Abstract

In quantum communications, vortex photons can encode higher-dimensional quantum states and build high-dimensional communication networks (HDCNs). The interfaces that connect different wavelengths are significant in HDCNs. We construct a coherent orbital angular momentum (OAM) frequency bridge via difference frequency conversion in a nonlinear bulk crystal for HDCNs. Using a single resonant cavity, maximum quantum conversion efficiencies from visible to infrared are 36%, 15%, and 7.8% for topological charges of 0,1, and 2, respectively. The average fidelity obtained using quantum state tomography for the down-converted infrared OAM-state of topological charge 1 is 96.51%. We also prove that the OAM is conserved in this process by measuring visible and infrared interference patterns. This coherent OAM frequency-down conversion bridge represents a basis for an interface between two high-dimensional quantum systems operating with different spectra.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High efficiency frequency upconversion of photons carrying orbital angular momentum for a quantum information interface

Ruikai Tang, Xiongjie Li, Wenjie Wu, Haifeng Pan, Heping Zeng, and E Wu
Opt. Express 23(8) 9796-9802 (2015)

Classical to quantum optical network link for orbital angular momentum-carrying light

Zhi-Yuan Zhou, Yan Li, Dong-Sheng Ding, Wei Zhang, Shuai Shi, and Bao-Sen Shi
Opt. Express 23(14) 18435-18444 (2015)

Frequency doubling of twisted light independent of the integer topological charge

Yan Li, Zhi-Yuan Zhou, Shi-Long Liu, Shi-Kai Liu, Chen Yang, Zhao-Huai Xu, Yin-Hai Li, and Bao-Sen Shi
OSA Continuum 2(2) 470-477 (2019)

References

  • View by:
  • |
  • |
  • |

  1. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185 (1992).
    [Crossref] [PubMed]
  2. M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
    [Crossref]
  3. L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
    [Crossref] [PubMed]
  4. A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
    [Crossref]
  5. J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
    [Crossref]
  6. A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, and Z. Zhao, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
    [Crossref]
  7. L. Chen, J. Lei, and J. Romero, “Quantum digital spiral imaging,” Light Sci. Appl. 3(3), e153 (2014).
    [Crossref]
  8. L. Torner, J. P. Torres, and S. Carrasco, “Digital spiral imaging,” Opt. Express 13(3), 873–881 (2005).
    [Crossref] [PubMed]
  9. Z.-Y. Zhou, Y. Li, D.-S. Ding, W. Zhang, S. Shi, and B.-S. Shi, “Optical vortex beam based optical fan for high-precision optical measurements and optical switching,” Opt. Lett. 39(17), 5098–5101 (2014).
    [Crossref] [PubMed]
  10. A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7(9), 677–680 (2011).
    [Crossref]
  11. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
    [Crossref] [PubMed]
  12. G. Vallone, V. D’Ambrosio, A. Sponselli, S. Slussarenko, L. Marrucci, F. Sciarrino, and P. Villoresi, “Free-space quantum key distribution by rotation-invariant twisted photons,” Phys. Rev. Lett. 113(6), 60503 (2014).
    [Crossref]
  13. D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, and G.-C. Guo, “Single-photon-level quantum image memory based on cold atomic ensembles,” Nat. Commun. 4, 2527 (2013).
    [Crossref]
  14. A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
    [Crossref]
  15. D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, G.-Y. Xiang, X.-S. Wang, Y.-K. Jiang, B.-S. Shi, and G.-C. Guo, “Quantum storage of orbital angular momentum entanglement in an atomic ensemble,” Phys. Rev. Lett. 114(5), 50502 (2015).
    [Crossref]
  16. L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
    [Crossref] [PubMed]
  17. C. Simon and W. T. Irvine, “Robust long-distance entanglement and a loophole-free bell test with ions and photons,” Phys. Rev. Lett. 91(11), 110405 (2003).
    [Crossref] [PubMed]
  18. F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, and H. Herrmann, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Photonics 8(3), 775–778 (2014).
    [Crossref]
  19. P. Kumar, “Quantum frequency conversion,” Opt. Lett. 15(24), 1476–1478 (1990).
    [Crossref] [PubMed]
  20. J. Huang and P. Kumar, “Observation of quantum frequency conversion,” Phys. Rev. Lett. 68(14), 2153 (1992).
    [Crossref] [PubMed]
  21. M. A. Albota and F. N. C. Wong, “Efficient single-photon counting at 1.55 μm by means of frequency upconversion,” Opt. Lett. 29(13), 1449–1451 (2004).
    [Crossref] [PubMed]
  22. M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4(11), 786–791 (2010).
    [Crossref]
  23. S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, and P. Michler, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109(14), 147404 (2012).
    [Crossref] [PubMed]
  24. C. E. Vollmer, C. Baune, A. Samblowski, T. Eberle, V. Händchen, J. Fiurášek, and R. Schnabel, “Quantum up-conversion of squeezed vacuum states from 1550 to 532 nm,” Phys. Rev. Lett. 112(7), 073602 (2014).
    [Crossref] [PubMed]
  25. S. Ramelow, A. Fedrizzi, A. Poppe, N. K. Langford, and A. Zeilinger, “Polarization-entanglement-conserving frequency conversion of photons,” Phys. Rev. A 85(1), 13845 (2012).
    [Crossref]
  26. H. Rütz, K.-H. Luo, H. Suche, and C. Silberhorn, “Quantum frequency conversion between infrared and ultraviolet,” Phys. Rev. Appl. 7(2), 24021 (2017).
    [Crossref]
  27. Z.-Y. Zhou, S.-L. Liu, S.-K. Liu, Y.-H. Li, D.-S. Ding, G.-C. Guo, and B.-S. Shi, “Super-resolving phase measurement with short wavelength noon states by quantum frequency up-conversion,” Phys. Rev. Appl. 7(6), 064025 (2017).
    [Crossref]
  28. L. Goldberg, R. W. McElhanon, and W. K. Burns, “Difference-frequency generation of tunable mid-infrared radiation in bulk periodically poled LiNbO 3,” Opt. Lett. 20(11), 1280–1282 (1995).
    [Crossref] [PubMed]
  29. N. Curtz, R. Thew, C. Simon, N. Gisin, and H. Zbinden, “Coherent frequency-down-conversion interface for quantum repeaters,” Opt. Express 18(21), 22099–22104 (2010).
    [Crossref] [PubMed]
  30. H. Takesue, “Single-photon frequency down-conversion experiment,” Phys. Rev. A 82(1), 13833 (2010).
    [Crossref]
  31. R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 1544 (2011).
    [Crossref] [PubMed]
  32. G.-h. Shao, Z.-j. Wu, J.-h. Chen, F. Xu, and Y.-q. Lu, “Nonlinear frequency conversion of fields with orbital angular momentum using quasi-phase-matching,” Phys. Rev. A 88(6), 063827 (2013).
    [Crossref]
  33. Y. Li, Z.-Y. Zhou, D.-S. Ding, and B.-S. Shi, “Sum frequency generation with two orbital angular momentum carrying laser beams,” J. Opt. Soc. Am. B 32(3), 407–411 (2015).
    [Crossref]
  34. F. Steinlechner, N. Hermosa, V. Pruneri, and J. P. Torres, “Frequency conversion of structured light,” Sci. Rep. 6, 21390 (2016).
    [Crossref]
  35. Z.-Y. Zhou, Y. Li, D.-S. Ding, W. Zhang, S. Shi, B.-S. Shi, and G.-C. Guo, “Orbital angular momentum photonic quantum interface,” Light Sci Appl. 5(1), e16019 (2016).
    [Crossref]
  36. D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64(5), 52312 (2001).
    [Crossref]
  37. M. Broyer, “Intracavity cw difference frequency generation by mixing three photons and using Gaussian laser beams,” J. Phys. 46(4), 523–533 (1985).
    [Crossref]
  38. G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
    [Crossref]
  39. R. V. Roussev, C. Langrock, J. R. Kurz, and M. Fejer, “Periodically poled lithium niobate waveguide sum-frequency generator for efficient single-photon detection at communication wavelengths,” Opt. Lett. 29(13), 1518–1520 (2004).
    [Crossref] [PubMed]
  40. M. J. Padgett, F. M. Miatto, M. P. Lavery, A. Zeilinger, and R. W. Boyd, “Divergence of an orbital-angular-momentum-carrying beam upon propagation,” New J. Phys. 17(2), 023011 (2015).
    [Crossref]
  41. A. Nicolas, L. Veissier, E. Giacobino, D. Maxein, and J. Laurat, “Quantum state tomography of orbital angular momentum photonic qubits via a projection-based technique,” New J. Phys. 17(3), 33037 (2015).
    [Crossref]
  42. Z.-Y. Zhou, S.-L. Liu, Y. Li, D.-S. Ding, W. Zhang, S. Shi, M.-X. Dong, B.-S. Shi, and G.-C. Guo, “Orbital angular momentum-entanglement frequency transducer,” Phys. Rev. Lett. 117(10), 103601 (2016).
    [Crossref] [PubMed]
  43. M. Mancinelli, A. Trenti, S. Piccione, G. Fontana, J. Dam, P. Tidemand-Lichtenberg, C. Pedersen, and L. Pavesi, “Mid-infrared coincidence measurements on twin photons at room temperature,” Nat. Commun. 8, 15184 (2017).
    [Crossref] [PubMed]

