Abstract

In general, biochemical sensors based on photonic cavities are used to detect changes in the refractive index of the environment. In this study, however, a GaInAsP semiconductor photonic-crystal nanolaser sensor that we recently developed was found to detect not only the environmental refractive index but also the surface charge. In contrast to the pH sensitivity we reported previously, this is an ultra-sensitive detection mechanism capable of identifying proteins and deoxyribonucleic acids (DNA) at a femtomolar-order or lower concentrations. When the device is exposed to plasma or DNA solutions, the laser wavelength simultaneously changes with the zeta potential and the flat-band potential of the semiconductor surface. This indicates that the charged functional groups on the surface, which are formed by these treatments, modify the Schottky barrier near the semiconductor surface, trap the excited carriers in the barrier, and change the refractive index of the semiconductor via the carrier effects. These findings also suggest that some other photonic sensors may also exhibit similar electrochemical and optoelectronic effects.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Sensitive and selective detection of prostate-specific antigen using a photonic crystal nanolaser

Shoji Hachuda, Takumi Watanabe, Daichi Takahashi, and Toshihiko Baba
Opt. Express 24(12) 12886-12892 (2016)

Selective detection of sub-atto-molar Streptavidin in 1013-fold impure sample using photonic crystal nanolaser sensors

Shoji Hachuda, Shota Otsuka, Shota Kita, Toshinari Isono, Michimasa Narimatsu, Keisuke Watanabe, Yoshio Goshima, and Toshihiko Baba
Opt. Express 21(10) 12815-12821 (2013)

Super-sensitivity in label-free protein sensing using a nanoslot nanolaser

Shota Kita, Shoji Hachuda, Shota Otsuka, Tatsuro Endo, Yasunori Imai, Yoshiaki Nishijima, Hiroaki Misawa, and Toshihiko Baba
Opt. Express 19(18) 17683-17690 (2011)

References

  • View by:
  • |
  • |
  • |

  1. W. C. Law, K. T. Yong, A. Baev, R. Hu, and P. N. Prasad, “Nanoparticle enhanced surface plasmon resonance biosensing: application of gold nanorods,” Opt. Express 17(21), 19041–19046 (2009).
    [Crossref] [PubMed]
  2. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
    [Crossref] [PubMed]
  3. M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
    [Crossref]
  4. H. Zhu, I. M. White, J. D. Suter, P. S. Dale, and X. Fan, “Analysis of biomolecule detection with optofluidic ring resonator sensors,” Opt. Express 15(15), 9139–9146 (2007).
    [Crossref] [PubMed]
  5. S. Zlatanovic, L. W. Mirkarimi, M. M. Sigalas, M. A. Bynum, E. Chow, K. M. Robotti, G. W. Burr, S. Esener, and A. Grot, “Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration,” Sens. Actuators B Chem. 141(1), 13–19 (2009).
    [Crossref]
  6. M. Lončar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82(26), 4648–4650 (2003).
    [Crossref]
  7. S. Kita, S. Hachuda, S. Otsuka, T. Endo, Y. Imai, Y. Nishijima, H. Misawa, and T. Baba, “Super-sensitivity in label-free protein sensing using a nanoslot nanolaser,” Opt. Express 19(18), 17683–17690 (2011).
    [Crossref] [PubMed]
  8. T. Baba, “Biosensing using photonic crystal nanolasers,” MRS Commun. 5(4), 555–564 (2015).
    [Crossref]
  9. S. Hachuda, T. Watanabe, D. Takahashi, and T. Baba, “Sensitive and selective detection of prostate-specific antigen using a photonic crystal nanolaser,” Opt. Express 24(12), 12886–12892 (2016).
    [Crossref] [PubMed]
  10. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
    [Crossref] [PubMed]
  11. F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities,” Biophys. J. 85(3), 1974–1979 (2003).
    [Crossref] [PubMed]
  12. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
    [Crossref]
  13. X. Zhang, L. Liu, and L. Xu, “Ultralow sensing limit in optofluidic micro-bottle resonator biosensor by self-referenced differential-mode detection scheme,” Appl. Phys. Lett. 104(3), 033703 (2014).
    [Crossref]
  14. O. Scheler, J. T. Kindt, A. J. Qavi, L. Kaplinski, B. Glynn, T. Barry, A. Kurg, and R. C. Bailey, “Label-free, multiplexed detection of bacterial tmRNA using silicon photonic microring resonators,” Biosens. Bioelectron. 36(1), 56–61 (2012).
    [Crossref] [PubMed]
  15. K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed Antibody Detection With an Array of Silicon-on-Insulator Microring Resonators,” IEEE Photonics J. 1(4), 225–235 (2009).
    [Crossref]
  16. A. L. Washburn, M. S. Luchansky, A. L. Bowman, and R. C. Bailey, “Quantitative, label-free detection of five protein biomarkers using multiplexed arrays of silicon photonic microring resonators,” Anal. Chem. 82(1), 69–72 (2010).
    [Crossref] [PubMed]
  17. A. L. Washburn, L. C. Gunn, and R. C. Bailey, “Label-Free Quantitation of a cancer biomarker in complex media using silicon photonic microring resonators,” Anal. Chem. 81(22), 9499–9506 (2009).
    [Crossref] [PubMed]
  18. D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron. 24(12), 3688–3692 (2009).
    [Crossref] [PubMed]
  19. Y. Zou, S. Chakravarty, D. N. Kwong, W.-C. Lai, X. Xu, X. Lin, A. Hosseini, and R. T. Chen, “Cavity-waveguide coupling engineered high sensitivity silicon Photonic crystal microcavity biosensors with high yield,” IEEE J. Sel. Top. Quantum Electron. 20(4), 1–10 (2014).
  20. S. Chakravarty, A. Hosseini, X. Xu, L. Zhu, Y. Zou, and R. T. Chen, “Analysis of ultra-high sensitivity configuration in chip-integrated photonic crystal microcavity bio-sensors,” Appl. Phys. Lett. 104(19), 191109 (2014).
    [Crossref] [PubMed]
  21. S. Chakravarty, Y. Zou, W.-C. Lai, and R. T. Chen, “Slow light engineering for high Q high sensitivity photonic crystal microcavity biosensors in silicon,” Biosens. Bioelectron. 38(1), 170–176 (2012).
    [Crossref] [PubMed]
  22. D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Lončar, and Q. Quan, “High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” Appl. Phys. Lett. 105(6), 063118 (2014).
    [Crossref]
  23. F. Liang, N. Clarke, P. Patel, M. Lončar, and Q. Quan, “Scalable photonic crystal chips for high sensitivity protein detection,” Opt. Express 21(26), 32306–32312 (2013).
    [Crossref] [PubMed]
  24. V. Toccafondo, J. García-Rupérez, M. J. Bañuls, A. Griol, J. G. Castelló, S. Peransi-Llopis, and A. Maquieira, “Single-strand DNA detection using a planar photonic-crystal-waveguide-based sensor,” Opt. Lett. 35(21), 3673–3675 (2010).
    [Crossref] [PubMed]
  25. M. G. Scullion, A. Di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron. 27(1), 101–105 (2011).
    [Crossref] [PubMed]
  26. S. Pal, E. Guillermain, R. Sriram, B. L. Miller, and P. M. Fauchet, “Silicon photonic crystal nanocavity-coupled waveguides for error-corrected optical biosensing,” Biosens. Bioelectron. 26(10), 4024–4031 (2011).
    [Crossref] [PubMed]
  27. T. Watanabe, Y. Furuta, S. Hachuda, Y. Nishijima, and T. Baba, “Electrochemical sensing by photonic crystal nanolaser sensors,” presented at Biosensors (2016).
  28. J. P. Kim, B. Y. Lee, S. Hong, and S. J. Sim, “Ultrasensitive carbon nanotube-based biosensors using antibody-binding fragments,” Anal. Biochem. 381(2), 193–198 (2008).
    [Crossref] [PubMed]
  29. A. Kim, C. S. Ah, H. Y. Yu, J. H. Yang, I. B. Baek, C. G. Ahn, C. W. Park, M. S. Jun, and S. Lee, “Ultrasensitive, label-free, and real-time immunodetection using silicon field-effect transistors,” Appl. Phys. Lett. 91(10), 103901 (2007).
    [Crossref]
  30. G. Zheng, F. Patolsky, Y. Cui, W. U. Wang, and C. M. Lieber, “Multiplexed electrical detection of cancer markers with nanowire sensor arrays,” Nat. Biotechnol. 23(10), 1294–1301 (2005).
    [Crossref] [PubMed]
  31. H. A. Budz, M. M. Ali, Y. Li, and R. R. LaPierre, “Photoluminescence model for a hybrid aptamer-GaAs optical biosensor,” J. Appl. Phys. 107(10), 104702 (2010).
    [Crossref]
  32. Y. S. Liu, Y. Sun, P. T. Vernier, C. H. Liang, S. Y. C. Chong, and M. A. Gundersen, “pH-sensitive photoluminescence of CdSe/ZnSe/ZnS quantum dots in human ovarian cancer cells,” J. Phys. Chem. C 111(7), 2872–2878 (2007).
    [Crossref]
  33. K. Watanabe, Y. Kishi, S. Hachuda, T. Watanabe, M. Sakemoto, Y. Nishijima, and T. Baba, “Simultaneous detection of refractive index and surface charges in nanolaser biosensors,” Appl. Phys. Lett. 106(2), 021106 (2015).
    [Crossref]
  34. M. Sakemoto, Y. Kishi, K. Watanabe, H. Abe, S. Ota, Y. Takemura, and T. Baba, “Cell imaging using GaInAsP semiconductor photoluminescence,” Opt. Express 24(10), 11232–11238 (2016).
    [Crossref] [PubMed]
  35. S. Kita, K. Nozaki, S. Hachuda, H. Watanabe, Y. Saito, S. Otsuka, T. Nakada, Y. Arita, and T. Baba, “Photonic crystal point-shift nanolaser with and without nanoslots—design, fabrication, lasing and sensing characteristics,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1632–1647 (2011).
    [Crossref]
  36. M. Narimatsu, S. Kita, H. Abe, and T. Baba, “Enhancement of vertical emission in photonic crystal nanolasers,” Appl. Phys. Lett. 100(12), 121117 (2012).
    [Crossref]
  37. N. Jacob, Israelachvili, Intermolecular and Surface Forces Third Edition (Academic, 2011).
  38. B. Seger, T. Pedersen, A. B. Laursen, P. C. K. Vesborg, O. Hansen, and I. Chorkendorff, “Using TiO2 as a conductive protective layer for photocathodic H2 evolution,” J. Am. Chem. Soc. 135(3), 1057–1064 (2013).
    [Crossref] [PubMed]
  39. S. L. Chuang, Physics of Photonic Devices, 2nd ed. (WILEY, 2008).
  40. M. Krijn, “Heterojunction band offsets and effective masses in III-V quaternary alloys,” Semicond. Sci. Technol. 6(1), 27–31 (1991).
    [Crossref]
  41. K. Nozaki, S. Kita, and T. Baba, “Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser,” Opt. Express 15(12), 7506–7514 (2007).
    [Crossref] [PubMed]
  42. M. Fujita, A. Sakai, and T. Baba, “Ultrasmall and ultralow threshold GaInAsP-InP microdisk injection lasers: design, fabrication, lasing characteristics, and spontaneous emission factor,” IEEE J. Sel. Top. Quantum Electron. 5(3), 673–681 (1999).
    [Crossref]
  43. B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs and InGaAsP,” IEEE J. Quantum Electron. 26(1), 113–122 (1990).
    [Crossref]

