Abstract

Multiplication of the pulse repetition frequency (PRF) of a compact, mode-locked fiber laser by a factor as large as 25 has been achieved with two coupled Fabry-Perot (FP) resonators of low finesse (F = 2). Reducing the FP finesse by at least two orders of magnitude, relative to previous pulse frequency multiplication architectures, has the effect of stabilizing the oscillator with respect to pulse-to-pulse amplitude, dropped pulses, and other effects of cavity detuning. Coupling two Fabry-Perot cavities, each encompassing a 3.3-3.6 cm length of fiber, in a hybrid geometry resembling that of the coupled-cavity laser interferometer has yielded side mode suppressions ≥ 50 dB while simultaneously doubling the laser PRF to 2.87 GHz. Pulses approximately 3.9 ps in duration (FWHM) are emitted at intervals of 27.5 ps, and in groups (bursts) of pulses separated by 350 ps. Thus, the PRF within the pulse bursts is 36 GHz, a factor of 25 greater than the free spectral range for a conventional mode-locked cavity having a length of 6.9 cm. Experimental data are in accord with simulations of the phase coherence and temporal behavior of the mode-locked pulses.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multipulse instabilities of a femtosecond SESAM-modelocked VECSEL

Dominik Waldburger, Cesare G. E. Alfieri, Sandro M. Link, Stefan Meinecke, Lina C. Jaurigue, Kathy Lüdge, and Ursula Keller
Opt. Express 26(17) 21872-21886 (2018)

Subpicosecond thin-disk laser oscillator with pulse energies of up to 25.9 microjoules by use of an active multipass geometry

Joerg Neuhaus, Dominik Bauer, Jing Zhang, Alexander Killi, Jochen Kleinbauer, Malte Kumkar, Sascha Weiler, Mircea Guina, Dirk H. Sutter, and Thomas Dekorsy
Opt. Express 16(25) 20530-20539 (2008)

Harmonically mode-locked Yb:CALGO laser oscillator

Hauke M. Bensch, Georg Herink, Felix Kurtz, and Uwe Morgner
Opt. Express 25(13) 14164-14172 (2017)