2017 (3)

H. Rütz, K.-H. Luo, H. Suche, and C. Silberhorn, “Quantum frequency conversion between infrared and ultraviolet,” Phys. Rev. Appl. 7(2), 24021 (2017).
[Crossref]

Z.-Y. Zhou, S.-L. Liu, S.-K. Liu, Y.-H. Li, D.-S. Ding, G.-C. Guo, and B.-S. Shi, “Super-resolving phase measurement with short wavelength noon states by quantum frequency up-conversion,” Phys. Rev. Appl. 7(6), 064025 (2017).
[Crossref]

M. Mancinelli, A. Trenti, S. Piccione, G. Fontana, J. Dam, P. Tidemand-Lichtenberg, C. Pedersen, and L. Pavesi, “Mid-infrared coincidence measurements on twin photons at room temperature,” Nat. Commun. 8, 15184 (2017).
[Crossref] [PubMed]

2016 (3)

Z.-Y. Zhou, S.-L. Liu, Y. Li, D.-S. Ding, W. Zhang, S. Shi, M.-X. Dong, B.-S. Shi, and G.-C. Guo, “Orbital angular momentum-entanglement frequency transducer,” Phys. Rev. Lett. 117(10), 103601 (2016).
[Crossref] [PubMed]

F. Steinlechner, N. Hermosa, V. Pruneri, and J. P. Torres, “Frequency conversion of structured light,” Sci. Rep. 6, 21390 (2016).
[Crossref]

Z.-Y. Zhou, Y. Li, D.-S. Ding, W. Zhang, S. Shi, B.-S. Shi, and G.-C. Guo, “Orbital angular momentum photonic quantum interface,” Light Sci Appl. 5(1), e16019 (2016).
[Crossref]

2015 (5)

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, and Z. Zhao, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, G.-Y. Xiang, X.-S. Wang, Y.-K. Jiang, B.-S. Shi, and G.-C. Guo, “Quantum storage of orbital angular momentum entanglement in an atomic ensemble,” Phys. Rev. Lett. 114(5), 50502 (2015).
[Crossref]

Y. Li, Z.-Y. Zhou, D.-S. Ding, and B.-S. Shi, “Sum frequency generation with two orbital angular momentum carrying laser beams,” J. Opt. Soc. Am. B 32(3), 407–411 (2015).
[Crossref]

M. J. Padgett, F. M. Miatto, M. P. Lavery, A. Zeilinger, and R. W. Boyd, “Divergence of an orbital-angular-momentum-carrying beam upon propagation,” New J. Phys. 17(2), 023011 (2015).
[Crossref]

A. Nicolas, L. Veissier, E. Giacobino, D. Maxein, and J. Laurat, “Quantum state tomography of orbital angular momentum photonic qubits via a projection-based technique,” New J. Phys. 17(3), 33037 (2015).
[Crossref]

2014 (6)

F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, and H. Herrmann, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Photonics 8(3), 775–778 (2014).
[Crossref]

G. Vallone, V. D’Ambrosio, A. Sponselli, S. Slussarenko, L. Marrucci, F. Sciarrino, and P. Villoresi, “Free-space quantum key distribution by rotation-invariant twisted photons,” Phys. Rev. Lett. 113(6), 60503 (2014).
[Crossref]

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
[Crossref]

L. Chen, J. Lei, and J. Romero, “Quantum digital spiral imaging,” Light Sci. Appl. 3(3), e153 (2014).
[Crossref]

Z.-Y. Zhou, Y. Li, D.-S. Ding, W. Zhang, S. Shi, and B.-S. Shi, “Optical vortex beam based optical fan for high-precision optical measurements and optical switching,” Opt. Lett. 39(17), 5098–5101 (2014).
[Crossref] [PubMed]

C. E. Vollmer, C. Baune, A. Samblowski, T. Eberle, V. Händchen, J. Fiurášek, and R. Schnabel, “Quantum up-conversion of squeezed vacuum states from 1550 to 532 nm,” Phys. Rev. Lett. 112(7), 073602 (2014).
[Crossref] [PubMed]

2013 (2)

D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, and G.-C. Guo, “Single-photon-level quantum image memory based on cold atomic ensembles,” Nat. Commun. 4, 2527 (2013).
[Crossref]

G.-h. Shao, Z.-j. Wu, J.-h. Chen, F. Xu, and Y.-q. Lu, “Nonlinear frequency conversion of fields with orbital angular momentum using quasi-phase-matching,” Phys. Rev. A 88(6), 063827 (2013).
[Crossref]

2012 (3)

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

S. Ramelow, A. Fedrizzi, A. Poppe, N. K. Langford, and A. Zeilinger, “Polarization-entanglement-conserving frequency conversion of photons,” Phys. Rev. A 85(1), 13845 (2012).
[Crossref]

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, and P. Michler, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109(14), 147404 (2012).
[Crossref] [PubMed]

2011 (4)

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 1544 (2011).
[Crossref] [PubMed]

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7(9), 677–680 (2011).
[Crossref]

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

2010 (3)

N. Curtz, R. Thew, C. Simon, N. Gisin, and H. Zbinden, “Coherent frequency-down-conversion interface for quantum repeaters,” Opt. Express 18(21), 22099–22104 (2010).
[Crossref] [PubMed]

H. Takesue, “Single-photon frequency down-conversion experiment,” Phys. Rev. A 82(1), 13833 (2010).
[Crossref]

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4(11), 786–791 (2010).
[Crossref]

2005 (1)

2004 (2)

2003 (1)

C. Simon and W. T. Irvine, “Robust long-distance entanglement and a loophole-free bell test with ions and photons,” Phys. Rev. Lett. 91(11), 110405 (2003).
[Crossref] [PubMed]

2001 (4)

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64(5), 52312 (2001).
[Crossref]

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[Crossref] [PubMed]

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[Crossref] [PubMed]

1995 (1)

1992 (2)

J. Huang and P. Kumar, “Observation of quantum frequency conversion,” Phys. Rev. Lett. 68(14), 2153 (1992).
[Crossref] [PubMed]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185 (1992).
[Crossref] [PubMed]

1990 (1)

1985 (1)

M. Broyer, “Intracavity cw difference frequency generation by mixing three photons and using Gaussian laser beams,” J. Phys. 46(4), 523–533 (1985).
[Crossref]

1968 (1)

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

Ahmed, N.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, and Z. Zhao, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Albota, M. A.

