Abstract

We experimentally investigate the terahertz (THz) electromagnetically-induced transparency (EIT)-like phenomenon in a metamolecule (MM) of three-body system. This system involves a couple of geometrically identical split-ring resonators (SRRs) in orthogonal layout conductively coupled by a cut-wire resonator. Such a three-body system exhibits two frequency response properties upon to the polarization of incident THz beam: One is the dark-bright-bright layout to the horizontally polarized THz beam, where there is no EIT-like effect; the other is bright-dark-dark layout to the vertically polarized THz beam, where an EIT-like effect is observable. The transparency window can be tuned from 0.71 THz to 0.74 THz by the displacement of cut-wire inside the trimer MM. A maximum of 7.5 ps group delay of THz wave is found at the transparent window of 0.74 THz. When the cut-wire moved to the mid-point of lateral-side of SRR, the EIT-like phenomenon disappears, this leads to a localized THz slow-light effect. The distribution of surface currents and electric energy reveals that the excited inductive-capacitive (LC) oscillation of bright-SRR dominates the high frequency side-mode, which is isolated to the displacement of cut-wire resonator. However, the low frequency side-mode originates from the constructive hybridization of LC resonance in dark-SRR coupled with a localized S-shaped dipole oscillator, which is tunable by the displacement of cut-wire. As a consequence, the group delay as well as the spectral configuration of transparency window can be manipulated by tuning one side-mode while fixing the other. Such an experimental finding reveal the EIT-like effect in a conductively coupled three-body system and manifests a novel approach to achieve tunable THz slow-light device.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Localized slow light phenomenon in symmetry broken terahertz metamolecule made of conductively coupled dark resonators

Zhenyu Zhao, Xiaobo Zheng, Wei Peng, Hongwei Zhao, Jianbing Zhang, Zhijian Luo, and Wangzhou Shi
Opt. Mater. Express 7(6) 1950-1961 (2017)

Broadband terahertz plasmon-induced transparency via asymmetric coupling inside meta-molecules

Xiaobo Zheng, Zhenyu Zhao, Wangzhou Shi, and Wei Peng
Opt. Mater. Express 7(3) 1035-1047 (2017)

Plasmon-induced transparency-like behavior at terahertz region via dipole oscillation detuning in a hybrid planar metamaterial

Zhenyu Zhao, Zhiqiang Song, Wangzhou Shi, and Wei Peng
Opt. Mater. Express 6(7) 2190-2200 (2016)

References

  • View by:
  • |
  • |
  • |

  1. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
    [Crossref] [PubMed]
  2. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
    [Crossref] [PubMed]
  3. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
    [Crossref] [PubMed]
  4. W. Cao, R. Singh, C. Zhang, J. Han, M. Tonouchi, and W. Zhang, “Plasmon-induced transparency in metamaterials: Active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
    [Crossref]
  5. M. Parvinnezhad Hokmabadi, E. Philip, E. Rivera, P. Kung, and S. M. Kim, “Plasmon-induced transparency by hybridizing concentric-twisted double split ring resonators,” Sci. Rep. 5(1), 15735 (2015).
    [Crossref] [PubMed]
  6. H. Merbold, A. Bitzer, and T. Feurer, “Near-field investigation of induced transparency in similarly oriented double split-ring resonators,” Opt. Lett. 36(9), 1683–1685 (2011).
    [Crossref] [PubMed]
  7. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
    [Crossref] [PubMed]
  8. X. Duan, S. Chen, H. Yang, H. Cheng, J. Li, W. Liu, C. Gu, and J. Tian, “Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials,” Appl. Phys. Lett. 101(14), 143105 (2012).
    [Crossref]
  9. Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
    [Crossref] [PubMed]
  10. M. Wan, Y. Song, L. Zhang, and F. Zhou, “Broadband plasmon-induced transparency in terahertz metamaterials via constructive interference of electric and magnetic couplings,” Opt. Express 23(21), 27361–27368 (2015).
    [Crossref] [PubMed]
  11. Y. Ma, Z. Li, Y. Yang, R. Huang, R. Singh, S. Zhang, J. Gu, Z. Tian, J. Han, and W. Zhang, “Plasmon-induced transparency in twisted Fano terahertz metamaterials,” Opt. Mater. Express 1(3), 391–399 (2011).
    [Crossref]
  12. C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).
    [Crossref] [PubMed]
  13. Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
    [Crossref] [PubMed]
  14. J. Keller, C. Maissen, J. Haase, G. L. Paravicini-Bagliani, F. Valmorra, J. Palomo, J. Mangeney, J. Tignon, S. S. Dhillon, G. Scalari, and J. Faist, “Coupling surface plasmon polariton modes to complementary THz metasurfaces tuned by inter meta-atom distance,” Adv. Opt. Mater. 5(6), 1600884 (2017).
    [Crossref]
  15. M. Manjappa, Y. K. Srivastava, and R. Singh, “Lattice-induced transparency in planar metamaterials,” Phys. Rev. B 94(16), 161103 (2016).
    [Crossref]
  16. D. Liang, H. Zhang, J. Gu, Y. Li, Z. Tian, C. Ouyang, J. Han, and W. Zhang, “Plasmonic Analog of Electromagnetically Induced Transparency in Stereo Metamaterials,” IEEE J. Sel. Top. Quantum Electron. 23(4), 4700907 (2017).
    [Crossref]
  17. H. Jung, C. In, H. Choi, and H. Lee, “Electromagnetically induced transparency analogue by self-complementary terahertz meta-atom,” Adv. Opt. Mater. 4(4), 627–633 (2017).
    [Crossref]
  18. N. Xu, M. Manjappa, R. Singh, and W. Zhang, “Tailoring the electromagnetically induced transparency and absorbance in coupled Fano–Lorentzian metasurfaces: A classical analog of a four-level tripod quantum system,” Adv. Opt. Mater. 4(8), 1179–1185 (2016).
    [Crossref]
  19. P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. Lee, “Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial,” Adv. Opt. Mater. 4(4), 541–547 (2016).
    [Crossref]
  20. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(10), 1151 (2012).
    [Crossref] [PubMed]
  21. X. Han, T. Wang, X. Li, S. Xiao, and Y. Zhu, “Dynamically tunable plasmon induced transparency in a graphene-based nanoribbon waveguide coupled with graphene rectangular resonators structure on sapphire substrate,” Opt. Express 23(25), 31945–31955 (2015).
    [Crossref] [PubMed]
  22. C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical Analogue of Electromagnetically Induced Transparency with a Metal-Superconductor Hybrid Metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
    [Crossref] [PubMed]
  23. F. Miyamaru, H. Morita, Y. Nishiyama, T. Nishida, T. Nakanishi, M. Kitano, and M. W. Takeda, “Ultrafast optical control of group delay of narrow-band terahertz waves,” Sci. Rep. 4(1), 4346 (2014).
    [Crossref] [PubMed]
  24. X. Su, C. Ouyang, N. Xu, S. Tan, J. Gu, Z. Tian, J. Han, F. Yan, and W. Zhang, “Broadband Terahertz Transparency in a Switchable Metasurface,” IEEE Photonics J. 7(1), 5900108 (2015).
    [Crossref]
  25. Q. Xu, X. Su, C. Ouyang, N. Xu, W. Cao, Y. Zhang, Q. Li, C. Hu, J. Gu, Z. Tian, A. K. Azad, J. Han, and W. Zhang, “Frequency-agile electromagnetically induced transparency analogue in terahertz metamaterials,” Opt. Lett. 41(19), 4562–4565 (2016).
    [Crossref] [PubMed]
  26. D. Cvijetic and I. B. Milorad, Advanced Optical Communication Systems and Networks (Artech House. 2013), pp. 217–314.
  27. B. Pingault, D.-D. Jarausch, C. Hepp, L. Klintberg, J. N. Becker, M. Markham, C. Becher, and M. Atatüre, “Coherent control of the silicon-vacancy spin in diamond,” Nat. Commun. 8, 15579 (2017).
    [Crossref] [PubMed]
  28. J. W. MacLean, K. Ried, R. W. Spekkens, and K. J. Resch, “Quantum-coherent mixtures of causal relations,” Nat. Commun. 8, 15149 (2017).
    [Crossref] [PubMed]
  29. X. Zhang, Q. Xu, Q. Li, Y. Xu, J. Gu, Z. Tian, C. Ouyang, Y. Liu, S. Zhang, X. Zhang, J. Han, and W. Zhang, “Asymmetric excitation of surface plasmons by dark mode coupling,” Sci. Adv. 2(2), e1501142 (2016).
    [Crossref] [PubMed]
  30. C.-W. Chang, M. Liu, S. Nam, S. Zhang, Y. Liu, G. Bartal, and X. Zhang, “Optical Möbius symmetry in metamaterials,” Phys. Rev. Lett. 105(23), 235501 (2010).
    [Crossref] [PubMed]
  31. I. Al-Naib, E. Hebestreit, C. Rockstuhl, F. Lederer, D. Christodoulides, T. Ozaki, and R. Morandotti, “Conductive coupling of split ring resonators: A path to THz metamaterials with ultrasharp resonances,” Phys. Rev. Lett. 112(18), 183903 (2014).
    [Crossref] [PubMed]
  32. R. Singh, I. Al-Naib, D. R. Chowdhury, L. Cong, C. Rockstuhl, and W. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).
    [Crossref]
  33. Z. Zhao, X. Zheng, W. Peng, H. Zhao, J. Zhang, Z. Luo, and W. Shi, “Localized slow light phenomenon in symmetry broken terahertz metamolecule made of conductively coupled dark resonators,” Opt. Mater. Express 7(6), 1950–1961 (2017).
    [Crossref]
  34. Z. Song, Z. Zhao, W. Peng, and W. Shi, “Terahertz response of fractal meta-atoms based on concentric rectangular square resonators,” J. Appl. Phys. 118(19), 193103 (2015).
    [Crossref]
  35. Z. Song, Z. Zhao, H. Zhao, W. Peng, X. He, and W. Shi, “Teeter-totter effect of terahertz dual modes in C-shaped complementary split-ring resonators,” J. Appl. Phys. 118(4), 043108 (2015).
    [Crossref]
  36. Z. Zhao, Z. Song, W. Shi, and W. Peng, “Plasmon-induced transparency-like behavior at terahertz region via dipole oscillation detuning in a hybrid planar metamaterial,” Opt. Mater. Express 6(7), 2190–2200 (2016).
    [Crossref]
  37. X. Zheng, Z. Zhao, W. Shi, and W. Peng, “Broadband terahertz plasmon-induced transparency via asymmetric coupling inside meta-molecules,” Opt. Mater. Express 7(3), 1035–1047 (2017).
    [Crossref]
  38. X. Zheng, Z. Zhao, W. Peng, H. Zhao, J. Zhang, Z. Luo, and W. Shi, “Suppression of terahertz dipole oscillation in split-ring resonators deformed from square to triangle,” Appl. Phys., A Mater. Sci. Process. 123(4), 266 (2017).
    [Crossref]
  39. W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
    [Crossref] [PubMed]
  40. X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
    [Crossref] [PubMed]
  41. R. E. Raab and O. L. D. Lange, Multipole Theory in Electromagnetism (Oxford. 2005).
  42. J. Petschulat, A. Chipouline, A. Tünnermann, T. Pertsch, C. Menzel, C. Rockstuhl, T. Paul, and F. Lederer, “Simple and versatile analytical approach for planar metamaterials,” Phys. Rev. B 82(7), 075102 (2010).
    [Crossref]
  43. H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Negative refraction of a combined double S-shaped metamaterial,” Appl. Phys. Lett. 86(15), 151909 (2005).
    [Crossref]
  44. L. Onsager, “Reciprocal Relations in Irreversible Processes. I,” Phys. Rev. 37(4), 405–426 (1931).
    [Crossref]
  45. L. Onsager, “Reciprocal Relations in Irreversible Processes. II,” Phys. Rev. 38(12), 2265–2279 (1931).
    [Crossref]
  46. H. Casimir, “On Onsager’s Principle of Microscopic Reversibility,” Rev. Mod. Phys. 17(2), 343–350 (1945).
    [Crossref]
  47. Y. Lu, H. Xu, J. Y. Rhee, W. H. Jang, B. S. Ham, and Y. P. Lee, “Magnetic plasmon resonance: Underlying route to plasmonic electromagnetically induced transparency in metamaterials,” Phys. Rev. B 82(19), 195112 (2010).
    [Crossref]
  48. Z.-G. Dong, H. Liu, M.-X. Xu, T. Li, S.-M. Wang, J.-X. Cao, S.-N. Zhu, and X. Zhang, “Role of asymmetric environment on the dark mode excitation in metamaterial analogue of electromagnetically-induced transparency,” Opt. Express 18(21), 22412–22417 (2010).
    [Crossref] [PubMed]
  49. S. D. Jenkins and J. Ruostekoski, “Metamaterial transparency induced by cooperative electromagnetic interactions,” Phys. Rev. Lett. 111(14), 147401 (2013).
    [Crossref] [PubMed]
  50. Z. He, H. Li, S. Zhan, G. Cao, and B. Li, “Combined theoretical analysis for plasmon-induced transparency in waveguide systems,” Opt. Lett. 39(19), 5543–5546 (2014).
    [Crossref] [PubMed]