References

  • View by:
  • |
  • |
  • |

  1. C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1.,” Nature 452(7187), 610–612 (2008).
    [Crossref] [PubMed]
  2. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
    [Crossref] [PubMed]
  3. T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
    [Crossref] [PubMed]
  4. T. Sizer, “Increase in laser repetition rate by spectral selection,” IEEE J. Quantum Electron. 25(1), 97–103 (1989).
    [Crossref]
  5. J. Chen, J. W. Sickler, P. Fendel, E. P. Ippen, F. X. Kärtner, T. Wilken, R. Holzwarth, and T. W. Hänsch, “Generation of low-timing-jitter femtosecond pulse trains with 2 GHz repetition rate via external repetition rate multiplication,” Opt. Lett. 33(9), 959–961 (2008).
    [Crossref] [PubMed]
  6. M. S. Kirchner, D. A. Braje, T. M. Fortier, A. M. Weiner, L. Hollberg, and S. A. Diddams, “Generation of 20 GHz, sub-40 fs pulses at 960 nm via repetition-rate multiplication,” Opt. Lett. 34(7), 872–874 (2009).
    [Crossref] [PubMed]
  7. J. Lee, S. W. Kim, and Y. J. Kim, “Repetition rate multiplication of femtosecond light pulses using a phase-locked all-pass fiber resonator,” Opt. Express 23(8), 10117–10125 (2015).
    [Crossref] [PubMed]
  8. M. A. Preciado and M. A. Muriel, “All-pass optical structures for repetition rate multiplication,” Opt. Express 16(15), 11162–11168 (2008).
    [Crossref] [PubMed]
  9. C. Huang and Y. Lai, “Loss-less pulse intensity repetition-rate multiplication using optical all-pass filtering,” IEEE Photonics Technol. Lett. 12(2), 167–169 (2000).
    [Crossref]
  10. G. Chang, C. H. Li, D. F. Phillips, A. Szentgyorgyi, R. L. Walsworth, and F. X. Kärtner, “Optimization of filtering schemes for broadband astro-combs,” Opt. Express 20(22), 24987–25013 (2012).
    [Crossref] [PubMed]
  11. K. K. Gupta, N. Onodera, K. S. Abedin, and M. Hyodo, “Pulse repetition frequency multiplication via intracavity optical filtering in AM mode-locked fiber ring lasers,” IEEE Photonics Technol. Lett. 14(3), 284–286 (2002).
    [Crossref]
  12. S. Tainta, M. J. Erro, W. Amaya, M. J. Garde, S. Sales, and M. A. Muriel, “Periodic time-domain modulation for the electrically tunable control of optical pulse train envelope and repetition rate multiplication,” IEEE J. Sel. Top. Quantum Electron. 18(1), 377–383 (2012).
    [Crossref]
  13. S. Yang, E. A. Ponomarev, and X. Bao, “80-GHz pulse generation from a repetition-rate-doubled FM mode-locking fiber laser,” IEEE Photonics Technol. Lett. 17(2), 300–302 (2005).
    [Crossref]
  14. R. Kiyan, O. Deparis, O. Pottiez, P. Mégret, and M. Blondel, “Properties of the pulse train generated by repetition-rate-doubling rational-harmonic actively mode-locked Er-doped fiber lasers,” Opt. Lett. 25(19), 1439–1441 (2000).
    [Crossref] [PubMed]
  15. M. Quiroga-Teixeiro, C. B. Clausen, M. P. Sørensen, P. L. Christiansen, and P. A. Andrekson, “Passive mode locking by dissipative four-wave mixing,” J. Opt. Soc. Am. B 15(4), 1315–1321 (1998).
    [Crossref]
  16. M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
    [Crossref] [PubMed]
  17. Y. L. Qi, H. Liu, H. Cui, Y. Q. Huang, Q. Y. Ning, M. Liu, Z. C. Luo, A. P. Luo, and W. C. Xu, “Graphene-deposited microfiber photonic device for ultrahigh-repetition rate pulse generation in a fiber laser,” Opt. Express 23(14), 17720–17726 (2015).
    [Crossref] [PubMed]
  18. D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3(1), 3223 (2013).
    [Crossref] [PubMed]
  19. R. S. Fodil, F. Amrani, C. Yang, A. Kellou, and Ph. Grelu, “Adjustable high-repetition-rate pulse trains in a passively-mode-locked fiber laser,” Phys. Rev. A 00(0), 003800 (2016).
  20. G. T. Harvey and L. F. Mollenauer, “Harmonically mode-locked fiber ring laser with an internal Fabry-Perot stabilizer for soliton transmission,” Opt. Lett. 18(2), 107–109 (1993).
    [Crossref] [PubMed]
  21. D. E. T. F. Ashby and D. F. Jephcott, “Measurement of plasma density using a gas laser as an infrared interferometer,” Appl. Phys. Lett. 3(1), 13–16 (1963).
    [Crossref]
  22. J. B. Gerardo, J. T. Verdeyen, and M. A. Gusinow, “Spatially and temporally resolved electron and atom concentrations in an afterglow gas discharge,” J. Appl. Phys. 36(11), 3526–3534 (1965).
    [Crossref]
  23. S. H. Xu, Z. M. Yang, T. Liu, W. N. Zhang, Z. M. Feng, Q. Y. Zhang, and Z. H. Jiang, “An efficient compact 300 mW narrow-linewidth single frequency fiber laser at 1.5 µm,” Opt. Express 18(2), 1249–1254 (2010).
    [Crossref] [PubMed]
  24. H. Kotb, M. Abdelalim, and H. Anis, “Generalized analytical model for dissipative soliton in all-normal-dispersion mode-locked fiber laser,” IEEE J. Sel. Top. Quantum Electron. 22(2), 1100209 (2016).
    [Crossref]
  25. V. L. Kalashnikov and A. Apolonski, “Chirped-pulse oscillators: A unified standpoint,” Phys. Rev. A 79(4), 043829 (2009).
    [Crossref]
  26. H. Cheng, W. Lin, T. Qiao, S. Xu, and Z. Yang, “Theoretical and experimental analysis of instability of continuous wave mode locking: Towards high fundamental repetition rate in Tm3+-doped fiber lasers,” Opt. Express 24(26), 29882–29895 (2016).
    [Crossref] [PubMed]
  27. W. H. Renninger, A. Chong, and F. W. Wise, “Giant-chirp oscillators for short-pulse fiber amplifiers,” Opt. Lett. 33(24), 3025–3027 (2008).
    [Crossref] [PubMed]
  28. X. Liu, “Numerical and experimental investigation of dissipative solitons in passively mode-locked fiber lasers with large net-normal-dispersion and high nonlinearity,” Opt. Express 17(25), 22401–22416 (2009).
    [Crossref] [PubMed]
  29. A. Chong, W. H. Renninger, and F. W. Wise, “Properties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B 25(2), 140–148 (2008).
    [Crossref]
  30. F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, P. Grelu, and F. Sanchez, “Passively mode-locked erbium-doped double-clad fiber laser operating at the 322nd harmonic,” Opt. Lett. 34(14), 2120–2122 (2009).
    [Crossref] [PubMed]
  31. J. N. Kutz, B. C. Collings, K. Bergman, and W. H. Knox, “Stabilized pulse spacing in soliton lasers due to gain depletion and recovery,” IEEE J. Quantum Electron. 34(9), 1749–1757 (1998).
    [Crossref]
  32. D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
    [Crossref]
  33. P. Grelu, F. Belhache, F. Gutty, and J.-M. Soto-Crespo, “Phase-locked soliton pairs in a stretched-pulse fiber laser,” Opt. Lett. 27(11), 966–968 (2002).
    [Crossref] [PubMed]

2016 (3)

R. S. Fodil, F. Amrani, C. Yang, A. Kellou, and Ph. Grelu, “Adjustable high-repetition-rate pulse trains in a passively-mode-locked fiber laser,” Phys. Rev. A 00(0), 003800 (2016).