Albrecht, R.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, and P. Michler, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109(14), 147404 (2012).
[Crossref] [PubMed]

Allen, L.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185 (1992).
[Crossref] [PubMed]

Andersson, E.

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7(9), 677–680 (2011).
[Crossref]

Arend, C.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, and P. Michler, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109(14), 147404 (2012).
[Crossref] [PubMed]

Arlt, J.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[Crossref] [PubMed]

Bao, C.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, and Z. Zhao, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Baune, C.

C. E. Vollmer, C. Baune, A. Samblowski, T. Eberle, V. Händchen, J. Fiurášek, and R. Schnabel, “Quantum up-conversion of squeezed vacuum states from 1550 to 532 nm,” Phys. Rev. Lett. 112(7), 073602 (2014).
[Crossref] [PubMed]

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185 (1992).
[Crossref] [PubMed]

Bowman, R.

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

Boyd, R. W.

M. J. Padgett, F. M. Miatto, M. P. Lavery, A. Zeilinger, and R. W. Boyd, “Divergence of an orbital-angular-momentum-carrying beam upon propagation,” New J. Phys. 17(2), 023011 (2015).
[Crossref]

Broyer, M.

M. Broyer, “Intracavity cw difference frequency generation by mixing three photons and using Gaussian laser beams,” J. Phys. 46(4), 523–533 (1985).
[Crossref]

Bryant, P. E.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[Crossref] [PubMed]

Buller, G. S.

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7(9), 677–680 (2011).
[Crossref]

Burns, W. K.

Bussières, F.

F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, and H. Herrmann, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Photonics 8(3), 775–778 (2014).
[Crossref]

Cao, Y.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, and Z. Zhao, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Carrasco, S.

Chen, J.-h.

G.-h. Shao, Z.-j. Wu, J.-h. Chen, F. Xu, and Y.-q. Lu, “Nonlinear frequency conversion of fields with orbital angular momentum using quasi-phase-matching,” Phys. Rev. A 88(6), 063827 (2013).
[Crossref]

Chen, L.

L. Chen, J. Lei, and J. Romero, “Quantum digital spiral imaging,” Light Sci. Appl. 3(3), e153 (2014).
[Crossref]

Cirac, J. I.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[Crossref] [PubMed]

Clausen, C.

F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, and H. Herrmann, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Photonics 8(3), 775–778 (2014).
[Crossref]

Curtz, N.

D’Ambrosio, V.

G. Vallone, V. D’Ambrosio, A. Sponselli, S. Slussarenko, L. Marrucci, F. Sciarrino, and P. Villoresi, “Free-space quantum key distribution by rotation-invariant twisted photons,” Phys. Rev. Lett. 113(6), 60503 (2014).
[Crossref]

Dada, A. C.

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7(9), 677–680 (2011).
[Crossref]

Dam, J.

M. Mancinelli, A. Trenti, S. Piccione, G. Fontana, J. Dam, P. Tidemand-Lichtenberg, C. Pedersen, and L. Pavesi, “Mid-infrared coincidence measurements on twin photons at room temperature,” Nat. Commun. 8, 15184 (2017).
[Crossref] [PubMed]

Dholakia, K.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[Crossref] [PubMed]

Ding, D.-S.

Z.-Y. Zhou, S.-L. Liu, S.-K. Liu, Y.-H. Li, D.-S. Ding, G.-C. Guo, and B.-S. Shi, “Super-resolving phase measurement with short wavelength noon states by quantum frequency up-conversion,” Phys. Rev. Appl. 7(6), 064025 (2017).
[Crossref]

Z.-Y. Zhou, S.-L. Liu, Y. Li, D.-S. Ding, W. Zhang, S. Shi, M.-X. Dong, B.-S. Shi, and G.-C. Guo, “Orbital angular momentum-entanglement frequency transducer,” Phys. Rev. Lett. 117(10), 103601 (2016).
[Crossref] [PubMed]

Z.-Y. Zhou, Y. Li, D.-S. Ding, W. Zhang, S. Shi, B.-S. Shi, and G.-C. Guo, “Orbital angular momentum photonic quantum interface,” Light Sci Appl. 5(1), e16019 (2016).
[Crossref]

Y. Li, Z.-Y. Zhou, D.-S. Ding, and B.-S. Shi, “Sum frequency generation with two orbital angular momentum carrying laser beams,” J. Opt. Soc. Am. B 32(3), 407–411 (2015).
[Crossref]

D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, G.-Y. Xiang, X.-S. Wang, Y.-K. Jiang, B.-S. Shi, and G.-C. Guo, “Quantum storage of orbital angular momentum entanglement in an atomic ensemble,” Phys. Rev. Lett. 114(5), 50502 (2015).
[Crossref]

Z.-Y. Zhou, Y. Li, D.-S. Ding, W. Zhang, S. Shi, and B.-S. Shi, “Optical vortex beam based optical fan for high-precision optical measurements and optical switching,” Opt. Lett. 39(17), 5098–5101 (2014).
[Crossref] [PubMed]

D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, and G.-C. Guo, “Single-photon-level quantum image memory based on cold atomic ensembles,” Nat. Commun. 4, 2527 (2013).
[Crossref]

Dolinar, S.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Dong, M.-X.

Z.-Y. Zhou, S.-L. Liu, Y. Li, D.-S. Ding, W. Zhang, S. Shi, M.-X. Dong, B.-S. Shi, and G.-C. Guo, “Orbital angular momentum-entanglement frequency transducer,” Phys. Rev. Lett. 117(10), 103601 (2016).
[Crossref] [PubMed]

Duan, L.-M.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[Crossref] [PubMed]

Eberle, T.

C. E. Vollmer, C. Baune, A. Samblowski, T. Eberle, V. Händchen, J. Fiurášek, and R. Schnabel, “Quantum up-conversion of squeezed vacuum states from 1550 to 532 nm,” Phys. Rev. Lett. 112(7), 073602 (2014).
[Crossref] [PubMed]

Fazal, I. M.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Fedrizzi, A.

S. Ramelow, A. Fedrizzi, A. Poppe, N. K. Langford, and A. Zeilinger, “Polarization-entanglement-conserving frequency conversion of photons,” Phys. Rev. A 85(1), 13845 (2012).
[Crossref]

Fejer, M.

Ferrier, A.

F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, and H. Herrmann, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Photonics 8(3), 775–778 (2014).
[Crossref]

Fiurášek, J.

C. E. Vollmer, C. Baune, A. Samblowski, T. Eberle, V. Händchen, J. Fiurášek, and R. Schnabel, “Quantum up-conversion of squeezed vacuum states from 1550 to 532 nm,” Phys. Rev. Lett. 112(7), 073602 (2014).
[Crossref] [PubMed]

Fontana, G.

M. Mancinelli, A. Trenti, S. Piccione, G. Fontana, J. Dam, P. Tidemand-Lichtenberg, C. Pedersen, and L. Pavesi, “Mid-infrared coincidence measurements on twin photons at room temperature,” Nat. Commun. 8, 15184 (2017).
[Crossref] [PubMed]

Giacobino, E.

A. Nicolas, L. Veissier, E. Giacobino, D. Maxein, and J. Laurat, “Quantum state tomography of orbital angular momentum photonic qubits via a projection-based technique,” New J. Phys. 17(3), 33037 (2015).
[Crossref]

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
[Crossref]

Giner, L.

