Abstract

We investigate the dependence of the measured squeezing level on the local oscillator (LO) intensity noise. The theoretical results indicate that it produces a large measurement error with the increase of the LO intensity noise, but the measurement error has immunity to the product P of the common mode rejection ratio (CMRR) with the LO intensity noise. According to the investigation results and the LO intensity noise, we employ a detector with the CMRR of 67 dB to detect the quantum noise at audio frequencies, the product P of the CMRR with the LO intensity noise is 20 dB below the shot noise limit (SNL), which can induce the measurement error of 0.1 dB for 10 dB of squeezing. Finally, the squeezing level measured at 15.2 kHz is 9.9 ± 0.2 dB. The influence of the intensity noise of the LO, and the electronic noise of the detector is subtracted, the inferred squeezing level is approximately 10.2 ± 0.2 dB. It is extremely important to quantify the requirements of the CMRR of the detector for measuring the squeezing at audio frequency and inferring the real squeezing level.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Balanced homodyne detection with high common mode rejection ratio based on parameter compensation of two arbitrary photodiodes

Xiaoli Jin, Jing Su, Yaohui Zheng, Chaoyong Chen, Wenzhe Wang, and Kunchi Peng
Opt. Express 23(18) 23859-23866 (2015)

Technical limitations to homodyne detection at audio frequencies

Kirk McKenzie, Malcolm B. Gray, Ping Koy Lam, and David E. McClelland
Appl. Opt. 46(17) 3389-3395 (2007)

Fast time-domain balanced homodyne detection of light

Ondřej Haderka, Václav Michálek, Vladimir Urbášek, and Miroslav Ježek
Appl. Opt. 48(15) 2884-2889 (2009)