2016 (2)

2015 (2)

K. Watanabe, Y. Kishi, S. Hachuda, T. Watanabe, M. Sakemoto, Y. Nishijima, and T. Baba, “Simultaneous detection of refractive index and surface charges in nanolaser biosensors,” Appl. Phys. Lett. 106(2), 021106 (2015).
[Crossref]

T. Baba, “Biosensing using photonic crystal nanolasers,” MRS Commun. 5(4), 555–564 (2015).
[Crossref]

2014 (4)

X. Zhang, L. Liu, and L. Xu, “Ultralow sensing limit in optofluidic micro-bottle resonator biosensor by self-referenced differential-mode detection scheme,” Appl. Phys. Lett. 104(3), 033703 (2014).
[Crossref]

D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Lončar, and Q. Quan, “High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” Appl. Phys. Lett. 105(6), 063118 (2014).
[Crossref]

Y. Zou, S. Chakravarty, D. N. Kwong, W.-C. Lai, X. Xu, X. Lin, A. Hosseini, and R. T. Chen, “Cavity-waveguide coupling engineered high sensitivity silicon Photonic crystal microcavity biosensors with high yield,” IEEE J. Sel. Top. Quantum Electron. 20(4), 1–10 (2014).

S. Chakravarty, A. Hosseini, X. Xu, L. Zhu, Y. Zou, and R. T. Chen, “Analysis of ultra-high sensitivity configuration in chip-integrated photonic crystal microcavity bio-sensors,” Appl. Phys. Lett. 104(19), 191109 (2014).
[Crossref] [PubMed]

2013 (2)

B. Seger, T. Pedersen, A. B. Laursen, P. C. K. Vesborg, O. Hansen, and I. Chorkendorff, “Using TiO2 as a conductive protective layer for photocathodic H2 evolution,” J. Am. Chem. Soc. 135(3), 1057–1064 (2013).
[Crossref] [PubMed]

F. Liang, N. Clarke, P. Patel, M. Lončar, and Q. Quan, “Scalable photonic crystal chips for high sensitivity protein detection,” Opt. Express 21(26), 32306–32312 (2013).
[Crossref] [PubMed]

2012 (3)

M. Narimatsu, S. Kita, H. Abe, and T. Baba, “Enhancement of vertical emission in photonic crystal nanolasers,” Appl. Phys. Lett. 100(12), 121117 (2012).
[Crossref]

S. Chakravarty, Y. Zou, W.-C. Lai, and R. T. Chen, “Slow light engineering for high Q high sensitivity photonic crystal microcavity biosensors in silicon,” Biosens. Bioelectron. 38(1), 170–176 (2012).
[Crossref] [PubMed]

O. Scheler, J. T. Kindt, A. J. Qavi, L. Kaplinski, B. Glynn, T. Barry, A. Kurg, and R. C. Bailey, “Label-free, multiplexed detection of bacterial tmRNA using silicon photonic microring resonators,” Biosens. Bioelectron. 36(1), 56–61 (2012).
[Crossref] [PubMed]

2011 (4)

M. G. Scullion, A. Di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron. 27(1), 101–105 (2011).
[Crossref] [PubMed]

S. Pal, E. Guillermain, R. Sriram, B. L. Miller, and P. M. Fauchet, “Silicon photonic crystal nanocavity-coupled waveguides for error-corrected optical biosensing,” Biosens. Bioelectron. 26(10), 4024–4031 (2011).
[Crossref] [PubMed]

S. Kita, K. Nozaki, S. Hachuda, H. Watanabe, Y. Saito, S. Otsuka, T. Nakada, Y. Arita, and T. Baba, “Photonic crystal point-shift nanolaser with and without nanoslots—design, fabrication, lasing and sensing characteristics,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1632–1647 (2011).
[Crossref]

S. Kita, S. Hachuda, S. Otsuka, T. Endo, Y. Imai, Y. Nishijima, H. Misawa, and T. Baba, “Super-sensitivity in label-free protein sensing using a nanoslot nanolaser,” Opt. Express 19(18), 17683–17690 (2011).
[Crossref] [PubMed]

2010 (4)

V. Toccafondo, J. García-Rupérez, M. J. Bañuls, A. Griol, J. G. Castelló, S. Peransi-Llopis, and A. Maquieira, “Single-strand DNA detection using a planar photonic-crystal-waveguide-based sensor,” Opt. Lett. 35(21), 3673–3675 (2010).
[Crossref] [PubMed]

H. A. Budz, M. M. Ali, Y. Li, and R. R. LaPierre, “Photoluminescence model for a hybrid aptamer-GaAs optical biosensor,” J. Appl. Phys. 107(10), 104702 (2010).
[Crossref]

A. L. Washburn, M. S. Luchansky, A. L. Bowman, and R. C. Bailey, “Quantitative, label-free detection of five protein biomarkers using multiplexed arrays of silicon photonic microring resonators,” Anal. Chem. 82(1), 69–72 (2010).
[Crossref] [PubMed]

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

2009 (5)

S. Zlatanovic, L. W. Mirkarimi, M. M. Sigalas, M. A. Bynum, E. Chow, K. M. Robotti, G. W. Burr, S. Esener, and A. Grot, “Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration,” Sens. Actuators B Chem. 141(1), 13–19 (2009).
[Crossref]

A. L. Washburn, L. C. Gunn, and R. C. Bailey, “Label-Free Quantitation of a cancer biomarker in complex media using silicon photonic microring resonators,” Anal. Chem. 81(22), 9499–9506 (2009).
[Crossref] [PubMed]

D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron. 24(12), 3688–3692 (2009).
[Crossref] [PubMed]

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed Antibody Detection With an Array of Silicon-on-Insulator Microring Resonators,” IEEE Photonics J. 1(4), 225–235 (2009).
[Crossref]

W. C. Law, K. T. Yong, A. Baev, R. Hu, and P. N. Prasad, “Nanoparticle enhanced surface plasmon resonance biosensing: application of gold nanorods,” Opt. Express 17(21), 19041–19046 (2009).
[Crossref] [PubMed]

2008 (2)

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[Crossref] [PubMed]

J. P. Kim, B. Y. Lee, S. Hong, and S. J. Sim, “Ultrasensitive carbon nanotube-based biosensors using antibody-binding fragments,” Anal. Biochem. 381(2), 193–198 (2008).
[Crossref] [PubMed]

2007 (5)

A. Kim, C. S. Ah, H. Y. Yu, J. H. Yang, I. B. Baek, C. G. Ahn, C. W. Park, M. S. Jun, and S. Lee, “Ultrasensitive, label-free, and real-time immunodetection using silicon field-effect transistors,” Appl. Phys. Lett. 91(10), 103901 (2007).
[Crossref]

Y. S. Liu, Y. Sun, P. T. Vernier, C. H. Liang, S. Y. C. Chong, and M. A. Gundersen, “pH-sensitive photoluminescence of CdSe/ZnSe/ZnS quantum dots in human ovarian cancer cells,” J. Phys. Chem. C 111(7), 2872–2878 (2007).
[Crossref]

K. Nozaki, S. Kita, and T. Baba, “Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser,” Opt. Express 15(12), 7506–7514 (2007).
[Crossref] [PubMed]

H. Zhu, I. M. White, J. D. Suter, P. S. Dale, and X. Fan, “Analysis of biomolecule detection with optofluidic ring resonator sensors,” Opt. Express 15(15), 9139–9146 (2007).
[Crossref] [PubMed]

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[Crossref] [PubMed]

2005 (1)

G. Zheng, F. Patolsky, Y. Cui, W. U. Wang, and C. M. Lieber, “Multiplexed electrical detection of cancer markers with nanowire sensor arrays,” Nat. Biotechnol. 23(10), 1294–1301 (2005).
[Crossref] [PubMed]

2003 (2)

M. Lončar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82(26), 4648–4650 (2003).
[Crossref]

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities,” Biophys. J. 85(3), 1974–1979 (2003).
[Crossref] [PubMed]

2002 (1)

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[Crossref]

1999 (1)

M. Fujita, A. Sakai, and T. Baba, “Ultrasmall and ultralow threshold GaInAsP-InP microdisk injection lasers: design, fabrication, lasing characteristics, and spontaneous emission factor,” IEEE J. Sel. Top. Quantum Electron. 5(3), 673–681 (1999).
[Crossref]

1991 (1)

M. Krijn, “Heterojunction band offsets and effective masses in III-V quaternary alloys,” Semicond. Sci. Technol. 6(1), 27–31 (1991).
[Crossref]

1990 (1)

B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs and InGaAsP,” IEEE J. Quantum Electron. 26(1), 113–122 (1990).
[Crossref]

Abe, H.