2017 (8)

J. Keller, C. Maissen, J. Haase, G. L. Paravicini-Bagliani, F. Valmorra, J. Palomo, J. Mangeney, J. Tignon, S. S. Dhillon, G. Scalari, and J. Faist, “Coupling surface plasmon polariton modes to complementary THz metasurfaces tuned by inter meta-atom distance,” Adv. Opt. Mater. 5(6), 1600884 (2017).
[Crossref]

D. Liang, H. Zhang, J. Gu, Y. Li, Z. Tian, C. Ouyang, J. Han, and W. Zhang, “Plasmonic Analog of Electromagnetically Induced Transparency in Stereo Metamaterials,” IEEE J. Sel. Top. Quantum Electron. 23(4), 4700907 (2017).
[Crossref]

H. Jung, C. In, H. Choi, and H. Lee, “Electromagnetically induced transparency analogue by self-complementary terahertz meta-atom,” Adv. Opt. Mater. 4(4), 627–633 (2017).
[Crossref]

B. Pingault, D.-D. Jarausch, C. Hepp, L. Klintberg, J. N. Becker, M. Markham, C. Becher, and M. Atatüre, “Coherent control of the silicon-vacancy spin in diamond,” Nat. Commun. 8, 15579 (2017).
[Crossref] [PubMed]

J. W. MacLean, K. Ried, R. W. Spekkens, and K. J. Resch, “Quantum-coherent mixtures of causal relations,” Nat. Commun. 8, 15149 (2017).
[Crossref] [PubMed]

X. Zheng, Z. Zhao, W. Shi, and W. Peng, “Broadband terahertz plasmon-induced transparency via asymmetric coupling inside meta-molecules,” Opt. Mater. Express 7(3), 1035–1047 (2017).
[Crossref]

X. Zheng, Z. Zhao, W. Peng, H. Zhao, J. Zhang, Z. Luo, and W. Shi, “Suppression of terahertz dipole oscillation in split-ring resonators deformed from square to triangle,” Appl. Phys., A Mater. Sci. Process. 123(4), 266 (2017).
[Crossref]

Z. Zhao, X. Zheng, W. Peng, H. Zhao, J. Zhang, Z. Luo, and W. Shi, “Localized slow light phenomenon in symmetry broken terahertz metamolecule made of conductively coupled dark resonators,” Opt. Mater. Express 7(6), 1950–1961 (2017).
[Crossref]

2016 (6)

Z. Zhao, Z. Song, W. Shi, and W. Peng, “Plasmon-induced transparency-like behavior at terahertz region via dipole oscillation detuning in a hybrid planar metamaterial,” Opt. Mater. Express 6(7), 2190–2200 (2016).
[Crossref]

Q. Xu, X. Su, C. Ouyang, N. Xu, W. Cao, Y. Zhang, Q. Li, C. Hu, J. Gu, Z. Tian, A. K. Azad, J. Han, and W. Zhang, “Frequency-agile electromagnetically induced transparency analogue in terahertz metamaterials,” Opt. Lett. 41(19), 4562–4565 (2016).
[Crossref] [PubMed]

X. Zhang, Q. Xu, Q. Li, Y. Xu, J. Gu, Z. Tian, C. Ouyang, Y. Liu, S. Zhang, X. Zhang, J. Han, and W. Zhang, “Asymmetric excitation of surface plasmons by dark mode coupling,” Sci. Adv. 2(2), e1501142 (2016).
[Crossref] [PubMed]

N. Xu, M. Manjappa, R. Singh, and W. Zhang, “Tailoring the electromagnetically induced transparency and absorbance in coupled Fano–Lorentzian metasurfaces: A classical analog of a four-level tripod quantum system,” Adv. Opt. Mater. 4(8), 1179–1185 (2016).
[Crossref]

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. Lee, “Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial,” Adv. Opt. Mater. 4(4), 541–547 (2016).
[Crossref]

M. Manjappa, Y. K. Srivastava, and R. Singh, “Lattice-induced transparency in planar metamaterials,” Phys. Rev. B 94(16), 161103 (2016).
[Crossref]

2015 (6)

M. Wan, Y. Song, L. Zhang, and F. Zhou, “Broadband plasmon-induced transparency in terahertz metamaterials via constructive interference of electric and magnetic couplings,” Opt. Express 23(21), 27361–27368 (2015).
[Crossref] [PubMed]

M. Parvinnezhad Hokmabadi, E. Philip, E. Rivera, P. Kung, and S. M. Kim, “Plasmon-induced transparency by hybridizing concentric-twisted double split ring resonators,” Sci. Rep. 5(1), 15735 (2015).
[Crossref] [PubMed]

X. Han, T. Wang, X. Li, S. Xiao, and Y. Zhu, “Dynamically tunable plasmon induced transparency in a graphene-based nanoribbon waveguide coupled with graphene rectangular resonators structure on sapphire substrate,” Opt. Express 23(25), 31945–31955 (2015).
[Crossref] [PubMed]

X. Su, C. Ouyang, N. Xu, S. Tan, J. Gu, Z. Tian, J. Han, F. Yan, and W. Zhang, “Broadband Terahertz Transparency in a Switchable Metasurface,” IEEE Photonics J. 7(1), 5900108 (2015).
[Crossref]

Z. Song, Z. Zhao, W. Peng, and W. Shi, “Terahertz response of fractal meta-atoms based on concentric rectangular square resonators,” J. Appl. Phys. 118(19), 193103 (2015).
[Crossref]

Z. Song, Z. Zhao, H. Zhao, W. Peng, X. He, and W. Shi, “Teeter-totter effect of terahertz dual modes in C-shaped complementary split-ring resonators,” J. Appl. Phys. 118(4), 043108 (2015).
[Crossref]

2014 (4)

Z. He, H. Li, S. Zhan, G. Cao, and B. Li, “Combined theoretical analysis for plasmon-induced transparency in waveguide systems,” Opt. Lett. 39(19), 5543–5546 (2014).
[Crossref] [PubMed]

I. Al-Naib, E. Hebestreit, C. Rockstuhl, F. Lederer, D. Christodoulides, T. Ozaki, and R. Morandotti, “Conductive coupling of split ring resonators: A path to THz metamaterials with ultrasharp resonances,” Phys. Rev. Lett. 112(18), 183903 (2014).
[Crossref] [PubMed]

R. Singh, I. Al-Naib, D. R. Chowdhury, L. Cong, C. Rockstuhl, and W. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).
[Crossref]

F. Miyamaru, H. Morita, Y. Nishiyama, T. Nishida, T. Nakanishi, M. Kitano, and M. W. Takeda, “Ultrafast optical control of group delay of narrow-band terahertz waves,” Sci. Rep. 4(1), 4346 (2014).
[Crossref] [PubMed]

2013 (3)

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
[Crossref] [PubMed]

W. Cao, R. Singh, C. Zhang, J. Han, M. Tonouchi, and W. Zhang, “Plasmon-induced transparency in metamaterials: Active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
[Crossref]

S. D. Jenkins and J. Ruostekoski, “Metamaterial transparency induced by cooperative electromagnetic interactions,” Phys. Rev. Lett. 111(14), 147401 (2013).
[Crossref] [PubMed]

2012 (2)

X. Duan, S. Chen, H. Yang, H. Cheng, J. Li, W. Liu, C. Gu, and J. Tian, “Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials,” Appl. Phys. Lett. 101(14), 143105 (2012).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(10), 1151 (2012).
[Crossref] [PubMed]

2011 (5)

2010 (5)

C.-W. Chang, M. Liu, S. Nam, S. Zhang, Y. Liu, G. Bartal, and X. Zhang, “Optical Möbius symmetry in metamaterials,” Phys. Rev. Lett. 105(23), 235501 (2010).
[Crossref] [PubMed]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Y. Lu, H. Xu, J. Y. Rhee, W. H. Jang, B. S. Ham, and Y. P. Lee, “Magnetic plasmon resonance: Underlying route to plasmonic electromagnetically induced transparency in metamaterials,” Phys. Rev. B 82(19), 195112 (2010).
[Crossref]

Z.-G. Dong, H. Liu, M.-X. Xu, T. Li, S.-M. Wang, J.-X. Cao, S.-N. Zhu, and X. Zhang, “Role of asymmetric environment on the dark mode excitation in metamaterial analogue of electromagnetically-induced transparency,” Opt. Express 18(21), 22412–22417 (2010).
[Crossref] [PubMed]

J. Petschulat, A. Chipouline, A. Tünnermann, T. Pertsch, C. Menzel, C. Rockstuhl, T. Paul, and F. Lederer, “Simple and versatile analytical approach for planar metamaterials,” Phys. Rev. B 82(7), 075102 (2010).
[Crossref]

2009 (1)

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[Crossref] [PubMed]

2008 (2)

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

2006 (1)

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref] [PubMed]

2005 (1)

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Negative refraction of a combined double S-shaped metamaterial,” Appl. Phys. Lett. 86(15), 151909 (2005).
[Crossref]

2004 (1)

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
[Crossref] [PubMed]

1945 (1)

H. Casimir, “On Onsager’s Principle of Microscopic Reversibility,” Rev. Mod. Phys. 17(2), 343–350 (1945).
[Crossref]

1931 (2)

L. Onsager, “Reciprocal Relations in Irreversible Processes. I,” Phys. Rev. 37(4), 405–426 (1931).
[Crossref]

L. Onsager, “Reciprocal Relations in Irreversible Processes. II,” Phys. Rev. 38(12), 2265–2279 (1931).
[Crossref]

Al-Naib, I.

I. Al-Naib, E. Hebestreit, C. Rockstuhl, F. Lederer, D. Christodoulides, T. Ozaki, and R. Morandotti, “Conductive coupling of split ring resonators: A path to THz metamaterials with ultrasharp resonances,” Phys. Rev. Lett. 112(18), 183903 (2014).
[Crossref] [PubMed]

R. Singh, I. Al-Naib, D. R. Chowdhury, L. Cong, C. Rockstuhl, and W. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).
[Crossref]

Anlage, S. M.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical Analogue of Electromagnetically Induced Transparency with a Metal-Superconductor Hybrid Metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[Crossref] [PubMed]

Atatüre, M.