References

  • View by:
  • |
  • |
  • |

  1. K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. Mchenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nature Physics 4, 472 (2008).
    [Crossref]
  2. H. Grote, K. Danzmann, K. L. Dooley, R. Schnabel, J. Slutsky, and H. Vahlbruch, “First long-term application of squeezed states of light in a Gravitational-wave observatory,” Phys. Rev. Lett. 110, 181101 (2013).
    [Crossref] [PubMed]
  3. S. L. Braunstein and P. van. Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77(2), 513 (2005).
    [Crossref]
  4. A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, J. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706 (1998).
    [Crossref] [PubMed]
  5. X. L. Jin, J. Su, Y. H. Zheng, C. Y. Chen, W. Z. Wang, and K. C. Peng, “Balanced homodyne detection with high common mode rejection ratio based on parameter compensation of two arbitrary photodiodes,” Opt. Express 23(18), 23859–23866 (2015).
    [Crossref] [PubMed]
  6. L. A. Wu, H. J. Kimble, J. L. Hall, and H. F. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett. 57(20), 2520–2523 (1986).
    [Crossref] [PubMed]
  7. T. Serikawa, J. Yoshikawa, K. Makino, and A. Furusawa, “Creation and measurement of broadband squeezed vacuum from a ring optical parametric oscillator,” Opt. Express 24(25), 28383 (2016).
    [Crossref] [PubMed]
  8. Y. Takeno, M. Yukawa, H. Yonezawa, and A. Furusawa, “Observation of −9 dB quadrature squeezing with improvement of phase stability in homodyne measurement,” Opt. Express 15(7), 4321–4327 (2007).
    [Crossref] [PubMed]
  9. H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Gosssler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10-dB quantum noise reduction,” Phys. Rev. Lett. 100, 033602 (2008).
    [Crossref]
  10. M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Express 19(25), 25763 (2011).
    [Crossref]
  11. H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency,” Phys. Rev. Lett. 117, 110801 (2016).
    [Crossref]
  12. Cunjin Liu, J. Jing, Z. Zhou, R. C. Pooser, F. Hudelist, L. Zhou, and W. Zhang, “Realization of low frequency and controllable bandwidth squeezing based on a four-wave-mixing amplifier in rubidium vapor,” Opt. Lett. 36, 2979 (2011).
    [Crossref] [PubMed]
  13. Z. Qin, J. Jing, J. Zhou, C. Liu, R. C. Pooser, Z. Zhou, and W. Zhang, “Optical parametric oscillator far below threshold: Experiment versus theory,” Opt. Lett. 37, 3141 (2012).
    [Crossref] [PubMed]
  14. K. McKenzie, N. Grosse, W. P. Bowen, S. E. Whitcomb, M. B. Gray, D. E. McClelland, and P. K. Lam, “Squeezing in the audio gravitational wave detection band,” Phys. Rev. Lett. 93, 161105 (2004).
    [Crossref]
  15. H. Vahlbruch, S. Chelkowski, K. Danzmann, and R. Schnabel, “Quantum engineering of squeezed states for quantum communication and metrology,” New J. Phys. 9, 371 (2007).
    [Crossref]
  16. K. Mc Kenzie, M. B. Gray, S. Gossler, P. K. Lam, and D. E. McClelland, “Squeezed state generation for interferometric gravitational-wave detection,” Classical and Quantum Gravity 23, S245 (2006).
    [Crossref]
  17. H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, and R. Schnabel, “Coherent control of vacuum squeezing in the Gravitational-wave detection band,” Phys. Rev. Lett. 97, 011101 (2006).
    [Crossref] [PubMed]
  18. M. S. Stefszky, C. M. Mow-Lowry, S. S. Y. Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidobski, R. Schnabel, P. K. Lam, and D. E. McClelland, “Balanced homodyne detection of optical quantum states at audioband frequencies and below,” Classical and Quantum Gravity 29, 145015 (2012).
    [Crossref]
  19. H. Hansen, T. Aichele, C. Hettich, P. Lodahl, A. I. Lvovsky, J. Mlynek, and S. Schiller, “An ultra-sensitive pulsed balanced homodyne detector: application to time-domain quantum measurement,” Opt. Lett. 26(21), 1714–1716(2001).
    [Crossref]
  20. H. P. Yuen and V. W. S. Chan, “Noise in homodyne and heterodyne detection,” Opt. Lett. 8, 177–179 (1983).
    [Crossref] [PubMed]
  21. J. Wenger, R. T. Brouri, and P. Grangier, “Pulsed homodyne measurements of femtosecond squeezed pulses generated by single-pass parametric deamplification,” Opt. Lett. 29(11), 1267–1269 (2004).
    [Crossref] [PubMed]
  22. H. D. Lu, J. Su, Y. H. Zheng, and K. C. Peng, “Physical conditions of single-longitudinal-mode operation for high-power all-solid-state lasers,” Opt. Lett. 39(5), 1117–1120 (2014).
    [Crossref] [PubMed]
  23. Q. L. Zhao, S. H. Xu, K. J. Zhou, C. S. Yang, C. Li, Z. M. Feng, M. Y. Peng, H. Q. Deng, and Z. M. Yang, “Broad-bandwidth near-shot-noise-limited intensity noise suppression of a single-frequency fiber laser,” Opt. Lett. 41(7), 1333–1335 (2016).
    [Crossref] [PubMed]
  24. K. McKenzie, M. B. Gray, P. K. Lam, and D. E. McClelland, “Technical limitations to homodyne detection at audio frequencies,” Appl. Opt. 46(17), 3389–3395 (2007).
    [Crossref] [PubMed]
  25. Z. X. Li, W. G. Ma, W. H. Yang, Y. J. Wang, and Y. H. Zheng, “Reduction of zero baseline drift of the Pound-Drever-Hall error signal with a wedged electro-optical crystal for squeezed state generation,” Opt. Lett. 41(14), 3331–3334 (2016).
    [Crossref] [PubMed]
  26. Y. J. Lu and Z. Y. Ou, “Optical parametric oscillator far below threshold: Experiment versus theory,” Phys. Rev. A 62, 033804 (2000).
    [Crossref]

2016 (4)

2015 (1)

2014 (1)

2013 (1)

H. Grote, K. Danzmann, K. L. Dooley, R. Schnabel, J. Slutsky, and H. Vahlbruch, “First long-term application of squeezed states of light in a Gravitational-wave observatory,” Phys. Rev. Lett. 110, 181101 (2013).
[Crossref] [PubMed]

2012 (2)

M. S. Stefszky, C. M. Mow-Lowry, S. S. Y. Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidobski, R. Schnabel, P. K. Lam, and D. E. McClelland, “Balanced homodyne detection of optical quantum states at audioband frequencies and below,” Classical and Quantum Gravity 29, 145015 (2012).
[Crossref]

Z. Qin, J. Jing, J. Zhou, C. Liu, R. C. Pooser, Z. Zhou, and W. Zhang, “Optical parametric oscillator far below threshold: Experiment versus theory,” Opt. Lett. 37, 3141 (2012).
[Crossref] [PubMed]

2011 (2)

2008 (2)

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. Mchenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nature Physics 4, 472 (2008).
[Crossref]

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Gosssler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10-dB quantum noise reduction,” Phys. Rev. Lett. 100, 033602 (2008).
[Crossref]

2007 (3)

2006 (2)

K. Mc Kenzie, M. B. Gray, S. Gossler, P. K. Lam, and D. E. McClelland, “Squeezed state generation for interferometric gravitational-wave detection,” Classical and Quantum Gravity 23, S245 (2006).
[Crossref]