M. Sakemoto, Y. Kishi, K. Watanabe, H. Abe, S. Ota, Y. Takemura, and T. Baba, “Cell imaging using GaInAsP semiconductor photoluminescence,” Opt. Express 24(10), 11232–11238 (2016).
[Crossref] [PubMed]

M. Narimatsu, S. Kita, H. Abe, and T. Baba, “Enhancement of vertical emission in photonic crystal nanolasers,” Appl. Phys. Lett. 100(12), 121117 (2012).
[Crossref]

Abstreiter, G.

D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron. 24(12), 3688–3692 (2009).
[Crossref] [PubMed]

Ah, C. S.

A. Kim, C. S. Ah, H. Y. Yu, J. H. Yang, I. B. Baek, C. G. Ahn, C. W. Park, M. S. Jun, and S. Lee, “Ultrasensitive, label-free, and real-time immunodetection using silicon field-effect transistors,” Appl. Phys. Lett. 91(10), 103901 (2007).
[Crossref]

Ahn, C. G.

A. Kim, C. S. Ah, H. Y. Yu, J. H. Yang, I. B. Baek, C. G. Ahn, C. W. Park, M. S. Jun, and S. Lee, “Ultrasensitive, label-free, and real-time immunodetection using silicon field-effect transistors,” Appl. Phys. Lett. 91(10), 103901 (2007).
[Crossref]

Ali, M. M.

H. A. Budz, M. M. Ali, Y. Li, and R. R. LaPierre, “Photoluminescence model for a hybrid aptamer-GaAs optical biosensor,” J. Appl. Phys. 107(10), 104702 (2010).
[Crossref]

Arita, Y.

S. Kita, K. Nozaki, S. Hachuda, H. Watanabe, Y. Saito, S. Otsuka, T. Nakada, Y. Arita, and T. Baba, “Photonic crystal point-shift nanolaser with and without nanoslots—design, fabrication, lasing and sensing characteristics,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1632–1647 (2011).
[Crossref]

Armani, A. M.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[Crossref] [PubMed]

Arnold, S.

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities,” Biophys. J. 85(3), 1974–1979 (2003).
[Crossref] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[Crossref]

Baba, T.

S. Hachuda, T. Watanabe, D. Takahashi, and T. Baba, “Sensitive and selective detection of prostate-specific antigen using a photonic crystal nanolaser,” Opt. Express 24(12), 12886–12892 (2016).
[Crossref] [PubMed]

M. Sakemoto, Y. Kishi, K. Watanabe, H. Abe, S. Ota, Y. Takemura, and T. Baba, “Cell imaging using GaInAsP semiconductor photoluminescence,” Opt. Express 24(10), 11232–11238 (2016).
[Crossref] [PubMed]

T. Baba, “Biosensing using photonic crystal nanolasers,” MRS Commun. 5(4), 555–564 (2015).
[Crossref]

K. Watanabe, Y. Kishi, S. Hachuda, T. Watanabe, M. Sakemoto, Y. Nishijima, and T. Baba, “Simultaneous detection of refractive index and surface charges in nanolaser biosensors,” Appl. Phys. Lett. 106(2), 021106 (2015).
[Crossref]

M. Narimatsu, S. Kita, H. Abe, and T. Baba, “Enhancement of vertical emission in photonic crystal nanolasers,” Appl. Phys. Lett. 100(12), 121117 (2012).
[Crossref]

S. Kita, K. Nozaki, S. Hachuda, H. Watanabe, Y. Saito, S. Otsuka, T. Nakada, Y. Arita, and T. Baba, “Photonic crystal point-shift nanolaser with and without nanoslots—design, fabrication, lasing and sensing characteristics,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1632–1647 (2011).
[Crossref]

S. Kita, S. Hachuda, S. Otsuka, T. Endo, Y. Imai, Y. Nishijima, H. Misawa, and T. Baba, “Super-sensitivity in label-free protein sensing using a nanoslot nanolaser,” Opt. Express 19(18), 17683–17690 (2011).
[Crossref] [PubMed]

K. Nozaki, S. Kita, and T. Baba, “Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser,” Opt. Express 15(12), 7506–7514 (2007).
[Crossref] [PubMed]

M. Fujita, A. Sakai, and T. Baba, “Ultrasmall and ultralow threshold GaInAsP-InP microdisk injection lasers: design, fabrication, lasing characteristics, and spontaneous emission factor,” IEEE J. Sel. Top. Quantum Electron. 5(3), 673–681 (1999).
[Crossref]

Baehr-Jones, T.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Baek, I. B.

A. Kim, C. S. Ah, H. Y. Yu, J. H. Yang, I. B. Baek, C. G. Ahn, C. W. Park, M. S. Jun, and S. Lee, “Ultrasensitive, label-free, and real-time immunodetection using silicon field-effect transistors,” Appl. Phys. Lett. 91(10), 103901 (2007).
[Crossref]

Baets, R.

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed Antibody Detection With an Array of Silicon-on-Insulator Microring Resonators,” IEEE Photonics J. 1(4), 225–235 (2009).
[Crossref]

Baev, A.

Bailey, R. C.

O. Scheler, J. T. Kindt, A. J. Qavi, L. Kaplinski, B. Glynn, T. Barry, A. Kurg, and R. C. Bailey, “Label-free, multiplexed detection of bacterial tmRNA using silicon photonic microring resonators,” Biosens. Bioelectron. 36(1), 56–61 (2012).
[Crossref] [PubMed]

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

A. L. Washburn, M. S. Luchansky, A. L. Bowman, and R. C. Bailey, “Quantitative, label-free detection of five protein biomarkers using multiplexed arrays of silicon photonic microring resonators,” Anal. Chem. 82(1), 69–72 (2010).
[Crossref] [PubMed]

A. L. Washburn, L. C. Gunn, and R. C. Bailey, “Label-Free Quantitation of a cancer biomarker in complex media using silicon photonic microring resonators,” Anal. Chem. 81(22), 9499–9506 (2009).
[Crossref] [PubMed]

Bañuls, M. J.

Barry, T.

O. Scheler, J. T. Kindt, A. J. Qavi, L. Kaplinski, B. Glynn, T. Barry, A. Kurg, and R. C. Bailey, “Label-free, multiplexed detection of bacterial tmRNA using silicon photonic microring resonators,” Biosens. Bioelectron. 36(1), 56–61 (2012).
[Crossref] [PubMed]

Bennett, B. R.

B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs and InGaAsP,” IEEE J. Quantum Electron. 26(1), 113–122 (1990).
[Crossref]

Bienstman, P.

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed Antibody Detection With an Array of Silicon-on-Insulator Microring Resonators,” IEEE Photonics J. 1(4), 225–235 (2009).
[Crossref]

Bowman, A. L.

A. L. Washburn, M. S. Luchansky, A. L. Bowman, and R. C. Bailey, “Quantitative, label-free detection of five protein biomarkers using multiplexed arrays of silicon photonic microring resonators,” Anal. Chem. 82(1), 69–72 (2010).
[Crossref] [PubMed]

Braun, D.

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities,” Biophys. J. 85(3), 1974–1979 (2003).
[Crossref] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[Crossref]

Budz, H. A.

H. A. Budz, M. M. Ali, Y. Li, and R. R. LaPierre, “Photoluminescence model for a hybrid aptamer-GaAs optical biosensor,” J. Appl. Phys. 107(10), 104702 (2010).
[Crossref]

Burr, G. W.

S. Zlatanovic, L. W. Mirkarimi, M. M. Sigalas, M. A. Bynum, E. Chow, K. M. Robotti, G. W. Burr, S. Esener, and A. Grot, “Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration,” Sens. Actuators B Chem. 141(1), 13–19 (2009).
[Crossref]

Bynum, M. A.

S. Zlatanovic, L. W. Mirkarimi, M. M. Sigalas, M. A. Bynum, E. Chow, K. M. Robotti, G. W. Burr, S. Esener, and A. Grot, “Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration,” Sens. Actuators B Chem. 141(1), 13–19 (2009).
[Crossref]

Castelló, J. G.

Chakravarty, S.

S. Chakravarty, A. Hosseini, X. Xu, L. Zhu, Y. Zou, and R. T. Chen, “Analysis of ultra-high sensitivity configuration in chip-integrated photonic crystal microcavity bio-sensors,” Appl. Phys. Lett. 104(19), 191109 (2014).
[Crossref] [PubMed]

Y. Zou, S. Chakravarty, D. N. Kwong, W.-C. Lai, X. Xu, X. Lin, A. Hosseini, and R. T. Chen, “Cavity-waveguide coupling engineered high sensitivity silicon Photonic crystal microcavity biosensors with high yield,” IEEE J. Sel. Top. Quantum Electron. 20(4), 1–10 (2014).

S. Chakravarty, Y. Zou, W.-C. Lai, and R. T. Chen, “Slow light engineering for high Q high sensitivity photonic crystal microcavity biosensors in silicon,” Biosens. Bioelectron. 38(1), 170–176 (2012).
[Crossref] [PubMed]

Chen, R. T.