B. Pingault, D.-D. Jarausch, C. Hepp, L. Klintberg, J. N. Becker, M. Markham, C. Becher, and M. Atatüre, “Coherent control of the silicon-vacancy spin in diamond,” Nat. Commun. 8, 15579 (2017).
[Crossref] [PubMed]

Averitt, R. D.

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref] [PubMed]

Azad, A. K.

Q. Xu, X. Su, C. Ouyang, N. Xu, W. Cao, Y. Zhang, Q. Li, C. Hu, J. Gu, Z. Tian, A. K. Azad, J. Han, and W. Zhang, “Frequency-agile electromagnetically induced transparency analogue in terahertz metamaterials,” Opt. Lett. 41(19), 4562–4565 (2016).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(10), 1151 (2012).
[Crossref] [PubMed]

Bartal, G.

C.-W. Chang, M. Liu, S. Nam, S. Zhang, Y. Liu, G. Bartal, and X. Zhang, “Optical Möbius symmetry in metamaterials,” Phys. Rev. Lett. 105(23), 235501 (2010).
[Crossref] [PubMed]

Becher, C.

B. Pingault, D.-D. Jarausch, C. Hepp, L. Klintberg, J. N. Becker, M. Markham, C. Becher, and M. Atatüre, “Coherent control of the silicon-vacancy spin in diamond,” Nat. Commun. 8, 15579 (2017).
[Crossref] [PubMed]

Becker, J. N.

B. Pingault, D.-D. Jarausch, C. Hepp, L. Klintberg, J. N. Becker, M. Markham, C. Becher, and M. Atatüre, “Coherent control of the silicon-vacancy spin in diamond,” Nat. Commun. 8, 15579 (2017).
[Crossref] [PubMed]

Bitzer, A.

Cao, G.

Cao, J.-X.

Cao, W.

Q. Xu, X. Su, C. Ouyang, N. Xu, W. Cao, Y. Zhang, Q. Li, C. Hu, J. Gu, Z. Tian, A. K. Azad, J. Han, and W. Zhang, “Frequency-agile electromagnetically induced transparency analogue in terahertz metamaterials,” Opt. Lett. 41(19), 4562–4565 (2016).
[Crossref] [PubMed]

W. Cao, R. Singh, C. Zhang, J. Han, M. Tonouchi, and W. Zhang, “Plasmon-induced transparency in metamaterials: Active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
[Crossref]

Casimir, H.

H. Casimir, “On Onsager’s Principle of Microscopic Reversibility,” Rev. Mod. Phys. 17(2), 343–350 (1945).
[Crossref]

Chang, C.-W.

C.-W. Chang, M. Liu, S. Nam, S. Zhang, Y. Liu, G. Bartal, and X. Zhang, “Optical Möbius symmetry in metamaterials,” Phys. Rev. Lett. 105(23), 235501 (2010).
[Crossref] [PubMed]

Chen, H.

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Negative refraction of a combined double S-shaped metamaterial,” Appl. Phys. Lett. 86(15), 151909 (2005).
[Crossref]

Chen, H. T.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(10), 1151 (2012).
[Crossref] [PubMed]

Chen, K.

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Negative refraction of a combined double S-shaped metamaterial,” Appl. Phys. Lett. 86(15), 151909 (2005).
[Crossref]

Chen, S.

X. Duan, S. Chen, H. Yang, H. Cheng, J. Li, W. Liu, C. Gu, and J. Tian, “Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials,” Appl. Phys. Lett. 101(14), 143105 (2012).
[Crossref]

Chen, X.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
[Crossref] [PubMed]

Cheng, H.

X. Duan, S. Chen, H. Yang, H. Cheng, J. Li, W. Liu, C. Gu, and J. Tian, “Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials,” Appl. Phys. Lett. 101(14), 143105 (2012).
[Crossref]

Chipouline, A.

J. Petschulat, A. Chipouline, A. Tünnermann, T. Pertsch, C. Menzel, C. Rockstuhl, T. Paul, and F. Lederer, “Simple and versatile analytical approach for planar metamaterials,” Phys. Rev. B 82(7), 075102 (2010).
[Crossref]

Choi, H.

H. Jung, C. In, H. Choi, and H. Lee, “Electromagnetically induced transparency analogue by self-complementary terahertz meta-atom,” Adv. Opt. Mater. 4(4), 627–633 (2017).
[Crossref]

Chowdhury, D. R.

R. Singh, I. Al-Naib, D. R. Chowdhury, L. Cong, C. Rockstuhl, and W. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).
[Crossref]

Christodoulides, D.

I. Al-Naib, E. Hebestreit, C. Rockstuhl, F. Lederer, D. Christodoulides, T. Ozaki, and R. Morandotti, “Conductive coupling of split ring resonators: A path to THz metamaterials with ultrasharp resonances,” Phys. Rev. Lett. 112(18), 183903 (2014).
[Crossref] [PubMed]

Cong, L.

R. Singh, I. Al-Naib, D. R. Chowdhury, L. Cong, C. Rockstuhl, and W. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).
[Crossref]

Dhillon, S. S.

J. Keller, C. Maissen, J. Haase, G. L. Paravicini-Bagliani, F. Valmorra, J. Palomo, J. Mangeney, J. Tignon, S. S. Dhillon, G. Scalari, and J. Faist, “Coupling surface plasmon polariton modes to complementary THz metasurfaces tuned by inter meta-atom distance,” Adv. Opt. Mater. 5(6), 1600884 (2017).
[Crossref]

Dong, Z.-G.

Duan, X.

X. Duan, S. Chen, H. Yang, H. Cheng, J. Li, W. Liu, C. Gu, and J. Tian, “Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials,” Appl. Phys. Lett. 101(14), 143105 (2012).
[Crossref]

Economou, E. N.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[Crossref] [PubMed]

Eigenthaler, U.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Faist, J.

J. Keller, C. Maissen, J. Haase, G. L. Paravicini-Bagliani, F. Valmorra, J. Palomo, J. Mangeney, J. Tignon, S. S. Dhillon, G. Scalari, and J. Faist, “Coupling surface plasmon polariton modes to complementary THz metasurfaces tuned by inter meta-atom distance,” Adv. Opt. Mater. 5(6), 1600884 (2017).
[Crossref]

Fedotov, V. A.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref] [PubMed]

Feurer, T.

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Giessen, H.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Grzegorczyk, T. M.

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Negative refraction of a combined double S-shaped metamaterial,” Appl. Phys. Lett. 86(15), 151909 (2005).
[Crossref]

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
[Crossref] [PubMed]

Gu, C.

X. Duan, S. Chen, H. Yang, H. Cheng, J. Li, W. Liu, C. Gu, and J. Tian, “Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials,” Appl. Phys. Lett. 101(14), 143105 (2012).
[Crossref]

Gu, J.

D. Liang, H. Zhang, J. Gu, Y. Li, Z. Tian, C. Ouyang, J. Han, and W. Zhang, “Plasmonic Analog of Electromagnetically Induced Transparency in Stereo Metamaterials,” IEEE J. Sel. Top. Quantum Electron. 23(4), 4700907 (2017).
[Crossref]

X. Zhang, Q. Xu, Q. Li, Y. Xu, J. Gu, Z. Tian, C. Ouyang, Y. Liu, S. Zhang, X. Zhang, J. Han, and W. Zhang, “Asymmetric excitation of surface plasmons by dark mode coupling,” Sci. Adv. 2(2), e1501142 (2016).
[Crossref] [PubMed]

Q. Xu, X. Su, C. Ouyang, N. Xu, W. Cao, Y. Zhang, Q. Li, C. Hu, J. Gu, Z. Tian, A. K. Azad, J. Han, and W. Zhang, “Frequency-agile electromagnetically induced transparency analogue in terahertz metamaterials,” Opt. Lett. 41(19), 4562–4565 (2016).
[Crossref] [PubMed]

X. Su, C. Ouyang, N. Xu, S. Tan, J. Gu, Z. Tian, J. Han, F. Yan, and W. Zhang, “Broadband Terahertz Transparency in a Switchable Metasurface,” IEEE Photonics J. 7(1), 5900108 (2015).
[Crossref]

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(10), 1151 (2012).
[Crossref] [PubMed]

Y. Ma, Z. Li, Y. Yang, R. Huang, R. Singh, S. Zhang, J. Gu, Z. Tian, J. Han, and W. Zhang, “Plasmon-induced transparency in twisted Fano terahertz metamaterials,” Opt. Mater. Express 1(3), 391–399 (2011).
[Crossref]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
[Crossref] [PubMed]

Haase, J.

J. Keller, C. Maissen, J. Haase, G. L. Paravicini-Bagliani, F. Valmorra, J. Palomo, J. Mangeney, J. Tignon, S. S. Dhillon, G. Scalari, and J. Faist, “Coupling surface plasmon polariton modes to complementary THz metasurfaces tuned by inter meta-atom distance,” Adv. Opt. Mater. 5(6), 1600884 (2017).
[Crossref]

Ham, B. S.

Y. Lu, H. Xu, J. Y. Rhee, W. H. Jang, B. S. Ham, and Y. P. Lee, “Magnetic plasmon resonance: Underlying route to plasmonic electromagnetically induced transparency in metamaterials,” Phys. Rev. B 82(19), 195112 (2010).
[Crossref]

Han, J.

D. Liang, H. Zhang, J. Gu, Y. Li, Z. Tian, C. Ouyang, J. Han, and W. Zhang, “Plasmonic Analog of Electromagnetically Induced Transparency in Stereo Metamaterials,” IEEE J. Sel. Top. Quantum Electron. 23(4), 4700907 (2017).
[Crossref]

X. Zhang, Q. Xu, Q. Li, Y. Xu, J. Gu, Z. Tian, C. Ouyang, Y. Liu, S. Zhang, X. Zhang, J. Han, and W. Zhang, “Asymmetric excitation of surface plasmons by dark mode coupling,” Sci. Adv. 2(2), e1501142 (2016).
[Crossref] [PubMed]

Q. Xu, X. Su, C. Ouyang, N. Xu, W. Cao, Y. Zhang, Q. Li, C. Hu, J. Gu, Z. Tian, A. K. Azad, J. Han, and W. Zhang, “Frequency-agile electromagnetically induced transparency analogue in terahertz metamaterials,” Opt. Lett. 41(19), 4562–4565 (2016).
[Crossref] [PubMed]

X. Su, C. Ouyang, N. Xu, S. Tan, J. Gu, Z. Tian, J. Han, F. Yan, and W. Zhang, “Broadband Terahertz Transparency in a Switchable Metasurface,” IEEE Photonics J. 7(1), 5900108 (2015).
[Crossref]

W. Cao, R. Singh, C. Zhang, J. Han, M. Tonouchi, and W. Zhang, “Plasmon-induced transparency in metamaterials: Active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
[Crossref]

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(10), 1151 (2012).
[Crossref] [PubMed]

Y. Ma, Z. Li, Y. Yang, R. Huang, R. Singh, S. Zhang, J. Gu, Z. Tian, J. Han, and W. Zhang, “Plasmon-induced transparency in twisted Fano terahertz metamaterials,” Opt. Mater. Express 1(3), 391–399 (2011).
[Crossref]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
[Crossref] [PubMed]

Han, X.

He, X.