H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, and R. Schnabel, “Coherent control of vacuum squeezing in the Gravitational-wave detection band,” Phys. Rev. Lett. 97, 011101 (2006).
[Crossref] [PubMed]

2005 (1)

S. L. Braunstein and P. van. Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77(2), 513 (2005).
[Crossref]

2004 (2)

K. McKenzie, N. Grosse, W. P. Bowen, S. E. Whitcomb, M. B. Gray, D. E. McClelland, and P. K. Lam, “Squeezing in the audio gravitational wave detection band,” Phys. Rev. Lett. 93, 161105 (2004).
[Crossref]

J. Wenger, R. T. Brouri, and P. Grangier, “Pulsed homodyne measurements of femtosecond squeezed pulses generated by single-pass parametric deamplification,” Opt. Lett. 29(11), 1267–1269 (2004).
[Crossref] [PubMed]

2001 (1)

2000 (1)

Y. J. Lu and Z. Y. Ou, “Optical parametric oscillator far below threshold: Experiment versus theory,” Phys. Rev. A 62, 033804 (2000).
[Crossref]

1998 (1)

A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, J. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706 (1998).
[Crossref] [PubMed]

1986 (1)

L. A. Wu, H. J. Kimble, J. L. Hall, and H. F. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett. 57(20), 2520–2523 (1986).
[Crossref] [PubMed]

1983 (1)

Adhikari, R.

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. Mchenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nature Physics 4, 472 (2008).
[Crossref]

Aichele, T.

Ast, S.

Bowen, W. P.

K. McKenzie, N. Grosse, W. P. Bowen, S. E. Whitcomb, M. B. Gray, D. E. McClelland, and P. K. Lam, “Squeezing in the audio gravitational wave detection band,” Phys. Rev. Lett. 93, 161105 (2004).
[Crossref]

Braunstein, S. L.

S. L. Braunstein and P. van. Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77(2), 513 (2005).
[Crossref]

A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, J. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706 (1998).
[Crossref] [PubMed]

Brouri, R. T.

Buchler, B. C.

M. S. Stefszky, C. M. Mow-Lowry, S. S. Y. Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidobski, R. Schnabel, P. K. Lam, and D. E. McClelland, “Balanced homodyne detection of optical quantum states at audioband frequencies and below,” Classical and Quantum Gravity 29, 145015 (2012).
[Crossref]

Chan, V. W. S.

Chelkowski, S.

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Gosssler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10-dB quantum noise reduction,” Phys. Rev. Lett. 100, 033602 (2008).
[Crossref]

H. Vahlbruch, S. Chelkowski, K. Danzmann, and R. Schnabel, “Quantum engineering of squeezed states for quantum communication and metrology,” New J. Phys. 9, 371 (2007).
[Crossref]

H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, and R. Schnabel, “Coherent control of vacuum squeezing in the Gravitational-wave detection band,” Phys. Rev. Lett. 97, 011101 (2006).
[Crossref] [PubMed]

Chen, C. Y.

Chua, S. S. Y.

M. S. Stefszky, C. M. Mow-Lowry, S. S. Y. Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidobski, R. Schnabel, P. K. Lam, and D. E. McClelland, “Balanced homodyne detection of optical quantum states at audioband frequencies and below,” Classical and Quantum Gravity 29, 145015 (2012).
[Crossref]

Danzmann, K.

H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency,” Phys. Rev. Lett. 117, 110801 (2016).
[Crossref]

H. Grote, K. Danzmann, K. L. Dooley, R. Schnabel, J. Slutsky, and H. Vahlbruch, “First long-term application of squeezed states of light in a Gravitational-wave observatory,” Phys. Rev. Lett. 110, 181101 (2013).
[Crossref] [PubMed]

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Gosssler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10-dB quantum noise reduction,” Phys. Rev. Lett. 100, 033602 (2008).
[Crossref]

H. Vahlbruch, S. Chelkowski, K. Danzmann, and R. Schnabel, “Quantum engineering of squeezed states for quantum communication and metrology,” New J. Phys. 9, 371 (2007).
[Crossref]

H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, and R. Schnabel, “Coherent control of vacuum squeezing in the Gravitational-wave detection band,” Phys. Rev. Lett. 97, 011101 (2006).
[Crossref] [PubMed]

Deng, H. Q.

Dooley, K. L.

H. Grote, K. Danzmann, K. L. Dooley, R. Schnabel, J. Slutsky, and H. Vahlbruch, “First long-term application of squeezed states of light in a Gravitational-wave observatory,” Phys. Rev. Lett. 110, 181101 (2013).
[Crossref] [PubMed]

Eberle, T.