Y. Zou, S. Chakravarty, D. N. Kwong, W.-C. Lai, X. Xu, X. Lin, A. Hosseini, and R. T. Chen, “Cavity-waveguide coupling engineered high sensitivity silicon Photonic crystal microcavity biosensors with high yield,” IEEE J. Sel. Top. Quantum Electron. 20(4), 1–10 (2014).

S. Chakravarty, A. Hosseini, X. Xu, L. Zhu, Y. Zou, and R. T. Chen, “Analysis of ultra-high sensitivity configuration in chip-integrated photonic crystal microcavity bio-sensors,” Appl. Phys. Lett. 104(19), 191109 (2014).
[Crossref] [PubMed]

S. Chakravarty, Y. Zou, W.-C. Lai, and R. T. Chen, “Slow light engineering for high Q high sensitivity photonic crystal microcavity biosensors in silicon,” Biosens. Bioelectron. 38(1), 170–176 (2012).
[Crossref] [PubMed]

Chong, S. Y. C.

Y. S. Liu, Y. Sun, P. T. Vernier, C. H. Liang, S. Y. C. Chong, and M. A. Gundersen, “pH-sensitive photoluminescence of CdSe/ZnSe/ZnS quantum dots in human ovarian cancer cells,” J. Phys. Chem. C 111(7), 2872–2878 (2007).
[Crossref]

Chorkendorff, I.

B. Seger, T. Pedersen, A. B. Laursen, P. C. K. Vesborg, O. Hansen, and I. Chorkendorff, “Using TiO2 as a conductive protective layer for photocathodic H2 evolution,” J. Am. Chem. Soc. 135(3), 1057–1064 (2013).
[Crossref] [PubMed]

Chow, E.

S. Zlatanovic, L. W. Mirkarimi, M. M. Sigalas, M. A. Bynum, E. Chow, K. M. Robotti, G. W. Burr, S. Esener, and A. Grot, “Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration,” Sens. Actuators B Chem. 141(1), 13–19 (2009).
[Crossref]

Claes, T.

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed Antibody Detection With an Array of Silicon-on-Insulator Microring Resonators,” IEEE Photonics J. 1(4), 225–235 (2009).
[Crossref]

Clarke, N.

Cui, Y.

G. Zheng, F. Patolsky, Y. Cui, W. U. Wang, and C. M. Lieber, “Multiplexed electrical detection of cancer markers with nanowire sensor arrays,” Nat. Biotechnol. 23(10), 1294–1301 (2005).
[Crossref] [PubMed]

Dale, P. S.

De Koninck, Y.

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed Antibody Detection With an Array of Silicon-on-Insulator Microring Resonators,” IEEE Photonics J. 1(4), 225–235 (2009).
[Crossref]

De Vos, K.

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed Antibody Detection With an Array of Silicon-on-Insulator Microring Resonators,” IEEE Photonics J. 1(4), 225–235 (2009).
[Crossref]

Del Alamo, J. A.

B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs and InGaAsP,” IEEE J. Quantum Electron. 26(1), 113–122 (1990).
[Crossref]

Di Falco, A.

M. G. Scullion, A. Di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron. 27(1), 101–105 (2011).
[Crossref] [PubMed]

Dorfner, D.

D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron. 24(12), 3688–3692 (2009).
[Crossref] [PubMed]

Endo, T.

Esener, S.

S. Zlatanovic, L. W. Mirkarimi, M. M. Sigalas, M. A. Bynum, E. Chow, K. M. Robotti, G. W. Burr, S. Esener, and A. Grot, “Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration,” Sens. Actuators B Chem. 141(1), 13–19 (2009).
[Crossref]

Fan, X.

Fauchet, P. M.

S. Pal, E. Guillermain, R. Sriram, B. L. Miller, and P. M. Fauchet, “Silicon photonic crystal nanocavity-coupled waveguides for error-corrected optical biosensing,” Biosens. Bioelectron. 26(10), 4024–4031 (2011).
[Crossref] [PubMed]

Finley, J.

D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron. 24(12), 3688–3692 (2009).
[Crossref] [PubMed]

Flagan, R. C.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[Crossref] [PubMed]

Frandsen, L.

D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron. 24(12), 3688–3692 (2009).
[Crossref] [PubMed]

Fraser, S. E.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[Crossref] [PubMed]

Fujita, M.

M. Fujita, A. Sakai, and T. Baba, “Ultrasmall and ultralow threshold GaInAsP-InP microdisk injection lasers: design, fabrication, lasing characteristics, and spontaneous emission factor,” IEEE J. Sel. Top. Quantum Electron. 5(3), 673–681 (1999).
[Crossref]

García-Rupérez, J.

Girones, J.

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed Antibody Detection With an Array of Silicon-on-Insulator Microring Resonators,” IEEE Photonics J. 1(4), 225–235 (2009).
[Crossref]

Gleeson, M. A.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Glynn, B.

O. Scheler, J. T. Kindt, A. J. Qavi, L. Kaplinski, B. Glynn, T. Barry, A. Kurg, and R. C. Bailey, “Label-free, multiplexed detection of bacterial tmRNA using silicon photonic microring resonators,” Biosens. Bioelectron. 36(1), 56–61 (2012).
[Crossref] [PubMed]

Griol, A.

Grot, A.

S. Zlatanovic, L. W. Mirkarimi, M. M. Sigalas, M. A. Bynum, E. Chow, K. M. Robotti, G. W. Burr, S. Esener, and A. Grot, “Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration,” Sens. Actuators B Chem. 141(1), 13–19 (2009).
[Crossref]

Guillermain, E.

S. Pal, E. Guillermain, R. Sriram, B. L. Miller, and P. M. Fauchet, “Silicon photonic crystal nanocavity-coupled waveguides for error-corrected optical biosensing,” Biosens. Bioelectron. 26(10), 4024–4031 (2011).
[Crossref] [PubMed]

Gundersen, M. A.

Y. S. Liu, Y. Sun, P. T. Vernier, C. H. Liang, S. Y. C. Chong, and M. A. Gundersen, “pH-sensitive photoluminescence of CdSe/ZnSe/ZnS quantum dots in human ovarian cancer cells,” J. Phys. Chem. C 111(7), 2872–2878 (2007).
[Crossref]

Gunn, L. C.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

A. L. Washburn, L. C. Gunn, and R. C. Bailey, “Label-Free Quantitation of a cancer biomarker in complex media using silicon photonic microring resonators,” Anal. Chem. 81(22), 9499–9506 (2009).
[Crossref] [PubMed]

Gunn, W. G.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Hachuda, S.

S. Hachuda, T. Watanabe, D. Takahashi, and T. Baba, “Sensitive and selective detection of prostate-specific antigen using a photonic crystal nanolaser,” Opt. Express 24(12), 12886–12892 (2016).
[Crossref] [PubMed]

K. Watanabe, Y. Kishi, S. Hachuda, T. Watanabe, M. Sakemoto, Y. Nishijima, and T. Baba, “Simultaneous detection of refractive index and surface charges in nanolaser biosensors,” Appl. Phys. Lett. 106(2), 021106 (2015).
[Crossref]

S. Kita, S. Hachuda, S. Otsuka, T. Endo, Y. Imai, Y. Nishijima, H. Misawa, and T. Baba, “Super-sensitivity in label-free protein sensing using a nanoslot nanolaser,” Opt. Express 19(18), 17683–17690 (2011).
[Crossref] [PubMed]

S. Kita, K. Nozaki, S. Hachuda, H. Watanabe, Y. Saito, S. Otsuka, T. Nakada, Y. Arita, and T. Baba, “Photonic crystal point-shift nanolaser with and without nanoslots—design, fabrication, lasing and sensing characteristics,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1632–1647 (2011).
[Crossref]

Hansen, O.

B. Seger, T. Pedersen, A. B. Laursen, P. C. K. Vesborg, O. Hansen, and I. Chorkendorff, “Using TiO2 as a conductive protective layer for photocathodic H2 evolution,” J. Am. Chem. Soc. 135(3), 1057–1064 (2013).
[Crossref] [PubMed]

Hauke, N.

D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron. 24(12), 3688–3692 (2009).
[Crossref] [PubMed]

Hochberg, M.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Hong, S.

J. P. Kim, B. Y. Lee, S. Hong, and S. J. Sim, “Ultrasensitive carbon nanotube-based biosensors using antibody-binding fragments,” Anal. Biochem. 381(2), 193–198 (2008).
[Crossref] [PubMed]

Hosseini, A.

S. Chakravarty, A. Hosseini, X. Xu, L. Zhu, Y. Zou, and R. T. Chen, “Analysis of ultra-high sensitivity configuration in chip-integrated photonic crystal microcavity bio-sensors,” Appl. Phys. Lett. 104(19), 191109 (2014).
[Crossref] [PubMed]

Y. Zou, S. Chakravarty, D. N. Kwong, W.-C. Lai, X. Xu, X. Lin, A. Hosseini, and R. T. Chen, “Cavity-waveguide coupling engineered high sensitivity silicon Photonic crystal microcavity biosensors with high yield,” IEEE J. Sel. Top. Quantum Electron. 20(4), 1–10 (2014).

Hu, R.

Hürlimann, T.

D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron. 24(12), 3688–3692 (2009).
[Crossref] [PubMed]

Imai, Y.

Iqbal, M.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Ji, Y.

D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Lončar, and Q. Quan, “High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” Appl. Phys. Lett. 105(6), 063118 (2014).
[Crossref]

Jun, M. S.

