro, C. Del Core, L. Miccio, S. Grilli, S. De Nicola, A. Finizio, and G. Coppola, “Phase map retrieval in digital holography: avoiding the undersampling effect by a lateral shear approach,” Opt. Lett. 32(15), 2233–2235 (2007).
[Crossref] [PubMed]

C. Minetti, V. Vitkova, F. Dubois, and I. Bivas, “Digital holographic microscopy as a tool to study the thermal shape fluctuations of lipid vesicles,” Opt. Lett. 41(8), 1833–1836 (2016).
[Crossref] [PubMed]

J. Zhang, C. Ma, S. Dai, J. Di, Y. Li, T. Xi, and J. Zhao, “Transmission and total internal reflection integrated digital holographic microscopy,” Opt. Lett. 41(16), 3844–3847 (2016).
[Crossref] [PubMed]

Q. Weijuan, Y. Yingjie, C. O. Choo, and A. Asundi, “Digital holographic microscopy with physical phase compensation,” Opt. Lett. 34(8), 1276–1278 (2009).
[Crossref] [PubMed]

J. Gass, A. Dakoff, and M. K. Kim, “Phase imaging without 2π ambiguity by multiwavelength digital holography,” Opt. Lett. 28(13), 1141–1143 (2003).
[Crossref] [PubMed]

Supplementary Material (1)

NameDescription
» Visualization 1       Real time measurements of dynamic moving of a micro staircase structure

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Experimental setup. P1-P2, polarizers; NPBS1-NPBS3, broadband non-polarizing beam splitters; PBS, broadband polarizing beam splitter; BE, beam expander; L, achromatic lens with focal lengths of f = 150 mm; M1-M2, mirrors; MO, 10 × microscope objective with working distance of 33.5 mm; S, sample. Inset, ko is wave vector of both object beams O1 (for λ1) and O2 (for λ2); kr1 and kr2 are wave vectors of the reference beams R1 (for λ1) and R2 (for λ2), respectively;
Fig. 2
Fig. 2 (a) The multiplexed interferogram with orthogonal fringe patterns where inset representing a zoom of the selected area; (b) The Fourier spectrum of the interferogram, in which two object spectrum terms of wavelengths λ1, λ2 located in the two white circles, respectively.
Fig. 3
Fig. 3 Measuring results. (a) Wrapped phase φ1 of the sample obtained with wavelength λ1; (b) Wrapped phase φ2 of the sample obtained with wavelength λ2; (c) Height map H reconstructed from dual wavelength procedure; (d) Histogram of height map in Fig. 3(c). Color bars in Figs. (a-b) represent phase in radians, and color bar in Fig. (c) represents height in μm.
Fig. 4
Fig. 4 Real time measurements of dynamic moving of a micro staircase structure (Visualization 1). (a) One of the reconstructed height map; (b) Height profile obtained with dual wavelength (DW) DHM along the white line in Fig. 4(a) and compared with that measured with a white light interferometer (WLI).
Fig. 5
Fig. 5 Temporal stability of the proposed setup and the traditional dual wavelength DHM. (a) Histogram of standard deviation of proposed setup; (b) Histogram of standard deviation of dual wavelength DHM based on Mach-Zehnder interferometer.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I(x,y)= | O 1 | 2 + | R 1 | 2 + | O 2 | 2 + | R 2 | 2 +2| O 1 R 1 |cos[2πxsin θ 1 / λ 1 + φ 1 (x,y)]. +2| O 2 R 2 |cos[2πysin θ 2 / λ 2 + φ 2 (x,y)]
O i (x,y)=IFT{FT(I R Di ) W i }.
φ(x,y)= φ 1 (x,y) φ 2 (x,y)=2π l λ 1 2π l λ 2 =2π l Λ .
h(x,y)= φ(x,y) 4π Λ.

Metrics