Abstract

The goal of this paper is to develop a new architecture for industrial computed tomography (ICT) aiming at dynamically imaging an aperiodic changing object. We propose a data acquisition approach with multiple x-ray source/detector pairs targeting a continuously changeable object with corresponding timeframes. In this named swinging multi-source CT (SMCT) structure, each source and its associated detector swing forth and back within a certain angle for CT scanning. In the SMCT system design, we utilize a circular journal bearing based setup to replace the normal CT slip ring by weakening the scanning speed requirement. Inspired by the prior image constrained compressed sensing (PICCS) algorithm, we apply a modified PICCS algorithm for the SMCT (SM-PICCS). Our numerical simulation and realistic specimen experiment studies demonstrate the feasibility of the proposed approach.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
An approach to increasing the resolution of industrial CT images based on an aperture collimator

Yining Zhu, Defeng Chen, Yunsong Zhao, Hongwei Li, and Peng Zhang
Opt. Express 21(23) 27946-27963 (2013)

Raw data normalization for a multi source inverse geometry CT system

Jongduk Baek, Bruno De Man, Daniel Harrison, and Norbert J. Pelc
Opt. Express 23(6) 7514-7526 (2015)

Improve spatial resolution by Modeling Finite Focal Spot (MFFS) for industrial CT reconstruction

Ming Chang, Yongshun Xiao, and Zhiqiang Chen
Opt. Express 22(25) 30641-30656 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. Bauereiß, T. Scharowsky, and C. Körner, “Defect generation and propagation mechanism during additive manufacturing by selective beam melting,” J. Mater. Process. Technol. 214(11), 2522–2528 (2014).
    [Crossref]
  2. V. Semak and A. Matsunawa, “The role of recoil pressure in energy balance during laser materials processing,” J. Phys. D Appl. Phys. 30(18), 2541–2552 (1997).
    [Crossref]
  3. W. E. Frazier, “Metal additive manufacturing: a review,” J. Mater. Eng. Perform. 23(6), 1917–1928 (2014).
    [Crossref]
  4. S. Shimizu, H. Fujii, Y. Sato, H. Kokawa, M. Sriraman, and S. Babu, “Mechanism of weld formation during very-high-power ultrasonic additive manufacturing of Al alloy 6061,” Acta Mater. 74, 234–243 (2014).
    [Crossref]
  5. M. Prakash, P. W. Cleary, J. Grandfield, P. Rohan, and V. Nguyen, “Optimisation of ingot casting wheel design using SPH simulations,” Prog. Comput. Fluid Dyn. 7(2/3/4), 101–110 (2007).
    [Crossref]
  6. A. V. Catalina, A. Buhrig-Polaczek, C. Monroe, A. S. Sabau, R. E. L. Ruxanda, A. Luo, S. Sen, and A. Diószegi, “Defect formation mechanisms in lamellar cast iron related to the casting geometry,” in Advances in the Science and Engineering of Casting Solidification:An MPMD Symposium Honoring Doru Michael Stefanescu (Springer, 2016), pp. 251.
  7. J. Santos, A. E. Jarfors, and A. K. Dahle, “Filling, feeding and defect formation of thick-walled AlSi7Mg0. 3 semi-solid castings,” in Solid State Phenomena (Trans. Tech. Publ., 2016), pp. 222–227.
  8. B. Roebuck and E. Almond, “Deformation and fracture processes and the physical metallurgy of WC–Co hardmetals,” Int. Mater. Rev. 33(1), 90–112 (1988).
    [Crossref]
  9. M. Müller, L. McMillan, J. Dorsey, and R. Jagnow, “Real-time simulation of deformation and fracture of stiff materials,” in Computer Animation and Simulation 2001 (Springer, 2001), paper 113–124.
  10. F. H. Gern and R. Kochendörfer, “Liquid silicon infiltration: description of infiltration dynamics and silicon carbide formation,” Compos., Part A Appl. Sci. Manuf. 28(4), 355–364 (1997).
    [Crossref]
  11. R. K. Eckhoff, Dust Explosions in the Process Industries: Identification, Assessment and Control of Dust Hazards (Gulf Professional Publishing, 2003).
  12. R. B. Arthur and M. A. Cheverton, “Visualization of additive manufacturing process data,” (Google Patents, 2014).
  13. M. Prakash, P. W. Cleary, J. Grandfield, P. Rohan, and V. Nguyen, “Optimisation of ingot casting wheel design using SPH simulations,” Prog. Comput. Fluid Dyn. 7(2/3/4), 101–110 (2007).
    [Crossref]
  14. J. Sengupta, B. G. Thomas, H.-J. Shin, G.-G. Lee, and S.-H. Kim, “A new mechanism of hook formation during continuous casting of ultra-low-carbon steel slabs,” Metall. Mater. Trans., A Phys. Metall. Mater. Sci. 37(5), 1597–1611 (2006).
    [Crossref]
  15. P. D. Lee, J. Wang, and R. C. Atwood, “Microporosity Formation during the Solidification of Aluminum-Copper Alloys,” JOM 58(11), 120–126 (2006).
  16. X. Sun, J. Hoon Jeon, J. Blendell, and O. Akkus, “Visualization of a phantom post-yield deformation process in cortical bone,” J. Biomech. 43(10), 1989–1996 (2010).
    [Crossref] [PubMed]
  17. G. Blois, J. M. Barros, and K. T. Christensen, “A microscopic particle image velocimetry method for studying the dynamics of immiscible liquid–liquid interactions in a porous micromodel,” Microfluid. Nanofluidics 18(5-6), 1391–1406 (2015).
    [Crossref]
  18. T. J. Heindel, J. N. Gray, and T. C. Jensen, “An X-ray system for visualizing fluid flows,” Flow Meas. Instrum. 19(2), 67–78 (2008).
    [Crossref]
  19. P. T. Lauzier, J. Tang, and G. H. Chen, “Prior image constrained compressed sensing: implementation and performance evaluation,” Med. Phys. 39(1), 66–80 (2011).
    [Crossref] [PubMed]
  20. P. Schardt, J. Deuringer, J. Freudenberger, E. Hell, W. Knüpfer, D. Mattern, and M. Schild, “New x-ray tube performance in computed tomography by introducing the rotating envelope tube technology,” Med. Phys. 31(9), 2699–2706 (2004).
    [Crossref] [PubMed]
  21. T. G. Flohr, C. H. McCollough, H. Bruder, M. Petersilka, K. Gruber, C. Süß, M. Grasruck, K. Stierstorfer, B. Krauss, R. Raupach, A. N. Primak, A. Küttner, S. Achenbach, C. Becker, A. Kopp, and B. M. Ohnesorge, “First performance evaluation of a dual-source CT (DSCT) system,” Eur. Radiol. 16(2), 256–268 (2006).
    [Crossref] [PubMed]
  22. Y. Liu, H. Liu, Y. Wang, and G. Wang, “Half-scan cone-beam CT fluoroscopy with multiple x-ray sources,” Med. Phys. 28(7), 1466–1471 (2001).
    [Crossref] [PubMed]
  23. G. Wang, H. Yu, and Y. Ye, “A scheme for multisource interior tomography,” Med. Phys. 36(8), 3575–3581 (2009).
    [Crossref] [PubMed]
  24. G. Cao, B. Liu, H. Gong, and H. Yu, “A stationary-sources and rotating-detectors computed tomography architecture for higher temporal resolution and lower radiation dose,” IEEE Access 2, 1263–1271 (2014).
    [Crossref]
  25. J. Zhao, Y. Lu, T. Zhuang, and G. Wang, “Overview of multisource CT systems and methods,” Proc. SPIE 7804, 78040H (2010).
    [Crossref]
  26. B. Liu, G. Wang, E. L. Ritman, G. Cao, J. Lu, O. Zhou, L. Zeng, and H. Yu, “Image reconstruction from limited angle projections collected by multisource interior x-ray imaging systems,” Phys. Med. Biol. 56(19), 6337–6357 (2011).
    [Crossref] [PubMed]
  27. G. X. Ding, D. M. Duggan, and C. W. Coffey, “Characteristics of kilovoltage x-ray beams used for cone-beam computed tomography in radiation therapy,” Phys. Med. Biol. 52(6), 1595–1615 (2007).
    [Crossref] [PubMed]
  28. “NDT Resource Center website Avaible:” https://www.nde-ed.org/EducationResources/CommunityCollege/Radiography/EquipmentMaterials/isotopesources.htm .
  29. J. S. Katcha and J. R. Schmidt, “X-ray generator and slip ring for a CT system,” (Google Patents, 2006).
  30. E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52(2), 489–509 (2006).
    [Crossref]
  31. G. H. Chen, J. Tang, and S. Leng, “Prior Image Constrained Compressed Sensing (PICCS),” Proc. SPIE Int Soc Opt Eng 6856, 685618 (2008).
    [Crossref] [PubMed]
  32. P. T. Lauzier, J. Tang, and G. H. Chen, “Time-resolved cardiac interventional cone-beam CT reconstruction from fully truncated projections using the prior image constrained compressed sensing (PICCS) algorithm,” Phys. Med. Biol. 57(9), 2461–2476 (2012).
    [Crossref] [PubMed]
  33. G. H. Chen and Y. Li, “Synchronized multiartifact reduction with tomographic reconstruction (SMART-RECON): A statistical model based iterative image reconstruction method to eliminate limited-view artifacts and to mitigate the temporal-average artifacts in time-resolved CT,” Med. Phys. 42(8), 4698–4707 (2015).
    [Crossref] [PubMed]
  34. G. H. Chen, J. Tang, and J. Hsieh, “Temporal resolution improvement using PICCS in MDCT cardiac imaging,” Med. Phys. 36(6), 2130–2135 (2009).
    [Crossref] [PubMed]
  35. A. du Plessis, S. G. le Roux, and A. Guelpa, “Comparison of medical and industrial X-ray computed tomography for non-destructive testing,” Case Stud. Nondestr. Test. Eval. 6, 17–25 (2016).
    [Crossref]
  36. G. H. Chen, J. Tang, and S. Leng, “Prior Image Constrained Compressed Sensing (PICCS,” Med. Phys. 35(2), 660–663 (2008).
    [Crossref] [PubMed]
  37. P. T. Lauzier and G. H. Chen, “Characterization of statistical prior image constrained compressed sensing (PICCS): II. Application to dose reduction,” Med. Phys. 40(2), 021902 (2013).
    [Crossref] [PubMed]
  38. H. Gong, H. Yan, X. Jia, B. Li, G. Wang, and G. Cao, “X-ray scatter correction for multi-source interior computed tomography,” Med. Phys. 44(1), 71–83 (2017).
    [Crossref] [PubMed]
  39. J. Bian, J. Wang, X. Han, E. Y. Sidky, L. Shao, and X. Pan, “Optimization-based image reconstruction from sparse-view data in offset-detector CBCT,” Phys. Med. Biol. 58(2), 205–230 (2013).
    [Crossref] [PubMed]
  40. X. Han, J. Bian, E. L. Ritman, E. Y. Sidky, and X. Pan, “Optimization-based reconstruction of sparse images from few-view projections,” Phys. Med. Biol. 57(16), 5245–5273 (2012).
    [Crossref] [PubMed]
  41. E. Y. Sidky and X. Pan, “Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization,” Phys. Med. Biol. 53(17), 4777–4807 (2008).
    [Crossref] [PubMed]
  42. S. Abbas, J. Min, and S. Cho, “Super-sparsely view-sampled cone-beam CT by incorporating prior data,” J. XRay Sci. Technol. 21(1), 71–83 (2013).
    [PubMed]
  43. K. Papafitsoros and C. B. Schönlieb, “A Combined First and Second Order Variational Approach for Image Reconstruction,” J. Math. Imaging Vis. 48(2), 308–338 (2014).
    [Crossref]
  44. C. Li, W. Yin, H. Jiang, and Y. Zhang, “An efficient augmented Lagrangian method with applications to total variation minimization,” Comput. Optim. Appl. 56(3), 507–530 (2013).
    [Crossref]