Feng, Z. M.

Franzen, A.

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Gosssler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10-dB quantum noise reduction,” Phys. Rev. Lett. 100, 033602 (2008).
[Crossref]

H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, and R. Schnabel, “Coherent control of vacuum squeezing in the Gravitational-wave detection band,” Phys. Rev. Lett. 97, 011101 (2006).
[Crossref] [PubMed]

Fuchs, C. A.

A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, J. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706 (1998).
[Crossref] [PubMed]

Furusawa, A.

Goda, K.

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. Mchenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nature Physics 4, 472 (2008).
[Crossref]

Gossler, S.

K. Mc Kenzie, M. B. Gray, S. Gossler, P. K. Lam, and D. E. McClelland, “Squeezed state generation for interferometric gravitational-wave detection,” Classical and Quantum Gravity 23, S245 (2006).
[Crossref]

Gosssler, S.

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Gosssler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10-dB quantum noise reduction,” Phys. Rev. Lett. 100, 033602 (2008).
[Crossref]

Grangier, P.

Gray, M. B.

K. McKenzie, M. B. Gray, P. K. Lam, and D. E. McClelland, “Technical limitations to homodyne detection at audio frequencies,” Appl. Opt. 46(17), 3389–3395 (2007).
[Crossref] [PubMed]

K. Mc Kenzie, M. B. Gray, S. Gossler, P. K. Lam, and D. E. McClelland, “Squeezed state generation for interferometric gravitational-wave detection,” Classical and Quantum Gravity 23, S245 (2006).
[Crossref]

K. McKenzie, N. Grosse, W. P. Bowen, S. E. Whitcomb, M. B. Gray, D. E. McClelland, and P. K. Lam, “Squeezing in the audio gravitational wave detection band,” Phys. Rev. Lett. 93, 161105 (2004).
[Crossref]

Grosse, N.

K. McKenzie, N. Grosse, W. P. Bowen, S. E. Whitcomb, M. B. Gray, D. E. McClelland, and P. K. Lam, “Squeezing in the audio gravitational wave detection band,” Phys. Rev. Lett. 93, 161105 (2004).
[Crossref]

Grote, H.

H. Grote, K. Danzmann, K. L. Dooley, R. Schnabel, J. Slutsky, and H. Vahlbruch, “First long-term application of squeezed states of light in a Gravitational-wave observatory,” Phys. Rev. Lett. 110, 181101 (2013).
[Crossref] [PubMed]

Hage, B.

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Gosssler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10-dB quantum noise reduction,” Phys. Rev. Lett. 100, 033602 (2008).
[Crossref]

H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, and R. Schnabel, “Coherent control of vacuum squeezing in the Gravitational-wave detection band,” Phys. Rev. Lett. 97, 011101 (2006).
[Crossref] [PubMed]

Hall, J. L.

L. A. Wu, H. J. Kimble, J. L. Hall, and H. F. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett. 57(20), 2520–2523 (1986).
[Crossref] [PubMed]

Hansen, H.

Hettich, C.

Hudelist, F.

Jin, X. L.

Jing, J.

Khalaidobski, A.

M. S. Stefszky, C. M. Mow-Lowry, S. S. Y. Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidobski, R. Schnabel, P. K. Lam, and D. E. McClelland, “Balanced homodyne detection of optical quantum states at audioband frequencies and below,” Classical and Quantum Gravity 29, 145015 (2012).
[Crossref]

Kimble, H. J.

L. A. Wu, H. J. Kimble, J. L. Hall, and H. F. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett. 57(20), 2520–2523 (1986).
[Crossref] [PubMed]

Kimble, J. J.

A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, J. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706 (1998).
[Crossref] [PubMed]

Lam, P. K.

M. S. Stefszky, C. M. Mow-Lowry, S. S. Y. Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidobski, R. Schnabel, P. K. Lam, and D. E. McClelland, “Balanced homodyne detection of optical quantum states at audioband frequencies and below,” Classical and Quantum Gravity 29, 145015 (2012).
[Crossref]

K. McKenzie, M. B. Gray, P. K. Lam, and D. E. McClelland, “Technical limitations to homodyne detection at audio frequencies,” Appl. Opt. 46(17), 3389–3395 (2007).
[Crossref] [PubMed]

K. Mc Kenzie, M. B. Gray, S. Gossler, P. K. Lam, and D. E. McClelland, “Squeezed state generation for interferometric gravitational-wave detection,” Classical and Quantum Gravity 23, S245 (2006).
[Crossref]

K. McKenzie, N. Grosse, W. P. Bowen, S. E. Whitcomb, M. B. Gray, D. E. McClelland, and P. K. Lam, “Squeezing in the audio gravitational wave detection band,” Phys. Rev. Lett. 93, 161105 (2004).
[Crossref]

Lastzka, N.