Z. Song, Z. Zhao, H. Zhao, W. Peng, X. He, and W. Shi, “Teeter-totter effect of terahertz dual modes in C-shaped complementary split-ring resonators,” J. Appl. Phys. 118(4), 043108 (2015).
[Crossref]

He, Z.

Hebestreit, E.

I. Al-Naib, E. Hebestreit, C. Rockstuhl, F. Lederer, D. Christodoulides, T. Ozaki, and R. Morandotti, “Conductive coupling of split ring resonators: A path to THz metamaterials with ultrasharp resonances,” Phys. Rev. Lett. 112(18), 183903 (2014).
[Crossref] [PubMed]

Hepp, C.

B. Pingault, D.-D. Jarausch, C. Hepp, L. Klintberg, J. N. Becker, M. Markham, C. Becher, and M. Atatüre, “Coherent control of the silicon-vacancy spin in diamond,” Nat. Commun. 8, 15579 (2017).
[Crossref] [PubMed]

Highstrete, C.

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref] [PubMed]

Hirscher, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Ho, C. P.

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. Lee, “Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial,” Adv. Opt. Mater. 4(4), 541–547 (2016).
[Crossref]

Hu, C.

Huang, R.

Huangfu, J.

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Negative refraction of a combined double S-shaped metamaterial,” Appl. Phys. Lett. 86(15), 151909 (2005).
[Crossref]

In, C.

H. Jung, C. In, H. Choi, and H. Lee, “Electromagnetically induced transparency analogue by self-complementary terahertz meta-atom,” Adv. Opt. Mater. 4(4), 627–633 (2017).
[Crossref]

Jang, W. H.

Y. Lu, H. Xu, J. Y. Rhee, W. H. Jang, B. S. Ham, and Y. P. Lee, “Magnetic plasmon resonance: Underlying route to plasmonic electromagnetically induced transparency in metamaterials,” Phys. Rev. B 82(19), 195112 (2010).
[Crossref]

Jarausch, D.-D.

B. Pingault, D.-D. Jarausch, C. Hepp, L. Klintberg, J. N. Becker, M. Markham, C. Becher, and M. Atatüre, “Coherent control of the silicon-vacancy spin in diamond,” Nat. Commun. 8, 15579 (2017).
[Crossref] [PubMed]

Jenkins, S. D.

S. D. Jenkins and J. Ruostekoski, “Metamaterial transparency induced by cooperative electromagnetic interactions,” Phys. Rev. Lett. 111(14), 147401 (2013).
[Crossref] [PubMed]

Jiang, J.

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
[Crossref] [PubMed]

Jung, H.

H. Jung, C. In, H. Choi, and H. Lee, “Electromagnetically induced transparency analogue by self-complementary terahertz meta-atom,” Adv. Opt. Mater. 4(4), 627–633 (2017).
[Crossref]

Keller, J.

J. Keller, C. Maissen, J. Haase, G. L. Paravicini-Bagliani, F. Valmorra, J. Palomo, J. Mangeney, J. Tignon, S. S. Dhillon, G. Scalari, and J. Faist, “Coupling surface plasmon polariton modes to complementary THz metasurfaces tuned by inter meta-atom distance,” Adv. Opt. Mater. 5(6), 1600884 (2017).
[Crossref]

Khanikaev, A. B.

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).
[Crossref] [PubMed]

Kim, S. M.

M. Parvinnezhad Hokmabadi, E. Philip, E. Rivera, P. Kung, and S. M. Kim, “Plasmon-induced transparency by hybridizing concentric-twisted double split ring resonators,” Sci. Rep. 5(1), 15735 (2015).
[Crossref] [PubMed]

Kitano, M.

F. Miyamaru, H. Morita, Y. Nishiyama, T. Nishida, T. Nakanishi, M. Kitano, and M. W. Takeda, “Ultrafast optical control of group delay of narrow-band terahertz waves,” Sci. Rep. 4(1), 4346 (2014).
[Crossref] [PubMed]

Klintberg, L.

B. Pingault, D.-D. Jarausch, C. Hepp, L. Klintberg, J. N. Becker, M. Markham, C. Becher, and M. Atatüre, “Coherent control of the silicon-vacancy spin in diamond,” Nat. Commun. 8, 15579 (2017).
[Crossref] [PubMed]

Kong, J. A.

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Negative refraction of a combined double S-shaped metamaterial,” Appl. Phys. Lett. 86(15), 151909 (2005).
[Crossref]

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
[Crossref] [PubMed]

Koschny, T.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical Analogue of Electromagnetically Induced Transparency with a Metal-Superconductor Hybrid Metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[Crossref] [PubMed]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[Crossref] [PubMed]

Kung, P.

M. Parvinnezhad Hokmabadi, E. Philip, E. Rivera, P. Kung, and S. M. Kim, “Plasmon-induced transparency by hybridizing concentric-twisted double split ring resonators,” Sci. Rep. 5(1), 15735 (2015).
[Crossref] [PubMed]

Kurter, C.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical Analogue of Electromagnetically Induced Transparency with a Metal-Superconductor Hybrid Metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[Crossref] [PubMed]

Langguth, L.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Lederer, F.

I. Al-Naib, E. Hebestreit, C. Rockstuhl, F. Lederer, D. Christodoulides, T. Ozaki, and R. Morandotti, “Conductive coupling of split ring resonators: A path to THz metamaterials with ultrasharp resonances,” Phys. Rev. Lett. 112(18), 183903 (2014).
[Crossref] [PubMed]

J. Petschulat, A. Chipouline, A. Tünnermann, T. Pertsch, C. Menzel, C. Rockstuhl, T. Paul, and F. Lederer, “Simple and versatile analytical approach for planar metamaterials,” Phys. Rev. B 82(7), 075102 (2010).
[Crossref]

Lee, C.

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. Lee, “Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial,” Adv. Opt. Mater. 4(4), 541–547 (2016).
[Crossref]

Lee, H.

H. Jung, C. In, H. Choi, and H. Lee, “Electromagnetically induced transparency analogue by self-complementary terahertz meta-atom,” Adv. Opt. Mater. 4(4), 627–633 (2017).
[Crossref]

Lee, M.

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref] [PubMed]

Lee, Y. P.

Y. Lu, H. Xu, J. Y. Rhee, W. H. Jang, B. S. Ham, and Y. P. Lee, “Magnetic plasmon resonance: Underlying route to plasmonic electromagnetically induced transparency in metamaterials,” Phys. Rev. B 82(19), 195112 (2010).
[Crossref]

Li, B.

Li, H.

Li, J.

X. Duan, S. Chen, H. Yang, H. Cheng, J. Li, W. Liu, C. Gu, and J. Tian, “Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials,” Appl. Phys. Lett. 101(14), 143105 (2012).
[Crossref]

Li, Q.

X. Zhang, Q. Xu, Q. Li, Y. Xu, J. Gu, Z. Tian, C. Ouyang, Y. Liu, S. Zhang, X. Zhang, J. Han, and W. Zhang, “Asymmetric excitation of surface plasmons by dark mode coupling,” Sci. Adv. 2(2), e1501142 (2016).
[Crossref] [PubMed]

Q. Xu, X. Su, C. Ouyang, N. Xu, W. Cao, Y. Zhang, Q. Li, C. Hu, J. Gu, Z. Tian, A. K. Azad, J. Han, and W. Zhang, “Frequency-agile electromagnetically induced transparency analogue in terahertz metamaterials,” Opt. Lett. 41(19), 4562–4565 (2016).
[Crossref] [PubMed]

Li, T.

Li, X.

Li, Y.

D. Liang, H. Zhang, J. Gu, Y. Li, Z. Tian, C. Ouyang, J. Han, and W. Zhang, “Plasmonic Analog of Electromagnetically Induced Transparency in Stereo Metamaterials,” IEEE J. Sel. Top. Quantum Electron. 23(4), 4700907 (2017).
[Crossref]

Li, Z.

Liang, D.

D. Liang, H. Zhang, J. Gu, Y. Li, Z. Tian, C. Ouyang, J. Han, and W. Zhang, “Plasmonic Analog of Electromagnetically Induced Transparency in Stereo Metamaterials,” IEEE J. Sel. Top. Quantum Electron. 23(4), 4700907 (2017).
[Crossref]

Liu, H.

Liu, M.

C.-W. Chang, M. Liu, S. Nam, S. Zhang, Y. Liu, G. Bartal, and X. Zhang, “Optical Möbius symmetry in metamaterials,” Phys. Rev. Lett. 105(23), 235501 (2010).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Liu, N.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Liu, W.

X. Duan, S. Chen, H. Yang, H. Cheng, J. Li, W. Liu, C. Gu, and J. Tian, “Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials,” Appl. Phys. Lett. 101(14), 143105 (2012).
[Crossref]

Liu, X.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(10), 1151 (2012).
[Crossref] [PubMed]

Liu, Y.

X. Zhang, Q. Xu, Q. Li, Y. Xu, J. Gu, Z. Tian, C. Ouyang, Y. Liu, S. Zhang, X. Zhang, J. Han, and W. Zhang, “Asymmetric excitation of surface plasmons by dark mode coupling,” Sci. Adv. 2(2), e1501142 (2016).
[Crossref] [PubMed]

C.-W. Chang, M. Liu, S. Nam, S. Zhang, Y. Liu, G. Bartal, and X. Zhang, “Optical Möbius symmetry in metamaterials,” Phys. Rev. Lett. 105(23), 235501 (2010).
[Crossref] [PubMed]

Lu, Y.

Y. Lu, H. Xu, J. Y. Rhee, W. H. Jang, B. S. Ham, and Y. P. Lee, “Magnetic plasmon resonance: Underlying route to plasmonic electromagnetically induced transparency in metamaterials,” Phys. Rev. B 82(19), 195112 (2010).
[Crossref]

Luo, Z.

X. Zheng, Z. Zhao, W. Peng, H. Zhao, J. Zhang, Z. Luo, and W. Shi, “Suppression of terahertz dipole oscillation in split-ring resonators deformed from square to triangle,” Appl. Phys., A Mater. Sci. Process. 123(4), 266 (2017).
[Crossref]

Z. Zhao, X. Zheng, W. Peng, H. Zhao, J. Zhang, Z. Luo, and W. Shi, “Localized slow light phenomenon in symmetry broken terahertz metamolecule made of conductively coupled dark resonators,” Opt. Mater. Express 7(6), 1950–1961 (2017).
[Crossref]

Ma, Y.

MacLean, J. W.

J. W. MacLean, K. Ried, R. W. Spekkens, and K. J. Resch, “Quantum-coherent mixtures of causal relations,” Nat. Commun. 8, 15149 (2017).
[Crossref] [PubMed]

Maier, S. A.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(10), 1151 (2012).
[Crossref] [PubMed]

Maissen, C.

J. Keller, C. Maissen, J. Haase, G. L. Paravicini-Bagliani, F. Valmorra, J. Palomo, J. Mangeney, J. Tignon, S. S. Dhillon, G. Scalari, and J. Faist, “Coupling surface plasmon polariton modes to complementary THz metasurfaces tuned by inter meta-atom distance,” Adv. Opt. Mater. 5(6), 1600884 (2017).
[Crossref]

Mangeney, J.

J. Keller, C. Maissen, J. Haase, G. L. Paravicini-Bagliani, F. Valmorra, J. Palomo, J. Mangeney, J. Tignon, S. S. Dhillon, G. Scalari, and J. Faist, “Coupling surface plasmon polariton modes to complementary THz metasurfaces tuned by inter meta-atom distance,” Adv. Opt. Mater. 5(6), 1600884 (2017).
[Crossref]

Manjappa, M.