H. Kotb, M. Abdelalim, and H. Anis, “Generalized analytical model for dissipative soliton in all-normal-dispersion mode-locked fiber laser,” IEEE J. Sel. Top. Quantum Electron. 22(2), 1100209 (2016).
[Crossref]

H. Cheng, W. Lin, T. Qiao, S. Xu, and Z. Yang, “Theoretical and experimental analysis of instability of continuous wave mode locking: Towards high fundamental repetition rate in Tm3+-doped fiber lasers,” Opt. Express 24(26), 29882–29895 (2016).
[Crossref] [PubMed]

2015 (2)

2013 (1)

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3(1), 3223 (2013).
[Crossref] [PubMed]

2012 (4)

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref] [PubMed]

S. Tainta, M. J. Erro, W. Amaya, M. J. Garde, S. Sales, and M. A. Muriel, “Periodic time-domain modulation for the electrically tunable control of optical pulse train envelope and repetition rate multiplication,” IEEE J. Sel. Top. Quantum Electron. 18(1), 377–383 (2012).
[Crossref]

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
[Crossref] [PubMed]

G. Chang, C. H. Li, D. F. Phillips, A. Szentgyorgyi, R. L. Walsworth, and F. X. Kärtner, “Optimization of filtering schemes for broadband astro-combs,” Opt. Express 20(22), 24987–25013 (2012).
[Crossref] [PubMed]

2010 (1)

2009 (4)

2008 (6)

2005 (2)

S. Yang, E. A. Ponomarev, and X. Bao, “80-GHz pulse generation from a repetition-rate-doubled FM mode-locking fiber laser,” IEEE Photonics Technol. Lett. 17(2), 300–302 (2005).
[Crossref]

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

2002 (2)

K. K. Gupta, N. Onodera, K. S. Abedin, and M. Hyodo, “Pulse repetition frequency multiplication via intracavity optical filtering in AM mode-locked fiber ring lasers,” IEEE Photonics Technol. Lett. 14(3), 284–286 (2002).
[Crossref]

P. Grelu, F. Belhache, F. Gutty, and J.-M. Soto-Crespo, “Phase-locked soliton pairs in a stretched-pulse fiber laser,” Opt. Lett. 27(11), 966–968 (2002).
[Crossref] [PubMed]

2000 (2)

1998 (2)

J. N. Kutz, B. C. Collings, K. Bergman, and W. H. Knox, “Stabilized pulse spacing in soliton lasers due to gain depletion and recovery,” IEEE J. Quantum Electron. 34(9), 1749–1757 (1998).
[Crossref]

M. Quiroga-Teixeiro, C. B. Clausen, M. P. Sørensen, P. L. Christiansen, and P. A. Andrekson, “Passive mode locking by dissipative four-wave mixing,” J. Opt. Soc. Am. B 15(4), 1315–1321 (1998).
[Crossref]

1993 (1)

1989 (1)

T. Sizer, “Increase in laser repetition rate by spectral selection,” IEEE J. Quantum Electron. 25(1), 97–103 (1989).
[Crossref]

1965 (1)

J. B. Gerardo, J. T. Verdeyen, and M. A. Gusinow, “Spatially and temporally resolved electron and atom concentrations in an afterglow gas discharge,” J. Appl. Phys. 36(11), 3526–3534 (1965).
[Crossref]

1963 (1)

D. E. T. F. Ashby and D. F. Jephcott, “Measurement of plasma density using a gas laser as an infrared interferometer,” Appl. Phys. Lett. 3(1), 13–16 (1963).
[Crossref]

Abdelalim, M.

H. Kotb, M. Abdelalim, and H. Anis, “Generalized analytical model for dissipative soliton in all-normal-dispersion mode-locked fiber laser,” IEEE J. Sel. Top. Quantum Electron. 22(2), 1100209 (2016).
[Crossref]

Abedin, K. S.

K. K. Gupta, N. Onodera, K. S. Abedin, and M. Hyodo, “Pulse repetition frequency multiplication via intracavity optical filtering in AM mode-locked fiber ring lasers,” IEEE Photonics Technol. Lett. 14(3), 284–286 (2002).
[Crossref]

Amaya, W.

S. Tainta, M. J. Erro, W. Amaya, M. J. Garde, S. Sales, and M. A. Muriel, “Periodic time-domain modulation for the electrically tunable control of optical pulse train envelope and repetition rate multiplication,” IEEE J. Sel. Top. Quantum Electron. 18(1), 377–383 (2012).
[Crossref]

Amrani, F.

R. S. Fodil, F. Amrani, C. Yang, A. Kellou, and Ph. Grelu, “Adjustable high-repetition-rate pulse trains in a passively-mode-locked fiber laser,” Phys. Rev. A 00(0), 003800 (2016).

F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, P. Grelu, and F. Sanchez, “Passively mode-locked erbium-doped double-clad fiber laser operating at the 322nd harmonic,” Opt. Lett. 34(14), 2120–2122 (2009).
[Crossref] [PubMed]

Andrekson, P. A.

Anis, H.