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Gosssler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10-dB quantum noise reduction,” Phys. Rev. Lett. 100, 033602 (2008).
[Crossref]

Li, C.

Li, Z. X.

Liu, C.

Liu, Cunjin

Lodahl, P.

Lu, H. D.

Lu, Y. J.

Y. J. Lu and Z. Y. Ou, “Optical parametric oscillator far below threshold: Experiment versus theory,” Phys. Rev. A 62, 033804 (2000).
[Crossref]

Lvovsky, A. I.

Ma, W. G.

Makino, K.

Mavalvala, N.

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. Mchenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nature Physics 4, 472 (2008).
[Crossref]

Mc Kenzie, K.

K. Mc Kenzie, M. B. Gray, S. Gossler, P. K. Lam, and D. E. McClelland, “Squeezed state generation for interferometric gravitational-wave detection,” Classical and Quantum Gravity 23, S245 (2006).
[Crossref]

McClelland, D. E.

M. S. Stefszky, C. M. Mow-Lowry, S. S. Y. Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidobski, R. Schnabel, P. K. Lam, and D. E. McClelland, “Balanced homodyne detection of optical quantum states at audioband frequencies and below,” Classical and Quantum Gravity 29, 145015 (2012).
[Crossref]

K. McKenzie, M. B. Gray, P. K. Lam, and D. E. McClelland, “Technical limitations to homodyne detection at audio frequencies,” Appl. Opt. 46(17), 3389–3395 (2007).
[Crossref] [PubMed]

K. Mc Kenzie, M. B. Gray, S. Gossler, P. K. Lam, and D. E. McClelland, “Squeezed state generation for interferometric gravitational-wave detection,” Classical and Quantum Gravity 23, S245 (2006).
[Crossref]

K. McKenzie, N. Grosse, W. P. Bowen, S. E. Whitcomb, M. B. Gray, D. E. McClelland, and P. K. Lam, “Squeezing in the audio gravitational wave detection band,” Phys. Rev. Lett. 93, 161105 (2004).
[Crossref]

Mchenzie, K.

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. Mchenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nature Physics 4, 472 (2008).
[Crossref]

McKenzie, K.

K. McKenzie, M. B. Gray, P. K. Lam, and D. E. McClelland, “Technical limitations to homodyne detection at audio frequencies,” Appl. Opt. 46(17), 3389–3395 (2007).
[Crossref] [PubMed]

K. McKenzie, N. Grosse, W. P. Bowen, S. E. Whitcomb, M. B. Gray, D. E. McClelland, and P. K. Lam, “Squeezing in the audio gravitational wave detection band,” Phys. Rev. Lett. 93, 161105 (2004).
[Crossref]

Mehmet, M.

H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency,” Phys. Rev. Lett. 117, 110801 (2016).
[Crossref]

M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Express 19(25), 25763 (2011).
[Crossref]

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Gosssler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10-dB quantum noise reduction,” Phys. Rev. Lett. 100, 033602 (2008).
[Crossref]

Mikhailov, E. E.

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. Mchenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nature Physics 4, 472 (2008).
[Crossref]

Miyakawa, O.

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. Mchenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nature Physics 4, 472 (2008).
[Crossref]

Mlynek, J.

Mow-Lowry, C. M.

M. S. Stefszky, C. M. Mow-Lowry, S. S. Y. Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidobski, R. Schnabel, P. K. Lam, and D. E. McClelland, “Balanced homodyne detection of optical quantum states at audioband frequencies and below,” Classical and Quantum Gravity 29, 145015 (2012).
[Crossref]

Ou, Z. Y.

Y. J. Lu and Z. Y. Ou, “Optical parametric oscillator far below threshold: Experiment versus theory,” Phys. Rev. A 62, 033804 (2000).
[Crossref]

Peng, K. C.

Peng, M. Y.

Polzik, E. S.

A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, J. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706 (1998).
[Crossref] [PubMed]

Pooser, R. C.

Qin, Z.

Saraf, S.

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. Mchenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nature Physics 4, 472 (2008).
[Crossref]

Schiller, S.

Schnabel, R.