M. Manjappa, Y. K. Srivastava, and R. Singh, “Lattice-induced transparency in planar metamaterials,” Phys. Rev. B 94(16), 161103 (2016).
[Crossref]

N. Xu, M. Manjappa, R. Singh, and W. Zhang, “Tailoring the electromagnetically induced transparency and absorbance in coupled Fano–Lorentzian metasurfaces: A classical analog of a four-level tripod quantum system,” Adv. Opt. Mater. 4(8), 1179–1185 (2016).
[Crossref]

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. Lee, “Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial,” Adv. Opt. Mater. 4(4), 541–547 (2016).
[Crossref]

Markham, M.

B. Pingault, D.-D. Jarausch, C. Hepp, L. Klintberg, J. N. Becker, M. Markham, C. Becher, and M. Atatüre, “Coherent control of the silicon-vacancy spin in diamond,” Nat. Commun. 8, 15579 (2017).
[Crossref] [PubMed]

Menzel, C.

J. Petschulat, A. Chipouline, A. Tünnermann, T. Pertsch, C. Menzel, C. Rockstuhl, T. Paul, and F. Lederer, “Simple and versatile analytical approach for planar metamaterials,” Phys. Rev. B 82(7), 075102 (2010).
[Crossref]

Merbold, H.

Mesch, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Miyamaru, F.

F. Miyamaru, H. Morita, Y. Nishiyama, T. Nishida, T. Nakanishi, M. Kitano, and M. W. Takeda, “Ultrafast optical control of group delay of narrow-band terahertz waves,” Sci. Rep. 4(1), 4346 (2014).
[Crossref] [PubMed]

Morandotti, R.

I. Al-Naib, E. Hebestreit, C. Rockstuhl, F. Lederer, D. Christodoulides, T. Ozaki, and R. Morandotti, “Conductive coupling of split ring resonators: A path to THz metamaterials with ultrasharp resonances,” Phys. Rev. Lett. 112(18), 183903 (2014).
[Crossref] [PubMed]

Morita, H.

F. Miyamaru, H. Morita, Y. Nishiyama, T. Nishida, T. Nakanishi, M. Kitano, and M. W. Takeda, “Ultrafast optical control of group delay of narrow-band terahertz waves,” Sci. Rep. 4(1), 4346 (2014).
[Crossref] [PubMed]

Nakanishi, T.

F. Miyamaru, H. Morita, Y. Nishiyama, T. Nishida, T. Nakanishi, M. Kitano, and M. W. Takeda, “Ultrafast optical control of group delay of narrow-band terahertz waves,” Sci. Rep. 4(1), 4346 (2014).
[Crossref] [PubMed]

Nam, S.

C.-W. Chang, M. Liu, S. Nam, S. Zhang, Y. Liu, G. Bartal, and X. Zhang, “Optical Möbius symmetry in metamaterials,” Phys. Rev. Lett. 105(23), 235501 (2010).
[Crossref] [PubMed]

Nishida, T.

F. Miyamaru, H. Morita, Y. Nishiyama, T. Nishida, T. Nakanishi, M. Kitano, and M. W. Takeda, “Ultrafast optical control of group delay of narrow-band terahertz waves,” Sci. Rep. 4(1), 4346 (2014).
[Crossref] [PubMed]

Nishiyama, Y.

F. Miyamaru, H. Morita, Y. Nishiyama, T. Nishida, T. Nakanishi, M. Kitano, and M. W. Takeda, “Ultrafast optical control of group delay of narrow-band terahertz waves,” Sci. Rep. 4(1), 4346 (2014).
[Crossref] [PubMed]

Onsager, L.

L. Onsager, “Reciprocal Relations in Irreversible Processes. I,” Phys. Rev. 37(4), 405–426 (1931).
[Crossref]

L. Onsager, “Reciprocal Relations in Irreversible Processes. II,” Phys. Rev. 38(12), 2265–2279 (1931).
[Crossref]

Ouyang, C.

D. Liang, H. Zhang, J. Gu, Y. Li, Z. Tian, C. Ouyang, J. Han, and W. Zhang, “Plasmonic Analog of Electromagnetically Induced Transparency in Stereo Metamaterials,” IEEE J. Sel. Top. Quantum Electron. 23(4), 4700907 (2017).
[Crossref]

X. Zhang, Q. Xu, Q. Li, Y. Xu, J. Gu, Z. Tian, C. Ouyang, Y. Liu, S. Zhang, X. Zhang, J. Han, and W. Zhang, “Asymmetric excitation of surface plasmons by dark mode coupling,” Sci. Adv. 2(2), e1501142 (2016).
[Crossref] [PubMed]

Q. Xu, X. Su, C. Ouyang, N. Xu, W. Cao, Y. Zhang, Q. Li, C. Hu, J. Gu, Z. Tian, A. K. Azad, J. Han, and W. Zhang, “Frequency-agile electromagnetically induced transparency analogue in terahertz metamaterials,” Opt. Lett. 41(19), 4562–4565 (2016).
[Crossref] [PubMed]

X. Su, C. Ouyang, N. Xu, S. Tan, J. Gu, Z. Tian, J. Han, F. Yan, and W. Zhang, “Broadband Terahertz Transparency in a Switchable Metasurface,” IEEE Photonics J. 7(1), 5900108 (2015).
[Crossref]

Ozaki, T.

I. Al-Naib, E. Hebestreit, C. Rockstuhl, F. Lederer, D. Christodoulides, T. Ozaki, and R. Morandotti, “Conductive coupling of split ring resonators: A path to THz metamaterials with ultrasharp resonances,” Phys. Rev. Lett. 112(18), 183903 (2014).
[Crossref] [PubMed]

Pacheco, J.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
[Crossref] [PubMed]

Padilla, W. J.

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref] [PubMed]

Palomo, J.

J. Keller, C. Maissen, J. Haase, G. L. Paravicini-Bagliani, F. Valmorra, J. Palomo, J. Mangeney, J. Tignon, S. S. Dhillon, G. Scalari, and J. Faist, “Coupling surface plasmon polariton modes to complementary THz metasurfaces tuned by inter meta-atom distance,” Adv. Opt. Mater. 5(6), 1600884 (2017).
[Crossref]

Papasimakis, N.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref] [PubMed]

Paravicini-Bagliani, G. L.

J. Keller, C. Maissen, J. Haase, G. L. Paravicini-Bagliani, F. Valmorra, J. Palomo, J. Mangeney, J. Tignon, S. S. Dhillon, G. Scalari, and J. Faist, “Coupling surface plasmon polariton modes to complementary THz metasurfaces tuned by inter meta-atom distance,” Adv. Opt. Mater. 5(6), 1600884 (2017).
[Crossref]

Parvinnezhad Hokmabadi, M.

M. Parvinnezhad Hokmabadi, E. Philip, E. Rivera, P. Kung, and S. M. Kim, “Plasmon-induced transparency by hybridizing concentric-twisted double split ring resonators,” Sci. Rep. 5(1), 15735 (2015).
[Crossref] [PubMed]

Paul, T.

J. Petschulat, A. Chipouline, A. Tünnermann, T. Pertsch, C. Menzel, C. Rockstuhl, T. Paul, and F. Lederer, “Simple and versatile analytical approach for planar metamaterials,” Phys. Rev. B 82(7), 075102 (2010).
[Crossref]

Peng, W.

X. Zheng, Z. Zhao, W. Peng, H. Zhao, J. Zhang, Z. Luo, and W. Shi, “Suppression of terahertz dipole oscillation in split-ring resonators deformed from square to triangle,” Appl. Phys., A Mater. Sci. Process. 123(4), 266 (2017).
[Crossref]

X. Zheng, Z. Zhao, W. Shi, and W. Peng, “Broadband terahertz plasmon-induced transparency via asymmetric coupling inside meta-molecules,” Opt. Mater. Express 7(3), 1035–1047 (2017).
[Crossref]

Z. Zhao, X. Zheng, W. Peng, H. Zhao, J. Zhang, Z. Luo, and W. Shi, “Localized slow light phenomenon in symmetry broken terahertz metamolecule made of conductively coupled dark resonators,” Opt. Mater. Express 7(6), 1950–1961 (2017).
[Crossref]

Z. Zhao, Z. Song, W. Shi, and W. Peng, “Plasmon-induced transparency-like behavior at terahertz region via dipole oscillation detuning in a hybrid planar metamaterial,” Opt. Mater. Express 6(7), 2190–2200 (2016).
[Crossref]

Z. Song, Z. Zhao, H. Zhao, W. Peng, X. He, and W. Shi, “Teeter-totter effect of terahertz dual modes in C-shaped complementary split-ring resonators,” J. Appl. Phys. 118(4), 043108 (2015).
[Crossref]

Z. Song, Z. Zhao, W. Peng, and W. Shi, “Terahertz response of fractal meta-atoms based on concentric rectangular square resonators,” J. Appl. Phys. 118(19), 193103 (2015).
[Crossref]

Pertsch, T.

J. Petschulat, A. Chipouline, A. Tünnermann, T. Pertsch, C. Menzel, C. Rockstuhl, T. Paul, and F. Lederer, “Simple and versatile analytical approach for planar metamaterials,” Phys. Rev. B 82(7), 075102 (2010).
[Crossref]

Petschulat, J.

J. Petschulat, A. Chipouline, A. Tünnermann, T. Pertsch, C. Menzel, C. Rockstuhl, T. Paul, and F. Lederer, “Simple and versatile analytical approach for planar metamaterials,” Phys. Rev. B 82(7), 075102 (2010).
[Crossref]

Philip, E.

M. Parvinnezhad Hokmabadi, E. Philip, E. Rivera, P. Kung, and S. M. Kim, “Plasmon-induced transparency by hybridizing concentric-twisted double split ring resonators,” Sci. Rep. 5(1), 15735 (2015).
[Crossref] [PubMed]

Pingault, B.

B. Pingault, D.-D. Jarausch, C. Hepp, L. Klintberg, J. N. Becker, M. Markham, C. Becher, and M. Atatüre, “Coherent control of the silicon-vacancy spin in diamond,” Nat. Commun. 8, 15579 (2017).
[Crossref] [PubMed]

Pitchappa, P.

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. Lee, “Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial,” Adv. Opt. Mater. 4(4), 541–547 (2016).
[Crossref]

Prosvirnin, S. L.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref] [PubMed]

Ran, L.

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Negative refraction of a combined double S-shaped metamaterial,” Appl. Phys. Lett. 86(15), 151909 (2005).
[Crossref]

Resch, K. J.

J. W. MacLean, K. Ried, R. W. Spekkens, and K. J. Resch, “Quantum-coherent mixtures of causal relations,” Nat. Commun. 8, 15149 (2017).
[Crossref] [PubMed]

Rhee, J. Y.

Y. Lu, H. Xu, J. Y. Rhee, W. H. Jang, B. S. Ham, and Y. P. Lee, “Magnetic plasmon resonance: Underlying route to plasmonic electromagnetically induced transparency in metamaterials,” Phys. Rev. B 82(19), 195112 (2010).
[Crossref]

Ried, K.

J. W. MacLean, K. Ried, R. W. Spekkens, and K. J. Resch, “Quantum-coherent mixtures of causal relations,” Nat. Commun. 8, 15149 (2017).
[Crossref] [PubMed]

Rivera, E.

M. Parvinnezhad Hokmabadi, E. Philip, E. Rivera, P. Kung, and S. M. Kim, “Plasmon-induced transparency by hybridizing concentric-twisted double split ring resonators,” Sci. Rep. 5(1), 15735 (2015).
[Crossref] [PubMed]

Rockstuhl, C.

