Abstract

When the energy of a short laser pulse is localized in a fluid material, a flow motion is induced that can lead to the generation of free-surface jets. This nozzle-free jetting process is exploited to print conductive materials, typically metal nanoparticle inks, but this approach remains limited to the transfer of low viscosity fluids with a minimum feature size of few micrometers. We introduce a dual-laser method to achieve reproducible high-aspect-ratio jets from thin solid films. A first laser irradiation induces the melting of copper thin films and a second synchronized short pulse irradiation initiates the jetting process. Using time-resolved microscopy, we investigate the influence of the film thickness on the flow motion mechanisms and the ejection dynamics. For a wide range of laser fluences, we present observations similar to those obtained when the jets are generated by a single laser pulse from liquid donor films. The use of a solid film allows reducing the film thickness and then the volume of transferred material. Finally, we analyze these results in the perspective of using this double pulse LIFT technique for additive manufacturing of nano-micro-structures. Stable jets are formed from the copper films over distances exceeding 50-μm and are exploited to demonstrate periodic printing of 1.5-μm diameter droplets.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Jetting regimes of double-pulse laser-induced forward transfer

Qingfeng Li, David Grojo, Anne-Patricia Alloncle, and Philippe Delaporte
Opt. Mater. Express 9(8) 3476-3486 (2019)

High-speed multi-jets printing using laser forward transfer: time-resolved study of the ejection dynamics

Emeric Biver, Ludovic Rapp, Anne-Patricia Alloncle, Pere Serra, and Philippe Delaporte
Opt. Express 22(14) 17122-17134 (2014)

Optical vortex-induced forward mass transfer: manifestation of helical trajectory of optical vortex

Ryosuke Nakamura, Haruki Kawaguchi, Muneaki Iwata, Akihiro Kaneko, Ryo Nagura, Satoyuki Kawano, Kohei Toyoda, Katsuhiko Miyamoto, and Takashige Omatsu
Opt. Express 27(26) 38019-38027 (2019)