A. Kim, C. S. Ah, H. Y. Yu, J. H. Yang, I. B. Baek, C. G. Ahn, C. W. Park, M. S. Jun, and S. Lee, “Ultrasensitive, label-free, and real-time immunodetection using silicon field-effect transistors,” Appl. Phys. Lett. 91(10), 103901 (2007).
[Crossref]

Kaplinski, L.

O. Scheler, J. T. Kindt, A. J. Qavi, L. Kaplinski, B. Glynn, T. Barry, A. Kurg, and R. C. Bailey, “Label-free, multiplexed detection of bacterial tmRNA using silicon photonic microring resonators,” Biosens. Bioelectron. 36(1), 56–61 (2012).
[Crossref] [PubMed]

Khoshsima, M.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[Crossref]

Kim, A.

A. Kim, C. S. Ah, H. Y. Yu, J. H. Yang, I. B. Baek, C. G. Ahn, C. W. Park, M. S. Jun, and S. Lee, “Ultrasensitive, label-free, and real-time immunodetection using silicon field-effect transistors,” Appl. Phys. Lett. 91(10), 103901 (2007).
[Crossref]

Kim, J. P.

J. P. Kim, B. Y. Lee, S. Hong, and S. J. Sim, “Ultrasensitive carbon nanotube-based biosensors using antibody-binding fragments,” Anal. Biochem. 381(2), 193–198 (2008).
[Crossref] [PubMed]

Kindt, J. T.

O. Scheler, J. T. Kindt, A. J. Qavi, L. Kaplinski, B. Glynn, T. Barry, A. Kurg, and R. C. Bailey, “Label-free, multiplexed detection of bacterial tmRNA using silicon photonic microring resonators,” Biosens. Bioelectron. 36(1), 56–61 (2012).
[Crossref] [PubMed]

Kishi, Y.

M. Sakemoto, Y. Kishi, K. Watanabe, H. Abe, S. Ota, Y. Takemura, and T. Baba, “Cell imaging using GaInAsP semiconductor photoluminescence,” Opt. Express 24(10), 11232–11238 (2016).
[Crossref] [PubMed]

K. Watanabe, Y. Kishi, S. Hachuda, T. Watanabe, M. Sakemoto, Y. Nishijima, and T. Baba, “Simultaneous detection of refractive index and surface charges in nanolaser biosensors,” Appl. Phys. Lett. 106(2), 021106 (2015).
[Crossref]

Kita, S.

D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Lončar, and Q. Quan, “High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” Appl. Phys. Lett. 105(6), 063118 (2014).
[Crossref]

M. Narimatsu, S. Kita, H. Abe, and T. Baba, “Enhancement of vertical emission in photonic crystal nanolasers,” Appl. Phys. Lett. 100(12), 121117 (2012).
[Crossref]

S. Kita, K. Nozaki, S. Hachuda, H. Watanabe, Y. Saito, S. Otsuka, T. Nakada, Y. Arita, and T. Baba, “Photonic crystal point-shift nanolaser with and without nanoslots—design, fabrication, lasing and sensing characteristics,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1632–1647 (2011).
[Crossref]

S. Kita, S. Hachuda, S. Otsuka, T. Endo, Y. Imai, Y. Nishijima, H. Misawa, and T. Baba, “Super-sensitivity in label-free protein sensing using a nanoslot nanolaser,” Opt. Express 19(18), 17683–17690 (2011).
[Crossref] [PubMed]

K. Nozaki, S. Kita, and T. Baba, “Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser,” Opt. Express 15(12), 7506–7514 (2007).
[Crossref] [PubMed]

Krauss, T. F.

M. G. Scullion, A. Di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron. 27(1), 101–105 (2011).
[Crossref] [PubMed]

Krijn, M.

M. Krijn, “Heterojunction band offsets and effective masses in III-V quaternary alloys,” Semicond. Sci. Technol. 6(1), 27–31 (1991).
[Crossref]

Kulkarni, R. P.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[Crossref] [PubMed]

Kurg, A.

O. Scheler, J. T. Kindt, A. J. Qavi, L. Kaplinski, B. Glynn, T. Barry, A. Kurg, and R. C. Bailey, “Label-free, multiplexed detection of bacterial tmRNA using silicon photonic microring resonators,” Biosens. Bioelectron. 36(1), 56–61 (2012).
[Crossref] [PubMed]

Kwong, D. N.

Y. Zou, S. Chakravarty, D. N. Kwong, W.-C. Lai, X. Xu, X. Lin, A. Hosseini, and R. T. Chen, “Cavity-waveguide coupling engineered high sensitivity silicon Photonic crystal microcavity biosensors with high yield,” IEEE J. Sel. Top. Quantum Electron. 20(4), 1–10 (2014).

Lai, W.-C.

Y. Zou, S. Chakravarty, D. N. Kwong, W.-C. Lai, X. Xu, X. Lin, A. Hosseini, and R. T. Chen, “Cavity-waveguide coupling engineered high sensitivity silicon Photonic crystal microcavity biosensors with high yield,” IEEE J. Sel. Top. Quantum Electron. 20(4), 1–10 (2014).

S. Chakravarty, Y. Zou, W.-C. Lai, and R. T. Chen, “Slow light engineering for high Q high sensitivity photonic crystal microcavity biosensors in silicon,” Biosens. Bioelectron. 38(1), 170–176 (2012).
[Crossref] [PubMed]

LaPierre, R. R.

H. A. Budz, M. M. Ali, Y. Li, and R. R. LaPierre, “Photoluminescence model for a hybrid aptamer-GaAs optical biosensor,” J. Appl. Phys. 107(10), 104702 (2010).
[Crossref]

Laursen, A. B.

B. Seger, T. Pedersen, A. B. Laursen, P. C. K. Vesborg, O. Hansen, and I. Chorkendorff, “Using TiO2 as a conductive protective layer for photocathodic H2 evolution,” J. Am. Chem. Soc. 135(3), 1057–1064 (2013).
[Crossref] [PubMed]

Law, W. C.

Lee, B. Y.

J. P. Kim, B. Y. Lee, S. Hong, and S. J. Sim, “Ultrasensitive carbon nanotube-based biosensors using antibody-binding fragments,” Anal. Biochem. 381(2), 193–198 (2008).
[Crossref] [PubMed]

Lee, S.

A. Kim, C. S. Ah, H. Y. Yu, J. H. Yang, I. B. Baek, C. G. Ahn, C. W. Park, M. S. Jun, and S. Lee, “Ultrasensitive, label-free, and real-time immunodetection using silicon field-effect transistors,” Appl. Phys. Lett. 91(10), 103901 (2007).
[Crossref]

Li, Y.

H. A. Budz, M. M. Ali, Y. Li, and R. R. LaPierre, “Photoluminescence model for a hybrid aptamer-GaAs optical biosensor,” J. Appl. Phys. 107(10), 104702 (2010).
[Crossref]

Liang, C. H.

Y. S. Liu, Y. Sun, P. T. Vernier, C. H. Liang, S. Y. C. Chong, and M. A. Gundersen, “pH-sensitive photoluminescence of CdSe/ZnSe/ZnS quantum dots in human ovarian cancer cells,” J. Phys. Chem. C 111(7), 2872–2878 (2007).
[Crossref]

Liang, F.

D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Lončar, and Q. Quan, “High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” Appl. Phys. Lett. 105(6), 063118 (2014).
[Crossref]

F. Liang, N. Clarke, P. Patel, M. Lončar, and Q. Quan, “Scalable photonic crystal chips for high sensitivity protein detection,” Opt. Express 21(26), 32306–32312 (2013).
[Crossref] [PubMed]

Libchaber, A.

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities,” Biophys. J. 85(3), 1974–1979 (2003).
[Crossref] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[Crossref]

Lieber, C. M.

G. Zheng, F. Patolsky, Y. Cui, W. U. Wang, and C. M. Lieber, “Multiplexed electrical detection of cancer markers with nanowire sensor arrays,” Nat. Biotechnol. 23(10), 1294–1301 (2005).
[Crossref] [PubMed]

Lin, X.

Y. Zou, S. Chakravarty, D. N. Kwong, W.-C. Lai, X. Xu, X. Lin, A. Hosseini, and R. T. Chen, “Cavity-waveguide coupling engineered high sensitivity silicon Photonic crystal microcavity biosensors with high yield,” IEEE J. Sel. Top. Quantum Electron. 20(4), 1–10 (2014).

Liu, L.

X. Zhang, L. Liu, and L. Xu, “Ultralow sensing limit in optofluidic micro-bottle resonator biosensor by self-referenced differential-mode detection scheme,” Appl. Phys. Lett. 104(3), 033703 (2014).
[Crossref]

Liu, Y. S.

Y. S. Liu, Y. Sun, P. T. Vernier, C. H. Liang, S. Y. C. Chong, and M. A. Gundersen, “pH-sensitive photoluminescence of CdSe/ZnSe/ZnS quantum dots in human ovarian cancer cells,” J. Phys. Chem. C 111(7), 2872–2878 (2007).
[Crossref]

Loncar, M.

D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Lončar, and Q. Quan, “High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” Appl. Phys. Lett. 105(6), 063118 (2014).
[Crossref]

F. Liang, N. Clarke, P. Patel, M. Lončar, and Q. Quan, “Scalable photonic crystal chips for high sensitivity protein detection,” Opt. Express 21(26), 32306–32312 (2013).
[Crossref] [PubMed]

M. Lončar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82(26), 4648–4650 (2003).
[Crossref]

Luchansky, M. S.

A. L. Washburn, M. S. Luchansky, A. L. Bowman, and R. C. Bailey, “Quantitative, label-free detection of five protein biomarkers using multiplexed arrays of silicon photonic microring resonators,” Anal. Chem. 82(1), 69–72 (2010).
[Crossref] [PubMed]

Maquieira, A.