R. Singh, I. Al-Naib, D. R. Chowdhury, L. Cong, C. Rockstuhl, and W. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).
[Crossref]

I. Al-Naib, E. Hebestreit, C. Rockstuhl, F. Lederer, D. Christodoulides, T. Ozaki, and R. Morandotti, “Conductive coupling of split ring resonators: A path to THz metamaterials with ultrasharp resonances,” Phys. Rev. Lett. 112(18), 183903 (2014).
[Crossref] [PubMed]

J. Petschulat, A. Chipouline, A. Tünnermann, T. Pertsch, C. Menzel, C. Rockstuhl, T. Paul, and F. Lederer, “Simple and versatile analytical approach for planar metamaterials,” Phys. Rev. B 82(7), 075102 (2010).
[Crossref]

Ruostekoski, J.

S. D. Jenkins and J. Ruostekoski, “Metamaterial transparency induced by cooperative electromagnetic interactions,” Phys. Rev. Lett. 111(14), 147401 (2013).
[Crossref] [PubMed]

Scalari, G.

J. Keller, C. Maissen, J. Haase, G. L. Paravicini-Bagliani, F. Valmorra, J. Palomo, J. Mangeney, J. Tignon, S. S. Dhillon, G. Scalari, and J. Faist, “Coupling surface plasmon polariton modes to complementary THz metasurfaces tuned by inter meta-atom distance,” Adv. Opt. Mater. 5(6), 1600884 (2017).
[Crossref]

Shi, W.

X. Zheng, Z. Zhao, W. Shi, and W. Peng, “Broadband terahertz plasmon-induced transparency via asymmetric coupling inside meta-molecules,” Opt. Mater. Express 7(3), 1035–1047 (2017).
[Crossref]

X. Zheng, Z. Zhao, W. Peng, H. Zhao, J. Zhang, Z. Luo, and W. Shi, “Suppression of terahertz dipole oscillation in split-ring resonators deformed from square to triangle,” Appl. Phys., A Mater. Sci. Process. 123(4), 266 (2017).
[Crossref]

Z. Zhao, X. Zheng, W. Peng, H. Zhao, J. Zhang, Z. Luo, and W. Shi, “Localized slow light phenomenon in symmetry broken terahertz metamolecule made of conductively coupled dark resonators,” Opt. Mater. Express 7(6), 1950–1961 (2017).
[Crossref]

Z. Zhao, Z. Song, W. Shi, and W. Peng, “Plasmon-induced transparency-like behavior at terahertz region via dipole oscillation detuning in a hybrid planar metamaterial,” Opt. Mater. Express 6(7), 2190–2200 (2016).
[Crossref]

Z. Song, Z. Zhao, H. Zhao, W. Peng, X. He, and W. Shi, “Teeter-totter effect of terahertz dual modes in C-shaped complementary split-ring resonators,” J. Appl. Phys. 118(4), 043108 (2015).
[Crossref]

Z. Song, Z. Zhao, W. Peng, and W. Shi, “Terahertz response of fractal meta-atoms based on concentric rectangular square resonators,” J. Appl. Phys. 118(19), 193103 (2015).
[Crossref]

Shvets, G.

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).
[Crossref] [PubMed]

Singh, N.

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. Lee, “Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial,” Adv. Opt. Mater. 4(4), 541–547 (2016).
[Crossref]

Singh, R.

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. Lee, “Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial,” Adv. Opt. Mater. 4(4), 541–547 (2016).
[Crossref]

N. Xu, M. Manjappa, R. Singh, and W. Zhang, “Tailoring the electromagnetically induced transparency and absorbance in coupled Fano–Lorentzian metasurfaces: A classical analog of a four-level tripod quantum system,” Adv. Opt. Mater. 4(8), 1179–1185 (2016).
[Crossref]

M. Manjappa, Y. K. Srivastava, and R. Singh, “Lattice-induced transparency in planar metamaterials,” Phys. Rev. B 94(16), 161103 (2016).
[Crossref]

R. Singh, I. Al-Naib, D. R. Chowdhury, L. Cong, C. Rockstuhl, and W. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).
[Crossref]

W. Cao, R. Singh, C. Zhang, J. Han, M. Tonouchi, and W. Zhang, “Plasmon-induced transparency in metamaterials: Active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(10), 1151 (2012).
[Crossref] [PubMed]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
[Crossref] [PubMed]

Y. Ma, Z. Li, Y. Yang, R. Huang, R. Singh, S. Zhang, J. Gu, Z. Tian, J. Han, and W. Zhang, “Plasmon-induced transparency in twisted Fano terahertz metamaterials,” Opt. Mater. Express 1(3), 391–399 (2011).
[Crossref]

Song, Y.

Song, Z.

Z. Zhao, Z. Song, W. Shi, and W. Peng, “Plasmon-induced transparency-like behavior at terahertz region via dipole oscillation detuning in a hybrid planar metamaterial,” Opt. Mater. Express 6(7), 2190–2200 (2016).
[Crossref]

Z. Song, Z. Zhao, H. Zhao, W. Peng, X. He, and W. Shi, “Teeter-totter effect of terahertz dual modes in C-shaped complementary split-ring resonators,” J. Appl. Phys. 118(4), 043108 (2015).
[Crossref]

Z. Song, Z. Zhao, W. Peng, and W. Shi, “Terahertz response of fractal meta-atoms based on concentric rectangular square resonators,” J. Appl. Phys. 118(19), 193103 (2015).
[Crossref]

Sönnichsen, C.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Soukoulis, C. M.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical Analogue of Electromagnetically Induced Transparency with a Metal-Superconductor Hybrid Metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[Crossref] [PubMed]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[Crossref] [PubMed]

Spekkens, R. W.

J. W. MacLean, K. Ried, R. W. Spekkens, and K. J. Resch, “Quantum-coherent mixtures of causal relations,” Nat. Commun. 8, 15149 (2017).
[Crossref] [PubMed]

Srivastava, Y. K.

M. Manjappa, Y. K. Srivastava, and R. Singh, “Lattice-induced transparency in planar metamaterials,” Phys. Rev. B 94(16), 161103 (2016).
[Crossref]

Su, X.

Q. Xu, X. Su, C. Ouyang, N. Xu, W. Cao, Y. Zhang, Q. Li, C. Hu, J. Gu, Z. Tian, A. K. Azad, J. Han, and W. Zhang, “Frequency-agile electromagnetically induced transparency analogue in terahertz metamaterials,” Opt. Lett. 41(19), 4562–4565 (2016).
[Crossref] [PubMed]

X. Su, C. Ouyang, N. Xu, S. Tan, J. Gu, Z. Tian, J. Han, F. Yan, and W. Zhang, “Broadband Terahertz Transparency in a Switchable Metasurface,” IEEE Photonics J. 7(1), 5900108 (2015).
[Crossref]

Takeda, M. W.

F. Miyamaru, H. Morita, Y. Nishiyama, T. Nishida, T. Nakanishi, M. Kitano, and M. W. Takeda, “Ultrafast optical control of group delay of narrow-band terahertz waves,” Sci. Rep. 4(1), 4346 (2014).
[Crossref] [PubMed]

Tan, S.

X. Su, C. Ouyang, N. Xu, S. Tan, J. Gu, Z. Tian, J. Han, F. Yan, and W. Zhang, “Broadband Terahertz Transparency in a Switchable Metasurface,” IEEE Photonics J. 7(1), 5900108 (2015).
[Crossref]

Tassin, P.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical Analogue of Electromagnetically Induced Transparency with a Metal-Superconductor Hybrid Metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[Crossref] [PubMed]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[Crossref] [PubMed]

Taylor, A. J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(10), 1151 (2012).
[Crossref] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref] [PubMed]

Tian, J.

X. Duan, S. Chen, H. Yang, H. Cheng, J. Li, W. Liu, C. Gu, and J. Tian, “Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials,” Appl. Phys. Lett. 101(14), 143105 (2012).
[Crossref]

Tian, Z.

D. Liang, H. Zhang, J. Gu, Y. Li, Z. Tian, C. Ouyang, J. Han, and W. Zhang, “Plasmonic Analog of Electromagnetically Induced Transparency in Stereo Metamaterials,” IEEE J. Sel. Top. Quantum Electron. 23(4), 4700907 (2017).
[Crossref]

X. Zhang, Q. Xu, Q. Li, Y. Xu, J. Gu, Z. Tian, C. Ouyang, Y. Liu, S. Zhang, X. Zhang, J. Han, and W. Zhang, “Asymmetric excitation of surface plasmons by dark mode coupling,” Sci. Adv. 2(2), e1501142 (2016).
[Crossref] [PubMed]

Q. Xu, X. Su, C. Ouyang, N. Xu, W. Cao, Y. Zhang, Q. Li, C. Hu, J. Gu, Z. Tian, A. K. Azad, J. Han, and W. Zhang, “Frequency-agile electromagnetically induced transparency analogue in terahertz metamaterials,” Opt. Lett. 41(19), 4562–4565 (2016).
[Crossref] [PubMed]

X. Su, C. Ouyang, N. Xu, S. Tan, J. Gu, Z. Tian, J. Han, F. Yan, and W. Zhang, “Broadband Terahertz Transparency in a Switchable Metasurface,” IEEE Photonics J. 7(1), 5900108 (2015).
[Crossref]

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(10), 1151 (2012).
[Crossref] [PubMed]

Y. Ma, Z. Li, Y. Yang, R. Huang, R. Singh, S. Zhang, J. Gu, Z. Tian, J. Han, and W. Zhang, “Plasmon-induced transparency in twisted Fano terahertz metamaterials,” Opt. Mater. Express 1(3), 391–399 (2011).
[Crossref]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
[Crossref] [PubMed]

Tignon, J.

J. Keller, C. Maissen, J. Haase, G. L. Paravicini-Bagliani, F. Valmorra, J. Palomo, J. Mangeney, J. Tignon, S. S. Dhillon, G. Scalari, and J. Faist, “Coupling surface plasmon polariton modes to complementary THz metasurfaces tuned by inter meta-atom distance,” Adv. Opt. Mater. 5(6), 1600884 (2017).
[Crossref]

Tonouchi, M.

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
[Crossref] [PubMed]

W. Cao, R. Singh, C. Zhang, J. Han, M. Tonouchi, and W. Zhang, “Plasmon-induced transparency in metamaterials: Active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
[Crossref]

Tünnermann, A.

J. Petschulat, A. Chipouline, A. Tünnermann, T. Pertsch, C. Menzel, C. Rockstuhl, T. Paul, and F. Lederer, “Simple and versatile analytical approach for planar metamaterials,” Phys. Rev. B 82(7), 075102 (2010).
[Crossref]

Ustinov, A. V.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical Analogue of Electromagnetically Induced Transparency with a Metal-Superconductor Hybrid Metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[Crossref] [PubMed]

Valmorra, F.

J. Keller, C. Maissen, J. Haase, G. L. Paravicini-Bagliani, F. Valmorra, J. Palomo, J. Mangeney, J. Tignon, S. S. Dhillon, G. Scalari, and J. Faist, “Coupling surface plasmon polariton modes to complementary THz metasurfaces tuned by inter meta-atom distance,” Adv. Opt. Mater. 5(6), 1600884 (2017).
[Crossref]

Wan, M.

Wang, S.-M.

Wang, T.

Wang, Y.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Weiss, T.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Wu, B.-I.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
[Crossref] [PubMed]

Wu, C.

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).
[Crossref] [PubMed]

Xiao, S.

Xu, H.