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
[Crossref]

Gisin, N.

Goldberg, L.

Goldner, P.

F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, and H. Herrmann, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Photonics 8(3), 775–778 (2014).
[Crossref]

Guo, G.-C.

Z.-Y. Zhou, S.-L. Liu, S.-K. Liu, Y.-H. Li, D.-S. Ding, G.-C. Guo, and B.-S. Shi, “Super-resolving phase measurement with short wavelength noon states by quantum frequency up-conversion,” Phys. Rev. Appl. 7(6), 064025 (2017).
[Crossref]

Z.-Y. Zhou, Y. Li, D.-S. Ding, W. Zhang, S. Shi, B.-S. Shi, and G.-C. Guo, “Orbital angular momentum photonic quantum interface,” Light Sci Appl. 5(1), e16019 (2016).
[Crossref]

Z.-Y. Zhou, S.-L. Liu, Y. Li, D.-S. Ding, W. Zhang, S. Shi, M.-X. Dong, B.-S. Shi, and G.-C. Guo, “Orbital angular momentum-entanglement frequency transducer,” Phys. Rev. Lett. 117(10), 103601 (2016).
[Crossref] [PubMed]

D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, G.-Y. Xiang, X.-S. Wang, Y.-K. Jiang, B.-S. Shi, and G.-C. Guo, “Quantum storage of orbital angular momentum entanglement in an atomic ensemble,” Phys. Rev. Lett. 114(5), 50502 (2015).
[Crossref]

D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, and G.-C. Guo, “Single-photon-level quantum image memory based on cold atomic ensembles,” Nat. Commun. 4, 2527 (2013).
[Crossref]

Händchen, V.

C. E. Vollmer, C. Baune, A. Samblowski, T. Eberle, V. Händchen, J. Fiurášek, and R. Schnabel, “Quantum up-conversion of squeezed vacuum states from 1550 to 532 nm,” Phys. Rev. Lett. 112(7), 073602 (2014).
[Crossref] [PubMed]

Hepp, C.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, and P. Michler, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109(14), 147404 (2012).
[Crossref] [PubMed]

Hermosa, N.

F. Steinlechner, N. Hermosa, V. Pruneri, and J. P. Torres, “Frequency conversion of structured light,” Sci. Rep. 6, 21390 (2016).
[Crossref]

Herrmann, H.

F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, and H. Herrmann, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Photonics 8(3), 775–778 (2014).
[Crossref]

Huang, H.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, and Z. Zhao, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Huang, J.

J. Huang and P. Kumar, “Observation of quantum frequency conversion,” Phys. Rev. Lett. 68(14), 2153 (1992).
[Crossref] [PubMed]

Ikuta, R.

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 1544 (2011).
[Crossref] [PubMed]

Imoto, N.

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 1544 (2011).
[Crossref] [PubMed]

Irvine, W. T.

C. Simon and W. T. Irvine, “Robust long-distance entanglement and a loophole-free bell test with ions and photons,” Phys. Rev. Lett. 91(11), 110405 (2003).
[Crossref] [PubMed]

James, D. F. V.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64(5), 52312 (2001).
[Crossref]

Jetter, M.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, and P. Michler, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109(14), 147404 (2012).
[Crossref] [PubMed]

Jiang, Y.-K.

D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, G.-Y. Xiang, X.-S. Wang, Y.-K. Jiang, B.-S. Shi, and G.-C. Guo, “Quantum storage of orbital angular momentum entanglement in an atomic ensemble,” Phys. Rev. Lett. 114(5), 50502 (2015).
[Crossref]

Kato, H.

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 1544 (2011).
[Crossref] [PubMed]

Keßler, C. A.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, and P. Michler, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109(14), 147404 (2012).
[Crossref] [PubMed]

Kettler, J.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, and P. Michler, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109(14), 147404 (2012).
[Crossref] [PubMed]

Kitano, T.

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 1544 (2011).
[Crossref] [PubMed]

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

Koashi, M.

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 1544 (2011).
[Crossref] [PubMed]

Korzh, B.

F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, and H. Herrmann, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Photonics 8(3), 775–778 (2014).
[Crossref]

Kumar, P.

J. Huang and P. Kumar, “Observation of quantum frequency conversion,” Phys. Rev. Lett. 68(14), 2153 (1992).
[Crossref] [PubMed]

P. Kumar, “Quantum frequency conversion,” Opt. Lett. 15(24), 1476–1478 (1990).
[Crossref] [PubMed]

Kurz, J. R.

Kusaka, Y.

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 1544 (2011).
[Crossref] [PubMed]

Kwiat, P. G.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64(5), 52312 (2001).
[Crossref]

Langford, N. K.

S. Ramelow, A. Fedrizzi, A. Poppe, N. K. Langford, and A. Zeilinger, “Polarization-entanglement-conserving frequency conversion of photons,” Phys. Rev. A 85(1), 13845 (2012).
[Crossref]

Langrock, C.

Laurat, J.

A. Nicolas, L. Veissier, E. Giacobino, D. Maxein, and J. Laurat, “Quantum state tomography of orbital angular momentum photonic qubits via a projection-based technique,” New J. Phys. 17(3), 33037 (2015).
[Crossref]

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
[Crossref]

Lavery, M. P.

M. J. Padgett, F. M. Miatto, M. P. Lavery, A. Zeilinger, and R. W. Boyd, “Divergence of an orbital-angular-momentum-carrying beam upon propagation,” New J. Phys. 17(2), 023011 (2015).
[Crossref]

Leach, J.

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7(9), 677–680 (2011).
[Crossref]

Lei, J.

L. Chen, J. Lei, and J. Romero, “Quantum digital spiral imaging,” Light Sci. Appl. 3(3), e153 (2014).
[Crossref]

Lenhard, A.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, and P. Michler, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109(14), 147404 (2012).
[Crossref] [PubMed]

Li, L.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, and Z. Zhao, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Li, Y.

Z.-Y. Zhou, Y. Li, D.-S. Ding, W. Zhang, S. Shi, B.-S. Shi, and G.-C. Guo, “Orbital angular momentum photonic quantum interface,” Light Sci Appl. 5(1), e16019 (2016).
[Crossref]

Z.-Y. Zhou, S.-L. Liu, Y. Li, D.-S. Ding, W. Zhang, S. Shi, M.-X. Dong, B.-S. Shi, and G.-C. Guo, “Orbital angular momentum-entanglement frequency transducer,” Phys. Rev. Lett. 117(10), 103601 (2016).
[Crossref] [PubMed]

Y. Li, Z.-Y. Zhou, D.-S. Ding, and B.-S. Shi, “Sum frequency generation with two orbital angular momentum carrying laser beams,” J. Opt. Soc. Am. B 32(3), 407–411 (2015).
[Crossref]

Z.-Y. Zhou, Y. Li, D.-S. Ding, W. Zhang, S. Shi, and B.-S. Shi, “Optical vortex beam based optical fan for high-precision optical measurements and optical switching,” Opt. Lett. 39(17), 5098–5101 (2014).
[Crossref] [PubMed]

Li, Y.-H.

Z.-Y. Zhou, S.-L. Liu, S.-K. Liu, Y.-H. Li, D.-S. Ding, G.-C. Guo, and B.-S. Shi, “Super-resolving phase measurement with short wavelength noon states by quantum frequency up-conversion,” Phys. Rev. Appl. 7(6), 064025 (2017).
[Crossref]

Liu, S.-K.