2017 (1)

H. Gong, H. Yan, X. Jia, B. Li, G. Wang, and G. Cao, “X-ray scatter correction for multi-source interior computed tomography,” Med. Phys. 44(1), 71–83 (2017).
[Crossref] [PubMed]

2016 (1)

A. du Plessis, S. G. le Roux, and A. Guelpa, “Comparison of medical and industrial X-ray computed tomography for non-destructive testing,” Case Stud. Nondestr. Test. Eval. 6, 17–25 (2016).
[Crossref]

2015 (2)

G. H. Chen and Y. Li, “Synchronized multiartifact reduction with tomographic reconstruction (SMART-RECON): A statistical model based iterative image reconstruction method to eliminate limited-view artifacts and to mitigate the temporal-average artifacts in time-resolved CT,” Med. Phys. 42(8), 4698–4707 (2015).
[Crossref] [PubMed]

G. Blois, J. M. Barros, and K. T. Christensen, “A microscopic particle image velocimetry method for studying the dynamics of immiscible liquid–liquid interactions in a porous micromodel,” Microfluid. Nanofluidics 18(5-6), 1391–1406 (2015).
[Crossref]

2014 (5)

W. E. Frazier, “Metal additive manufacturing: a review,” J. Mater. Eng. Perform. 23(6), 1917–1928 (2014).
[Crossref]

S. Shimizu, H. Fujii, Y. Sato, H. Kokawa, M. Sriraman, and S. Babu, “Mechanism of weld formation during very-high-power ultrasonic additive manufacturing of Al alloy 6061,” Acta Mater. 74, 234–243 (2014).
[Crossref]

A. Bauereiß, T. Scharowsky, and C. Körner, “Defect generation and propagation mechanism during additive manufacturing by selective beam melting,” J. Mater. Process. Technol. 214(11), 2522–2528 (2014).
[Crossref]

G. Cao, B. Liu, H. Gong, and H. Yu, “A stationary-sources and rotating-detectors computed tomography architecture for higher temporal resolution and lower radiation dose,” IEEE Access 2, 1263–1271 (2014).
[Crossref]

K. Papafitsoros and C. B. Schönlieb, “A Combined First and Second Order Variational Approach for Image Reconstruction,” J. Math. Imaging Vis. 48(2), 308–338 (2014).
[Crossref]

2013 (4)

C. Li, W. Yin, H. Jiang, and Y. Zhang, “An efficient augmented Lagrangian method with applications to total variation minimization,” Comput. Optim. Appl. 56(3), 507–530 (2013).
[Crossref]

S. Abbas, J. Min, and S. Cho, “Super-sparsely view-sampled cone-beam CT by incorporating prior data,” J. XRay Sci. Technol. 21(1), 71–83 (2013).
[PubMed]

P. T. Lauzier and G. H. Chen, “Characterization of statistical prior image constrained compressed sensing (PICCS): II. Application to dose reduction,” Med. Phys. 40(2), 021902 (2013).
[Crossref] [PubMed]

J. Bian, J. Wang, X. Han, E. Y. Sidky, L. Shao, and X. Pan, “Optimization-based image reconstruction from sparse-view data in offset-detector CBCT,” Phys. Med. Biol. 58(2), 205–230 (2013).
[Crossref] [PubMed]

2012 (2)

X. Han, J. Bian, E. L. Ritman, E. Y. Sidky, and X. Pan, “Optimization-based reconstruction of sparse images from few-view projections,” Phys. Med. Biol. 57(16), 5245–5273 (2012).
[Crossref] [PubMed]

P. T. Lauzier, J. Tang, and G. H. Chen, “Time-resolved cardiac interventional cone-beam CT reconstruction from fully truncated projections using the prior image constrained compressed sensing (PICCS) algorithm,” Phys. Med. Biol. 57(9), 2461–2476 (2012).
[Crossref] [PubMed]

2011 (2)

B. Liu, G. Wang, E. L. Ritman, G. Cao, J. Lu, O. Zhou, L. Zeng, and H. Yu, “Image reconstruction from limited angle projections collected by multisource interior x-ray imaging systems,” Phys. Med. Biol. 56(19), 6337–6357 (2011).
[Crossref] [PubMed]

P. T. Lauzier, J. Tang, and G. H. Chen, “Prior image constrained compressed sensing: implementation and performance evaluation,” Med. Phys. 39(1), 66–80 (2011).
[Crossref] [PubMed]

2010 (2)

X. Sun, J. Hoon Jeon, J. Blendell, and O. Akkus, “Visualization of a phantom post-yield deformation process in cortical bone,” J. Biomech. 43(10), 1989–1996 (2010).
[Crossref] [PubMed]

J. Zhao, Y. Lu, T. Zhuang, and G. Wang, “Overview of multisource CT systems and methods,” Proc. SPIE 7804, 78040H (2010).
[Crossref]

2009 (2)

G. H. Chen, J. Tang, and J. Hsieh, “Temporal resolution improvement using PICCS in MDCT cardiac imaging,” Med. Phys. 36(6), 2130–2135 (2009).
[Crossref] [PubMed]

G. Wang, H. Yu, and Y. Ye, “A scheme for multisource interior tomography,” Med. Phys. 36(8), 3575–3581 (2009).
[Crossref] [PubMed]

2008 (4)

G. H. Chen, J. Tang, and S. Leng, “Prior Image Constrained Compressed Sensing (PICCS),” Proc. SPIE Int Soc Opt Eng 6856, 685618 (2008).
[Crossref] [PubMed]

G. H. Chen, J. Tang, and S. Leng, “Prior Image Constrained Compressed Sensing (PICCS,” Med. Phys. 35(2), 660–663 (2008).
[Crossref] [PubMed]

E. Y. Sidky and X. Pan, “Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization,” Phys. Med. Biol. 53(17), 4777–4807 (2008).
[Crossref] [PubMed]

T. J. Heindel, J. N. Gray, and T. C. Jensen, “An X-ray system for visualizing fluid flows,” Flow Meas. Instrum. 19(2), 67–78 (2008).
[Crossref]

2007 (3)

M. Prakash, P. W. Cleary, J. Grandfield, P. Rohan, and V. Nguyen, “Optimisation of ingot casting wheel design using SPH simulations,” Prog. Comput. Fluid Dyn. 7(2/3/4), 101–110 (2007).
[Crossref]

M. Prakash, P. W. Cleary, J. Grandfield, P. Rohan, and V. Nguyen, “Optimisation of ingot casting wheel design using SPH simulations,” Prog. Comput. Fluid Dyn. 7(2/3/4), 101–110 (2007).
[Crossref]

G. X. Ding, D. M. Duggan, and C. W. Coffey, “Characteristics of kilovoltage x-ray beams used for cone-beam computed tomography in radiation therapy,” Phys. Med. Biol. 52(6), 1595–1615 (2007).
[Crossref] [PubMed]

2006 (4)

E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52(2), 489–509 (2006).
[Crossref]

J. Sengupta, B. G. Thomas, H.-J. Shin, G.-G. Lee, and S.-H. Kim, “A new mechanism of hook formation during continuous casting of ultra-low-carbon steel slabs,” Metall. Mater. Trans., A Phys. Metall. Mater. Sci. 37(5), 1597–1611 (2006).
[Crossref]

P. D. Lee, J. Wang, and R. C. Atwood, “Microporosity Formation during the Solidification of Aluminum-Copper Alloys,” JOM 58(11), 120–126 (2006).