Y. Lu, H. Xu, J. Y. Rhee, W. H. Jang, B. S. Ham, and Y. P. Lee, “Magnetic plasmon resonance: Underlying route to plasmonic electromagnetically induced transparency in metamaterials,” Phys. Rev. B 82(19), 195112 (2010).
[Crossref]

Xu, M.-X.

Xu, N.

Q. Xu, X. Su, C. Ouyang, N. Xu, W. Cao, Y. Zhang, Q. Li, C. Hu, J. Gu, Z. Tian, A. K. Azad, J. Han, and W. Zhang, “Frequency-agile electromagnetically induced transparency analogue in terahertz metamaterials,” Opt. Lett. 41(19), 4562–4565 (2016).
[Crossref] [PubMed]

N. Xu, M. Manjappa, R. Singh, and W. Zhang, “Tailoring the electromagnetically induced transparency and absorbance in coupled Fano–Lorentzian metasurfaces: A classical analog of a four-level tripod quantum system,” Adv. Opt. Mater. 4(8), 1179–1185 (2016).
[Crossref]

X. Su, C. Ouyang, N. Xu, S. Tan, J. Gu, Z. Tian, J. Han, F. Yan, and W. Zhang, “Broadband Terahertz Transparency in a Switchable Metasurface,” IEEE Photonics J. 7(1), 5900108 (2015).
[Crossref]

Xu, Q.

X. Zhang, Q. Xu, Q. Li, Y. Xu, J. Gu, Z. Tian, C. Ouyang, Y. Liu, S. Zhang, X. Zhang, J. Han, and W. Zhang, “Asymmetric excitation of surface plasmons by dark mode coupling,” Sci. Adv. 2(2), e1501142 (2016).
[Crossref] [PubMed]

Q. Xu, X. Su, C. Ouyang, N. Xu, W. Cao, Y. Zhang, Q. Li, C. Hu, J. Gu, Z. Tian, A. K. Azad, J. Han, and W. Zhang, “Frequency-agile electromagnetically induced transparency analogue in terahertz metamaterials,” Opt. Lett. 41(19), 4562–4565 (2016).
[Crossref] [PubMed]

Xu, Y.

X. Zhang, Q. Xu, Q. Li, Y. Xu, J. Gu, Z. Tian, C. Ouyang, Y. Liu, S. Zhang, X. Zhang, J. Han, and W. Zhang, “Asymmetric excitation of surface plasmons by dark mode coupling,” Sci. Adv. 2(2), e1501142 (2016).
[Crossref] [PubMed]

Yan, F.

X. Su, C. Ouyang, N. Xu, S. Tan, J. Gu, Z. Tian, J. Han, F. Yan, and W. Zhang, “Broadband Terahertz Transparency in a Switchable Metasurface,” IEEE Photonics J. 7(1), 5900108 (2015).
[Crossref]

Yang, H.

X. Duan, S. Chen, H. Yang, H. Cheng, J. Li, W. Liu, C. Gu, and J. Tian, “Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials,” Appl. Phys. Lett. 101(14), 143105 (2012).
[Crossref]

Yang, X.

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
[Crossref] [PubMed]

Yang, Y.

Yue, W.

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
[Crossref] [PubMed]

Zhan, S.

Zhang, C.

W. Cao, R. Singh, C. Zhang, J. Han, M. Tonouchi, and W. Zhang, “Plasmon-induced transparency in metamaterials: Active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
[Crossref]

Zhang, H.

D. Liang, H. Zhang, J. Gu, Y. Li, Z. Tian, C. Ouyang, J. Han, and W. Zhang, “Plasmonic Analog of Electromagnetically Induced Transparency in Stereo Metamaterials,” IEEE J. Sel. Top. Quantum Electron. 23(4), 4700907 (2017).
[Crossref]

Zhang, J.

X. Zheng, Z. Zhao, W. Peng, H. Zhao, J. Zhang, Z. Luo, and W. Shi, “Suppression of terahertz dipole oscillation in split-ring resonators deformed from square to triangle,” Appl. Phys., A Mater. Sci. Process. 123(4), 266 (2017).
[Crossref]

Z. Zhao, X. Zheng, W. Peng, H. Zhao, J. Zhang, Z. Luo, and W. Shi, “Localized slow light phenomenon in symmetry broken terahertz metamolecule made of conductively coupled dark resonators,” Opt. Mater. Express 7(6), 1950–1961 (2017).
[Crossref]

Zhang, L.

M. Wan, Y. Song, L. Zhang, and F. Zhou, “Broadband plasmon-induced transparency in terahertz metamaterials via constructive interference of electric and magnetic couplings,” Opt. Express 23(21), 27361–27368 (2015).
[Crossref] [PubMed]

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical Analogue of Electromagnetically Induced Transparency with a Metal-Superconductor Hybrid Metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[Crossref] [PubMed]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[Crossref] [PubMed]

Zhang, S.

X. Zhang, Q. Xu, Q. Li, Y. Xu, J. Gu, Z. Tian, C. Ouyang, Y. Liu, S. Zhang, X. Zhang, J. Han, and W. Zhang, “Asymmetric excitation of surface plasmons by dark mode coupling,” Sci. Adv. 2(2), e1501142 (2016).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(10), 1151 (2012).
[Crossref] [PubMed]

Y. Ma, Z. Li, Y. Yang, R. Huang, R. Singh, S. Zhang, J. Gu, Z. Tian, J. Han, and W. Zhang, “Plasmon-induced transparency in twisted Fano terahertz metamaterials,” Opt. Mater. Express 1(3), 391–399 (2011).
[Crossref]

C.-W. Chang, M. Liu, S. Nam, S. Zhang, Y. Liu, G. Bartal, and X. Zhang, “Optical Möbius symmetry in metamaterials,” Phys. Rev. Lett. 105(23), 235501 (2010).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Zhang, W.

D. Liang, H. Zhang, J. Gu, Y. Li, Z. Tian, C. Ouyang, J. Han, and W. Zhang, “Plasmonic Analog of Electromagnetically Induced Transparency in Stereo Metamaterials,” IEEE J. Sel. Top. Quantum Electron. 23(4), 4700907 (2017).
[Crossref]

N. Xu, M. Manjappa, R. Singh, and W. Zhang, “Tailoring the electromagnetically induced transparency and absorbance in coupled Fano–Lorentzian metasurfaces: A classical analog of a four-level tripod quantum system,” Adv. Opt. Mater. 4(8), 1179–1185 (2016).
[Crossref]

X. Zhang, Q. Xu, Q. Li, Y. Xu, J. Gu, Z. Tian, C. Ouyang, Y. Liu, S. Zhang, X. Zhang, J. Han, and W. Zhang, “Asymmetric excitation of surface plasmons by dark mode coupling,” Sci. Adv. 2(2), e1501142 (2016).
[Crossref] [PubMed]

Q. Xu, X. Su, C. Ouyang, N. Xu, W. Cao, Y. Zhang, Q. Li, C. Hu, J. Gu, Z. Tian, A. K. Azad, J. Han, and W. Zhang, “Frequency-agile electromagnetically induced transparency analogue in terahertz metamaterials,” Opt. Lett. 41(19), 4562–4565 (2016).
[Crossref] [PubMed]

X. Su, C. Ouyang, N. Xu, S. Tan, J. Gu, Z. Tian, J. Han, F. Yan, and W. Zhang, “Broadband Terahertz Transparency in a Switchable Metasurface,” IEEE Photonics J. 7(1), 5900108 (2015).
[Crossref]

R. Singh, I. Al-Naib, D. R. Chowdhury, L. Cong, C. Rockstuhl, and W. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).
[Crossref]

W. Cao, R. Singh, C. Zhang, J. Han, M. Tonouchi, and W. Zhang, “Plasmon-induced transparency in metamaterials: Active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
[Crossref]

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(10), 1151 (2012).
[Crossref] [PubMed]

Y. Ma, Z. Li, Y. Yang, R. Huang, R. Singh, S. Zhang, J. Gu, Z. Tian, J. Han, and W. Zhang, “Plasmon-induced transparency in twisted Fano terahertz metamaterials,” Opt. Mater. Express 1(3), 391–399 (2011).
[Crossref]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
[Crossref] [PubMed]

Zhang, X.

X. Zhang, Q. Xu, Q. Li, Y. Xu, J. Gu, Z. Tian, C. Ouyang, Y. Liu, S. Zhang, X. Zhang, J. Han, and W. Zhang, “Asymmetric excitation of surface plasmons by dark mode coupling,” Sci. Adv. 2(2), e1501142 (2016).
[Crossref] [PubMed]

X. Zhang, Q. Xu, Q. Li, Y. Xu, J. Gu, Z. Tian, C. Ouyang, Y. Liu, S. Zhang, X. Zhang, J. Han, and W. Zhang, “Asymmetric excitation of surface plasmons by dark mode coupling,” Sci. Adv. 2(2), e1501142 (2016).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(10), 1151 (2012).
[Crossref] [PubMed]

C.-W. Chang, M. Liu, S. Nam, S. Zhang, Y. Liu, G. Bartal, and X. Zhang, “Optical Möbius symmetry in metamaterials,” Phys. Rev. Lett. 105(23), 235501 (2010).
[Crossref] [PubMed]

Z.-G. Dong, H. Liu, M.-X. Xu, T. Li, S.-M. Wang, J.-X. Cao, S.-N. Zhu, and X. Zhang, “Role of asymmetric environment on the dark mode excitation in metamaterial analogue of electromagnetically-induced transparency,” Opt. Express 18(21), 22412–22417 (2010).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Negative refraction of a combined double S-shaped metamaterial,” Appl. Phys. Lett. 86(15), 151909 (2005).
[Crossref]

Zhang, Y.

Zhao, H.

X. Zheng, Z. Zhao, W. Peng, H. Zhao, J. Zhang, Z. Luo, and W. Shi, “Suppression of terahertz dipole oscillation in split-ring resonators deformed from square to triangle,” Appl. Phys., A Mater. Sci. Process. 123(4), 266 (2017).
[Crossref]

Z. Zhao, X. Zheng, W. Peng, H. Zhao, J. Zhang, Z. Luo, and W. Shi, “Localized slow light phenomenon in symmetry broken terahertz metamolecule made of conductively coupled dark resonators,” Opt. Mater. Express 7(6), 1950–1961 (2017).
[Crossref]

Z. Song, Z. Zhao, H. Zhao, W. Peng, X. He, and W. Shi, “Teeter-totter effect of terahertz dual modes in C-shaped complementary split-ring resonators,” J. Appl. Phys. 118(4), 043108 (2015).
[Crossref]

Zhao, Z.

X. Zheng, Z. Zhao, W. Shi, and W. Peng, “Broadband terahertz plasmon-induced transparency via asymmetric coupling inside meta-molecules,” Opt. Mater. Express 7(3), 1035–1047 (2017).
[Crossref]

X. Zheng, Z. Zhao, W. Peng, H. Zhao, J. Zhang, Z. Luo, and W. Shi, “Suppression of terahertz dipole oscillation in split-ring resonators deformed from square to triangle,” Appl. Phys., A Mater. Sci. Process. 123(4), 266 (2017).
[Crossref]

Z. Zhao, X. Zheng, W. Peng, H. Zhao, J. Zhang, Z. Luo, and W. Shi, “Localized slow light phenomenon in symmetry broken terahertz metamolecule made of conductively coupled dark resonators,” Opt. Mater. Express 7(6), 1950–1961 (2017).
[Crossref]

Z. Zhao, Z. Song, W. Shi, and W. Peng, “Plasmon-induced transparency-like behavior at terahertz region via dipole oscillation detuning in a hybrid planar metamaterial,” Opt. Mater. Express 6(7), 2190–2200 (2016).
[Crossref]

Z. Song, Z. Zhao, W. Peng, and W. Shi, “Terahertz response of fractal meta-atoms based on concentric rectangular square resonators,” J. Appl. Phys. 118(19), 193103 (2015).
[Crossref]

Z. Song, Z. Zhao, H. Zhao, W. Peng, X. He, and W. Shi, “Teeter-totter effect of terahertz dual modes in C-shaped complementary split-ring resonators,” J. Appl. Phys. 118(4), 043108 (2015).
[Crossref]

Zheludev, N. I.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref] [PubMed]

Zheng, X.