Z.-Y. Zhou, S.-L. Liu, S.-K. Liu, Y.-H. Li, D.-S. Ding, G.-C. Guo, and B.-S. Shi, “Super-resolving phase measurement with short wavelength noon states by quantum frequency up-conversion,” Phys. Rev. Appl. 7(6), 064025 (2017).
[Crossref]

Liu, S.-L.

Z.-Y. Zhou, S.-L. Liu, S.-K. Liu, Y.-H. Li, D.-S. Ding, G.-C. Guo, and B.-S. Shi, “Super-resolving phase measurement with short wavelength noon states by quantum frequency up-conversion,” Phys. Rev. Appl. 7(6), 064025 (2017).
[Crossref]

Z.-Y. Zhou, S.-L. Liu, Y. Li, D.-S. Ding, W. Zhang, S. Shi, M.-X. Dong, B.-S. Shi, and G.-C. Guo, “Orbital angular momentum-entanglement frequency transducer,” Phys. Rev. Lett. 117(10), 103601 (2016).
[Crossref] [PubMed]

Lu, Y.-q.

G.-h. Shao, Z.-j. Wu, J.-h. Chen, F. Xu, and Y.-q. Lu, “Nonlinear frequency conversion of fields with orbital angular momentum using quasi-phase-matching,” Phys. Rev. A 88(6), 063827 (2013).
[Crossref]

Lukin, M. D.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[Crossref] [PubMed]

Luo, K.-H.

H. Rütz, K.-H. Luo, H. Suche, and C. Silberhorn, “Quantum frequency conversion between infrared and ultraviolet,” Phys. Rev. Appl. 7(2), 24021 (2017).
[Crossref]

Ma, L.

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4(11), 786–791 (2010).
[Crossref]

MacDonald, M. P.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[Crossref] [PubMed]

Mair, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

Mancinelli, M.

M. Mancinelli, A. Trenti, S. Piccione, G. Fontana, J. Dam, P. Tidemand-Lichtenberg, C. Pedersen, and L. Pavesi, “Mid-infrared coincidence measurements on twin photons at room temperature,” Nat. Commun. 8, 15184 (2017).
[Crossref] [PubMed]

Marrucci, L.

G. Vallone, V. D’Ambrosio, A. Sponselli, S. Slussarenko, L. Marrucci, F. Sciarrino, and P. Villoresi, “Free-space quantum key distribution by rotation-invariant twisted photons,” Phys. Rev. Lett. 113(6), 60503 (2014).
[Crossref]

Marsili, F.

F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, and H. Herrmann, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Photonics 8(3), 775–778 (2014).
[Crossref]

Maxein, D.

A. Nicolas, L. Veissier, E. Giacobino, D. Maxein, and J. Laurat, “Quantum state tomography of orbital angular momentum photonic qubits via a projection-based technique,” New J. Phys. 17(3), 33037 (2015).
[Crossref]

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
[Crossref]

McElhanon, R. W.

Miatto, F. M.

M. J. Padgett, F. M. Miatto, M. P. Lavery, A. Zeilinger, and R. W. Boyd, “Divergence of an orbital-angular-momentum-carrying beam upon propagation,” New J. Phys. 17(2), 023011 (2015).
[Crossref]

Michler, P.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, and P. Michler, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109(14), 147404 (2012).
[Crossref] [PubMed]

Munro, W. J.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64(5), 52312 (2001).
[Crossref]

Nam, S. W.

F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, and H. Herrmann, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Photonics 8(3), 775–778 (2014).
[Crossref]

Nicolas, A.

A. Nicolas, L. Veissier, E. Giacobino, D. Maxein, and J. Laurat, “Quantum state tomography of orbital angular momentum photonic qubits via a projection-based technique,” New J. Phys. 17(3), 33037 (2015).
[Crossref]

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
[Crossref]

Padgett, M.

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

Padgett, M. J.

M. J. Padgett, F. M. Miatto, M. P. Lavery, A. Zeilinger, and R. W. Boyd, “Divergence of an orbital-angular-momentum-carrying beam upon propagation,” New J. Phys. 17(2), 023011 (2015).
[Crossref]

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7(9), 677–680 (2011).
[Crossref]

Paterson, L.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[Crossref] [PubMed]

Pavesi, L.

M. Mancinelli, A. Trenti, S. Piccione, G. Fontana, J. Dam, P. Tidemand-Lichtenberg, C. Pedersen, and L. Pavesi, “Mid-infrared coincidence measurements on twin photons at room temperature,” Nat. Commun. 8, 15184 (2017).
[Crossref] [PubMed]

Pedersen, C.

M. Mancinelli, A. Trenti, S. Piccione, G. Fontana, J. Dam, P. Tidemand-Lichtenberg, C. Pedersen, and L. Pavesi, “Mid-infrared coincidence measurements on twin photons at room temperature,” Nat. Commun. 8, 15184 (2017).
[Crossref] [PubMed]

Piccione, S.

M. Mancinelli, A. Trenti, S. Piccione, G. Fontana, J. Dam, P. Tidemand-Lichtenberg, C. Pedersen, and L. Pavesi, “Mid-infrared coincidence measurements on twin photons at room temperature,” Nat. Commun. 8, 15184 (2017).
[Crossref] [PubMed]

Poppe, A.

S. Ramelow, A. Fedrizzi, A. Poppe, N. K. Langford, and A. Zeilinger, “Polarization-entanglement-conserving frequency conversion of photons,” Phys. Rev. A 85(1), 13845 (2012).
[Crossref]

Pruneri, V.

F. Steinlechner, N. Hermosa, V. Pruneri, and J. P. Torres, “Frequency conversion of structured light,” Sci. Rep. 6, 21390 (2016).
[Crossref]

Rakher, M. T.

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4(11), 786–791 (2010).
[Crossref]

Ramelow, S.

S. Ramelow, A. Fedrizzi, A. Poppe, N. K. Langford, and A. Zeilinger, “Polarization-entanglement-conserving frequency conversion of photons,” Phys. Rev. A 85(1), 13845 (2012).
[Crossref]

Ren, Y.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, and Z. Zhao, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Romero, J.

L. Chen, J. Lei, and J. Romero, “Quantum digital spiral imaging,” Light Sci. Appl. 3(3), e153 (2014).
[Crossref]

Roussev, R. V.

Rütz, H.

H. Rütz, K.-H. Luo, H. Suche, and C. Silberhorn, “Quantum frequency conversion between infrared and ultraviolet,” Phys. Rev. Appl. 7(2), 24021 (2017).
[Crossref]

Samblowski, A.

C. E. Vollmer, C. Baune, A. Samblowski, T. Eberle, V. Händchen, J. Fiurášek, and R. Schnabel, “Quantum up-conversion of squeezed vacuum states from 1550 to 532 nm,” Phys. Rev. Lett. 112(7), 073602 (2014).
[Crossref] [PubMed]

Schnabel, R.

C. E. Vollmer, C. Baune, A. Samblowski, T. Eberle, V. Händchen, J. Fiurášek, and R. Schnabel, “Quantum up-conversion of squeezed vacuum states from 1550 to 532 nm,” Phys. Rev. Lett. 112(7), 073602 (2014).
[Crossref] [PubMed]

Schulz, W.-M.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, and P. Michler, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109(14), 147404 (2012).
[Crossref] [PubMed]

Sciarrino, F.

G. Vallone, V. D’Ambrosio, A. Sponselli, S. Slussarenko, L. Marrucci, F. Sciarrino, and P. Villoresi, “Free-space quantum key distribution by rotation-invariant twisted photons,” Phys. Rev. Lett. 113(6), 60503 (2014).
[Crossref]

Shao, G.-h.

G.-h. Shao, Z.-j. Wu, J.-h. Chen, F. Xu, and Y.-q. Lu, “Nonlinear frequency conversion of fields with orbital angular momentum using quasi-phase-matching,” Phys. Rev. A 88(6), 063827 (2013).
[Crossref]

Shi, B.-S.