T. G. Flohr, C. H. McCollough, H. Bruder, M. Petersilka, K. Gruber, C. Süß, M. Grasruck, K. Stierstorfer, B. Krauss, R. Raupach, A. N. Primak, A. Küttner, S. Achenbach, C. Becker, A. Kopp, and B. M. Ohnesorge, “First performance evaluation of a dual-source CT (DSCT) system,” Eur. Radiol. 16(2), 256–268 (2006).
[Crossref] [PubMed]

2004 (1)

P. Schardt, J. Deuringer, J. Freudenberger, E. Hell, W. Knüpfer, D. Mattern, and M. Schild, “New x-ray tube performance in computed tomography by introducing the rotating envelope tube technology,” Med. Phys. 31(9), 2699–2706 (2004).
[Crossref] [PubMed]

2001 (1)

Y. Liu, H. Liu, Y. Wang, and G. Wang, “Half-scan cone-beam CT fluoroscopy with multiple x-ray sources,” Med. Phys. 28(7), 1466–1471 (2001).
[Crossref] [PubMed]

1997 (2)

F. H. Gern and R. Kochendörfer, “Liquid silicon infiltration: description of infiltration dynamics and silicon carbide formation,” Compos., Part A Appl. Sci. Manuf. 28(4), 355–364 (1997).
[Crossref]

V. Semak and A. Matsunawa, “The role of recoil pressure in energy balance during laser materials processing,” J. Phys. D Appl. Phys. 30(18), 2541–2552 (1997).
[Crossref]

1988 (1)

B. Roebuck and E. Almond, “Deformation and fracture processes and the physical metallurgy of WC–Co hardmetals,” Int. Mater. Rev. 33(1), 90–112 (1988).
[Crossref]

Abbas, S.

S. Abbas, J. Min, and S. Cho, “Super-sparsely view-sampled cone-beam CT by incorporating prior data,” J. XRay Sci. Technol. 21(1), 71–83 (2013).
[PubMed]

Achenbach, S.

T. G. Flohr, C. H. McCollough, H. Bruder, M. Petersilka, K. Gruber, C. Süß, M. Grasruck, K. Stierstorfer, B. Krauss, R. Raupach, A. N. Primak, A. Küttner, S. Achenbach, C. Becker, A. Kopp, and B. M. Ohnesorge, “First performance evaluation of a dual-source CT (DSCT) system,” Eur. Radiol. 16(2), 256–268 (2006).
[Crossref] [PubMed]

Akkus, O.

X. Sun, J. Hoon Jeon, J. Blendell, and O. Akkus, “Visualization of a phantom post-yield deformation process in cortical bone,” J. Biomech. 43(10), 1989–1996 (2010).
[Crossref] [PubMed]

Almond, E.

B. Roebuck and E. Almond, “Deformation and fracture processes and the physical metallurgy of WC–Co hardmetals,” Int. Mater. Rev. 33(1), 90–112 (1988).
[Crossref]

Atwood, R. C.

P. D. Lee, J. Wang, and R. C. Atwood, “Microporosity Formation during the Solidification of Aluminum-Copper Alloys,” JOM 58(11), 120–126 (2006).

Babu, S.

S. Shimizu, H. Fujii, Y. Sato, H. Kokawa, M. Sriraman, and S. Babu, “Mechanism of weld formation during very-high-power ultrasonic additive manufacturing of Al alloy 6061,” Acta Mater. 74, 234–243 (2014).
[Crossref]

Barros, J. M.

G. Blois, J. M. Barros, and K. T. Christensen, “A microscopic particle image velocimetry method for studying the dynamics of immiscible liquid–liquid interactions in a porous micromodel,” Microfluid. Nanofluidics 18(5-6), 1391–1406 (2015).
[Crossref]

Bauereiß, A.

A. Bauereiß, T. Scharowsky, and C. Körner, “Defect generation and propagation mechanism during additive manufacturing by selective beam melting,” J. Mater. Process. Technol. 214(11), 2522–2528 (2014).
[Crossref]

Becker, C.

T. G. Flohr, C. H. McCollough, H. Bruder, M. Petersilka, K. Gruber, C. Süß, M. Grasruck, K. Stierstorfer, B. Krauss, R. Raupach, A. N. Primak, A. Küttner, S. Achenbach, C. Becker, A. Kopp, and B. M. Ohnesorge, “First performance evaluation of a dual-source CT (DSCT) system,” Eur. Radiol. 16(2), 256–268 (2006).
[Crossref] [PubMed]

Bian, J.

J. Bian, J. Wang, X. Han, E. Y. Sidky, L. Shao, and X. Pan, “Optimization-based image reconstruction from sparse-view data in offset-detector CBCT,” Phys. Med. Biol. 58(2), 205–230 (2013).
[Crossref] [PubMed]

X. Han, J. Bian, E. L. Ritman, E. Y. Sidky, and X. Pan, “Optimization-based reconstruction of sparse images from few-view projections,” Phys. Med. Biol. 57(16), 5245–5273 (2012).
[Crossref] [PubMed]

Blendell, J.

X. Sun, J. Hoon Jeon, J. Blendell, and O. Akkus, “Visualization of a phantom post-yield deformation process in cortical bone,” J. Biomech. 43(10), 1989–1996 (2010).
[Crossref] [PubMed]

Blois, G.

G. Blois, J. M. Barros, and K. T. Christensen, “A microscopic particle image velocimetry method for studying the dynamics of immiscible liquid–liquid interactions in a porous micromodel,” Microfluid. Nanofluidics 18(5-6), 1391–1406 (2015).
[Crossref]

Bruder, H.

T. G. Flohr, C. H. McCollough, H. Bruder, M. Petersilka, K. Gruber, C. Süß, M. Grasruck, K. Stierstorfer, B. Krauss, R. Raupach, A. N. Primak, A. Küttner, S. Achenbach, C. Becker, A. Kopp, and B. M. Ohnesorge, “First performance evaluation of a dual-source CT (DSCT) system,” Eur. Radiol. 16(2), 256–268 (2006).
[Crossref] [PubMed]

Candes, E. J.

E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52(2), 489–509 (2006).
[Crossref]

Cao, G.

H. Gong, H. Yan, X. Jia, B. Li, G. Wang, and G. Cao, “X-ray scatter correction for multi-source interior computed tomography,” Med. Phys. 44(1), 71–83 (2017).
[Crossref] [PubMed]

G. Cao, B. Liu, H. Gong, and H. Yu, “A stationary-sources and rotating-detectors computed tomography architecture for higher temporal resolution and lower radiation dose,” IEEE Access 2, 1263–1271 (2014).
[Crossref]

B. Liu, G. Wang, E. L. Ritman, G. Cao, J. Lu, O. Zhou, L. Zeng, and H. Yu, “Image reconstruction from limited angle projections collected by multisource interior x-ray imaging systems,” Phys. Med. Biol. 56(19), 6337–6357 (2011).
[Crossref] [PubMed]

Chen, G. H.

G. H. Chen and Y. Li, “Synchronized multiartifact reduction with tomographic reconstruction (SMART-RECON): A statistical model based iterative image reconstruction method to eliminate limited-view artifacts and to mitigate the temporal-average artifacts in time-resolved CT,” Med. Phys. 42(8), 4698–4707 (2015).
[Crossref] [PubMed]

P. T. Lauzier and G. H. Chen, “Characterization of statistical prior image constrained compressed sensing (PICCS): II. Application to dose reduction,” Med. Phys. 40(2), 021902 (2013).
[Crossref] [PubMed]

P. T. Lauzier, J. Tang, and G. H. Chen, “Time-resolved cardiac interventional cone-beam CT reconstruction from fully truncated projections using the prior image constrained compressed sensing (PICCS) algorithm,” Phys. Med. Biol. 57(9), 2461–2476 (2012).
[Crossref] [PubMed]

P. T. Lauzier, J. Tang, and G. H. Chen, “Prior image constrained compressed sensing: implementation and performance evaluation,” Med. Phys. 39(1), 66–80 (2011).
[Crossref] [PubMed]

G. H. Chen, J. Tang, and J. Hsieh, “Temporal resolution improvement using PICCS in MDCT cardiac imaging,” Med. Phys. 36(6), 2130–2135 (2009).
[Crossref] [PubMed]

G. H. Chen, J. Tang, and S. Leng, “Prior Image Constrained Compressed Sensing (PICCS),” Proc. SPIE Int Soc Opt Eng 6856, 685618 (2008).
[Crossref] [PubMed]

G. H. Chen, J. Tang, and S. Leng, “Prior Image Constrained Compressed Sensing (PICCS,” Med. Phys. 35(2), 660–663 (2008).
[Crossref] [PubMed]

Cho, S.

S. Abbas, J. Min, and S. Cho, “Super-sparsely view-sampled cone-beam CT by incorporating prior data,” J. XRay Sci. Technol. 21(1), 71–83 (2013).
[PubMed]

Christensen, K. T.

G. Blois, J. M. Barros, and K. T. Christensen, “A microscopic particle image velocimetry method for studying the dynamics of immiscible liquid–liquid interactions in a porous micromodel,” Microfluid. Nanofluidics 18(5-6), 1391–1406 (2015).
[Crossref]

Cleary, P. W.

M. Prakash, P. W. Cleary, J. Grandfield, P. Rohan, and V. Nguyen, “Optimisation of ingot casting wheel design using SPH simulations,” Prog. Comput. Fluid Dyn. 7(2/3/4), 101–110 (2007).
[Crossref]

M. Prakash, P. W. Cleary, J. Grandfield, P. Rohan, and V. Nguyen, “Optimisation of ingot casting wheel design using SPH simulations,” Prog. Comput. Fluid Dyn. 7(2/3/4), 101–110 (2007).
[Crossref]

Coffey, C. W.

G. X. Ding, D. M. Duggan, and C. W. Coffey, “Characteristics of kilovoltage x-ray beams used for cone-beam computed tomography in radiation therapy,” Phys. Med. Biol. 52(6), 1595–1615 (2007).
[Crossref] [PubMed]

Deuringer, J.

P. Schardt, J. Deuringer, J. Freudenberger, E. Hell, W. Knüpfer, D. Mattern, and M. Schild, “New x-ray tube performance in computed tomography by introducing the rotating envelope tube technology,” Med. Phys. 31(9), 2699–2706 (2004).
[Crossref] [PubMed]

Ding, G. X.