References

  • View by:
  • |
  • |
  • |

  1. W. S. Rayleigh, “On the stability of jets,” Proc. Lond. Math. Soc. 4, 10–13 (1878).
  2. Y. Wang, X. Liu, K.-S. Im, W.-K. Lee, J. Wang, K. Fezzaa, D. L. S. Hung, and J. R. Winkelman, “Ultrafast X-ray study of dense-liquid-jet flow dynamics using structure-tracking velocimetry,” Nat. Phys. 4(4), 305–309 (2008).
    [Crossref]
  3. J. Bohandy, B. F. Kim, and F. J. Adrian, “Metal deposition from a supported metal film using an excimer laser,” J. Appl. Phys. 60(4), 1538–1539 (1986).
    [Crossref]
  4. P. Delaporte and A.-P. Alloncle, “Laser-induced forward transfer: A high resolution additive manufacturing technology,” Optics & Laser Technology 78, 33–41 (2016).
    [Crossref]
  5. L. Rapp, A. K. Diallo, A. P. Alloncle, C. Videlot-Ackermann, F. Fages, and P. Delaporte, “Pulsed-laser printing of organic thin-film transistors,” Appl. Phys. Lett. 95(17), 1–4 (2009).
    [Crossref]
  6. M. Makrygianni, E. Verrelli, N. Boukos, S. Chatzandroulis, D. Tsoukalas, and I. Zergioti, “Laser printing and characterization of semiconducting polymers for organic electronics,” Appl. Phys., A Mater. Sci. Process. 110(3), 559–563 (2013).
    [Crossref]
  7. R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Fabrication of organic light-emitting diode pixels by laser-assisted forward transfer,” Appl. Phys. Lett. 91(6), 061103 (2007).
    [Crossref]
  8. N. T. Kattamis, N. D. McDaniel, S. Bernhard, and C. B. Arnold, “Ambient laser direct-write printing of a patterned organo-metallic electroluminescent device,” Org. Electron. 12(7), 1152–1158 (2011).
    [Crossref]
  9. F. Di Pietrantonio, M. Benetti, D. Cannatà, E. Verona, A. Palla-Papavlu, V. Dinca, M. Dinescu, T. Mattle, and T. Lippert, “Volatile toxic compound detection by surface acoustic wave sensor array coated with chemoselective polymers deposited by laser induced forward transfer: Application to sarin,” Sens. Actuators B Chem. 174, 158–167 (2012).
    [Crossref]
  10. C. Boutopoulos, E. Touloupakis, I. Pezzotti, M. T. Giardi, and I. Zergioti, “Direct laser immobilization of photosynthetic material on screen printed electrodes for amperometric biosensor,” Appl. Phys. Lett. 98(9), 093703 (2011).
    [Crossref]
  11. A. J. Birnbaum, K. Heungsoo, N. A. Charipar, and A. Piqué, “Laser printing of multi-layered polymer/metal heterostructures for electronic and MEMS devices,” Appl. Phys., A Mater. Sci. Process. 99(4), 711–716 (2010).
    [Crossref]
  12. L. Koch, A. Deiwick, S. Schlie, S. Michael, M. Gruene, V. Coger, D. Zychlinski, A. Schambach, K. Reimers, P. M. Vogt, and B. N. Chichkov, “Skin tissue generation by laser cell printing,” Biotechnol. Bioeng. 109(7), 1855–1863 (2012).
    [Crossref] [PubMed]
  13. S. Catros, J.-C. Fricain, B. Guillotin, B. Pippenger, R. Bareille, M. Remy, E. Lebraud, B. Desbat, J. Amédée, and F. Guillemot, “Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite,” Biofabrication 3(2), 025001 (2011).
    [Crossref] [PubMed]
  14. C. L. Sones, M. Feinaeugle, A. Sposito, B. Gholipour, and R. W. Eason, “Laser-Induced Forward Transfer-printing of focused ion beam pre-machined crystalline magneto-optic yttrium iron garnet micro-discs,” Opt. Express 20(14), 15171–15179 (2012).
    [Crossref] [PubMed]
  15. C. Florian, S. Piazza, A. Diaspro, P. Serra, and M. Duocastella, “Direct Laser Printing of Tailored Polymeric Microlenses,” ACS Appl. Mater. Interfaces 8(27), 17028–17032 (2016).
    [Crossref] [PubMed]
  16. M. Duocastella, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Time-resolved imaging of the laser forward transfer of liquids,” J. Appl. Phys. 106(8), 084907 (2009).
    [Crossref]
  17. A. Pique, R. C. Y. Auyeung, H. Kim, K. M. Metkus, and S. A. Mathews, “Digital microfabrication by laser decal transfer,” J. Laser Micro/Nanoeng. 3(3), 163–169 (2008).
    [Crossref]
  18. D. P. Banks, C. Grivas, J. D. Mills, R. W. Eason, and I. Zergioti, “Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer,” Appl. Phys. Lett. 89(19), 87–90 (2006).
    [Crossref]
  19. J. A. Grant-Jacob, B. Mills, M. Feinaeugle, C. L. Sones, G. Oosterhuis, M. B. Hoppenbrouwers, and R. W. Eason, “Micron-scale copper wires printed using femtosecond laser-induced forward transfer with automated donor replenishment,” Opt. Mater. Express 3(6), 747–754 (2013).
    [Crossref]
  20. A. I. Kuznetsov, R. Kiyan, and B. N. Chichkov, “Laser fabrication of 2D and 3D metal nanoparticle structures and arrays,” Opt. Express 18(20), 21198–21203 (2010).
    [Crossref] [PubMed]
  21. C. W. Visser, R. Pohl, C. Sun, G.-W. Römer, B. Huis in ’T Veld, T Veld, and D. Lohse, “Toward 3D Printing of Pure Metals by Laser-Induced Forward Transfer,” Adv. Mater. 27(27), 4087–4092 (2015).
    [Crossref] [PubMed]
  22. M. Zenou and Z. Kotler, “Printing of metallic 3D micro-objects by laser induced forward transfer,” Opt. Express 24(2), 1431–1446 (2016).
    [Crossref] [PubMed]
  23. A. Narazaki, R. Kurosaki, T. Sato, Y. Kawaguchi, and H. Niino, “On-demand deposition of functional oxide microdots by double-pulse laser-induced dot transfer,” J. Laser Micro/Nanoeng. 9(1), 10–14 (2014).
    [Crossref]
  24. A. Klini, P. A. Loukakos, D. Gray, A. Manousaki, and C. Fotakis, “Laser induced forward transfer of metals by temporally shaped femtosecond laser pulses,” Opt. Express 16(15), 11300–11309 (2008).
    [Crossref] [PubMed]
  25. C. Boutopoulos, I. Kalpyris, E. Serpetzoglou, and I. Zergioti, “Laser-induced forward transfer of silver nanoparticle ink: Time-resolved imaging of the jetting dynamics and correlation with the printing quality,” Microfluid. Nanofluid. 16(3), 493–500 (2014).
    [Crossref]
  26. R. Pohl, C. W. Visser, G.-W. Römer, D. Lohse, C. Sun, and B. Huis in ’t Veld, “Ejection regimes in picosecond laser-induced forward transfer of Metals,” Phys. Rev. Applied 3(2), 024001 (2015).
    [Crossref]
  27. B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
    [Crossref]
  28. A. I. Kuznetsov, C. Unger, J. Koch, and B. N. Chichkov, “Laser-induced jet formation and droplet ejection from thin metal films,” Appl. Phys., A Mater. Sci. Process. 106(3), 479–487 (2012).
    [Crossref]
  29. M. Zenou, A. Sa’ar, and Z. Kotler, “Laser jetting of femto-liter metal droplets for high resolution 3D printed structures,” Sci. Rep. 5, 17265 (2015).
    [Crossref] [PubMed]
  30. N. Chigier and R. D. Reitz, Recent Advances in Spray Combustion: Spray Atomization Drop Burning Phenomena (AIAA, 1996), Chap. Regimes of jet breakup and breakup mechanisms (Physical Aspects), 109–135.
  31. E. Biver, L. Rapp, A. P. Alloncle, and P. Delaporte, “Multi-jets formation using laser forward transfer,” Appl. Surf. Sci. 302, 153–158 (2014).
    [Crossref]
  32. L. Battezzati and A. L. Greer, “The viscosity of liquid metals and alloys,” Acta Metall. 37(7), 1791–1802 (1989).
    [Crossref]
  33. C. Unger, J. Koch, L. Overmeyer, and B. N. Chichkov, “Time-resolved studies of femtosecond-laser induced melt dynamics,” Opt. Express 20(22), 24864–24872 (2012).
    [Crossref] [PubMed]
  34. M. S. Brown, C. F. Brasz, Y. Ventikos, and C. B. Arnold, “Impulsively actuated jets from thin liquid films for high-resolution printing applications,” J. Fluid Mech. 709, 341–370 (2012).
    [Crossref]
  35. U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5, 3402 (2014).
    [Crossref] [PubMed]