H. Kotb, M. Abdelalim, and H. Anis, “Generalized analytical model for dissipative soliton in all-normal-dispersion mode-locked fiber laser,” IEEE J. Sel. Top. Quantum Electron. 22(2), 1100209 (2016).
[Crossref]

Apolonski, A.

V. L. Kalashnikov and A. Apolonski, “Chirped-pulse oscillators: A unified standpoint,” Phys. Rev. A 79(4), 043829 (2009).
[Crossref]

Araujo-Hauck, C.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Ashby, D. E. T. F.

D. E. T. F. Ashby and D. F. Jephcott, “Measurement of plasma density using a gas laser as an infrared interferometer,” Appl. Phys. Lett. 3(1), 13–16 (1963).
[Crossref]

Bao, X.

S. Yang, E. A. Ponomarev, and X. Bao, “80-GHz pulse generation from a repetition-rate-doubled FM mode-locking fiber laser,” IEEE Photonics Technol. Lett. 17(2), 300–302 (2005).
[Crossref]

Belhache, F.

Benedick, A. J.

C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1.,” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

Bergman, K.

J. N. Kutz, B. C. Collings, K. Bergman, and W. H. Knox, “Stabilized pulse spacing in soliton lasers due to gain depletion and recovery,” IEEE J. Quantum Electron. 34(9), 1749–1757 (1998).
[Crossref]

Blondel, M.

Braje, D. A.

Chang, G.

Chen, J.

Cheng, H.

Chong, A.

Christiansen, P. L.

Chu, S. T.

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
[Crossref] [PubMed]

Clausen, C. B.

Collings, B. C.

J. N. Kutz, B. C. Collings, K. Bergman, and W. H. Knox, “Stabilized pulse spacing in soliton lasers due to gain depletion and recovery,” IEEE J. Quantum Electron. 34(9), 1749–1757 (1998).
[Crossref]

Cui, H.

Curto, G. L.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref] [PubMed]

D’Odorico, S.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Deparis, O.

Diddams, S. A.

Erro, M. J.

S. Tainta, M. J. Erro, W. Amaya, M. J. Garde, S. Sales, and M. A. Muriel, “Periodic time-domain modulation for the electrically tunable control of optical pulse train envelope and repetition rate multiplication,” IEEE J. Sel. Top. Quantum Electron. 18(1), 377–383 (2012).
[Crossref]

Fendel, P.

C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1.,” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

J. Chen, J. W. Sickler, P. Fendel, E. P. Ippen, F. X. Kärtner, T. Wilken, R. Holzwarth, and T. W. Hänsch, “Generation of low-timing-jitter femtosecond pulse trains with 2 GHz repetition rate via external repetition rate multiplication,” Opt. Lett. 33(9), 959–961 (2008).
[Crossref] [PubMed]

Feng, Z. M.

Fodil, R. S.

R. S. Fodil, F. Amrani, C. Yang, A. Kellou, and Ph. Grelu, “Adjustable high-repetition-rate pulse trains in a passively-mode-locked fiber laser,” Phys. Rev. A 00(0), 003800 (2016).

Fortier, T. M.

Garde, M. J.

S. Tainta, M. J. Erro, W. Amaya, M. J. Garde, S. Sales, and M. A. Muriel, “Periodic time-domain modulation for the electrically tunable control of optical pulse train envelope and repetition rate multiplication,” IEEE J. Sel. Top. Quantum Electron. 18(1), 377–383 (2012).
[Crossref]

Gerardo, J. B.

J. B. Gerardo, J. T. Verdeyen, and M. A. Gusinow, “Spatially and temporally resolved electron and atom concentrations in an afterglow gas discharge,” J. Appl. Phys. 36(11), 3526–3534 (1965).
[Crossref]

Glenday, A. G.

C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1.,” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

González Hernández, J. I.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref] [PubMed]

Grelu, P.

Grelu, Ph.

R. S. Fodil, F. Amrani, C. Yang, A. Kellou, and Ph. Grelu, “Adjustable high-repetition-rate pulse trains in a passively-mode-locked fiber laser,” Phys. Rev. A 00(0), 003800 (2016).

Gupta, K. K.

K. K. Gupta, N. Onodera, K. S. Abedin, and M. Hyodo, “Pulse repetition frequency multiplication via intracavity optical filtering in AM mode-locked fiber ring lasers,” IEEE Photonics Technol. Lett. 14(3), 284–286 (2002).
[Crossref]

Gusinow, M. A.

J. B. Gerardo, J. T. Verdeyen, and M. A. Gusinow, “Spatially and temporally resolved electron and atom concentrations in an afterglow gas discharge,” J. Appl. Phys. 36(11), 3526–3534 (1965).
[Crossref]

Gutty, F.

Haboucha, A.

Han, D.

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3(1), 3223 (2013).
[Crossref] [PubMed]

Hänsch, T. W.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref] [PubMed]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

J. Chen, J. W. Sickler, P. Fendel, E. P. Ippen, F. X. Kärtner, T. Wilken, R. Holzwarth, and T. W. Hänsch, “Generation of low-timing-jitter femtosecond pulse trains with 2 GHz repetition rate via external repetition rate multiplication,” Opt. Lett. 33(9), 959–961 (2008).
[Crossref] [PubMed]

Harvey, G. T.