H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency,” Phys. Rev. Lett. 117, 110801 (2016).
[Crossref]

H. Grote, K. Danzmann, K. L. Dooley, R. Schnabel, J. Slutsky, and H. Vahlbruch, “First long-term application of squeezed states of light in a Gravitational-wave observatory,” Phys. Rev. Lett. 110, 181101 (2013).
[Crossref] [PubMed]

M. S. Stefszky, C. M. Mow-Lowry, S. S. Y. Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidobski, R. Schnabel, P. K. Lam, and D. E. McClelland, “Balanced homodyne detection of optical quantum states at audioband frequencies and below,” Classical and Quantum Gravity 29, 145015 (2012).
[Crossref]

M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Express 19(25), 25763 (2011).
[Crossref]

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Gosssler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10-dB quantum noise reduction,” Phys. Rev. Lett. 100, 033602 (2008).
[Crossref]

H. Vahlbruch, S. Chelkowski, K. Danzmann, and R. Schnabel, “Quantum engineering of squeezed states for quantum communication and metrology,” New J. Phys. 9, 371 (2007).
[Crossref]

H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, and R. Schnabel, “Coherent control of vacuum squeezing in the Gravitational-wave detection band,” Phys. Rev. Lett. 97, 011101 (2006).
[Crossref] [PubMed]

Serikawa, T.

Shaddock, D. A.

M. S. Stefszky, C. M. Mow-Lowry, S. S. Y. Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidobski, R. Schnabel, P. K. Lam, and D. E. McClelland, “Balanced homodyne detection of optical quantum states at audioband frequencies and below,” Classical and Quantum Gravity 29, 145015 (2012).
[Crossref]

Slutsky, J.

H. Grote, K. Danzmann, K. L. Dooley, R. Schnabel, J. Slutsky, and H. Vahlbruch, “First long-term application of squeezed states of light in a Gravitational-wave observatory,” Phys. Rev. Lett. 110, 181101 (2013).
[Crossref] [PubMed]

Sorensen, J. L.

A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, J. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706 (1998).
[Crossref] [PubMed]

Stefszky, M. S.

M. S. Stefszky, C. M. Mow-Lowry, S. S. Y. Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidobski, R. Schnabel, P. K. Lam, and D. E. McClelland, “Balanced homodyne detection of optical quantum states at audioband frequencies and below,” Classical and Quantum Gravity 29, 145015 (2012).
[Crossref]

Steinlechner, S.

Su, J.

Takeno, Y.

Vahlbruch, H.

H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency,” Phys. Rev. Lett. 117, 110801 (2016).
[Crossref]

H. Grote, K. Danzmann, K. L. Dooley, R. Schnabel, J. Slutsky, and H. Vahlbruch, “First long-term application of squeezed states of light in a Gravitational-wave observatory,” Phys. Rev. Lett. 110, 181101 (2013).
[Crossref] [PubMed]

M. S. Stefszky, C. M. Mow-Lowry, S. S. Y. Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidobski, R. Schnabel, P. K. Lam, and D. E. McClelland, “Balanced homodyne detection of optical quantum states at audioband frequencies and below,” Classical and Quantum Gravity 29, 145015 (2012).
[Crossref]

M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Express 19(25), 25763 (2011).
[Crossref]

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Gosssler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10-dB quantum noise reduction,” Phys. Rev. Lett. 100, 033602 (2008).
[Crossref]

H. Vahlbruch, S. Chelkowski, K. Danzmann, and R. Schnabel, “Quantum engineering of squeezed states for quantum communication and metrology,” New J. Phys. 9, 371 (2007).
[Crossref]

H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, and R. Schnabel, “Coherent control of vacuum squeezing in the Gravitational-wave detection band,” Phys. Rev. Lett. 97, 011101 (2006).
[Crossref] [PubMed]

van. Loock, P.

S. L. Braunstein and P. van. Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77(2), 513 (2005).
[Crossref]

Vass, S.

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. Mchenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nature Physics 4, 472 (2008).
[Crossref]

Wang, W. Z.

Wang, Y. J.

Ward, R.

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. Mchenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nature Physics 4, 472 (2008).
[Crossref]

Weinstein, A. J.

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. Mchenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nature Physics 4, 472 (2008).
[Crossref]

Wenger, J.

Whitcomb, S. E.

K. McKenzie, N. Grosse, W. P. Bowen, S. E. Whitcomb, M. B. Gray, D. E. McClelland, and P. K. Lam, “Squeezing in the audio gravitational wave detection band,” Phys. Rev. Lett. 93, 161105 (2004).
[Crossref]

Wu, H. F.

L. A. Wu, H. J. Kimble, J. L. Hall, and H. F. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett. 57(20), 2520–2523 (1986).
[Crossref] [PubMed]

Wu, L. A.

L. A. Wu, H. J. Kimble, J. L. Hall, and H. F. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett. 57(20), 2520–2523 (1986).
[Crossref] [PubMed]

Xu, S. H.