2016 (3)

P. Delaporte and A.-P. Alloncle, “Laser-induced forward transfer: A high resolution additive manufacturing technology,” Optics & Laser Technology 78, 33–41 (2016).
[Crossref]

C. Florian, S. Piazza, A. Diaspro, P. Serra, and M. Duocastella, “Direct Laser Printing of Tailored Polymeric Microlenses,” ACS Appl. Mater. Interfaces 8(27), 17028–17032 (2016).
[Crossref] [PubMed]

M. Zenou and Z. Kotler, “Printing of metallic 3D micro-objects by laser induced forward transfer,” Opt. Express 24(2), 1431–1446 (2016).
[Crossref] [PubMed]

2015 (3)

R. Pohl, C. W. Visser, G.-W. Römer, D. Lohse, C. Sun, and B. Huis in ’t Veld, “Ejection regimes in picosecond laser-induced forward transfer of Metals,” Phys. Rev. Applied 3(2), 024001 (2015).
[Crossref]

C. W. Visser, R. Pohl, C. Sun, G.-W. Römer, B. Huis in ’T Veld, T Veld, and D. Lohse, “Toward 3D Printing of Pure Metals by Laser-Induced Forward Transfer,” Adv. Mater. 27(27), 4087–4092 (2015).
[Crossref] [PubMed]

M. Zenou, A. Sa’ar, and Z. Kotler, “Laser jetting of femto-liter metal droplets for high resolution 3D printed structures,” Sci. Rep. 5, 17265 (2015).
[Crossref] [PubMed]

2014 (4)

E. Biver, L. Rapp, A. P. Alloncle, and P. Delaporte, “Multi-jets formation using laser forward transfer,” Appl. Surf. Sci. 302, 153–158 (2014).
[Crossref]

C. Boutopoulos, I. Kalpyris, E. Serpetzoglou, and I. Zergioti, “Laser-induced forward transfer of silver nanoparticle ink: Time-resolved imaging of the jetting dynamics and correlation with the printing quality,” Microfluid. Nanofluid. 16(3), 493–500 (2014).
[Crossref]

U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5, 3402 (2014).
[Crossref] [PubMed]