Z.-Y. Zhou, S.-L. Liu, S.-K. Liu, Y.-H. Li, D.-S. Ding, G.-C. Guo, and B.-S. Shi, “Super-resolving phase measurement with short wavelength noon states by quantum frequency up-conversion,” Phys. Rev. Appl. 7(6), 064025 (2017).
[Crossref]

Z.-Y. Zhou, Y. Li, D.-S. Ding, W. Zhang, S. Shi, B.-S. Shi, and G.-C. Guo, “Orbital angular momentum photonic quantum interface,” Light Sci Appl. 5(1), e16019 (2016).
[Crossref]

Z.-Y. Zhou, S.-L. Liu, Y. Li, D.-S. Ding, W. Zhang, S. Shi, M.-X. Dong, B.-S. Shi, and G.-C. Guo, “Orbital angular momentum-entanglement frequency transducer,” Phys. Rev. Lett. 117(10), 103601 (2016).
[Crossref] [PubMed]

Y. Li, Z.-Y. Zhou, D.-S. Ding, and B.-S. Shi, “Sum frequency generation with two orbital angular momentum carrying laser beams,” J. Opt. Soc. Am. B 32(3), 407–411 (2015).
[Crossref]

D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, G.-Y. Xiang, X.-S. Wang, Y.-K. Jiang, B.-S. Shi, and G.-C. Guo, “Quantum storage of orbital angular momentum entanglement in an atomic ensemble,” Phys. Rev. Lett. 114(5), 50502 (2015).
[Crossref]

Z.-Y. Zhou, Y. Li, D.-S. Ding, W. Zhang, S. Shi, and B.-S. Shi, “Optical vortex beam based optical fan for high-precision optical measurements and optical switching,” Opt. Lett. 39(17), 5098–5101 (2014).
[Crossref] [PubMed]

D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, and G.-C. Guo, “Single-photon-level quantum image memory based on cold atomic ensembles,” Nat. Commun. 4, 2527 (2013).
[Crossref]

Shi, S.

Z.-Y. Zhou, S.-L. Liu, Y. Li, D.-S. Ding, W. Zhang, S. Shi, M.-X. Dong, B.-S. Shi, and G.-C. Guo, “Orbital angular momentum-entanglement frequency transducer,” Phys. Rev. Lett. 117(10), 103601 (2016).
[Crossref] [PubMed]

Z.-Y. Zhou, Y. Li, D.-S. Ding, W. Zhang, S. Shi, B.-S. Shi, and G.-C. Guo, “Orbital angular momentum photonic quantum interface,” Light Sci Appl. 5(1), e16019 (2016).
[Crossref]

D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, G.-Y. Xiang, X.-S. Wang, Y.-K. Jiang, B.-S. Shi, and G.-C. Guo, “Quantum storage of orbital angular momentum entanglement in an atomic ensemble,” Phys. Rev. Lett. 114(5), 50502 (2015).
[Crossref]

Z.-Y. Zhou, Y. Li, D.-S. Ding, W. Zhang, S. Shi, and B.-S. Shi, “Optical vortex beam based optical fan for high-precision optical measurements and optical switching,” Opt. Lett. 39(17), 5098–5101 (2014).
[Crossref] [PubMed]

Sibbett, W.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[Crossref] [PubMed]

Silberhorn, C.

H. Rütz, K.-H. Luo, H. Suche, and C. Silberhorn, “Quantum frequency conversion between infrared and ultraviolet,” Phys. Rev. Appl. 7(2), 24021 (2017).
[Crossref]

Simon, C.

N. Curtz, R. Thew, C. Simon, N. Gisin, and H. Zbinden, “Coherent frequency-down-conversion interface for quantum repeaters,” Opt. Express 18(21), 22099–22104 (2010).
[Crossref] [PubMed]

C. Simon and W. T. Irvine, “Robust long-distance entanglement and a loophole-free bell test with ions and photons,” Phys. Rev. Lett. 91(11), 110405 (2003).
[Crossref] [PubMed]

Slattery, O.

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4(11), 786–791 (2010).
[Crossref]

Slussarenko, S.

G. Vallone, V. D’Ambrosio, A. Sponselli, S. Slussarenko, L. Marrucci, F. Sciarrino, and P. Villoresi, “Free-space quantum key distribution by rotation-invariant twisted photons,” Phys. Rev. Lett. 113(6), 60503 (2014).
[Crossref]

Sponselli, A.

G. Vallone, V. D’Ambrosio, A. Sponselli, S. Slussarenko, L. Marrucci, F. Sciarrino, and P. Villoresi, “Free-space quantum key distribution by rotation-invariant twisted photons,” Phys. Rev. Lett. 113(6), 60503 (2014).
[Crossref]

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185 (1992).
[Crossref] [PubMed]

Srinivasan, K.

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4(11), 786–791 (2010).
[Crossref]

Steinlechner, F.

F. Steinlechner, N. Hermosa, V. Pruneri, and J. P. Torres, “Frequency conversion of structured light,” Sci. Rep. 6, 21390 (2016).
[Crossref]

Suche, H.

H. Rütz, K.-H. Luo, H. Suche, and C. Silberhorn, “Quantum frequency conversion between infrared and ultraviolet,” Phys. Rev. Appl. 7(2), 24021 (2017).
[Crossref]

Takesue, H.

H. Takesue, “Single-photon frequency down-conversion experiment,” Phys. Rev. A 82(1), 13833 (2010).
[Crossref]

Tang, X.

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4(11), 786–791 (2010).
[Crossref]

Thew, R.

Tidemand-Lichtenberg, P.

M. Mancinelli, A. Trenti, S. Piccione, G. Fontana, J. Dam, P. Tidemand-Lichtenberg, C. Pedersen, and L. Pavesi, “Mid-infrared coincidence measurements on twin photons at room temperature,” Nat. Commun. 8, 15184 (2017).
[Crossref] [PubMed]

Tiranov, A.

F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, and H. Herrmann, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Photonics 8(3), 775–778 (2014).
[Crossref]

Torner, L.

Torres, J. P.

F. Steinlechner, N. Hermosa, V. Pruneri, and J. P. Torres, “Frequency conversion of structured light,” Sci. Rep. 6, 21390 (2016).
[Crossref]

L. Torner, J. P. Torres, and S. Carrasco, “Digital spiral imaging,” Opt. Express 13(3), 873–881 (2005).
[Crossref] [PubMed]

Trenti, A.

M. Mancinelli, A. Trenti, S. Piccione, G. Fontana, J. Dam, P. Tidemand-Lichtenberg, C. Pedersen, and L. Pavesi, “Mid-infrared coincidence measurements on twin photons at room temperature,” Nat. Commun. 8, 15184 (2017).
[Crossref] [PubMed]

Tur, M.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Vallone, G.

G. Vallone, V. D’Ambrosio, A. Sponselli, S. Slussarenko, L. Marrucci, F. Sciarrino, and P. Villoresi, “Free-space quantum key distribution by rotation-invariant twisted photons,” Phys. Rev. Lett. 113(6), 60503 (2014).
[Crossref]

Vaziri, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

Veissier, L.

A. Nicolas, L. Veissier, E. Giacobino, D. Maxein, and J. Laurat, “Quantum state tomography of orbital angular momentum photonic qubits via a projection-based technique,” New J. Phys. 17(3), 33037 (2015).
[Crossref]

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
[Crossref]

Verma, V. B.

F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, and H. Herrmann, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Photonics 8(3), 775–778 (2014).
[Crossref]

Villoresi, P.