Yang, C. S.

Yang, W. H.

Yang, Z. M.

Yonezawa, H.

Yoshikawa, J.

Yuen, H. P.

Yukawa, M.

Zhang, W.

Zhao, Q. L.

Zheng, Y. H.

Zhou, J.

Zhou, K. J.

Zhou, L.

Zhou, Z.

Appl. Opt. (1)

Classical and Quantum Gravity (2)

M. S. Stefszky, C. M. Mow-Lowry, S. S. Y. Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidobski, R. Schnabel, P. K. Lam, and D. E. McClelland, “Balanced homodyne detection of optical quantum states at audioband frequencies and below,” Classical and Quantum Gravity 29, 145015 (2012).
[Crossref]

K. Mc Kenzie, M. B. Gray, S. Gossler, P. K. Lam, and D. E. McClelland, “Squeezed state generation for interferometric gravitational-wave detection,” Classical and Quantum Gravity 23, S245 (2006).
[Crossref]

Nature Physics (1)

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. Mchenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nature Physics 4, 472 (2008).
[Crossref]

New J. Phys. (1)

H. Vahlbruch, S. Chelkowski, K. Danzmann, and R. Schnabel, “Quantum engineering of squeezed states for quantum communication and metrology,” New J. Phys. 9, 371 (2007).
[Crossref]

Opt. Express (4)

Opt. Lett. (8)

Q. L. Zhao, S. H. Xu, K. J. Zhou, C. S. Yang, C. Li, Z. M. Feng, M. Y. Peng, H. Q. Deng, and Z. M. Yang, “Broad-bandwidth near-shot-noise-limited intensity noise suppression of a single-frequency fiber laser,” Opt. Lett. 41(7), 1333–1335 (2016).
[Crossref] [PubMed]

Z. X. Li, W. G. Ma, W. H. Yang, Y. J. Wang, and Y. H. Zheng, “Reduction of zero baseline drift of the Pound-Drever-Hall error signal with a wedged electro-optical crystal for squeezed state generation,” Opt. Lett. 41(14), 3331–3334 (2016).
[Crossref] [PubMed]

Z. Qin, J. Jing, J. Zhou, C. Liu, R. C. Pooser, Z. Zhou, and W. Zhang, “Optical parametric oscillator far below threshold: Experiment versus theory,” Opt. Lett. 37, 3141 (2012).
[Crossref] [PubMed]

H. D. Lu, J. Su, Y. H. Zheng, and K. C. Peng, “Physical conditions of single-longitudinal-mode operation for high-power all-solid-state lasers,” Opt. Lett. 39(5), 1117–1120 (2014).
[Crossref] [PubMed]

Cunjin Liu, J. Jing, Z. Zhou, R. C. Pooser, F. Hudelist, L. Zhou, and W. Zhang, “Realization of low frequency and controllable bandwidth squeezing based on a four-wave-mixing amplifier in rubidium vapor,” Opt. Lett. 36, 2979 (2011).
[Crossref] [PubMed]

H. P. Yuen and V. W. S. Chan, “Noise in homodyne and heterodyne detection,” Opt. Lett. 8, 177–179 (1983).
[Crossref] [PubMed]

H. Hansen, T. Aichele, C. Hettich, P. Lodahl, A. I. Lvovsky, J. Mlynek, and S. Schiller, “An ultra-sensitive pulsed balanced homodyne detector: application to time-domain quantum measurement,” Opt. Lett. 26(21), 1714–1716(2001).
[Crossref]

J. Wenger, R. T. Brouri, and P. Grangier, “Pulsed homodyne measurements of femtosecond squeezed pulses generated by single-pass parametric deamplification,” Opt. Lett. 29(11), 1267–1269 (2004).
[Crossref] [PubMed]

Phys. Rev. A (1)

Y. J. Lu and Z. Y. Ou, “Optical parametric oscillator far below threshold: Experiment versus theory,” Phys. Rev. A 62, 033804 (2000).
[Crossref]

Phys. Rev. Lett. (6)

H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency,” Phys. Rev. Lett. 117, 110801 (2016).
[Crossref]

H. Grote, K. Danzmann, K. L. Dooley, R. Schnabel, J. Slutsky, and H. Vahlbruch, “First long-term application of squeezed states of light in a Gravitational-wave observatory,” Phys. Rev. Lett. 110, 181101 (2013).
[Crossref] [PubMed]

H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, and R. Schnabel, “Coherent control of vacuum squeezing in the Gravitational-wave detection band,” Phys. Rev. Lett. 97, 011101 (2006).
[Crossref] [PubMed]