A. Narazaki, R. Kurosaki, T. Sato, Y. Kawaguchi, and H. Niino, “On-demand deposition of functional oxide microdots by double-pulse laser-induced dot transfer,” J. Laser Micro/Nanoeng. 9(1), 10–14 (2014).
[Crossref]

2013 (2)

J. A. Grant-Jacob, B. Mills, M. Feinaeugle, C. L. Sones, G. Oosterhuis, M. B. Hoppenbrouwers, and R. W. Eason, “Micron-scale copper wires printed using femtosecond laser-induced forward transfer with automated donor replenishment,” Opt. Mater. Express 3(6), 747–754 (2013).
[Crossref]

M. Makrygianni, E. Verrelli, N. Boukos, S. Chatzandroulis, D. Tsoukalas, and I. Zergioti, “Laser printing and characterization of semiconducting polymers for organic electronics,” Appl. Phys., A Mater. Sci. Process. 110(3), 559–563 (2013).
[Crossref]

2012 (6)

F. Di Pietrantonio, M. Benetti, D. Cannatà, E. Verona, A. Palla-Papavlu, V. Dinca, M. Dinescu, T. Mattle, and T. Lippert, “Volatile toxic compound detection by surface acoustic wave sensor array coated with chemoselective polymers deposited by laser induced forward transfer: Application to sarin,” Sens. Actuators B Chem. 174, 158–167 (2012).
[Crossref]

L. Koch, A. Deiwick, S. Schlie, S. Michael, M. Gruene, V. Coger, D. Zychlinski, A. Schambach, K. Reimers, P. M. Vogt, and B. N. Chichkov, “Skin tissue generation by laser cell printing,” Biotechnol. Bioeng. 109(7), 1855–1863 (2012).
[Crossref] [PubMed]

C. L. Sones, M. Feinaeugle, A. Sposito, B. Gholipour, and R. W. Eason, “Laser-Induced Forward Transfer-printing of focused ion beam pre-machined crystalline magneto-optic yttrium iron garnet micro-discs,” Opt. Express 20(14), 15171–15179 (2012).
[Crossref] [PubMed]

C. Unger, J. Koch, L. Overmeyer, and B. N. Chichkov, “Time-resolved studies of femtosecond-laser induced melt dynamics,” Opt. Express 20(22), 24864–24872 (2012).
[Crossref] [PubMed]

M. S. Brown, C. F. Brasz, Y. Ventikos, and C. B. Arnold, “Impulsively actuated jets from thin liquid films for high-resolution printing applications,” J. Fluid Mech. 709, 341–370 (2012).
[Crossref]

A. I. Kuznetsov, C. Unger, J. Koch, and B. N. Chichkov, “Laser-induced jet formation and droplet ejection from thin metal films,” Appl. Phys., A Mater. Sci. Process. 106(3), 479–487 (2012).
[Crossref]

2011 (3)

S. Catros, J.-C. Fricain, B. Guillotin, B. Pippenger, R. Bareille, M. Remy, E. Lebraud, B. Desbat, J. Amédée, and F. Guillemot, “Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite,” Biofabrication 3(2), 025001 (2011).
[Crossref] [PubMed]

C. Boutopoulos, E. Touloupakis, I. Pezzotti, M. T. Giardi, and I. Zergioti, “Direct laser immobilization of photosynthetic material on screen printed electrodes for amperometric biosensor,” Appl. Phys. Lett. 98(9), 093703 (2011).
[Crossref]

N. T. Kattamis, N. D. McDaniel, S. Bernhard, and C. B. Arnold, “Ambient laser direct-write printing of a patterned organo-metallic electroluminescent device,” Org. Electron. 12(7), 1152–1158 (2011).
[Crossref]

2010 (2)

A. J. Birnbaum, K. Heungsoo, N. A. Charipar, and A. Piqué, “Laser printing of multi-layered polymer/metal heterostructures for electronic and MEMS devices,” Appl. Phys., A Mater. Sci. Process. 99(4), 711–716 (2010).
[Crossref]

A. I. Kuznetsov, R. Kiyan, and B. N. Chichkov, “Laser fabrication of 2D and 3D metal nanoparticle structures and arrays,” Opt. Express 18(20), 21198–21203 (2010).
[Crossref] [PubMed]

2009 (2)

M. Duocastella, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Time-resolved imaging of the laser forward transfer of liquids,” J. Appl. Phys. 106(8), 084907 (2009).
[Crossref]