G. X. Ding, D. M. Duggan, and C. W. Coffey, “Characteristics of kilovoltage x-ray beams used for cone-beam computed tomography in radiation therapy,” Phys. Med. Biol. 52(6), 1595–1615 (2007).
[Crossref] [PubMed]

du Plessis, A.

A. du Plessis, S. G. le Roux, and A. Guelpa, “Comparison of medical and industrial X-ray computed tomography for non-destructive testing,” Case Stud. Nondestr. Test. Eval. 6, 17–25 (2016).
[Crossref]

Duggan, D. M.

G. X. Ding, D. M. Duggan, and C. W. Coffey, “Characteristics of kilovoltage x-ray beams used for cone-beam computed tomography in radiation therapy,” Phys. Med. Biol. 52(6), 1595–1615 (2007).
[Crossref] [PubMed]

Flohr, T. G.

T. G. Flohr, C. H. McCollough, H. Bruder, M. Petersilka, K. Gruber, C. Süß, M. Grasruck, K. Stierstorfer, B. Krauss, R. Raupach, A. N. Primak, A. Küttner, S. Achenbach, C. Becker, A. Kopp, and B. M. Ohnesorge, “First performance evaluation of a dual-source CT (DSCT) system,” Eur. Radiol. 16(2), 256–268 (2006).
[Crossref] [PubMed]

Frazier, W. E.

W. E. Frazier, “Metal additive manufacturing: a review,” J. Mater. Eng. Perform. 23(6), 1917–1928 (2014).
[Crossref]

Freudenberger, J.

P. Schardt, J. Deuringer, J. Freudenberger, E. Hell, W. Knüpfer, D. Mattern, and M. Schild, “New x-ray tube performance in computed tomography by introducing the rotating envelope tube technology,” Med. Phys. 31(9), 2699–2706 (2004).
[Crossref] [PubMed]

Fujii, H.

S. Shimizu, H. Fujii, Y. Sato, H. Kokawa, M. Sriraman, and S. Babu, “Mechanism of weld formation during very-high-power ultrasonic additive manufacturing of Al alloy 6061,” Acta Mater. 74, 234–243 (2014).
[Crossref]

Gern, F. H.

F. H. Gern and R. Kochendörfer, “Liquid silicon infiltration: description of infiltration dynamics and silicon carbide formation,” Compos., Part A Appl. Sci. Manuf. 28(4), 355–364 (1997).
[Crossref]

Gong, H.

H. Gong, H. Yan, X. Jia, B. Li, G. Wang, and G. Cao, “X-ray scatter correction for multi-source interior computed tomography,” Med. Phys. 44(1), 71–83 (2017).
[Crossref] [PubMed]

G. Cao, B. Liu, H. Gong, and H. Yu, “A stationary-sources and rotating-detectors computed tomography architecture for higher temporal resolution and lower radiation dose,” IEEE Access 2, 1263–1271 (2014).
[Crossref]

Grandfield, J.

M. Prakash, P. W. Cleary, J. Grandfield, P. Rohan, and V. Nguyen, “Optimisation of ingot casting wheel design using SPH simulations,” Prog. Comput. Fluid Dyn. 7(2/3/4), 101–110 (2007).
[Crossref]

M. Prakash, P. W. Cleary, J. Grandfield, P. Rohan, and V. Nguyen, “Optimisation of ingot casting wheel design using SPH simulations,” Prog. Comput. Fluid Dyn. 7(2/3/4), 101–110 (2007).
[Crossref]

Grasruck, M.

T. G. Flohr, C. H. McCollough, H. Bruder, M. Petersilka, K. Gruber, C. Süß, M. Grasruck, K. Stierstorfer, B. Krauss, R. Raupach, A. N. Primak, A. Küttner, S. Achenbach, C. Becker, A. Kopp, and B. M. Ohnesorge, “First performance evaluation of a dual-source CT (DSCT) system,” Eur. Radiol. 16(2), 256–268 (2006).
[Crossref] [PubMed]

Gray, J. N.

T. J. Heindel, J. N. Gray, and T. C. Jensen, “An X-ray system for visualizing fluid flows,” Flow Meas. Instrum. 19(2), 67–78 (2008).
[Crossref]

Gruber, K.

T. G. Flohr, C. H. McCollough, H. Bruder, M. Petersilka, K. Gruber, C. Süß, M. Grasruck, K. Stierstorfer, B. Krauss, R. Raupach, A. N. Primak, A. Küttner, S. Achenbach, C. Becker, A. Kopp, and B. M. Ohnesorge, “First performance evaluation of a dual-source CT (DSCT) system,” Eur. Radiol. 16(2), 256–268 (2006).
[Crossref] [PubMed]

Guelpa, A.

A. du Plessis, S. G. le Roux, and A. Guelpa, “Comparison of medical and industrial X-ray computed tomography for non-destructive testing,” Case Stud. Nondestr. Test. Eval. 6, 17–25 (2016).
[Crossref]

Han, X.

J. Bian, J. Wang, X. Han, E. Y. Sidky, L. Shao, and X. Pan, “Optimization-based image reconstruction from sparse-view data in offset-detector CBCT,” Phys. Med. Biol. 58(2), 205–230 (2013).
[Crossref] [PubMed]

X. Han, J. Bian, E. L. Ritman, E. Y. Sidky, and X. Pan, “Optimization-based reconstruction of sparse images from few-view projections,” Phys. Med. Biol. 57(16), 5245–5273 (2012).
[Crossref] [PubMed]

Heindel, T. J.

T. J. Heindel, J. N. Gray, and T. C. Jensen, “An X-ray system for visualizing fluid flows,” Flow Meas. Instrum. 19(2), 67–78 (2008).
[Crossref]

Hell, E.

P. Schardt, J. Deuringer, J. Freudenberger, E. Hell, W. Knüpfer, D. Mattern, and M. Schild, “New x-ray tube performance in computed tomography by introducing the rotating envelope tube technology,” Med. Phys. 31(9), 2699–2706 (2004).
[Crossref] [PubMed]

Hoon Jeon, J.

X. Sun, J. Hoon Jeon, J. Blendell, and O. Akkus, “Visualization of a phantom post-yield deformation process in cortical bone,” J. Biomech. 43(10), 1989–1996 (2010).
[Crossref] [PubMed]

Hsieh, J.

G. H. Chen, J. Tang, and J. Hsieh, “Temporal resolution improvement using PICCS in MDCT cardiac imaging,” Med. Phys. 36(6), 2130–2135 (2009).
[Crossref] [PubMed]

Jensen, T. C.

T. J. Heindel, J. N. Gray, and T. C. Jensen, “An X-ray system for visualizing fluid flows,” Flow Meas. Instrum. 19(2), 67–78 (2008).
[Crossref]

Jia, X.

H. Gong, H. Yan, X. Jia, B. Li, G. Wang, and G. Cao, “X-ray scatter correction for multi-source interior computed tomography,” Med. Phys. 44(1), 71–83 (2017).
[Crossref] [PubMed]

Jiang, H.

C. Li, W. Yin, H. Jiang, and Y. Zhang, “An efficient augmented Lagrangian method with applications to total variation minimization,” Comput. Optim. Appl. 56(3), 507–530 (2013).
[Crossref]

Kim, S.-H.

J. Sengupta, B. G. Thomas, H.-J. Shin, G.-G. Lee, and S.-H. Kim, “A new mechanism of hook formation during continuous casting of ultra-low-carbon steel slabs,” Metall. Mater. Trans., A Phys. Metall. Mater. Sci. 37(5), 1597–1611 (2006).
[Crossref]

Knüpfer, W.

P. Schardt, J. Deuringer, J. Freudenberger, E. Hell, W. Knüpfer, D. Mattern, and M. Schild, “New x-ray tube performance in computed tomography by introducing the rotating envelope tube technology,” Med. Phys. 31(9), 2699–2706 (2004).
[Crossref] [PubMed]

Kochendörfer, R.

F. H. Gern and R. Kochendörfer, “Liquid silicon infiltration: description of infiltration dynamics and silicon carbide formation,” Compos., Part A Appl. Sci. Manuf. 28(4), 355–364 (1997).
[Crossref]

Kokawa, H.

S. Shimizu, H. Fujii, Y. Sato, H. Kokawa, M. Sriraman, and S. Babu, “Mechanism of weld formation during very-high-power ultrasonic additive manufacturing of Al alloy 6061,” Acta Mater. 74, 234–243 (2014).
[Crossref]

Kopp, A.

T. G. Flohr, C. H. McCollough, H. Bruder, M. Petersilka, K. Gruber, C. Süß, M. Grasruck, K. Stierstorfer, B. Krauss, R. Raupach, A. N. Primak, A. Küttner, S. Achenbach, C. Becker, A. Kopp, and B. M. Ohnesorge, “First performance evaluation of a dual-source CT (DSCT) system,” Eur. Radiol. 16(2), 256–268 (2006).
[Crossref] [PubMed]

Körner, C.

A. Bauereiß, T. Scharowsky, and C. Körner, “Defect generation and propagation mechanism during additive manufacturing by selective beam melting,” J. Mater. Process. Technol. 214(11), 2522–2528 (2014).
[Crossref]

Krauss, B.

T. G. Flohr, C. H. McCollough, H. Bruder, M. Petersilka, K. Gruber, C. Süß, M. Grasruck, K. Stierstorfer, B. Krauss, R. Raupach, A. N. Primak, A. Küttner, S. Achenbach, C. Becker, A. Kopp, and B. M. Ohnesorge, “First performance evaluation of a dual-source CT (DSCT) system,” Eur. Radiol. 16(2), 256–268 (2006).
[Crossref] [PubMed]

Küttner, A.