Hollberg, L.

Holzwarth, R.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref] [PubMed]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

J. Chen, J. W. Sickler, P. Fendel, E. P. Ippen, F. X. Kärtner, T. Wilken, R. Holzwarth, and T. W. Hänsch, “Generation of low-timing-jitter femtosecond pulse trains with 2 GHz repetition rate via external repetition rate multiplication,” Opt. Lett. 33(9), 959–961 (2008).
[Crossref] [PubMed]

Huang, C.

C. Huang and Y. Lai, “Loss-less pulse intensity repetition-rate multiplication using optical all-pass filtering,” IEEE Photonics Technol. Lett. 12(2), 167–169 (2000).
[Crossref]

Huang, Y. Q.

Hyodo, M.

K. K. Gupta, N. Onodera, K. S. Abedin, and M. Hyodo, “Pulse repetition frequency multiplication via intracavity optical filtering in AM mode-locked fiber ring lasers,” IEEE Photonics Technol. Lett. 14(3), 284–286 (2002).
[Crossref]

Ippen, E. P.

Jephcott, D. F.

D. E. T. F. Ashby and D. F. Jephcott, “Measurement of plasma density using a gas laser as an infrared interferometer,” Appl. Phys. Lett. 3(1), 13–16 (1963).
[Crossref]

Jiang, Z. H.

Kalashnikov, V. L.

V. L. Kalashnikov and A. Apolonski, “Chirped-pulse oscillators: A unified standpoint,” Phys. Rev. A 79(4), 043829 (2009).
[Crossref]

Kärtner, F. X.

Kellou, A.

R. S. Fodil, F. Amrani, C. Yang, A. Kellou, and Ph. Grelu, “Adjustable high-repetition-rate pulse trains in a passively-mode-locked fiber laser,” Phys. Rev. A 00(0), 003800 (2016).

Kentischer, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Kim, S. W.

Kim, Y. J.

Kirchner, M. S.

Kiyan, R.

Knox, W. H.

J. N. Kutz, B. C. Collings, K. Bergman, and W. H. Knox, “Stabilized pulse spacing in soliton lasers due to gain depletion and recovery,” IEEE J. Quantum Electron. 34(9), 1749–1757 (1998).
[Crossref]

Komarov, A.

Kotb, H.

H. Kotb, M. Abdelalim, and H. Anis, “Generalized analytical model for dissipative soliton in all-normal-dispersion mode-locked fiber laser,” IEEE J. Sel. Top. Quantum Electron. 22(2), 1100209 (2016).
[Crossref]

Kutz, J. N.

J. N. Kutz, B. C. Collings, K. Bergman, and W. H. Knox, “Stabilized pulse spacing in soliton lasers due to gain depletion and recovery,” IEEE J. Quantum Electron. 34(9), 1749–1757 (1998).
[Crossref]

Lai, Y.

C. Huang and Y. Lai, “Loss-less pulse intensity repetition-rate multiplication using optical all-pass filtering,” IEEE Photonics Technol. Lett. 12(2), 167–169 (2000).
[Crossref]

Leblond, H.

Lee, J.

Li, C. H.

G. Chang, C. H. Li, D. F. Phillips, A. Szentgyorgyi, R. L. Walsworth, and F. X. Kärtner, “Optimization of filtering schemes for broadband astro-combs,” Opt. Express 20(22), 24987–25013 (2012).
[Crossref] [PubMed]

C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1.,” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

Lin, W.

Little, B. E.

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
[Crossref] [PubMed]

Liu, A. Q.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

Liu, H.

Liu, M.

Liu, T.

Liu, X.

Lu, H.

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3(1), 3223 (2013).
[Crossref] [PubMed]

Luo, A. P.

Luo, Z. C.

Manescau, A.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref] [PubMed]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Mao, D.

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3(1), 3223 (2013).
[Crossref] [PubMed]

Mégret, P.

Mollenauer, L. F.

Morandotti, R.

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
[Crossref] [PubMed]

Moss, D. J.

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
[Crossref] [PubMed]

Muriel, M. A.

S. Tainta, M. J. Erro, W. Amaya, M. J. Garde, S. Sales, and M. A. Muriel, “Periodic time-domain modulation for the electrically tunable control of optical pulse train envelope and repetition rate multiplication,” IEEE J. Sel. Top. Quantum Electron. 18(1), 377–383 (2012).
[Crossref]

M. A. Preciado and M. A. Muriel, “All-pass optical structures for repetition rate multiplication,” Opt. Express 16(15), 11162–11168 (2008).
[Crossref] [PubMed]

Murphy, M. T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Ning, Q. Y.

Onodera, N.

K. K. Gupta, N. Onodera, K. S. Abedin, and M. Hyodo, “Pulse repetition frequency multiplication via intracavity optical filtering in AM mode-locked fiber ring lasers,” IEEE Photonics Technol. Lett. 14(3), 284–286 (2002).
[Crossref]

Park, Y.

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
[Crossref] [PubMed]

Pasquazi, A.