L. Rapp, A. K. Diallo, A. P. Alloncle, C. Videlot-Ackermann, F. Fages, and P. Delaporte, “Pulsed-laser printing of organic thin-film transistors,” Appl. Phys. Lett. 95(17), 1–4 (2009).
[Crossref]

2008 (3)

Y. Wang, X. Liu, K.-S. Im, W.-K. Lee, J. Wang, K. Fezzaa, D. L. S. Hung, and J. R. Winkelman, “Ultrafast X-ray study of dense-liquid-jet flow dynamics using structure-tracking velocimetry,” Nat. Phys. 4(4), 305–309 (2008).
[Crossref]

A. Pique, R. C. Y. Auyeung, H. Kim, K. M. Metkus, and S. A. Mathews, “Digital microfabrication by laser decal transfer,” J. Laser Micro/Nanoeng. 3(3), 163–169 (2008).
[Crossref]

A. Klini, P. A. Loukakos, D. Gray, A. Manousaki, and C. Fotakis, “Laser induced forward transfer of metals by temporally shaped femtosecond laser pulses,” Opt. Express 16(15), 11300–11309 (2008).
[Crossref] [PubMed]

2007 (1)

R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Fabrication of organic light-emitting diode pixels by laser-assisted forward transfer,” Appl. Phys. Lett. 91(6), 061103 (2007).
[Crossref]

2006 (1)

D. P. Banks, C. Grivas, J. D. Mills, R. W. Eason, and I. Zergioti, “Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer,” Appl. Phys. Lett. 89(19), 87–90 (2006).
[Crossref]

1996 (1)

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

1989 (1)

L. Battezzati and A. L. Greer, “The viscosity of liquid metals and alloys,” Acta Metall. 37(7), 1791–1802 (1989).
[Crossref]

1986 (1)

J. Bohandy, B. F. Kim, and F. J. Adrian, “Metal deposition from a supported metal film using an excimer laser,” J. Appl. Phys. 60(4), 1538–1539 (1986).
[Crossref]

1878 (1)

W. S. Rayleigh, “On the stability of jets,” Proc. Lond. Math. Soc. 4, 10–13 (1878).

Adrian, F. J.

J. Bohandy, B. F. Kim, and F. J. Adrian, “Metal deposition from a supported metal film using an excimer laser,” J. Appl. Phys. 60(4), 1538–1539 (1986).
[Crossref]

Alloncle, A. P.

E. Biver, L. Rapp, A. P. Alloncle, and P. Delaporte, “Multi-jets formation using laser forward transfer,” Appl. Surf. Sci. 302, 153–158 (2014).
[Crossref]

L. Rapp, A. K. Diallo, A. P. Alloncle, C. Videlot-Ackermann, F. Fages, and P. Delaporte, “Pulsed-laser printing of organic thin-film transistors,” Appl. Phys. Lett. 95(17), 1–4 (2009).
[Crossref]

Alloncle, A.-P.

P. Delaporte and A.-P. Alloncle, “Laser-induced forward transfer: A high resolution additive manufacturing technology,” Optics & Laser Technology 78, 33–41 (2016).
[Crossref]

Amédée, J.

S. Catros, J.-C. Fricain, B. Guillotin, B. Pippenger, R. Bareille, M. Remy, E. Lebraud, B. Desbat, J. Amédée, and F. Guillemot, “Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite,” Biofabrication 3(2), 025001 (2011).
[Crossref] [PubMed]

Arnold, C. B.

M. S. Brown, C. F. Brasz, Y. Ventikos, and C. B. Arnold, “Impulsively actuated jets from thin liquid films for high-resolution printing applications,” J. Fluid Mech. 709, 341–370 (2012).
[Crossref]

N. T. Kattamis, N. D. McDaniel, S. Bernhard, and C. B. Arnold, “Ambient laser direct-write printing of a patterned organo-metallic electroluminescent device,” Org. Electron. 12(7), 1152–1158 (2011).
[Crossref]

Auyeung, R. C. Y.

A. Pique, R. C. Y. Auyeung, H. Kim, K. M. Metkus, and S. A. Mathews, “Digital microfabrication by laser decal transfer,” J. Laser Micro/Nanoeng. 3(3), 163–169 (2008).
[Crossref]

Banks, D. P.

D. P. Banks, C. Grivas, J. D. Mills, R. W. Eason, and I. Zergioti, “Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer,” Appl. Phys. Lett. 89(19), 87–90 (2006).
[Crossref]

Bareille, R.