T. G. Flohr, C. H. McCollough, H. Bruder, M. Petersilka, K. Gruber, C. Süß, M. Grasruck, K. Stierstorfer, B. Krauss, R. Raupach, A. N. Primak, A. Küttner, S. Achenbach, C. Becker, A. Kopp, and B. M. Ohnesorge, “First performance evaluation of a dual-source CT (DSCT) system,” Eur. Radiol. 16(2), 256–268 (2006).
[Crossref] [PubMed]

Lauzier, P. T.

P. T. Lauzier and G. H. Chen, “Characterization of statistical prior image constrained compressed sensing (PICCS): II. Application to dose reduction,” Med. Phys. 40(2), 021902 (2013).
[Crossref] [PubMed]

P. T. Lauzier, J. Tang, and G. H. Chen, “Time-resolved cardiac interventional cone-beam CT reconstruction from fully truncated projections using the prior image constrained compressed sensing (PICCS) algorithm,” Phys. Med. Biol. 57(9), 2461–2476 (2012).
[Crossref] [PubMed]

P. T. Lauzier, J. Tang, and G. H. Chen, “Prior image constrained compressed sensing: implementation and performance evaluation,” Med. Phys. 39(1), 66–80 (2011).
[Crossref] [PubMed]

le Roux, S. G.

A. du Plessis, S. G. le Roux, and A. Guelpa, “Comparison of medical and industrial X-ray computed tomography for non-destructive testing,” Case Stud. Nondestr. Test. Eval. 6, 17–25 (2016).
[Crossref]

Lee, G.-G.

J. Sengupta, B. G. Thomas, H.-J. Shin, G.-G. Lee, and S.-H. Kim, “A new mechanism of hook formation during continuous casting of ultra-low-carbon steel slabs,” Metall. Mater. Trans., A Phys. Metall. Mater. Sci. 37(5), 1597–1611 (2006).
[Crossref]

Lee, P. D.

P. D. Lee, J. Wang, and R. C. Atwood, “Microporosity Formation during the Solidification of Aluminum-Copper Alloys,” JOM 58(11), 120–126 (2006).

Leng, S.

G. H. Chen, J. Tang, and S. Leng, “Prior Image Constrained Compressed Sensing (PICCS),” Proc. SPIE Int Soc Opt Eng 6856, 685618 (2008).
[Crossref] [PubMed]

G. H. Chen, J. Tang, and S. Leng, “Prior Image Constrained Compressed Sensing (PICCS,” Med. Phys. 35(2), 660–663 (2008).
[Crossref] [PubMed]

Li, B.

H. Gong, H. Yan, X. Jia, B. Li, G. Wang, and G. Cao, “X-ray scatter correction for multi-source interior computed tomography,” Med. Phys. 44(1), 71–83 (2017).
[Crossref] [PubMed]

Li, C.

C. Li, W. Yin, H. Jiang, and Y. Zhang, “An efficient augmented Lagrangian method with applications to total variation minimization,” Comput. Optim. Appl. 56(3), 507–530 (2013).
[Crossref]

Li, Y.

G. H. Chen and Y. Li, “Synchronized multiartifact reduction with tomographic reconstruction (SMART-RECON): A statistical model based iterative image reconstruction method to eliminate limited-view artifacts and to mitigate the temporal-average artifacts in time-resolved CT,” Med. Phys. 42(8), 4698–4707 (2015).
[Crossref] [PubMed]

Liu, B.

G. Cao, B. Liu, H. Gong, and H. Yu, “A stationary-sources and rotating-detectors computed tomography architecture for higher temporal resolution and lower radiation dose,” IEEE Access 2, 1263–1271 (2014).
[Crossref]

B. Liu, G. Wang, E. L. Ritman, G. Cao, J. Lu, O. Zhou, L. Zeng, and H. Yu, “Image reconstruction from limited angle projections collected by multisource interior x-ray imaging systems,” Phys. Med. Biol. 56(19), 6337–6357 (2011).
[Crossref] [PubMed]

Liu, H.

Y. Liu, H. Liu, Y. Wang, and G. Wang, “Half-scan cone-beam CT fluoroscopy with multiple x-ray sources,” Med. Phys. 28(7), 1466–1471 (2001).
[Crossref] [PubMed]

Liu, Y.

Y. Liu, H. Liu, Y. Wang, and G. Wang, “Half-scan cone-beam CT fluoroscopy with multiple x-ray sources,” Med. Phys. 28(7), 1466–1471 (2001).
[Crossref] [PubMed]

Lu, J.

B. Liu, G. Wang, E. L. Ritman, G. Cao, J. Lu, O. Zhou, L. Zeng, and H. Yu, “Image reconstruction from limited angle projections collected by multisource interior x-ray imaging systems,” Phys. Med. Biol. 56(19), 6337–6357 (2011).
[Crossref] [PubMed]

Lu, Y.

J. Zhao, Y. Lu, T. Zhuang, and G. Wang, “Overview of multisource CT systems and methods,” Proc. SPIE 7804, 78040H (2010).
[Crossref]

Matsunawa, A.

V. Semak and A. Matsunawa, “The role of recoil pressure in energy balance during laser materials processing,” J. Phys. D Appl. Phys. 30(18), 2541–2552 (1997).
[Crossref]

Mattern, D.

P. Schardt, J. Deuringer, J. Freudenberger, E. Hell, W. Knüpfer, D. Mattern, and M. Schild, “New x-ray tube performance in computed tomography by introducing the rotating envelope tube technology,” Med. Phys. 31(9), 2699–2706 (2004).
[Crossref] [PubMed]

McCollough, C. H.

T. G. Flohr, C. H. McCollough, H. Bruder, M. Petersilka, K. Gruber, C. Süß, M. Grasruck, K. Stierstorfer, B. Krauss, R. Raupach, A. N. Primak, A. Küttner, S. Achenbach, C. Becker, A. Kopp, and B. M. Ohnesorge, “First performance evaluation of a dual-source CT (DSCT) system,” Eur. Radiol. 16(2), 256–268 (2006).
[Crossref] [PubMed]

Min, J.

S. Abbas, J. Min, and S. Cho, “Super-sparsely view-sampled cone-beam CT by incorporating prior data,” J. XRay Sci. Technol. 21(1), 71–83 (2013).
[PubMed]

Nguyen, V.

M. Prakash, P. W. Cleary, J. Grandfield, P. Rohan, and V. Nguyen, “Optimisation of ingot casting wheel design using SPH simulations,” Prog. Comput. Fluid Dyn. 7(2/3/4), 101–110 (2007).
[Crossref]

M. Prakash, P. W. Cleary, J. Grandfield, P. Rohan, and V. Nguyen, “Optimisation of ingot casting wheel design using SPH simulations,” Prog. Comput. Fluid Dyn. 7(2/3/4), 101–110 (2007).
[Crossref]

Ohnesorge, B. M.

T. G. Flohr, C. H. McCollough, H. Bruder, M. Petersilka, K. Gruber, C. Süß, M. Grasruck, K. Stierstorfer, B. Krauss, R. Raupach, A. N. Primak, A. Küttner, S. Achenbach, C. Becker, A. Kopp, and B. M. Ohnesorge, “First performance evaluation of a dual-source CT (DSCT) system,” Eur. Radiol. 16(2), 256–268 (2006).
[Crossref] [PubMed]

Pan, X.

J. Bian, J. Wang, X. Han, E. Y. Sidky, L. Shao, and X. Pan, “Optimization-based image reconstruction from sparse-view data in offset-detector CBCT,” Phys. Med. Biol. 58(2), 205–230 (2013).
[Crossref] [PubMed]

X. Han, J. Bian, E. L. Ritman, E. Y. Sidky, and X. Pan, “Optimization-based reconstruction of sparse images from few-view projections,” Phys. Med. Biol. 57(16), 5245–5273 (2012).
[Crossref] [PubMed]

E. Y. Sidky and X. Pan, “Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization,” Phys. Med. Biol. 53(17), 4777–4807 (2008).
[Crossref] [PubMed]

Papafitsoros, K.

K. Papafitsoros and C. B. Schönlieb, “A Combined First and Second Order Variational Approach for Image Reconstruction,” J. Math. Imaging Vis. 48(2), 308–338 (2014).
[Crossref]

Petersilka, M.

T. G. Flohr, C. H. McCollough, H. Bruder, M. Petersilka, K. Gruber, C. Süß, M. Grasruck, K. Stierstorfer, B. Krauss, R. Raupach, A. N. Primak, A. Küttner, S. Achenbach, C. Becker, A. Kopp, and B. M. Ohnesorge, “First performance evaluation of a dual-source CT (DSCT) system,” Eur. Radiol. 16(2), 256–268 (2006).
[Crossref] [PubMed]

Prakash, M.

M. Prakash, P. W. Cleary, J. Grandfield, P. Rohan, and V. Nguyen, “Optimisation of ingot casting wheel design using SPH simulations,” Prog. Comput. Fluid Dyn. 7(2/3/4), 101–110 (2007).
[Crossref]

M. Prakash, P. W. Cleary, J. Grandfield, P. Rohan, and V. Nguyen, “Optimisation of ingot casting wheel design using SPH simulations,” Prog. Comput. Fluid Dyn. 7(2/3/4), 101–110 (2007).
[Crossref]

Primak, A. N.

T. G. Flohr, C. H. McCollough, H. Bruder, M. Petersilka, K. Gruber, C. Süß, M. Grasruck, K. Stierstorfer, B. Krauss, R. Raupach, A. N. Primak, A. Küttner, S. Achenbach, C. Becker, A. Kopp, and B. M. Ohnesorge, “First performance evaluation of a dual-source CT (DSCT) system,” Eur. Radiol. 16(2), 256–268 (2006).
[Crossref] [PubMed]

Raupach, R.

T. G. Flohr, C. H. McCollough, H. Bruder, M. Petersilka, K. Gruber, C. Süß, M. Grasruck, K. Stierstorfer, B. Krauss, R. Raupach, A. N. Primak, A. Küttner, S. Achenbach, C. Becker, A. Kopp, and B. M. Ohnesorge, “First performance evaluation of a dual-source CT (DSCT) system,” Eur. Radiol. 16(2), 256–268 (2006).
[Crossref] [PubMed]

Ritman, E. L.