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
[Crossref] [PubMed]

Pasquini, L.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref] [PubMed]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Peccianti, M.

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
[Crossref] [PubMed]

Phillips, D. F.

G. Chang, C. H. Li, D. F. Phillips, A. Szentgyorgyi, R. L. Walsworth, and F. X. Kärtner, “Optimization of filtering schemes for broadband astro-combs,” Opt. Express 20(22), 24987–25013 (2012).
[Crossref] [PubMed]

C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1.,” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

Ponomarev, E. A.

S. Yang, E. A. Ponomarev, and X. Bao, “80-GHz pulse generation from a repetition-rate-doubled FM mode-locking fiber laser,” IEEE Photonics Technol. Lett. 17(2), 300–302 (2005).
[Crossref]

Pottiez, O.

Preciado, M. A.

Probst, R. A.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref] [PubMed]

Qi, Y. L.

Qiao, T.

Quiroga-Teixeiro, M.

Rebolo, R.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref] [PubMed]

Renninger, W. H.

Sales, S.

S. Tainta, M. J. Erro, W. Amaya, M. J. Garde, S. Sales, and M. A. Muriel, “Periodic time-domain modulation for the electrically tunable control of optical pulse train envelope and repetition rate multiplication,” IEEE J. Sel. Top. Quantum Electron. 18(1), 377–383 (2012).
[Crossref]

Salhi, M.

Sanchez, F.

Sasselov, D.

C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1.,” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

Schmidt, W.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Sickler, J. W.

Sizer, T.

T. Sizer, “Increase in laser repetition rate by spectral selection,” IEEE J. Quantum Electron. 25(1), 97–103 (1989).
[Crossref]

Sørensen, M. P.

Soto-Crespo, J.-M.

Steinmetz, T.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref] [PubMed]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Sun, Z.

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3(1), 3223 (2013).
[Crossref] [PubMed]

Szentgyorgyi, A.

G. Chang, C. H. Li, D. F. Phillips, A. Szentgyorgyi, R. L. Walsworth, and F. X. Kärtner, “Optimization of filtering schemes for broadband astro-combs,” Opt. Express 20(22), 24987–25013 (2012).
[Crossref] [PubMed]

C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1.,” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

Tainta, S.

S. Tainta, M. J. Erro, W. Amaya, M. J. Garde, S. Sales, and M. A. Muriel, “Periodic time-domain modulation for the electrically tunable control of optical pulse train envelope and repetition rate multiplication,” IEEE J. Sel. Top. Quantum Electron. 18(1), 377–383 (2012).
[Crossref]

Tang, D. Y.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

Udem, T.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref] [PubMed]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Verdeyen, J. T.

J. B. Gerardo, J. T. Verdeyen, and M. A. Gusinow, “Spatially and temporally resolved electron and atom concentrations in an afterglow gas discharge,” J. Appl. Phys. 36(11), 3526–3534 (1965).
[Crossref]

Walsworth, R. L.

G. Chang, C. H. Li, D. F. Phillips, A. Szentgyorgyi, R. L. Walsworth, and F. X. Kärtner, “Optimization of filtering schemes for broadband astro-combs,” Opt. Express 20(22), 24987–25013 (2012).
[Crossref] [PubMed]

C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1.,” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

Wang, F.

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3(1), 3223 (2013).
[Crossref] [PubMed]

Wang, G.

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3(1), 3223 (2013).
[Crossref] [PubMed]

Weiner, A. M.

Wilken, T.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref] [PubMed]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

J. Chen, J. W. Sickler, P. Fendel, E. P. Ippen, F. X. Kärtner, T. Wilken, R. Holzwarth, and T. W. Hänsch, “Generation of low-timing-jitter femtosecond pulse trains with 2 GHz repetition rate via external repetition rate multiplication,” Opt. Lett. 33(9), 959–961 (2008).
[Crossref] [PubMed]

Wise, F. W.

Xu, S.

Xu, S. H.

Xu, W. C.

Yang, C.

R. S. Fodil, F. Amrani, C. Yang, A. Kellou, and Ph. Grelu, “Adjustable high-repetition-rate pulse trains in a passively-mode-locked fiber laser,” Phys. Rev. A 00(0), 003800 (2016).

Yang, S.

S. Yang, E. A. Ponomarev, and X. Bao, “80-GHz pulse generation from a repetition-rate-doubled FM mode-locking fiber laser,” IEEE Photonics Technol. Lett. 17(2), 300–302 (2005).
[Crossref]

Yang, Z.

Yang, Z. M.

Zhang, Q. Y.

Zhang, W. N.