S. Catros, J.-C. Fricain, B. Guillotin, B. Pippenger, R. Bareille, M. Remy, E. Lebraud, B. Desbat, J. Amédée, and F. Guillemot, “Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite,” Biofabrication 3(2), 025001 (2011).
[Crossref] [PubMed]

Battezzati, L.

L. Battezzati and A. L. Greer, “The viscosity of liquid metals and alloys,” Acta Metall. 37(7), 1791–1802 (1989).
[Crossref]

Benetti, M.

F. Di Pietrantonio, M. Benetti, D. Cannatà, E. Verona, A. Palla-Papavlu, V. Dinca, M. Dinescu, T. Mattle, and T. Lippert, “Volatile toxic compound detection by surface acoustic wave sensor array coated with chemoselective polymers deposited by laser induced forward transfer: Application to sarin,” Sens. Actuators B Chem. 174, 158–167 (2012).
[Crossref]

Bernhard, S.

N. T. Kattamis, N. D. McDaniel, S. Bernhard, and C. B. Arnold, “Ambient laser direct-write printing of a patterned organo-metallic electroluminescent device,” Org. Electron. 12(7), 1152–1158 (2011).
[Crossref]

Birnbaum, A. J.

A. J. Birnbaum, K. Heungsoo, N. A. Charipar, and A. Piqué, “Laser printing of multi-layered polymer/metal heterostructures for electronic and MEMS devices,” Appl. Phys., A Mater. Sci. Process. 99(4), 711–716 (2010).
[Crossref]

Biver, E.

E. Biver, L. Rapp, A. P. Alloncle, and P. Delaporte, “Multi-jets formation using laser forward transfer,” Appl. Surf. Sci. 302, 153–158 (2014).
[Crossref]

Bohandy, J.

J. Bohandy, B. F. Kim, and F. J. Adrian, “Metal deposition from a supported metal film using an excimer laser,” J. Appl. Phys. 60(4), 1538–1539 (1986).
[Crossref]

Boukos, N.

M. Makrygianni, E. Verrelli, N. Boukos, S. Chatzandroulis, D. Tsoukalas, and I. Zergioti, “Laser printing and characterization of semiconducting polymers for organic electronics,” Appl. Phys., A Mater. Sci. Process. 110(3), 559–563 (2013).
[Crossref]

Boutopoulos, C.

C. Boutopoulos, I. Kalpyris, E. Serpetzoglou, and I. Zergioti, “Laser-induced forward transfer of silver nanoparticle ink: Time-resolved imaging of the jetting dynamics and correlation with the printing quality,” Microfluid. Nanofluid. 16(3), 493–500 (2014).
[Crossref]

C. Boutopoulos, E. Touloupakis, I. Pezzotti, M. T. Giardi, and I. Zergioti, “Direct laser immobilization of photosynthetic material on screen printed electrodes for amperometric biosensor,” Appl. Phys. Lett. 98(9), 093703 (2011).
[Crossref]

Brasz, C. F.

M. S. Brown, C. F. Brasz, Y. Ventikos, and C. B. Arnold, “Impulsively actuated jets from thin liquid films for high-resolution printing applications,” J. Fluid Mech. 709, 341–370 (2012).
[Crossref]

Brown, M. S.

M. S. Brown, C. F. Brasz, Y. Ventikos, and C. B. Arnold, “Impulsively actuated jets from thin liquid films for high-resolution printing applications,” J. Fluid Mech. 709, 341–370 (2012).
[Crossref]

Cannatà, D.

F. Di Pietrantonio, M. Benetti, D. Cannatà, E. Verona, A. Palla-Papavlu, V. Dinca, M. Dinescu, T. Mattle, and T. Lippert, “Volatile toxic compound detection by surface acoustic wave sensor array coated with chemoselective polymers deposited by laser induced forward transfer: Application to sarin,” Sens. Actuators B Chem. 174, 158–167 (2012).
[Crossref]

Catros, S.

S. Catros, J.-C. Fricain, B. Guillotin, B. Pippenger, R. Bareille, M. Remy, E. Lebraud, B. Desbat, J. Amédée, and F. Guillemot, “Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite,” Biofabrication 3(2), 025001 (2011).
[Crossref] [PubMed]

Charipar, N. A.

A. J. Birnbaum, K. Heungsoo, N. A. Charipar, and A. Piqué, “Laser printing of multi-layered polymer/metal heterostructures for electronic and MEMS devices,” Appl. Phys., A Mater. Sci. Process. 99(4), 711–716 (2010).
[Crossref]

Chatzandroulis, S.