X. Han, J. Bian, E. L. Ritman, E. Y. Sidky, and X. Pan, “Optimization-based reconstruction of sparse images from few-view projections,” Phys. Med. Biol. 57(16), 5245–5273 (2012).
[Crossref] [PubMed]

B. Liu, G. Wang, E. L. Ritman, G. Cao, J. Lu, O. Zhou, L. Zeng, and H. Yu, “Image reconstruction from limited angle projections collected by multisource interior x-ray imaging systems,” Phys. Med. Biol. 56(19), 6337–6357 (2011).
[Crossref] [PubMed]

Roebuck, B.

B. Roebuck and E. Almond, “Deformation and fracture processes and the physical metallurgy of WC–Co hardmetals,” Int. Mater. Rev. 33(1), 90–112 (1988).
[Crossref]

Rohan, P.

M. Prakash, P. W. Cleary, J. Grandfield, P. Rohan, and V. Nguyen, “Optimisation of ingot casting wheel design using SPH simulations,” Prog. Comput. Fluid Dyn. 7(2/3/4), 101–110 (2007).
[Crossref]

M. Prakash, P. W. Cleary, J. Grandfield, P. Rohan, and V. Nguyen, “Optimisation of ingot casting wheel design using SPH simulations,” Prog. Comput. Fluid Dyn. 7(2/3/4), 101–110 (2007).
[Crossref]

Romberg, J.

E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52(2), 489–509 (2006).
[Crossref]

Sato, Y.

S. Shimizu, H. Fujii, Y. Sato, H. Kokawa, M. Sriraman, and S. Babu, “Mechanism of weld formation during very-high-power ultrasonic additive manufacturing of Al alloy 6061,” Acta Mater. 74, 234–243 (2014).
[Crossref]

Schardt, P.

P. Schardt, J. Deuringer, J. Freudenberger, E. Hell, W. Knüpfer, D. Mattern, and M. Schild, “New x-ray tube performance in computed tomography by introducing the rotating envelope tube technology,” Med. Phys. 31(9), 2699–2706 (2004).
[Crossref] [PubMed]

Scharowsky, T.

A. Bauereiß, T. Scharowsky, and C. Körner, “Defect generation and propagation mechanism during additive manufacturing by selective beam melting,” J. Mater. Process. Technol. 214(11), 2522–2528 (2014).
[Crossref]

Schild, M.

P. Schardt, J. Deuringer, J. Freudenberger, E. Hell, W. Knüpfer, D. Mattern, and M. Schild, “New x-ray tube performance in computed tomography by introducing the rotating envelope tube technology,” Med. Phys. 31(9), 2699–2706 (2004).
[Crossref] [PubMed]

Schönlieb, C. B.

K. Papafitsoros and C. B. Schönlieb, “A Combined First and Second Order Variational Approach for Image Reconstruction,” J. Math. Imaging Vis. 48(2), 308–338 (2014).
[Crossref]

Semak, V.

V. Semak and A. Matsunawa, “The role of recoil pressure in energy balance during laser materials processing,” J. Phys. D Appl. Phys. 30(18), 2541–2552 (1997).
[Crossref]

Sengupta, J.

J. Sengupta, B. G. Thomas, H.-J. Shin, G.-G. Lee, and S.-H. Kim, “A new mechanism of hook formation during continuous casting of ultra-low-carbon steel slabs,” Metall. Mater. Trans., A Phys. Metall. Mater. Sci. 37(5), 1597–1611 (2006).
[Crossref]

Shao, L.

J. Bian, J. Wang, X. Han, E. Y. Sidky, L. Shao, and X. Pan, “Optimization-based image reconstruction from sparse-view data in offset-detector CBCT,” Phys. Med. Biol. 58(2), 205–230 (2013).
[Crossref] [PubMed]

Shimizu, S.

S. Shimizu, H. Fujii, Y. Sato, H. Kokawa, M. Sriraman, and S. Babu, “Mechanism of weld formation during very-high-power ultrasonic additive manufacturing of Al alloy 6061,” Acta Mater. 74, 234–243 (2014).
[Crossref]

Shin, H.-J.

J. Sengupta, B. G. Thomas, H.-J. Shin, G.-G. Lee, and S.-H. Kim, “A new mechanism of hook formation during continuous casting of ultra-low-carbon steel slabs,” Metall. Mater. Trans., A Phys. Metall. Mater. Sci. 37(5), 1597–1611 (2006).
[Crossref]

Sidky, E. Y.

J. Bian, J. Wang, X. Han, E. Y. Sidky, L. Shao, and X. Pan, “Optimization-based image reconstruction from sparse-view data in offset-detector CBCT,” Phys. Med. Biol. 58(2), 205–230 (2013).
[Crossref] [PubMed]

X. Han, J. Bian, E. L. Ritman, E. Y. Sidky, and X. Pan, “Optimization-based reconstruction of sparse images from few-view projections,” Phys. Med. Biol. 57(16), 5245–5273 (2012).
[Crossref] [PubMed]

E. Y. Sidky and X. Pan, “Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization,” Phys. Med. Biol. 53(17), 4777–4807 (2008).
[Crossref] [PubMed]

Sriraman, M.

S. Shimizu, H. Fujii, Y. Sato, H. Kokawa, M. Sriraman, and S. Babu, “Mechanism of weld formation during very-high-power ultrasonic additive manufacturing of Al alloy 6061,” Acta Mater. 74, 234–243 (2014).
[Crossref]

Stierstorfer, K.

T. G. Flohr, C. H. McCollough, H. Bruder, M. Petersilka, K. Gruber, C. Süß, M. Grasruck, K. Stierstorfer, B. Krauss, R. Raupach, A. N. Primak, A. Küttner, S. Achenbach, C. Becker, A. Kopp, and B. M. Ohnesorge, “First performance evaluation of a dual-source CT (DSCT) system,” Eur. Radiol. 16(2), 256–268 (2006).
[Crossref] [PubMed]

Sun, X.

X. Sun, J. Hoon Jeon, J. Blendell, and O. Akkus, “Visualization of a phantom post-yield deformation process in cortical bone,” J. Biomech. 43(10), 1989–1996 (2010).
[Crossref] [PubMed]

Süß, C.

T. G. Flohr, C. H. McCollough, H. Bruder, M. Petersilka, K. Gruber, C. Süß, M. Grasruck, K. Stierstorfer, B. Krauss, R. Raupach, A. N. Primak, A. Küttner, S. Achenbach, C. Becker, A. Kopp, and B. M. Ohnesorge, “First performance evaluation of a dual-source CT (DSCT) system,” Eur. Radiol. 16(2), 256–268 (2006).
[Crossref] [PubMed]

Tang, J.

P. T. Lauzier, J. Tang, and G. H. Chen, “Time-resolved cardiac interventional cone-beam CT reconstruction from fully truncated projections using the prior image constrained compressed sensing (PICCS) algorithm,” Phys. Med. Biol. 57(9), 2461–2476 (2012).
[Crossref] [PubMed]

P. T. Lauzier, J. Tang, and G. H. Chen, “Prior image constrained compressed sensing: implementation and performance evaluation,” Med. Phys. 39(1), 66–80 (2011).
[Crossref] [PubMed]

G. H. Chen, J. Tang, and J. Hsieh, “Temporal resolution improvement using PICCS in MDCT cardiac imaging,” Med. Phys. 36(6), 2130–2135 (2009).
[Crossref] [PubMed]

G. H. Chen, J. Tang, and S. Leng, “Prior Image Constrained Compressed Sensing (PICCS),” Proc. SPIE Int Soc Opt Eng 6856, 685618 (2008).
[Crossref] [PubMed]

G. H. Chen, J. Tang, and S. Leng, “Prior Image Constrained Compressed Sensing (PICCS,” Med. Phys. 35(2), 660–663 (2008).
[Crossref] [PubMed]

Tao, T.

E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52(2), 489–509 (2006).
[Crossref]

Thomas, B. G.

J. Sengupta, B. G. Thomas, H.-J. Shin, G.-G. Lee, and S.-H. Kim, “A new mechanism of hook formation during continuous casting of ultra-low-carbon steel slabs,” Metall. Mater. Trans., A Phys. Metall. Mater. Sci. 37(5), 1597–1611 (2006).
[Crossref]

Wang, G.

H. Gong, H. Yan, X. Jia, B. Li, G. Wang, and G. Cao, “X-ray scatter correction for multi-source interior computed tomography,” Med. Phys. 44(1), 71–83 (2017).
[Crossref] [PubMed]

B. Liu, G. Wang, E. L. Ritman, G. Cao, J. Lu, O. Zhou, L. Zeng, and H. Yu, “Image reconstruction from limited angle projections collected by multisource interior x-ray imaging systems,” Phys. Med. Biol. 56(19), 6337–6357 (2011).
[Crossref] [PubMed]

J. Zhao, Y. Lu, T. Zhuang, and G. Wang, “Overview of multisource CT systems and methods,” Proc. SPIE 7804, 78040H (2010).
[Crossref]

G. Wang, H. Yu, and Y. Ye, “A scheme for multisource interior tomography,” Med. Phys. 36(8), 3575–3581 (2009).
[Crossref] [PubMed]

Y. Liu, H. Liu, Y. Wang, and G. Wang, “Half-scan cone-beam CT fluoroscopy with multiple x-ray sources,” Med. Phys. 28(7), 1466–1471 (2001).
[Crossref] [PubMed]

Wang, J.

J. Bian, J. Wang, X. Han, E. Y. Sidky, L. Shao, and X. Pan, “Optimization-based image reconstruction from sparse-view data in offset-detector CBCT,” Phys. Med. Biol. 58(2), 205–230 (2013).
[Crossref] [PubMed]

P. D. Lee, J. Wang, and R. C. Atwood, “Microporosity Formation during the Solidification of Aluminum-Copper Alloys,” JOM 58(11), 120–126 (2006).