Miller, B. L.

S. Pal, E. Guillermain, R. Sriram, B. L. Miller, and P. M. Fauchet, “Silicon photonic crystal nanocavity-coupled waveguides for error-corrected optical biosensing,” Biosens. Bioelectron. 26(10), 4024–4031 (2011).
[Crossref] [PubMed]

Mirkarimi, L. W.

S. Zlatanovic, L. W. Mirkarimi, M. M. Sigalas, M. A. Bynum, E. Chow, K. M. Robotti, G. W. Burr, S. Esener, and A. Grot, “Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration,” Sens. Actuators B Chem. 141(1), 13–19 (2009).
[Crossref]

Misawa, H.

Nakada, T.

S. Kita, K. Nozaki, S. Hachuda, H. Watanabe, Y. Saito, S. Otsuka, T. Nakada, Y. Arita, and T. Baba, “Photonic crystal point-shift nanolaser with and without nanoslots—design, fabrication, lasing and sensing characteristics,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1632–1647 (2011).
[Crossref]

Narimatsu, M.

M. Narimatsu, S. Kita, H. Abe, and T. Baba, “Enhancement of vertical emission in photonic crystal nanolasers,” Appl. Phys. Lett. 100(12), 121117 (2012).
[Crossref]

Nishijima, Y.

K. Watanabe, Y. Kishi, S. Hachuda, T. Watanabe, M. Sakemoto, Y. Nishijima, and T. Baba, “Simultaneous detection of refractive index and surface charges in nanolaser biosensors,” Appl. Phys. Lett. 106(2), 021106 (2015).
[Crossref]

S. Kita, S. Hachuda, S. Otsuka, T. Endo, Y. Imai, Y. Nishijima, H. Misawa, and T. Baba, “Super-sensitivity in label-free protein sensing using a nanoslot nanolaser,” Opt. Express 19(18), 17683–17690 (2011).
[Crossref] [PubMed]

Nozaki, K.

S. Kita, K. Nozaki, S. Hachuda, H. Watanabe, Y. Saito, S. Otsuka, T. Nakada, Y. Arita, and T. Baba, “Photonic crystal point-shift nanolaser with and without nanoslots—design, fabrication, lasing and sensing characteristics,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1632–1647 (2011).
[Crossref]

K. Nozaki, S. Kita, and T. Baba, “Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser,” Opt. Express 15(12), 7506–7514 (2007).
[Crossref] [PubMed]

Ota, S.

Otsuka, S.

S. Kita, K. Nozaki, S. Hachuda, H. Watanabe, Y. Saito, S. Otsuka, T. Nakada, Y. Arita, and T. Baba, “Photonic crystal point-shift nanolaser with and without nanoslots—design, fabrication, lasing and sensing characteristics,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1632–1647 (2011).
[Crossref]

S. Kita, S. Hachuda, S. Otsuka, T. Endo, Y. Imai, Y. Nishijima, H. Misawa, and T. Baba, “Super-sensitivity in label-free protein sensing using a nanoslot nanolaser,” Opt. Express 19(18), 17683–17690 (2011).
[Crossref] [PubMed]

Pal, S.

S. Pal, E. Guillermain, R. Sriram, B. L. Miller, and P. M. Fauchet, “Silicon photonic crystal nanocavity-coupled waveguides for error-corrected optical biosensing,” Biosens. Bioelectron. 26(10), 4024–4031 (2011).
[Crossref] [PubMed]

Park, C. W.

A. Kim, C. S. Ah, H. Y. Yu, J. H. Yang, I. B. Baek, C. G. Ahn, C. W. Park, M. S. Jun, and S. Lee, “Ultrasensitive, label-free, and real-time immunodetection using silicon field-effect transistors,” Appl. Phys. Lett. 91(10), 103901 (2007).
[Crossref]

Patel, P.

Patolsky, F.

G. Zheng, F. Patolsky, Y. Cui, W. U. Wang, and C. M. Lieber, “Multiplexed electrical detection of cancer markers with nanowire sensor arrays,” Nat. Biotechnol. 23(10), 1294–1301 (2005).
[Crossref] [PubMed]

Pedersen, T.

B. Seger, T. Pedersen, A. B. Laursen, P. C. K. Vesborg, O. Hansen, and I. Chorkendorff, “Using TiO2 as a conductive protective layer for photocathodic H2 evolution,” J. Am. Chem. Soc. 135(3), 1057–1064 (2013).
[Crossref] [PubMed]

Peransi-Llopis, S.

Popelka, S.

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed Antibody Detection With an Array of Silicon-on-Insulator Microring Resonators,” IEEE Photonics J. 1(4), 225–235 (2009).
[Crossref]

Prasad, P. N.

Qavi, A. J.

O. Scheler, J. T. Kindt, A. J. Qavi, L. Kaplinski, B. Glynn, T. Barry, A. Kurg, and R. C. Bailey, “Label-free, multiplexed detection of bacterial tmRNA using silicon photonic microring resonators,” Biosens. Bioelectron. 36(1), 56–61 (2012).
[Crossref] [PubMed]

Qiu, Y.

M. Lončar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82(26), 4648–4650 (2003).
[Crossref]

Quan, Q.

D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Lončar, and Q. Quan, “High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” Appl. Phys. Lett. 105(6), 063118 (2014).
[Crossref]

F. Liang, N. Clarke, P. Patel, M. Lončar, and Q. Quan, “Scalable photonic crystal chips for high sensitivity protein detection,” Opt. Express 21(26), 32306–32312 (2013).
[Crossref] [PubMed]

Rant, U.

D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron. 24(12), 3688–3692 (2009).
[Crossref] [PubMed]

Robotti, K. M.

S. Zlatanovic, L. W. Mirkarimi, M. M. Sigalas, M. A. Bynum, E. Chow, K. M. Robotti, G. W. Burr, S. Esener, and A. Grot, “Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration,” Sens. Actuators B Chem. 141(1), 13–19 (2009).
[Crossref]

Saito, Y.

S. Kita, K. Nozaki, S. Hachuda, H. Watanabe, Y. Saito, S. Otsuka, T. Nakada, Y. Arita, and T. Baba, “Photonic crystal point-shift nanolaser with and without nanoslots—design, fabrication, lasing and sensing characteristics,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1632–1647 (2011).
[Crossref]

Sakai, A.

M. Fujita, A. Sakai, and T. Baba, “Ultrasmall and ultralow threshold GaInAsP-InP microdisk injection lasers: design, fabrication, lasing characteristics, and spontaneous emission factor,” IEEE J. Sel. Top. Quantum Electron. 5(3), 673–681 (1999).
[Crossref]

Sakemoto, M.

M. Sakemoto, Y. Kishi, K. Watanabe, H. Abe, S. Ota, Y. Takemura, and T. Baba, “Cell imaging using GaInAsP semiconductor photoluminescence,” Opt. Express 24(10), 11232–11238 (2016).
[Crossref] [PubMed]

K. Watanabe, Y. Kishi, S. Hachuda, T. Watanabe, M. Sakemoto, Y. Nishijima, and T. Baba, “Simultaneous detection of refractive index and surface charges in nanolaser biosensors,” Appl. Phys. Lett. 106(2), 021106 (2015).
[Crossref]

Schacht, E.

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed Antibody Detection With an Array of Silicon-on-Insulator Microring Resonators,” IEEE Photonics J. 1(4), 225–235 (2009).
[Crossref]

Scheler, O.

O. Scheler, J. T. Kindt, A. J. Qavi, L. Kaplinski, B. Glynn, T. Barry, A. Kurg, and R. C. Bailey, “Label-free, multiplexed detection of bacterial tmRNA using silicon photonic microring resonators,” Biosens. Bioelectron. 36(1), 56–61 (2012).
[Crossref] [PubMed]

Scherer, A.

M. Lončar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82(26), 4648–4650 (2003).
[Crossref]

Scullion, M. G.

M. G. Scullion, A. Di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron. 27(1), 101–105 (2011).
[Crossref] [PubMed]

Seger, B.

B. Seger, T. Pedersen, A. B. Laursen, P. C. K. Vesborg, O. Hansen, and I. Chorkendorff, “Using TiO2 as a conductive protective layer for photocathodic H2 evolution,” J. Am. Chem. Soc. 135(3), 1057–1064 (2013).
[Crossref] [PubMed]

Sigalas, M. M.

S. Zlatanovic, L. W. Mirkarimi, M. M. Sigalas, M. A. Bynum, E. Chow, K. M. Robotti, G. W. Burr, S. Esener, and A. Grot, “Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration,” Sens. Actuators B Chem. 141(1), 13–19 (2009).
[Crossref]

Sim, S. J.

J. P. Kim, B. Y. Lee, S. Hong, and S. J. Sim, “Ultrasensitive carbon nanotube-based biosensors using antibody-binding fragments,” Anal. Biochem. 381(2), 193–198 (2008).
[Crossref] [PubMed]

Soref, R. A.

B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs and InGaAsP,” IEEE J. Quantum Electron. 26(1), 113–122 (1990).
[Crossref]

Spaugh, B.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Sriram, R.

S. Pal, E. Guillermain, R. Sriram, B. L. Miller, and P. M. Fauchet, “Silicon photonic crystal nanocavity-coupled waveguides for error-corrected optical biosensing,” Biosens. Bioelectron. 26(10), 4024–4031 (2011).
[Crossref] [PubMed]

Sun, Y.

Y. S. Liu, Y. Sun, P. T. Vernier, C. H. Liang, S. Y. C. Chong, and M. A. Gundersen, “pH-sensitive photoluminescence of CdSe/ZnSe/ZnS quantum dots in human ovarian cancer cells,” J. Phys. Chem. C 111(7), 2872–2878 (2007).
[Crossref]

Suter, J. D.