L. A. Wu, H. J. Kimble, J. L. Hall, and H. F. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett. 57(20), 2520–2523 (1986).
[Crossref] [PubMed]

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Gosssler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10-dB quantum noise reduction,” Phys. Rev. Lett. 100, 033602 (2008).
[Crossref]

K. McKenzie, N. Grosse, W. P. Bowen, S. E. Whitcomb, M. B. Gray, D. E. McClelland, and P. K. Lam, “Squeezing in the audio gravitational wave detection band,” Phys. Rev. Lett. 93, 161105 (2004).
[Crossref]

Rev. Mod. Phys. (1)

S. L. Braunstein and P. van. Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77(2), 513 (2005).
[Crossref]

Science (1)

A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, J. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706 (1998).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the balanced homodyne detection scheme.

Fig. 2
Fig. 2

Detection deviation E dependence on the CMRR, the LO intensity noise, and the real squeezing level (E : SrealSm). Left-hand chart indicates the deviation of measured value and real value at the real squeezing value 10 dB. Middle chart indicates the deviation of measured value and real value at the real squeezing value 15 dB. Right-hand chart indicates the deviation of measured value and real value at the real squeezing value 20 dB.

Fig. 3
Fig. 3

Product P of the CMRR with the LO intensity noise dependence on the real squeezing level under the different measurement error. Detection deviation as a function of the LO intensity noise when the product P of the CMRR with the LO intensity noise is constant (E : SrealSm).

Fig. 4
Fig. 4

Schematic of the experimental setup for measuring the LO intensity noise and generating the squeezed state. SHG: Second harmonic generation; EOM: electro-optical modulator; MC: mode cleaner; DBS: dichroic beam splitter; OPA: optical parametric amplifier; FI: Faraday isolator; PZT: piezoelectric transducer; BHD: balanced homodyne detection; SA: spectrum analyzer.

Fig. 5
Fig. 5

LO intensity noise as a function of measurement frequency. Trace (a) corresponds to the SNL from the subtraction of two photocurrents. Trace (b) corresponds to the LO intensity noise from the sum of two photocurrents.

Fig. 6
Fig. 6

CMRR of the homodyne detector as a function of measurement frequency via a transfer function method, with an intermediate frequency bandwidth of 10 Hz.

Fig. 7
Fig. 7

Balance homodyne measurements of the quadrature noise variances. The measurement is recorded at a Fourier frequency of 15.2 kHz, with a RBW of 500 Hz, and a VBW of 5 Hz. The data still include electronic noise, and represent direct observations.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

c ^ = η 1 1 2 ( a ^ b ^ e i θ )
d ^ = η 2 1 2 ( a ^ + b ^ e i θ )
i ˙ ^ c = η 1 2 ( β ( δ a ^ + exp ( i θ ) + δ a ^ exp ( i θ ) ) + β ( δ b ^ + δ b ^ + ) + β 2 ) = η 1 2 ( β δ X ^ a ( θ ) + β δ X ^ b ( θ ) ) + η 1 2 β 2
i ˙ ^ d = η 2 2 ( β ( δ a ^ + exp ( i θ ) + δ a ^ exp ( i θ ) ) + β ( δ b ^ + δ b ^ + ) + β 2 ) = η 2 2 ( β δ X ^ a ( θ ) + β δ X ^ b ( θ ) ) + η 2 2 β 2
I = β η 1 2 ( ( 1 + G ) δ X ^ a ( θ ) + ( 1 G ) δ X ^ b + β ( 1 + G ) )
V ( I ) = β 2 η 1 2 4 ( V ( X ^ a ( θ ) ) ( 1 + G ) 2 + V ( X ^ b ) ( 1 G ) 2 )
S m = 10 lg ( 1 + G ) 2 + V ( X ^ b ) ( 1 G ) 2 X ( X ^ a ( θ ) ) ( 1 + G ) 2 + V ( X ^ b ) ( 1 G ) 2
S m = S real = 10 lg ( V ( X ^ a ( θ ) ) )
E = 10 lg ( V ( X ^ a ( θ ) ) ) 10 lg ( 1 + G ) 2 + V ( X ^ b ) ( 1 G ) 2 V ( X ^ a ( θ ) ) ( 1 + G ) 2 + V ( X ^ b ) ( 1 G ) 2
CMRR = 10 lg P com Δ × P com = 20 lg I com Δ × I com = 20 lg 1 + G 2 | 1 G |
G = 2 × 10 CMRR 20 1 2 × 10 CMRR 20 + 1
E SNL = 10 lg ( 1 + G ) 2 + V ( X ^ b ) ( 1 G 2 ) ( 1 + G ) 2 + ( 1 G ) 2

Metrics