Wang, Y.

Y. Liu, H. Liu, Y. Wang, and G. Wang, “Half-scan cone-beam CT fluoroscopy with multiple x-ray sources,” Med. Phys. 28(7), 1466–1471 (2001).
[Crossref] [PubMed]

Yan, H.

H. Gong, H. Yan, X. Jia, B. Li, G. Wang, and G. Cao, “X-ray scatter correction for multi-source interior computed tomography,” Med. Phys. 44(1), 71–83 (2017).
[Crossref] [PubMed]

Ye, Y.

G. Wang, H. Yu, and Y. Ye, “A scheme for multisource interior tomography,” Med. Phys. 36(8), 3575–3581 (2009).
[Crossref] [PubMed]

Yin, W.

C. Li, W. Yin, H. Jiang, and Y. Zhang, “An efficient augmented Lagrangian method with applications to total variation minimization,” Comput. Optim. Appl. 56(3), 507–530 (2013).
[Crossref]

Yu, H.

G. Cao, B. Liu, H. Gong, and H. Yu, “A stationary-sources and rotating-detectors computed tomography architecture for higher temporal resolution and lower radiation dose,” IEEE Access 2, 1263–1271 (2014).
[Crossref]

B. Liu, G. Wang, E. L. Ritman, G. Cao, J. Lu, O. Zhou, L. Zeng, and H. Yu, “Image reconstruction from limited angle projections collected by multisource interior x-ray imaging systems,” Phys. Med. Biol. 56(19), 6337–6357 (2011).
[Crossref] [PubMed]

G. Wang, H. Yu, and Y. Ye, “A scheme for multisource interior tomography,” Med. Phys. 36(8), 3575–3581 (2009).
[Crossref] [PubMed]

Zeng, L.

B. Liu, G. Wang, E. L. Ritman, G. Cao, J. Lu, O. Zhou, L. Zeng, and H. Yu, “Image reconstruction from limited angle projections collected by multisource interior x-ray imaging systems,” Phys. Med. Biol. 56(19), 6337–6357 (2011).
[Crossref] [PubMed]

Zhang, Y.

C. Li, W. Yin, H. Jiang, and Y. Zhang, “An efficient augmented Lagrangian method with applications to total variation minimization,” Comput. Optim. Appl. 56(3), 507–530 (2013).
[Crossref]

Zhao, J.

J. Zhao, Y. Lu, T. Zhuang, and G. Wang, “Overview of multisource CT systems and methods,” Proc. SPIE 7804, 78040H (2010).
[Crossref]

Zhou, O.

B. Liu, G. Wang, E. L. Ritman, G. Cao, J. Lu, O. Zhou, L. Zeng, and H. Yu, “Image reconstruction from limited angle projections collected by multisource interior x-ray imaging systems,” Phys. Med. Biol. 56(19), 6337–6357 (2011).
[Crossref] [PubMed]

Zhuang, T.

J. Zhao, Y. Lu, T. Zhuang, and G. Wang, “Overview of multisource CT systems and methods,” Proc. SPIE 7804, 78040H (2010).
[Crossref]

Acta Mater. (1)

S. Shimizu, H. Fujii, Y. Sato, H. Kokawa, M. Sriraman, and S. Babu, “Mechanism of weld formation during very-high-power ultrasonic additive manufacturing of Al alloy 6061,” Acta Mater. 74, 234–243 (2014).
[Crossref]

Case Stud. Nondestr. Test. Eval. (1)

A. du Plessis, S. G. le Roux, and A. Guelpa, “Comparison of medical and industrial X-ray computed tomography for non-destructive testing,” Case Stud. Nondestr. Test. Eval. 6, 17–25 (2016).
[Crossref]

Compos., Part A Appl. Sci. Manuf. (1)

F. H. Gern and R. Kochendörfer, “Liquid silicon infiltration: description of infiltration dynamics and silicon carbide formation,” Compos., Part A Appl. Sci. Manuf. 28(4), 355–364 (1997).
[Crossref]

Comput. Optim. Appl. (1)

C. Li, W. Yin, H. Jiang, and Y. Zhang, “An efficient augmented Lagrangian method with applications to total variation minimization,” Comput. Optim. Appl. 56(3), 507–530 (2013).
[Crossref]

Eur. Radiol. (1)

T. G. Flohr, C. H. McCollough, H. Bruder, M. Petersilka, K. Gruber, C. Süß, M. Grasruck, K. Stierstorfer, B. Krauss, R. Raupach, A. N. Primak, A. Küttner, S. Achenbach, C. Becker, A. Kopp, and B. M. Ohnesorge, “First performance evaluation of a dual-source CT (DSCT) system,” Eur. Radiol. 16(2), 256–268 (2006).
[Crossref] [PubMed]

Flow Meas. Instrum. (1)

T. J. Heindel, J. N. Gray, and T. C. Jensen, “An X-ray system for visualizing fluid flows,” Flow Meas. Instrum. 19(2), 67–78 (2008).
[Crossref]

IEEE Access (1)

G. Cao, B. Liu, H. Gong, and H. Yu, “A stationary-sources and rotating-detectors computed tomography architecture for higher temporal resolution and lower radiation dose,” IEEE Access 2, 1263–1271 (2014).
[Crossref]

IEEE Trans. Inf. Theory (1)

E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52(2), 489–509 (2006).
[Crossref]

Int. Mater. Rev. (1)

B. Roebuck and E. Almond, “Deformation and fracture processes and the physical metallurgy of WC–Co hardmetals,” Int. Mater. Rev. 33(1), 90–112 (1988).
[Crossref]

J. Biomech. (1)

X. Sun, J. Hoon Jeon, J. Blendell, and O. Akkus, “Visualization of a phantom post-yield deformation process in cortical bone,” J. Biomech. 43(10), 1989–1996 (2010).
[Crossref] [PubMed]

J. Mater. Eng. Perform. (1)

W. E. Frazier, “Metal additive manufacturing: a review,” J. Mater. Eng. Perform. 23(6), 1917–1928 (2014).
[Crossref]

J. Mater. Process. Technol. (1)

A. Bauereiß, T. Scharowsky, and C. Körner, “Defect generation and propagation mechanism during additive manufacturing by selective beam melting,” J. Mater. Process. Technol. 214(11), 2522–2528 (2014).
[Crossref]

J. Math. Imaging Vis. (1)

K. Papafitsoros and C. B. Schönlieb, “A Combined First and Second Order Variational Approach for Image Reconstruction,” J. Math. Imaging Vis. 48(2), 308–338 (2014).
[Crossref]

J. Phys. D Appl. Phys. (1)

V. Semak and A. Matsunawa, “The role of recoil pressure in energy balance during laser materials processing,” J. Phys. D Appl. Phys. 30(18), 2541–2552 (1997).
[Crossref]

J. XRay Sci. Technol. (1)

S. Abbas, J. Min, and S. Cho, “Super-sparsely view-sampled cone-beam CT by incorporating prior data,” J. XRay Sci. Technol. 21(1), 71–83 (2013).
[PubMed]

JOM (1)

P. D. Lee, J. Wang, and R. C. Atwood, “Microporosity Formation during the Solidification of Aluminum-Copper Alloys,” JOM 58(11), 120–126 (2006).

Med. Phys. (9)

G. H. Chen, J. Tang, and S. Leng, “Prior Image Constrained Compressed Sensing (PICCS,” Med. Phys. 35(2), 660–663 (2008).
[Crossref] [PubMed]

P. T. Lauzier and G. H. Chen, “Characterization of statistical prior image constrained compressed sensing (PICCS): II. Application to dose reduction,” Med. Phys. 40(2), 021902 (2013).
[Crossref] [PubMed]

H. Gong, H. Yan, X. Jia, B. Li, G. Wang, and G. Cao, “X-ray scatter correction for multi-source interior computed tomography,” Med. Phys. 44(1), 71–83 (2017).
[Crossref] [PubMed]

P. T. Lauzier, J. Tang, and G. H. Chen, “Prior image constrained compressed sensing: implementation and performance evaluation,” Med. Phys. 39(1), 66–80 (2011).
[Crossref] [PubMed]

P. Schardt, J. Deuringer, J. Freudenberger, E. Hell, W. Knüpfer, D. Mattern, and M. Schild, “New x-ray tube performance in computed tomography by introducing the rotating envelope tube technology,” Med. Phys. 31(9), 2699–2706 (2004).
[Crossref] [PubMed]

Y. Liu, H. Liu, Y. Wang, and G. Wang, “Half-scan cone-beam CT fluoroscopy with multiple x-ray sources,” Med. Phys. 28(7), 1466–1471 (2001).
[Crossref] [PubMed]

G. Wang, H. Yu, and Y. Ye, “A scheme for multisource interior tomography,” Med. Phys. 36(8), 3575–3581 (2009).
[Crossref] [PubMed]

G. H. Chen and Y. Li, “Synchronized multiartifact reduction with tomographic reconstruction (SMART-RECON): A statistical model based iterative image reconstruction method to eliminate limited-view artifacts and to mitigate the temporal-average artifacts in time-resolved CT,” Med. Phys. 42(8), 4698–4707 (2015).
[Crossref] [PubMed]

G. H. Chen, J. Tang, and J. Hsieh, “Temporal resolution improvement using PICCS in MDCT cardiac imaging,” Med. Phys. 36(6), 2130–2135 (2009).
[Crossref] [PubMed]

Metall. Mater. Trans., A Phys. Metall. Mater. Sci. (1)

J. Sengupta, B. G. Thomas, H.-J. Shin, G.-G. Lee, and S.-H. Kim, “A new mechanism of hook formation during continuous casting of ultra-low-carbon steel slabs,” Metall. Mater. Trans., A Phys. Metall. Mater. Sci. 37(5), 1597–1611 (2006).
[Crossref]

Microfluid. Nanofluidics (1)