Takahashi, D.

Takemura, Y.

Teraoka, I.

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities,” Biophys. J. 85(3), 1974–1979 (2003).
[Crossref] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[Crossref]

Tian, H.

D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Lončar, and Q. Quan, “High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” Appl. Phys. Lett. 105(6), 063118 (2014).
[Crossref]

Toccafondo, V.

Tybor, F.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Vahala, K. J.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[Crossref] [PubMed]

Vernier, P. T.

Y. S. Liu, Y. Sun, P. T. Vernier, C. H. Liang, S. Y. C. Chong, and M. A. Gundersen, “pH-sensitive photoluminescence of CdSe/ZnSe/ZnS quantum dots in human ovarian cancer cells,” J. Phys. Chem. C 111(7), 2872–2878 (2007).
[Crossref]

Vesborg, P. C. K.

B. Seger, T. Pedersen, A. B. Laursen, P. C. K. Vesborg, O. Hansen, and I. Chorkendorff, “Using TiO2 as a conductive protective layer for photocathodic H2 evolution,” J. Am. Chem. Soc. 135(3), 1057–1064 (2013).
[Crossref] [PubMed]

Vollmer, F.

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities,” Biophys. J. 85(3), 1974–1979 (2003).
[Crossref] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[Crossref]

Wang, C.

D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Lončar, and Q. Quan, “High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” Appl. Phys. Lett. 105(6), 063118 (2014).
[Crossref]

Wang, W. U.

G. Zheng, F. Patolsky, Y. Cui, W. U. Wang, and C. M. Lieber, “Multiplexed electrical detection of cancer markers with nanowire sensor arrays,” Nat. Biotechnol. 23(10), 1294–1301 (2005).
[Crossref] [PubMed]

Washburn, A. L.

A. L. Washburn, M. S. Luchansky, A. L. Bowman, and R. C. Bailey, “Quantitative, label-free detection of five protein biomarkers using multiplexed arrays of silicon photonic microring resonators,” Anal. Chem. 82(1), 69–72 (2010).
[Crossref] [PubMed]

A. L. Washburn, L. C. Gunn, and R. C. Bailey, “Label-Free Quantitation of a cancer biomarker in complex media using silicon photonic microring resonators,” Anal. Chem. 81(22), 9499–9506 (2009).
[Crossref] [PubMed]

Watanabe, H.

S. Kita, K. Nozaki, S. Hachuda, H. Watanabe, Y. Saito, S. Otsuka, T. Nakada, Y. Arita, and T. Baba, “Photonic crystal point-shift nanolaser with and without nanoslots—design, fabrication, lasing and sensing characteristics,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1632–1647 (2011).
[Crossref]

Watanabe, K.

M. Sakemoto, Y. Kishi, K. Watanabe, H. Abe, S. Ota, Y. Takemura, and T. Baba, “Cell imaging using GaInAsP semiconductor photoluminescence,” Opt. Express 24(10), 11232–11238 (2016).
[Crossref] [PubMed]

K. Watanabe, Y. Kishi, S. Hachuda, T. Watanabe, M. Sakemoto, Y. Nishijima, and T. Baba, “Simultaneous detection of refractive index and surface charges in nanolaser biosensors,” Appl. Phys. Lett. 106(2), 021106 (2015).
[Crossref]

Watanabe, T.

S. Hachuda, T. Watanabe, D. Takahashi, and T. Baba, “Sensitive and selective detection of prostate-specific antigen using a photonic crystal nanolaser,” Opt. Express 24(12), 12886–12892 (2016).
[Crossref] [PubMed]

K. Watanabe, Y. Kishi, S. Hachuda, T. Watanabe, M. Sakemoto, Y. Nishijima, and T. Baba, “Simultaneous detection of refractive index and surface charges in nanolaser biosensors,” Appl. Phys. Lett. 106(2), 021106 (2015).
[Crossref]

White, I. M.

Xu, L.

X. Zhang, L. Liu, and L. Xu, “Ultralow sensing limit in optofluidic micro-bottle resonator biosensor by self-referenced differential-mode detection scheme,” Appl. Phys. Lett. 104(3), 033703 (2014).
[Crossref]

Xu, X.

Y. Zou, S. Chakravarty, D. N. Kwong, W.-C. Lai, X. Xu, X. Lin, A. Hosseini, and R. T. Chen, “Cavity-waveguide coupling engineered high sensitivity silicon Photonic crystal microcavity biosensors with high yield,” IEEE J. Sel. Top. Quantum Electron. 20(4), 1–10 (2014).

S. Chakravarty, A. Hosseini, X. Xu, L. Zhu, Y. Zou, and R. T. Chen, “Analysis of ultra-high sensitivity configuration in chip-integrated photonic crystal microcavity bio-sensors,” Appl. Phys. Lett. 104(19), 191109 (2014).
[Crossref] [PubMed]

Yang, D.

D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Lončar, and Q. Quan, “High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” Appl. Phys. Lett. 105(6), 063118 (2014).
[Crossref]

Yang, J. H.

A. Kim, C. S. Ah, H. Y. Yu, J. H. Yang, I. B. Baek, C. G. Ahn, C. W. Park, M. S. Jun, and S. Lee, “Ultrasensitive, label-free, and real-time immunodetection using silicon field-effect transistors,” Appl. Phys. Lett. 91(10), 103901 (2007).
[Crossref]

Yong, K. T.

Yu, H. Y.

A. Kim, C. S. Ah, H. Y. Yu, J. H. Yang, I. B. Baek, C. G. Ahn, C. W. Park, M. S. Jun, and S. Lee, “Ultrasensitive, label-free, and real-time immunodetection using silicon field-effect transistors,” Appl. Phys. Lett. 91(10), 103901 (2007).
[Crossref]

Zabel, T.

D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron. 24(12), 3688–3692 (2009).
[Crossref] [PubMed]

Zhang, X.

X. Zhang, L. Liu, and L. Xu, “Ultralow sensing limit in optofluidic micro-bottle resonator biosensor by self-referenced differential-mode detection scheme,” Appl. Phys. Lett. 104(3), 033703 (2014).
[Crossref]

Zheng, G.

G. Zheng, F. Patolsky, Y. Cui, W. U. Wang, and C. M. Lieber, “Multiplexed electrical detection of cancer markers with nanowire sensor arrays,” Nat. Biotechnol. 23(10), 1294–1301 (2005).
[Crossref] [PubMed]

Zhu, H.

Zhu, L.

S. Chakravarty, A. Hosseini, X. Xu, L. Zhu, Y. Zou, and R. T. Chen, “Analysis of ultra-high sensitivity configuration in chip-integrated photonic crystal microcavity bio-sensors,” Appl. Phys. Lett. 104(19), 191109 (2014).
[Crossref] [PubMed]

Zlatanovic, S.

S. Zlatanovic, L. W. Mirkarimi, M. M. Sigalas, M. A. Bynum, E. Chow, K. M. Robotti, G. W. Burr, S. Esener, and A. Grot, “Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration,” Sens. Actuators B Chem. 141(1), 13–19 (2009).
[Crossref]

Zou, Y.

S. Chakravarty, A. Hosseini, X. Xu, L. Zhu, Y. Zou, and R. T. Chen, “Analysis of ultra-high sensitivity configuration in chip-integrated photonic crystal microcavity bio-sensors,” Appl. Phys. Lett. 104(19), 191109 (2014).
[Crossref] [PubMed]

Y. Zou, S. Chakravarty, D. N. Kwong, W.-C. Lai, X. Xu, X. Lin, A. Hosseini, and R. T. Chen, “Cavity-waveguide coupling engineered high sensitivity silicon Photonic crystal microcavity biosensors with high yield,” IEEE J. Sel. Top. Quantum Electron. 20(4), 1–10 (2014).

S. Chakravarty, Y. Zou, W.-C. Lai, and R. T. Chen, “Slow light engineering for high Q high sensitivity photonic crystal microcavity biosensors in silicon,” Biosens. Bioelectron. 38(1), 170–176 (2012).
[Crossref] [PubMed]

Anal. Biochem. (1)

J. P. Kim, B. Y. Lee, S. Hong, and S. J. Sim, “Ultrasensitive carbon nanotube-based biosensors using antibody-binding fragments,” Anal. Biochem. 381(2), 193–198 (2008).
[Crossref] [PubMed]

Anal. Chem. (2)

A. L. Washburn, M. S. Luchansky, A. L. Bowman, and R. C. Bailey, “Quantitative, label-free detection of five protein biomarkers using multiplexed arrays of silicon photonic microring resonators,” Anal. Chem. 82(1), 69–72 (2010).
[Crossref] [PubMed]

A. L. Washburn, L. C. Gunn, and R. C. Bailey, “Label-Free Quantitation of a cancer biomarker in complex media using silicon photonic microring resonators,” Anal. Chem. 81(22), 9499–9506 (2009).
[Crossref] [PubMed]

Appl. Phys. Lett. (8)

S. Chakravarty, A. Hosseini, X. Xu, L. Zhu, Y. Zou, and R. T. Chen, “Analysis of ultra-high sensitivity configuration in chip-integrated photonic crystal microcavity bio-sensors,” Appl. Phys. Lett. 104(19), 191109 (2014).
[Crossref] [PubMed]

M. Lončar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82(26), 4648–4650 (2003).
[Crossref]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[Crossref]

X. Zhang, L. Liu, and L. Xu, “Ultralow sensing limit in optofluidic micro-bottle resonator biosensor by self-referenced differential-mode detection scheme,” Appl. Phys. Lett. 104(3), 033703 (2014).
[Crossref]