M. Makrygianni, E. Verrelli, N. Boukos, S. Chatzandroulis, D. Tsoukalas, and I. Zergioti, “Laser printing and characterization of semiconducting polymers for organic electronics,” Appl. Phys., A Mater. Sci. Process. 110(3), 559–563 (2013).
[Crossref]

Chichkov, B. N.

U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5, 3402 (2014).
[Crossref] [PubMed]

C. Unger, J. Koch, L. Overmeyer, and B. N. Chichkov, “Time-resolved studies of femtosecond-laser induced melt dynamics,” Opt. Express 20(22), 24864–24872 (2012).
[Crossref] [PubMed]

A. I. Kuznetsov, C. Unger, J. Koch, and B. N. Chichkov, “Laser-induced jet formation and droplet ejection from thin metal films,” Appl. Phys., A Mater. Sci. Process. 106(3), 479–487 (2012).
[Crossref]

L. Koch, A. Deiwick, S. Schlie, S. Michael, M. Gruene, V. Coger, D. Zychlinski, A. Schambach, K. Reimers, P. M. Vogt, and B. N. Chichkov, “Skin tissue generation by laser cell printing,” Biotechnol. Bioeng. 109(7), 1855–1863 (2012).
[Crossref] [PubMed]

A. I. Kuznetsov, R. Kiyan, and B. N. Chichkov, “Laser fabrication of 2D and 3D metal nanoparticle structures and arrays,” Opt. Express 18(20), 21198–21203 (2010).
[Crossref] [PubMed]

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

Chigier, N.

N. Chigier and R. D. Reitz, Recent Advances in Spray Combustion: Spray Atomization Drop Burning Phenomena (AIAA, 1996), Chap. Regimes of jet breakup and breakup mechanisms (Physical Aspects), 109–135.

Coger, V.

L. Koch, A. Deiwick, S. Schlie, S. Michael, M. Gruene, V. Coger, D. Zychlinski, A. Schambach, K. Reimers, P. M. Vogt, and B. N. Chichkov, “Skin tissue generation by laser cell printing,” Biotechnol. Bioeng. 109(7), 1855–1863 (2012).
[Crossref] [PubMed]

Deiwick, A.

L. Koch, A. Deiwick, S. Schlie, S. Michael, M. Gruene, V. Coger, D. Zychlinski, A. Schambach, K. Reimers, P. M. Vogt, and B. N. Chichkov, “Skin tissue generation by laser cell printing,” Biotechnol. Bioeng. 109(7), 1855–1863 (2012).
[Crossref] [PubMed]

Delaporte, P.

P. Delaporte and A.-P. Alloncle, “Laser-induced forward transfer: A high resolution additive manufacturing technology,” Optics & Laser Technology 78, 33–41 (2016).
[Crossref]

E. Biver, L. Rapp, A. P. Alloncle, and P. Delaporte, “Multi-jets formation using laser forward transfer,” Appl. Surf. Sci. 302, 153–158 (2014).
[Crossref]

L. Rapp, A. K. Diallo, A. P. Alloncle, C. Videlot-Ackermann, F. Fages, and P. Delaporte, “Pulsed-laser printing of organic thin-film transistors,” Appl. Phys. Lett. 95(17), 1–4 (2009).
[Crossref]

Desbat, B.

S. Catros, J.-C. Fricain, B. Guillotin, B. Pippenger, R. Bareille, M. Remy, E. Lebraud, B. Desbat, J. Amédée, and F. Guillemot, “Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite,” Biofabrication 3(2), 025001 (2011).
[Crossref] [PubMed]

Diallo, A. K.

L. Rapp, A. K. Diallo, A. P. Alloncle, C. Videlot-Ackermann, F. Fages, and P. Delaporte, “Pulsed-laser printing of organic thin-film transistors,” Appl. Phys. Lett. 95(17), 1–4 (2009).
[Crossref]

Diaspro, A.

C. Florian, S. Piazza, A. Diaspro, P. Serra, and M. Duocastella, “Direct Laser Printing of Tailored Polymeric Microlenses,” ACS Appl. Mater. Interfaces 8(27), 17028–17032 (2016).
[Crossref] [PubMed]

Dinca, V.