G. Blois, J. M. Barros, and K. T. Christensen, “A microscopic particle image velocimetry method for studying the dynamics of immiscible liquid–liquid interactions in a porous micromodel,” Microfluid. Nanofluidics 18(5-6), 1391–1406 (2015).
[Crossref]

Phys. Med. Biol. (6)

B. Liu, G. Wang, E. L. Ritman, G. Cao, J. Lu, O. Zhou, L. Zeng, and H. Yu, “Image reconstruction from limited angle projections collected by multisource interior x-ray imaging systems,” Phys. Med. Biol. 56(19), 6337–6357 (2011).
[Crossref] [PubMed]

G. X. Ding, D. M. Duggan, and C. W. Coffey, “Characteristics of kilovoltage x-ray beams used for cone-beam computed tomography in radiation therapy,” Phys. Med. Biol. 52(6), 1595–1615 (2007).
[Crossref] [PubMed]

J. Bian, J. Wang, X. Han, E. Y. Sidky, L. Shao, and X. Pan, “Optimization-based image reconstruction from sparse-view data in offset-detector CBCT,” Phys. Med. Biol. 58(2), 205–230 (2013).
[Crossref] [PubMed]

X. Han, J. Bian, E. L. Ritman, E. Y. Sidky, and X. Pan, “Optimization-based reconstruction of sparse images from few-view projections,” Phys. Med. Biol. 57(16), 5245–5273 (2012).
[Crossref] [PubMed]

E. Y. Sidky and X. Pan, “Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization,” Phys. Med. Biol. 53(17), 4777–4807 (2008).
[Crossref] [PubMed]

P. T. Lauzier, J. Tang, and G. H. Chen, “Time-resolved cardiac interventional cone-beam CT reconstruction from fully truncated projections using the prior image constrained compressed sensing (PICCS) algorithm,” Phys. Med. Biol. 57(9), 2461–2476 (2012).
[Crossref] [PubMed]

Proc. SPIE (1)

J. Zhao, Y. Lu, T. Zhuang, and G. Wang, “Overview of multisource CT systems and methods,” Proc. SPIE 7804, 78040H (2010).
[Crossref]

Proc. SPIE Int Soc Opt Eng (1)

G. H. Chen, J. Tang, and S. Leng, “Prior Image Constrained Compressed Sensing (PICCS),” Proc. SPIE Int Soc Opt Eng 6856, 685618 (2008).
[Crossref] [PubMed]

Prog. Comput. Fluid Dyn. (2)

M. Prakash, P. W. Cleary, J. Grandfield, P. Rohan, and V. Nguyen, “Optimisation of ingot casting wheel design using SPH simulations,” Prog. Comput. Fluid Dyn. 7(2/3/4), 101–110 (2007).
[Crossref]

M. Prakash, P. W. Cleary, J. Grandfield, P. Rohan, and V. Nguyen, “Optimisation of ingot casting wheel design using SPH simulations,” Prog. Comput. Fluid Dyn. 7(2/3/4), 101–110 (2007).
[Crossref]

Other (7)

A. V. Catalina, A. Buhrig-Polaczek, C. Monroe, A. S. Sabau, R. E. L. Ruxanda, A. Luo, S. Sen, and A. Diószegi, “Defect formation mechanisms in lamellar cast iron related to the casting geometry,” in Advances in the Science and Engineering of Casting Solidification:An MPMD Symposium Honoring Doru Michael Stefanescu (Springer, 2016), pp. 251.

J. Santos, A. E. Jarfors, and A. K. Dahle, “Filling, feeding and defect formation of thick-walled AlSi7Mg0. 3 semi-solid castings,” in Solid State Phenomena (Trans. Tech. Publ., 2016), pp. 222–227.

M. Müller, L. McMillan, J. Dorsey, and R. Jagnow, “Real-time simulation of deformation and fracture of stiff materials,” in Computer Animation and Simulation 2001 (Springer, 2001), paper 113–124.

R. K. Eckhoff, Dust Explosions in the Process Industries: Identification, Assessment and Control of Dust Hazards (Gulf Professional Publishing, 2003).

R. B. Arthur and M. A. Cheverton, “Visualization of additive manufacturing process data,” (Google Patents, 2014).

“NDT Resource Center website Avaible:” https://www.nde-ed.org/EducationResources/CommunityCollege/Radiography/EquipmentMaterials/isotopesources.htm .

J. S. Katcha and J. R. Schmidt, “X-ray generator and slip ring for a CT system,” (Google Patents, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (23)

Fig. 1
Fig. 1

Illustration of an SMCT configuration.

Fig. 2
Fig. 2

Illustration of an SMCT fan-beam geometry.

Fig. 3
Fig. 3

A full swing process includes forward swing and backward swing processes. T represents a complete swing cycle, and ta and td are acceleration and deceleration times.

Fig. 4
Fig. 4

Data acquisition process of an SMCT system.

Fig. 5
Fig. 5

The data distribution of an SMCT system.

Fig. 6
Fig. 6

Three representative images of the dynamic phantom at different time frames 6, 25, and 45. The four bubbles marked 1-4 are changing and the display window is [0 1000].

Fig. 7
Fig. 7

The original and reconstructed radii of four dynamic bubbles.

Fig. 8
Fig. 8

The prior image reconstructed from projections with an undersampling factor 50 and 7 x-ray sources.

Fig. 9
Fig. 9

Representative images reconstructed from noise-free projections acquired with 7 x-ray sources. The undersampling factors are 50, 25 and 10 for the upper, middle and bottom rows, respectively. From the left to right columns, the images are reconstructed by the ART, TVM-SD and SM-PICCS algorithms, respectively. Each reconstructed image consists of 256 × 256 pixels, and the display window is [0 1000].

Fig. 10
Fig. 10

Respective images reconstructed from noise-free projections with 9 x-ray sources. The undersampling factors are 40, 20 and 10 for the upper, middle and bottom rows, respectively. From the left to right columns, the images are reconstructed by the ART, TVM-SD and SM-PICCS algorithms, respectively. Each reconstructed image consists of 256 × 256 pixels, and the display window is [0 1000].

Fig. 11
Fig. 11

Same as Fig. 9 but reconstructed from noisy projections.

Fig. 12
Fig. 12

Same as Fig. 10 but reconstructed from noisy projections.

Fig. 13
Fig. 13

The convergence curves of different algorithms within 1000 iterations.

Fig. 14
Fig. 14

The convergent curves of different algorithms with different relaxation factors. The top row is for noise-free projections by using ART (a), TVM-SD (b) and SM-PICCS (c). The bottom row is the counterpart of top row for noisy projections.

Fig. 15
Fig. 15

3D structure of a specimen reconstructed by an FDK algorithm. (a), (b) and (c) are the central slices of xy, xz and yz planes, respectively. Each image slice consists of 512 × 512 pixels, and each pixel covers an area of 45.1 × 45.1 μm2. The display window is [0 0.1].

Fig. 16
Fig. 16

Representative image slices to mimic different time frames of a dynamic object in a display window is [0 0.1]. Each slice consists of 512 × 512 pixels.

Fig. 17
Fig. 17

Prior images reconstructed from realistically synthesized projections for time frame 4. (a) is a synthesized sinogram for a prior image assuming a system with 7 x-ray sources; (b) is same as (a) but a system with 9 x-ray sources; (c) is reconstructed from (a) with an undersampling factor 50; (d) is the difference image between (c) and the original image reconstructed from (a); (e) is reconstructed from (b) with an undersampling factor 40; and (f) is the difference image between (e) and the original image reconstructed from (b) using FDK. The display window of (c) and (e) is [0 0.1], and the display window of (d) and (f) is [-0.03, 0.03]. The size is 256x256 for all the images.

Fig. 18
Fig. 18

Images reconstructed from 7 x-ray source/detector pairs for time frame 4 with different undersampling factors in a display window [0 0.1]. From the top to bottom rows, the undersampling factors are 50, 25, 10 and 5, respectively. From the left to right columns, the images are reconstructed by the ART, TVM-SD and SM-PICCS algorithms after 300 iterations, respectively. Each image consists of 256 × 256 pixels.

Fig. 19
Fig. 19

Same as Fig. 18 but from 9 x-ray source/detector pairs for time frame 4.

Fig. 20
Fig. 20

Representative profiles along the yellow line marked in Fig. 18. (a), (b), (c) and (d) are profiles for the same undersampling factor and different algorithm.

Fig. 21
Fig. 21

Same as the third column of Fig. 18 but for time frame 0.

Fig. 22
Fig. 22

Illustration of the relationship between RMSEs and undersampling factors. (a) is for numerical simulations and (b) is for realistic experiment.

Fig. 23
Fig. 23

The data distribution of the SMCT system from a scan similar to short-scan.

Tables (4)

Tables Icon

Table 1 Numerical Simulation Parameters

Tables Icon

Table 2 RMSEs of Reconstructed Phantom Images.

Tables Icon

Table 3 Parameters for Realistic Specimen Simulation

Tables Icon

Table 4 RMSEs of the Reconstructed Specimen Images (unit: 10−3)

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

ϕ max =2π/Q ,
d min = L 2 tan( ϕ max 2 ) .
h min = L 2 /4+ d min 2 .
R min = L h min /2 L 2 /4+ ( h min + d min ) 2 ,
r atio = h min d min = 1 cos( ϕ max /2 ) .
R= Lh/2 L 2 /4+ ( h+d ) 2 ,
Af=P ,
f n = f i,j , n=( i1 )×I+j .
P m = n=1 N a mn f n , m=1,2,3,...,M ,
f n ( k+1 ) = f n ( k ) +λ P m n=1 N a mn f n ( k ) n=1 N a mn 2 a mn , k=0,1,2,,
min TV( f ) ,s.t. Af=P
TV( f )= i=2 I j=2 J ( f i,j f i1,j ) 2 + ( f i,j f i,j1 ) 2 .
min κTV( f )+( 1κ )TV( f f p ), s.t. Af=P

Metrics