Zhao, B.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

Zhao, L. M.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

Appl. Phys. Lett. (1)

D. E. T. F. Ashby and D. F. Jephcott, “Measurement of plasma density using a gas laser as an infrared interferometer,” Appl. Phys. Lett. 3(1), 13–16 (1963).
[Crossref]

IEEE J. Quantum Electron. (2)

J. N. Kutz, B. C. Collings, K. Bergman, and W. H. Knox, “Stabilized pulse spacing in soliton lasers due to gain depletion and recovery,” IEEE J. Quantum Electron. 34(9), 1749–1757 (1998).
[Crossref]

T. Sizer, “Increase in laser repetition rate by spectral selection,” IEEE J. Quantum Electron. 25(1), 97–103 (1989).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

S. Tainta, M. J. Erro, W. Amaya, M. J. Garde, S. Sales, and M. A. Muriel, “Periodic time-domain modulation for the electrically tunable control of optical pulse train envelope and repetition rate multiplication,” IEEE J. Sel. Top. Quantum Electron. 18(1), 377–383 (2012).
[Crossref]

H. Kotb, M. Abdelalim, and H. Anis, “Generalized analytical model for dissipative soliton in all-normal-dispersion mode-locked fiber laser,” IEEE J. Sel. Top. Quantum Electron. 22(2), 1100209 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (3)

S. Yang, E. A. Ponomarev, and X. Bao, “80-GHz pulse generation from a repetition-rate-doubled FM mode-locking fiber laser,” IEEE Photonics Technol. Lett. 17(2), 300–302 (2005).
[Crossref]

K. K. Gupta, N. Onodera, K. S. Abedin, and M. Hyodo, “Pulse repetition frequency multiplication via intracavity optical filtering in AM mode-locked fiber ring lasers,” IEEE Photonics Technol. Lett. 14(3), 284–286 (2002).
[Crossref]

C. Huang and Y. Lai, “Loss-less pulse intensity repetition-rate multiplication using optical all-pass filtering,” IEEE Photonics Technol. Lett. 12(2), 167–169 (2000).
[Crossref]

J. Appl. Phys. (1)

J. B. Gerardo, J. T. Verdeyen, and M. A. Gusinow, “Spatially and temporally resolved electron and atom concentrations in an afterglow gas discharge,” J. Appl. Phys. 36(11), 3526–3534 (1965).
[Crossref]

J. Opt. Soc. Am. B (2)

Nat. Commun. (1)

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
[Crossref] [PubMed]

Nature (2)

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref] [PubMed]

C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1.,” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

Opt. Express (7)

G. Chang, C. H. Li, D. F. Phillips, A. Szentgyorgyi, R. L. Walsworth, and F. X. Kärtner, “Optimization of filtering schemes for broadband astro-combs,” Opt. Express 20(22), 24987–25013 (2012).
[Crossref] [PubMed]

J. Lee, S. W. Kim, and Y. J. Kim, “Repetition rate multiplication of femtosecond light pulses using a phase-locked all-pass fiber resonator,” Opt. Express 23(8), 10117–10125 (2015).
[Crossref] [PubMed]

M. A. Preciado and M. A. Muriel, “All-pass optical structures for repetition rate multiplication,” Opt. Express 16(15), 11162–11168 (2008).
[Crossref] [PubMed]

Y. L. Qi, H. Liu, H. Cui, Y. Q. Huang, Q. Y. Ning, M. Liu, Z. C. Luo, A. P. Luo, and W. C. Xu, “Graphene-deposited microfiber photonic device for ultrahigh-repetition rate pulse generation in a fiber laser,” Opt. Express 23(14), 17720–17726 (2015).
[Crossref] [PubMed]

X. Liu, “Numerical and experimental investigation of dissipative solitons in passively mode-locked fiber lasers with large net-normal-dispersion and high nonlinearity,” Opt. Express 17(25), 22401–22416 (2009).
[Crossref] [PubMed]

S. H. Xu, Z. M. Yang, T. Liu, W. N. Zhang, Z. M. Feng, Q. Y. Zhang, and Z. H. Jiang, “An efficient compact 300 mW narrow-linewidth single frequency fiber laser at 1.5 µm,” Opt. Express 18(2), 1249–1254 (2010).
[Crossref] [PubMed]

H. Cheng, W. Lin, T. Qiao, S. Xu, and Z. Yang, “Theoretical and experimental analysis of instability of continuous wave mode locking: Towards high fundamental repetition rate in Tm3+-doped fiber lasers,” Opt. Express 24(26), 29882–29895 (2016).
[Crossref] [PubMed]

Opt. Lett. (7)

W. H. Renninger, A. Chong, and F. W. Wise, “Giant-chirp oscillators for short-pulse fiber amplifiers,” Opt. Lett. 33(24), 3025–3027 (2008).
[Crossref] [PubMed]

G. T. Harvey and L. F. Mollenauer, “Harmonically mode-locked fiber ring laser with an internal Fabry-Perot stabilizer for soliton transmission,” Opt. Lett. 18(2), 107–109 (1993).
[Crossref] [PubMed]

P. Grelu, F. Belhache, F. Gutty, and J.-M. Soto-Crespo, “Phase-locked soliton pairs in a stretched-pulse fiber laser,” Opt. Lett. 27(11), 966–968 (2002).
[Crossref] [PubMed]

F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, P. Grelu, and F. Sanchez, “Passively mode-locked erbium-doped double-clad fiber laser operating at the 322nd harmonic,” Opt. Lett. 34(14), 2120–2122 (2009).
[Crossref] [PubMed]