G. Vallone, V. D’Ambrosio, A. Sponselli, S. Slussarenko, L. Marrucci, F. Sciarrino, and P. Villoresi, “Free-space quantum key distribution by rotation-invariant twisted photons,” Phys. Rev. Lett. 113(6), 60503 (2014).
[Crossref]

Vollmer, C. E.

C. E. Vollmer, C. Baune, A. Samblowski, T. Eberle, V. Händchen, J. Fiurášek, and R. Schnabel, “Quantum up-conversion of squeezed vacuum states from 1550 to 532 nm,” Phys. Rev. Lett. 112(7), 073602 (2014).
[Crossref] [PubMed]

Wang, J.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Wang, X.-S.

D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, G.-Y. Xiang, X.-S. Wang, Y.-K. Jiang, B.-S. Shi, and G.-C. Guo, “Quantum storage of orbital angular momentum entanglement in an atomic ensemble,” Phys. Rev. Lett. 114(5), 50502 (2015).
[Crossref]

Weihs, G.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

White, A. G.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64(5), 52312 (2001).
[Crossref]

Willner, A. E.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, and Z. Zhao, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185 (1992).
[Crossref] [PubMed]

Wong, F. N. C.

Wu, Z.-j.

G.-h. Shao, Z.-j. Wu, J.-h. Chen, F. Xu, and Y.-q. Lu, “Nonlinear frequency conversion of fields with orbital angular momentum using quasi-phase-matching,” Phys. Rev. A 88(6), 063827 (2013).
[Crossref]

Xiang, G.-Y.

D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, G.-Y. Xiang, X.-S. Wang, Y.-K. Jiang, B.-S. Shi, and G.-C. Guo, “Quantum storage of orbital angular momentum entanglement in an atomic ensemble,” Phys. Rev. Lett. 114(5), 50502 (2015).
[Crossref]

Xie, G.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, and Z. Zhao, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Xu, F.

G.-h. Shao, Z.-j. Wu, J.-h. Chen, F. Xu, and Y.-q. Lu, “Nonlinear frequency conversion of fields with orbital angular momentum using quasi-phase-matching,” Phys. Rev. A 88(6), 063827 (2013).
[Crossref]

Yamamoto, T.

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 1544 (2011).
[Crossref] [PubMed]

Yan, Y.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, and Z. Zhao, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Yang, J.-Y.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Yao, A. M.

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

Yue, Y.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Zaske, S.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, and P. Michler, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109(14), 147404 (2012).
[Crossref] [PubMed]

Zbinden, H.

Zeilinger, A.

M. J. Padgett, F. M. Miatto, M. P. Lavery, A. Zeilinger, and R. W. Boyd, “Divergence of an orbital-angular-momentum-carrying beam upon propagation,” New J. Phys. 17(2), 023011 (2015).
[Crossref]

S. Ramelow, A. Fedrizzi, A. Poppe, N. K. Langford, and A. Zeilinger, “Polarization-entanglement-conserving frequency conversion of photons,” Phys. Rev. A 85(1), 13845 (2012).
[Crossref]

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

Zhang, W.

Z.-Y. Zhou, S.-L. Liu, Y. Li, D.-S. Ding, W. Zhang, S. Shi, M.-X. Dong, B.-S. Shi, and G.-C. Guo, “Orbital angular momentum-entanglement frequency transducer,” Phys. Rev. Lett. 117(10), 103601 (2016).
[Crossref] [PubMed]

Z.-Y. Zhou, Y. Li, D.-S. Ding, W. Zhang, S. Shi, B.-S. Shi, and G.-C. Guo, “Orbital angular momentum photonic quantum interface,” Light Sci Appl. 5(1), e16019 (2016).
[Crossref]

D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, G.-Y. Xiang, X.-S. Wang, Y.-K. Jiang, B.-S. Shi, and G.-C. Guo, “Quantum storage of orbital angular momentum entanglement in an atomic ensemble,” Phys. Rev. Lett. 114(5), 50502 (2015).
[Crossref]

Z.-Y. Zhou, Y. Li, D.-S. Ding, W. Zhang, S. Shi, and B.-S. Shi, “Optical vortex beam based optical fan for high-precision optical measurements and optical switching,” Opt. Lett. 39(17), 5098–5101 (2014).
[Crossref] [PubMed]

Zhao, Z.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, and Z. Zhao, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Zhou, Z.-Y.

Z.-Y. Zhou, S.-L. Liu, S.-K. Liu, Y.-H. Li, D.-S. Ding, G.-C. Guo, and B.-S. Shi, “Super-resolving phase measurement with short wavelength noon states by quantum frequency up-conversion,” Phys. Rev. Appl. 7(6), 064025 (2017).
[Crossref]

Z.-Y. Zhou, Y. Li, D.-S. Ding, W. Zhang, S. Shi, B.-S. Shi, and G.-C. Guo, “Orbital angular momentum photonic quantum interface,” Light Sci Appl. 5(1), e16019 (2016).
[Crossref]

Z.-Y. Zhou, S.-L. Liu, Y. Li, D.-S. Ding, W. Zhang, S. Shi, M.-X. Dong, B.-S. Shi, and G.-C. Guo, “Orbital angular momentum-entanglement frequency transducer,” Phys. Rev. Lett. 117(10), 103601 (2016).
[Crossref] [PubMed]

Y. Li, Z.-Y. Zhou, D.-S. Ding, and B.-S. Shi, “Sum frequency generation with two orbital angular momentum carrying laser beams,” J. Opt. Soc. Am. B 32(3), 407–411 (2015).
[Crossref]

D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, G.-Y. Xiang, X.-S. Wang, Y.-K. Jiang, B.-S. Shi, and G.-C. Guo, “Quantum storage of orbital angular momentum entanglement in an atomic ensemble,” Phys. Rev. Lett. 114(5), 50502 (2015).
[Crossref]

Z.-Y. Zhou, Y. Li, D.-S. Ding, W. Zhang, S. Shi, and B.-S. Shi, “Optical vortex beam based optical fan for high-precision optical measurements and optical switching,” Opt. Lett. 39(17), 5098–5101 (2014).
[Crossref] [PubMed]

D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, and G.-C. Guo, “Single-photon-level quantum image memory based on cold atomic ensembles,” Nat. Commun. 4, 2527 (2013).
[Crossref]

Zoller, P.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[Crossref] [PubMed]

Adv. Opt. Photonics (2)

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, and Z. Zhao, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

J. Appl. Phys. (1)

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. (1)

M. Broyer, “Intracavity cw difference frequency generation by mixing three photons and using Gaussian laser beams,” J. Phys. 46(4), 523–533 (1985).
[Crossref]

Light Sci Appl. (1)

Z.-Y. Zhou, Y. Li, D.-S. Ding, W. Zhang, S. Shi, B.-S. Shi, and G.-C. Guo, “Orbital angular momentum photonic quantum interface,” Light Sci Appl. 5(1), e16019 (2016).
[Crossref]

Light Sci. Appl. (1)

L. Chen, J. Lei, and J. Romero, “Quantum digital spiral imaging,” Light Sci. Appl. 3(3), e153 (2014).
[Crossref]

Nat. Commun. (3)

D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, and G.-C. Guo, “Single-photon-level quantum image memory based on cold atomic ensembles,” Nat. Commun. 4, 2527 (2013).
[Crossref]

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 1544 (2011).
[Crossref] [PubMed]

M. Mancinelli, A. Trenti, S. Piccione, G. Fontana, J. Dam, P. Tidemand-Lichtenberg, C. Pedersen, and L. Pavesi, “Mid-infrared coincidence measurements on twin photons at room temperature,” Nat. Commun. 8, 15184 (2017).
[Crossref] [PubMed]