A. Kim, C. S. Ah, H. Y. Yu, J. H. Yang, I. B. Baek, C. G. Ahn, C. W. Park, M. S. Jun, and S. Lee, “Ultrasensitive, label-free, and real-time immunodetection using silicon field-effect transistors,” Appl. Phys. Lett. 91(10), 103901 (2007).
[Crossref]

D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Lončar, and Q. Quan, “High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” Appl. Phys. Lett. 105(6), 063118 (2014).
[Crossref]

K. Watanabe, Y. Kishi, S. Hachuda, T. Watanabe, M. Sakemoto, Y. Nishijima, and T. Baba, “Simultaneous detection of refractive index and surface charges in nanolaser biosensors,” Appl. Phys. Lett. 106(2), 021106 (2015).
[Crossref]

M. Narimatsu, S. Kita, H. Abe, and T. Baba, “Enhancement of vertical emission in photonic crystal nanolasers,” Appl. Phys. Lett. 100(12), 121117 (2012).
[Crossref]

Biophys. J. (1)

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities,” Biophys. J. 85(3), 1974–1979 (2003).
[Crossref] [PubMed]

Biosens. Bioelectron. (5)

S. Chakravarty, Y. Zou, W.-C. Lai, and R. T. Chen, “Slow light engineering for high Q high sensitivity photonic crystal microcavity biosensors in silicon,” Biosens. Bioelectron. 38(1), 170–176 (2012).
[Crossref] [PubMed]

D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron. 24(12), 3688–3692 (2009).
[Crossref] [PubMed]

O. Scheler, J. T. Kindt, A. J. Qavi, L. Kaplinski, B. Glynn, T. Barry, A. Kurg, and R. C. Bailey, “Label-free, multiplexed detection of bacterial tmRNA using silicon photonic microring resonators,” Biosens. Bioelectron. 36(1), 56–61 (2012).
[Crossref] [PubMed]

M. G. Scullion, A. Di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron. 27(1), 101–105 (2011).
[Crossref] [PubMed]

S. Pal, E. Guillermain, R. Sriram, B. L. Miller, and P. M. Fauchet, “Silicon photonic crystal nanocavity-coupled waveguides for error-corrected optical biosensing,” Biosens. Bioelectron. 26(10), 4024–4031 (2011).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs and InGaAsP,” IEEE J. Quantum Electron. 26(1), 113–122 (1990).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (4)

S. Kita, K. Nozaki, S. Hachuda, H. Watanabe, Y. Saito, S. Otsuka, T. Nakada, Y. Arita, and T. Baba, “Photonic crystal point-shift nanolaser with and without nanoslots—design, fabrication, lasing and sensing characteristics,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1632–1647 (2011).
[Crossref]

M. Fujita, A. Sakai, and T. Baba, “Ultrasmall and ultralow threshold GaInAsP-InP microdisk injection lasers: design, fabrication, lasing characteristics, and spontaneous emission factor,” IEEE J. Sel. Top. Quantum Electron. 5(3), 673–681 (1999).
[Crossref]

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Y. Zou, S. Chakravarty, D. N. Kwong, W.-C. Lai, X. Xu, X. Lin, A. Hosseini, and R. T. Chen, “Cavity-waveguide coupling engineered high sensitivity silicon Photonic crystal microcavity biosensors with high yield,” IEEE J. Sel. Top. Quantum Electron. 20(4), 1–10 (2014).

IEEE Photonics J. (1)

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed Antibody Detection With an Array of Silicon-on-Insulator Microring Resonators,” IEEE Photonics J. 1(4), 225–235 (2009).
[Crossref]

J. Am. Chem. Soc. (1)

B. Seger, T. Pedersen, A. B. Laursen, P. C. K. Vesborg, O. Hansen, and I. Chorkendorff, “Using TiO2 as a conductive protective layer for photocathodic H2 evolution,” J. Am. Chem. Soc. 135(3), 1057–1064 (2013).
[Crossref] [PubMed]

J. Appl. Phys. (1)

H. A. Budz, M. M. Ali, Y. Li, and R. R. LaPierre, “Photoluminescence model for a hybrid aptamer-GaAs optical biosensor,” J. Appl. Phys. 107(10), 104702 (2010).
[Crossref]

J. Phys. Chem. C (1)

Y. S. Liu, Y. Sun, P. T. Vernier, C. H. Liang, S. Y. C. Chong, and M. A. Gundersen, “pH-sensitive photoluminescence of CdSe/ZnSe/ZnS quantum dots in human ovarian cancer cells,” J. Phys. Chem. C 111(7), 2872–2878 (2007).
[Crossref]

MRS Commun. (1)

T. Baba, “Biosensing using photonic crystal nanolasers,” MRS Commun. 5(4), 555–564 (2015).
[Crossref]

Nat. Biotechnol. (1)

G. Zheng, F. Patolsky, Y. Cui, W. U. Wang, and C. M. Lieber, “Multiplexed electrical detection of cancer markers with nanowire sensor arrays,” Nat. Biotechnol. 23(10), 1294–1301 (2005).
[Crossref] [PubMed]

Opt. Express (8)

K. Nozaki, S. Kita, and T. Baba, “Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser,” Opt. Express 15(12), 7506–7514 (2007).
[Crossref] [PubMed]

H. Zhu, I. M. White, J. D. Suter, P. S. Dale, and X. Fan, “Analysis of biomolecule detection with optofluidic ring resonator sensors,” Opt. Express 15(15), 9139–9146 (2007).
[Crossref] [PubMed]

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[Crossref] [PubMed]

W. C. Law, K. T. Yong, A. Baev, R. Hu, and P. N. Prasad, “Nanoparticle enhanced surface plasmon resonance biosensing: application of gold nanorods,” Opt. Express 17(21), 19041–19046 (2009).
[Crossref] [PubMed]

S. Kita, S. Hachuda, S. Otsuka, T. Endo, Y. Imai, Y. Nishijima, H. Misawa, and T. Baba, “Super-sensitivity in label-free protein sensing using a nanoslot nanolaser,” Opt. Express 19(18), 17683–17690 (2011).
[Crossref] [PubMed]

F. Liang, N. Clarke, P. Patel, M. Lončar, and Q. Quan, “Scalable photonic crystal chips for high sensitivity protein detection,” Opt. Express 21(26), 32306–32312 (2013).
[Crossref] [PubMed]

M. Sakemoto, Y. Kishi, K. Watanabe, H. Abe, S. Ota, Y. Takemura, and T. Baba, “Cell imaging using GaInAsP semiconductor photoluminescence,” Opt. Express 24(10), 11232–11238 (2016).
[Crossref] [PubMed]

S. Hachuda, T. Watanabe, D. Takahashi, and T. Baba, “Sensitive and selective detection of prostate-specific antigen using a photonic crystal nanolaser,” Opt. Express 24(12), 12886–12892 (2016).
[Crossref] [PubMed]

Opt. Lett. (1)

Science (1)

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

M. Krijn, “Heterojunction band offsets and effective masses in III-V quaternary alloys,” Semicond. Sci. Technol. 6(1), 27–31 (1991).
[Crossref]

Sens. Actuators B Chem. (1)

S. Zlatanovic, L. W. Mirkarimi, M. M. Sigalas, M. A. Bynum, E. Chow, K. M. Robotti, G. W. Burr, S. Esener, and A. Grot, “Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration,” Sens. Actuators B Chem. 141(1), 13–19 (2009).
[Crossref]

Other (3)

S. L. Chuang, Physics of Photonic Devices, 2nd ed. (WILEY, 2008).

N. Jacob, Israelachvili, Intermolecular and Surface Forces Third Edition (Academic, 2011).

T. Watanabe, Y. Furuta, S. Hachuda, Y. Nishijima, and T. Baba, “Electrochemical sensing by photonic crystal nanolaser sensors,” presented at Biosensors (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Relation between the wavelength shift and concentration of the target biomolecules for various label-free photonic biosensors that are operated based on optical resonance.

Fig. 2
Fig. 2

Photonic-crystal nanolasers and the measurement of their laser operation. (a) Scanning electron micrograph of the nanolaser array and a magnified view of an H0-type cavity with a nanoslot. The diameter of the holes inside the dashed lines are reduced by 30 nm from those outside to induce asymmetry in the cavity structure and form a vertical output beam. (b) The measurement setup used in the experiment. (c) Measured lasing spectra for increasing levels of the biomolecule.

Fig. 3
Fig. 3

Schematic of the nanolaser surface and the detection of the biomolecules: (a) IgG, (b) PSA, and (c) single-strand DNA. Each plot and error bar show average values and the scattering range of the measurements for 10–20 nanolasers, respectively.

Fig. 4
Fig. 4

Response to the plasma exposure. (a) Plasma exposure treatment. (b) Temporal changes of the nanolaser wavelength following immersion in pure water immediately after the plasma exposure. (c) Corresponding zeta potential and (d) flat-band potential of an original epiwafer treated similarly.

Fig. 5
Fig. 5

Zeta and flat-band potentials measured after the physical adsorption of single-strand DNA.

Fig. 6
Fig. 6

Schematic of the relation between the surface charge, Schottky barrier, carrier distribution, and light emission. The left lower figure schematically depicts the band lineup in both the SQW and the OCLs.

Fig. 7
Fig. 7

Temporal behaviors of the main spectral peak of the cavity mode and the sub peak of the PL from OCLs of the PC nanolaser which did not exhibit laser operation due to structural disordering. The device was exposed to the plasma and then operated in pure water. (a) Two spectra measured at 5 and 60 min after the plasma exposure are presented. The sharp sub peak is partly caused by a long-pass filter with a cutoff of 1.15 μm, which was used to filter out the pump light. (b) Variation of the main and sub peak intensities normalized to those at time zero. (c) Variation of the sub peak intensity. Gray and black plots show those for eight different devices and their averages, respectively.

Metrics