R. Kiyan, O. Deparis, O. Pottiez, P. Mégret, and M. Blondel, “Properties of the pulse train generated by repetition-rate-doubling rational-harmonic actively mode-locked Er-doped fiber lasers,” Opt. Lett. 25(19), 1439–1441 (2000).
[Crossref] [PubMed]

J. Chen, J. W. Sickler, P. Fendel, E. P. Ippen, F. X. Kärtner, T. Wilken, R. Holzwarth, and T. W. Hänsch, “Generation of low-timing-jitter femtosecond pulse trains with 2 GHz repetition rate via external repetition rate multiplication,” Opt. Lett. 33(9), 959–961 (2008).
[Crossref] [PubMed]

M. S. Kirchner, D. A. Braje, T. M. Fortier, A. M. Weiner, L. Hollberg, and S. A. Diddams, “Generation of 20 GHz, sub-40 fs pulses at 960 nm via repetition-rate multiplication,” Opt. Lett. 34(7), 872–874 (2009).
[Crossref] [PubMed]

Phys. Rev. A (3)

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

R. S. Fodil, F. Amrani, C. Yang, A. Kellou, and Ph. Grelu, “Adjustable high-repetition-rate pulse trains in a passively-mode-locked fiber laser,” Phys. Rev. A 00(0), 003800 (2016).

V. L. Kalashnikov and A. Apolonski, “Chirped-pulse oscillators: A unified standpoint,” Phys. Rev. A 79(4), 043829 (2009).
[Crossref]

Sci. Rep. (1)

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3(1), 3223 (2013).
[Crossref] [PubMed]

Science (1)

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Design and optical characteristics of the hybrid, mode-locked fiber laser: (a) Diagram of the laser structure, comprising two coupled Fabry-Perot cavities, a dielectric mirror, and a SESAM; (b) Reflectivity of the dielectric mirror of (a) between 1525 nm and 1575 nm. The inset is an end-on image of the dielectric mirror deposited onto the exposed face of the silica fiber segment; (c) Calculated reflectivity of the FP cavity comprising the mirror, silica fiber, and fiber interface (FP1); (d) Measured reflectivity of the SESAM between 1350 nm and 1750 nm; (e) Calculated reflectivity of the FP cavity comprising the SESAM, the gain fiber, and the fiber interface (FP2); (f) Product of the spectra in (c) and (e), indicating the calculated FSR of 2.86 GHz and an envelope period of 36.19 GHz.
Fig. 2
Fig. 2 Experimental and theoretical waveforms for the mode-locked laser: (a) Laser waveform measured with an oscilloscope and a photodiode having bandwidths of 25 GHz and 12.5 GHz, respectively. The interval between intensity peaks is 348 ps; (b) Autocorrelation trace of one of the maxima of (a) showing that each pulse burst consists of 6–7 individual pulses separated by approximately 27.5 ps. The inset is an expanded view of the most intense pulse; (c) Numerical simulation of a portion of the mode-locked laser waveform; (d) Calculated autocorrelator waveform.
Fig. 3
Fig. 3 Spectral and power output measurements: (a) Comparison of the experimental output spectrum of the laser (blue curve) with the calculated version (red); (b) Spectrum of the photodiode signal in the 2.87205-2.87705 GHz region acquired with an RF spectrum analyzer; (c) RF spectrum of the laser in the 0-10 GHz frequency interval; (d) Measured variation of the laser average output power with the launched pump power (976 nm).
Fig. 4
Fig. 4 Laser waveforms recorded for two levels of 976 nm pump power: (a) Mode-locked pulse train recorded for 850 mW of pump power over a time window of more than 80 ns; (b) Laser waveform observed over a 2 µs time interval for 350 mW of pump power, showing Q-switched mode locking of the fiber laser; (c) Expanded view of the temporal region indicated by the arrow in part (b). The frequency of the pulse train is 2.87 GHz.
Fig. 5
Fig. 5 (a) Calculated temporal behavior of the phase for two sets (bursts) of mode-locked pulses. The inset compares the intensity profile and phase variation for the most intense pulse in the first group of pulses; (b) Numerical simulations of the evolution in time (round trip number) of the difference in phase between two of the most intense pulses in a burst (indicated by the black arrows in (a).
Fig. 6
Fig. 6 (a) Calculations of the variation of the laser PRF with the number of cavity round trips. The inset provides a three dimensional view of the temporal behavior of the intensity profiles for two bursts, shown during the 100 round trips after the laser reaches stable mode-locked operation. Note that ES is assumed to be 94 pJ for these simulations; (b) Simulations of the spectra for two sets of pulses, one spectrum for each of five round trips in the laser resonator after stable mode-locked operation is reached.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

u z =i β 2 2 2 u t 2 +iγ | u | 2 u+ g 2 u+ g 2 Ω 2 2 u t 2  
T sat = R a l 0 1+P/ P sat
T FP1 = R S (1 R S ) R f e 2iω n s l s /c 1 R f R S e 2iω n s l s /c
T FP2 = R P (1 R P ) R a e 2iω n p l p /c 1 R a R P e 2iω n p l p /c .

Metrics