Nat. Photonics (5)

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
[Crossref]

F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, and H. Herrmann, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Photonics 8(3), 775–778 (2014).
[Crossref]

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4(11), 786–791 (2010).
[Crossref]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

Nat. Phys. (1)

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7(9), 677–680 (2011).
[Crossref]

Nature (2)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[Crossref] [PubMed]

New J. Phys. (2)

M. J. Padgett, F. M. Miatto, M. P. Lavery, A. Zeilinger, and R. W. Boyd, “Divergence of an orbital-angular-momentum-carrying beam upon propagation,” New J. Phys. 17(2), 023011 (2015).
[Crossref]

A. Nicolas, L. Veissier, E. Giacobino, D. Maxein, and J. Laurat, “Quantum state tomography of orbital angular momentum photonic qubits via a projection-based technique,” New J. Phys. 17(3), 33037 (2015).
[Crossref]

Opt. Express (2)

Opt. Lett. (5)

Phys. Rev. A (5)

G.-h. Shao, Z.-j. Wu, J.-h. Chen, F. Xu, and Y.-q. Lu, “Nonlinear frequency conversion of fields with orbital angular momentum using quasi-phase-matching,” Phys. Rev. A 88(6), 063827 (2013).
[Crossref]

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64(5), 52312 (2001).
[Crossref]

S. Ramelow, A. Fedrizzi, A. Poppe, N. K. Langford, and A. Zeilinger, “Polarization-entanglement-conserving frequency conversion of photons,” Phys. Rev. A 85(1), 13845 (2012).
[Crossref]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185 (1992).
[Crossref] [PubMed]

H. Takesue, “Single-photon frequency down-conversion experiment,” Phys. Rev. A 82(1), 13833 (2010).
[Crossref]

Phys. Rev. Appl. (2)

H. Rütz, K.-H. Luo, H. Suche, and C. Silberhorn, “Quantum frequency conversion between infrared and ultraviolet,” Phys. Rev. Appl. 7(2), 24021 (2017).
[Crossref]

Z.-Y. Zhou, S.-L. Liu, S.-K. Liu, Y.-H. Li, D.-S. Ding, G.-C. Guo, and B.-S. Shi, “Super-resolving phase measurement with short wavelength noon states by quantum frequency up-conversion,” Phys. Rev. Appl. 7(6), 064025 (2017).
[Crossref]

Phys. Rev. Lett. (7)

Z.-Y. Zhou, S.-L. Liu, Y. Li, D.-S. Ding, W. Zhang, S. Shi, M.-X. Dong, B.-S. Shi, and G.-C. Guo, “Orbital angular momentum-entanglement frequency transducer,” Phys. Rev. Lett. 117(10), 103601 (2016).
[Crossref] [PubMed]

C. Simon and W. T. Irvine, “Robust long-distance entanglement and a loophole-free bell test with ions and photons,” Phys. Rev. Lett. 91(11), 110405 (2003).
[Crossref] [PubMed]

D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, G.-Y. Xiang, X.-S. Wang, Y.-K. Jiang, B.-S. Shi, and G.-C. Guo, “Quantum storage of orbital angular momentum entanglement in an atomic ensemble,” Phys. Rev. Lett. 114(5), 50502 (2015).
[Crossref]

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, and P. Michler, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109(14), 147404 (2012).
[Crossref] [PubMed]

C. E. Vollmer, C. Baune, A. Samblowski, T. Eberle, V. Händchen, J. Fiurášek, and R. Schnabel, “Quantum up-conversion of squeezed vacuum states from 1550 to 532 nm,” Phys. Rev. Lett. 112(7), 073602 (2014).
[Crossref] [PubMed]

G. Vallone, V. D’Ambrosio, A. Sponselli, S. Slussarenko, L. Marrucci, F. Sciarrino, and P. Villoresi, “Free-space quantum key distribution by rotation-invariant twisted photons,” Phys. Rev. Lett. 113(6), 60503 (2014).
[Crossref]

J. Huang and P. Kumar, “Observation of quantum frequency conversion,” Phys. Rev. Lett. 68(14), 2153 (1992).
[Crossref] [PubMed]

Sci. Rep. (1)

F. Steinlechner, N. Hermosa, V. Pruneri, and J. P. Torres, “Frequency conversion of structured light,” Sci. Rep. 6, 21390 (2016).
[Crossref]

Science (1)

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 OAM coherent frequency bridge and theory model. (a) Simple setup for quantum frequency down-conversion (QFDC), where Pp, Pv, and Pi are the pump, visible and infrared laser beam powers, respectively. Pcirc is the intra-cavity power. (b) Relationships of the SPCE (left y-axis) and Pp_Max (right y-axis) with the topological charge L of the input visible fields. The y-axis scales are logarithmic.
Fig. 2
Fig. 2 Setup for DFG-based OAM down-conversion. LD: diode laser (Toptica, predesigned, 1520 nm–1590 nm); EDFA: Er-doped fiber amplifier (1540 nm–1560 nm); Ti: sapphire laser (Coherent, MBR110); HWP: half-wave plate; QWP: quarter-wave plate; PBS_B(C): polarizing beam splitter; VPP: vortex phase plate; Filter: long pass filter; SLM: infrared spatial light modulator; P_M: power meter; F_M: fiber power meter; PPKTP: (Raycol QPM crystals ; period of 9.375 μm); PPLN: (HCP, periodically poled lithium niobate (PPLN) chip SFVIS-MA; period of 7.3 μm).
Fig. 3
Fig. 3 Single pass conversion efficiency (SPCE) and quantum conversion efficiency (QCE) of the OAM frequency bridge. (a) SPCE of the OAM state. The green bar and the red error bars represent the experimental and error values, respectively. The input fields are the Gaussian field (|0〉), a pure LG state (|1〉, |2〉), and the supposition state (|1〉 + |−1〉, |2〉 + |−2〉). (b) QCE for conversion from visible to infrared for L=0, 1, and 2 in the ring cavity. The x-axis represents the measured intra-cavity pump power.
Fig. 4
Fig. 4 Density matrix and intensity profiles. (a) Input state and density matrix of the output state. The input row describes the intensity and the phase of the input fields; the lists of Re(ρ) and Im(ρ) are the real and imaginary parts of the density matrix for the output fields determined using quantum state tomography. (b) Intensity profiles of the input visible laser (VL) and the output infrared laser (IL) beams determined using visible and infrared CCDs.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

E p ( r , z ) = P p π 0 n p c 1 w 0 p ( 1 + i τ p ) exp ( r 2 w 0 p 2 ( 1 + i τ p ) )
E v ( r , z , L ) = P v π 0 n v c L ! ( 2 r ) 2 w 0 v ( 1 + i τ v ) exp ( r 2 w 0 v 2 ( 1 + i τ v ) + i L ϕ )
d E i d z = K i E p * E v e i Δ k z
P i ( L / 2 ) = 2 0 c n i E i E i * d s = 16 π 2 d eff 2 l 2 L 0 c n v n i λ i 2 λ p h ( α , β , ξ , σ ) P p P v
h = 1 ξ ξ ξ ξ ξ ( 1 i x ) 1 ( 1 + i y ) 1 e i σ ( x y ) ( α β 2 ( β + i x ) ( β i y ) ( 1 1 i x + 1 1 + i y ) + β 3 ( 2 β i y + i x ) ) L + 1 d x d y
P i = K L h δ P p P v
η = N i / N v = sin ( π / 2 P p / P p _ Max )
| ϕ = 1 / 2 ( | h , L + e i θ | v , L )
| ϕ pre = 1 / 2 ( ( | L + e i θ | L ) | h + ( | L + e i ( θ + π ) | L ) | v )

Metrics