Zhou, F.

Zhu, S.-N.

Zhu, Y.

Zhu, Z.

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
[Crossref] [PubMed]

Zhuravel, A. P.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical Analogue of Electromagnetically Induced Transparency with a Metal-Superconductor Hybrid Metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[Crossref] [PubMed]

Adv. Opt. Mater. (4)

J. Keller, C. Maissen, J. Haase, G. L. Paravicini-Bagliani, F. Valmorra, J. Palomo, J. Mangeney, J. Tignon, S. S. Dhillon, G. Scalari, and J. Faist, “Coupling surface plasmon polariton modes to complementary THz metasurfaces tuned by inter meta-atom distance,” Adv. Opt. Mater. 5(6), 1600884 (2017).
[Crossref]

H. Jung, C. In, H. Choi, and H. Lee, “Electromagnetically induced transparency analogue by self-complementary terahertz meta-atom,” Adv. Opt. Mater. 4(4), 627–633 (2017).
[Crossref]

N. Xu, M. Manjappa, R. Singh, and W. Zhang, “Tailoring the electromagnetically induced transparency and absorbance in coupled Fano–Lorentzian metasurfaces: A classical analog of a four-level tripod quantum system,” Adv. Opt. Mater. 4(8), 1179–1185 (2016).
[Crossref]

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. Lee, “Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial,” Adv. Opt. Mater. 4(4), 541–547 (2016).
[Crossref]

Appl. Phys. Lett. (4)

W. Cao, R. Singh, C. Zhang, J. Han, M. Tonouchi, and W. Zhang, “Plasmon-induced transparency in metamaterials: Active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
[Crossref]

X. Duan, S. Chen, H. Yang, H. Cheng, J. Li, W. Liu, C. Gu, and J. Tian, “Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials,” Appl. Phys. Lett. 101(14), 143105 (2012).
[Crossref]

R. Singh, I. Al-Naib, D. R. Chowdhury, L. Cong, C. Rockstuhl, and W. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).
[Crossref]

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Negative refraction of a combined double S-shaped metamaterial,” Appl. Phys. Lett. 86(15), 151909 (2005).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

X. Zheng, Z. Zhao, W. Peng, H. Zhao, J. Zhang, Z. Luo, and W. Shi, “Suppression of terahertz dipole oscillation in split-ring resonators deformed from square to triangle,” Appl. Phys., A Mater. Sci. Process. 123(4), 266 (2017).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

D. Liang, H. Zhang, J. Gu, Y. Li, Z. Tian, C. Ouyang, J. Han, and W. Zhang, “Plasmonic Analog of Electromagnetically Induced Transparency in Stereo Metamaterials,” IEEE J. Sel. Top. Quantum Electron. 23(4), 4700907 (2017).
[Crossref]

IEEE Photonics J. (1)

X. Su, C. Ouyang, N. Xu, S. Tan, J. Gu, Z. Tian, J. Han, F. Yan, and W. Zhang, “Broadband Terahertz Transparency in a Switchable Metasurface,” IEEE Photonics J. 7(1), 5900108 (2015).
[Crossref]

J. Appl. Phys. (2)

Z. Song, Z. Zhao, W. Peng, and W. Shi, “Terahertz response of fractal meta-atoms based on concentric rectangular square resonators,” J. Appl. Phys. 118(19), 193103 (2015).
[Crossref]

Z. Song, Z. Zhao, H. Zhao, W. Peng, X. He, and W. Shi, “Teeter-totter effect of terahertz dual modes in C-shaped complementary split-ring resonators,” J. Appl. Phys. 118(4), 043108 (2015).
[Crossref]

Nano Lett. (1)

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Nanotechnology (1)

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
[Crossref] [PubMed]

Nat. Commun. (3)

B. Pingault, D.-D. Jarausch, C. Hepp, L. Klintberg, J. N. Becker, M. Markham, C. Becher, and M. Atatüre, “Coherent control of the silicon-vacancy spin in diamond,” Nat. Commun. 8, 15579 (2017).
[Crossref] [PubMed]

J. W. MacLean, K. Ried, R. W. Spekkens, and K. J. Resch, “Quantum-coherent mixtures of causal relations,” Nat. Commun. 8, 15149 (2017).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(10), 1151 (2012).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (3)

Opt. Mater. Express (4)

Phys. Rev. (2)

L. Onsager, “Reciprocal Relations in Irreversible Processes. I,” Phys. Rev. 37(4), 405–426 (1931).
[Crossref]

L. Onsager, “Reciprocal Relations in Irreversible Processes. II,” Phys. Rev. 38(12), 2265–2279 (1931).
[Crossref]

Phys. Rev. B (3)

J. Petschulat, A. Chipouline, A. Tünnermann, T. Pertsch, C. Menzel, C. Rockstuhl, T. Paul, and F. Lederer, “Simple and versatile analytical approach for planar metamaterials,” Phys. Rev. B 82(7), 075102 (2010).
[Crossref]

Y. Lu, H. Xu, J. Y. Rhee, W. H. Jang, B. S. Ham, and Y. P. Lee, “Magnetic plasmon resonance: Underlying route to plasmonic electromagnetically induced transparency in metamaterials,” Phys. Rev. B 82(19), 195112 (2010).
[Crossref]

M. Manjappa, Y. K. Srivastava, and R. Singh, “Lattice-induced transparency in planar metamaterials,” Phys. Rev. B 94(16), 161103 (2016).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
[Crossref] [PubMed]

Phys. Rev. Lett. (9)

S. D. Jenkins and J. Ruostekoski, “Metamaterial transparency induced by cooperative electromagnetic interactions,” Phys. Rev. Lett. 111(14), 147401 (2013).
[Crossref] [PubMed]

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical Analogue of Electromagnetically Induced Transparency with a Metal-Superconductor Hybrid Metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[Crossref] [PubMed]

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).
[Crossref] [PubMed]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[Crossref] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref] [PubMed]

C.-W. Chang, M. Liu, S. Nam, S. Zhang, Y. Liu, G. Bartal, and X. Zhang, “Optical Möbius symmetry in metamaterials,” Phys. Rev. Lett. 105(23), 235501 (2010).
[Crossref] [PubMed]

I. Al-Naib, E. Hebestreit, C. Rockstuhl, F. Lederer, D. Christodoulides, T. Ozaki, and R. Morandotti, “Conductive coupling of split ring resonators: A path to THz metamaterials with ultrasharp resonances,” Phys. Rev. Lett. 112(18), 183903 (2014).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

H. Casimir, “On Onsager’s Principle of Microscopic Reversibility,” Rev. Mod. Phys. 17(2), 343–350 (1945).
[Crossref]

Sci. Adv. (1)

X. Zhang, Q. Xu, Q. Li, Y. Xu, J. Gu, Z. Tian, C. Ouyang, Y. Liu, S. Zhang, X. Zhang, J. Han, and W. Zhang, “Asymmetric excitation of surface plasmons by dark mode coupling,” Sci. Adv. 2(2), e1501142 (2016).
[Crossref] [PubMed]

Sci. Rep. (2)

M. Parvinnezhad Hokmabadi, E. Philip, E. Rivera, P. Kung, and S. M. Kim, “Plasmon-induced transparency by hybridizing concentric-twisted double split ring resonators,” Sci. Rep. 5(1), 15735 (2015).
[Crossref] [PubMed]

F. Miyamaru, H. Morita, Y. Nishiyama, T. Nishida, T. Nakanishi, M. Kitano, and M. W. Takeda, “Ultrafast optical control of group delay of narrow-band terahertz waves,” Sci. Rep. 4(1), 4346 (2014).
[Crossref] [PubMed]

Other (2)

D. Cvijetic and I. B. Milorad, Advanced Optical Communication Systems and Networks (Artech House. 2013), pp. 217–314.

R. E. Raab and O. L. D. Lange, Multipole Theory in Electromagnetism (Oxford. 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Microscopic images of the basic resonator of monomer, dimer, and trimer MM, in which L = 140 μm, h = 70 μm, l = 24 μm, g = 10 μm, w = 3 μm, d = 66 μm, respectively. (b) The THz response of separated SRRs and cut-wire under differently polarized THz incidence, b1) and b2): vertical polarization, b3) and b4): horizontal polarization. Insets: The THz-induced surface currents of separated SRRs and cut-wire under vertically and horizentally polarized THz incidence correspondingly.
Fig. 2
Fig. 2 (a) Schematic diagram of trimer MM (b) THz transmittance of trimer MM in bright-dark-dark layout to vertically polarized THz pulse. Here, the νT refers to the central frequency of transparency windows; The νL and νH refers to the the low frequency side-mode and the high frequency side-mode, respectively. (c) THz transmittance of trimer MM in dark-bright-bright layout to horizontally polarized THz pulse. The νS refers to the central frequency of single resonance mode. Blue solid-line refers to the simulated THz transmittance. Red solid-line refers to the measured THz transmittance.
Fig. 3
Fig. 3 The 2-dimensional map of THz transmittance as a function of THz frequency and the displacement value δ at the step of 1 μm.
Fig. 4
Fig. 4 (a) The measured phase spectra and (b) the group delay of trimer MM. I, II, III, IV and V, refer to the displacement δ of 0, l/4, l/2, 3l/4, l, correspondingly. Here, the νT refers to the central frequency of transparency windows. (c): The 2-dimensional map of THz group delay as a function of δ and THz frequency.
Fig. 5
Fig. 5 Surface currents of the trimer MM at the mode of νL and of νH. Color bars: The relative strength of currents and magnetic energy. I, II, III, IV and V, refer to the displacement δ of 0, l/4, l/2, 3l/4, l, correspondingly.
Fig. 6
Fig. 6 The retrieved frequency-dependent dielectric functions of MM. The parameters are from the simulated S-parameters. The red lines refer to the real permittivity εr. The blue curves refer to the imaginary permittivity εi. I, II, III, IV and V, refer to the displacement δ of 0, l/4, l/2, 3l/4, l, correspondingly.
Fig. 7
Fig. 7 Magnetic field distributions of trimer MM at the mode of νL and of νH. The red color and blue color refer to the strength and the direction of magnetic fields along ( + : north pole) or opposite (-: south pole) to the direction of incident THz wave-vector, correspondingly.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

T( v )=| E sample ( v )/ E ref ( v ) |,
Δ t g = dφ 2πdt ,
φ= φ T φ ref +kD,
ε( v )= ε r ( v )+i ε i ( v ),
z=± ( 1+ S 11 ) 2 S 21 2 ( 1 S 11 ) 2 S 21 2 ,
exp( i k 0 d )=X±i 1 X 2 ,
X=1/ 2 S 21 ( 1 S 11 2 + S 21 2 ) .
ε ^ ( ν )=1+ χ ^ ( ν ),
χ ^ SRR ( ν )=[ χ xx 0 0 0 χ yy 0 0 0 0 ],
χ ^ S ( ν )=[ χ xx χ xy 0 χ yx χ yy 0 0 0 0 ],

Metrics