F. Di Pietrantonio, M. Benetti, D. Cannatà, E. Verona, A. Palla-Papavlu, V. Dinca, M. Dinescu, T. Mattle, and T. Lippert, “Volatile toxic compound detection by surface acoustic wave sensor array coated with chemoselective polymers deposited by laser induced forward transfer: Application to sarin,” Sens. Actuators B Chem. 174, 158–167 (2012).
[Crossref]

Dinescu, M.

F. Di Pietrantonio, M. Benetti, D. Cannatà, E. Verona, A. Palla-Papavlu, V. Dinca, M. Dinescu, T. Mattle, and T. Lippert, “Volatile toxic compound detection by surface acoustic wave sensor array coated with chemoselective polymers deposited by laser induced forward transfer: Application to sarin,” Sens. Actuators B Chem. 174, 158–167 (2012).
[Crossref]

Duocastella, M.

C. Florian, S. Piazza, A. Diaspro, P. Serra, and M. Duocastella, “Direct Laser Printing of Tailored Polymeric Microlenses,” ACS Appl. Mater. Interfaces 8(27), 17028–17032 (2016).
[Crossref] [PubMed]

M. Duocastella, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Time-resolved imaging of the laser forward transfer of liquids,” J. Appl. Phys. 106(8), 084907 (2009).
[Crossref]

Eason, R. W.

Evlyukhin, A. B.

U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5, 3402 (2014).
[Crossref] [PubMed]

Fages, F.

L. Rapp, A. K. Diallo, A. P. Alloncle, C. Videlot-Ackermann, F. Fages, and P. Delaporte, “Pulsed-laser printing of organic thin-film transistors,” Appl. Phys. Lett. 95(17), 1–4 (2009).
[Crossref]

Fardel, R.

R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Fabrication of organic light-emitting diode pixels by laser-assisted forward transfer,” Appl. Phys. Lett. 91(6), 061103 (2007).
[Crossref]

Feinaeugle, M.

Fernández-Pradas, J. M.

M. Duocastella, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Time-resolved imaging of the laser forward transfer of liquids,” J. Appl. Phys. 106(8), 084907 (2009).
[Crossref]

Fezzaa, K.

Y. Wang, X. Liu, K.-S. Im, W.-K. Lee, J. Wang, K. Fezzaa, D. L. S. Hung, and J. R. Winkelman, “Ultrafast X-ray study of dense-liquid-jet flow dynamics using structure-tracking velocimetry,” Nat. Phys. 4(4), 305–309 (2008).
[Crossref]

Florian, C.

C. Florian, S. Piazza, A. Diaspro, P. Serra, and M. Duocastella, “Direct Laser Printing of Tailored Polymeric Microlenses,” ACS Appl. Mater. Interfaces 8(27), 17028–17032 (2016).
[Crossref] [PubMed]

Fotakis, C.

Fricain, J.-C.

S. Catros, J.-C. Fricain, B. Guillotin, B. Pippenger, R. Bareille, M. Remy, E. Lebraud, B. Desbat, J. Amédée, and F. Guillemot, “Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite,” Biofabrication 3(2), 025001 (2011).
[Crossref] [PubMed]

Gholipour, B.

Giardi, M. T.

C. Boutopoulos, E. Touloupakis, I. Pezzotti, M. T. Giardi, and I. Zergioti, “Direct laser immobilization of photosynthetic material on screen printed electrodes for amperometric biosensor,” Appl. Phys. Lett. 98(9), 093703 (2011).
[Crossref]

Grant-Jacob, J. A.

Gray, D.

Greer, A. L.

L. Battezzati and A. L. Greer, “The viscosity of liquid metals and alloys,” Acta Metall. 37(7), 1791–1802 (1989).
[Crossref]

Grivas, C.

D. P. Banks, C. Grivas, J. D. Mills, R. W. Eason, and I. Zergioti, “Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer,” Appl. Phys. Lett. 89(19), 87–90 (2006).
[Crossref]

Gruene, M.

L. Koch, A. Deiwick, S. Schlie, S. Michael, M. Gruene, V. Coger, D. Zychlinski, A. Schambach, K. Reimers, P. M. Vogt, and B. N. Chichkov, “Skin tissue generation by laser cell printing,” Biotechnol. Bioeng. 109(7), 1855–1863 (2012).
[Crossref] [PubMed]

Guillemot, F.

S. Catros, J.-C. Fricain, B. Guillotin, B. Pippenger, R. Bareille, M. Remy, E. Lebraud, B. Desbat, J. Amédée, and F. Guillemot, “Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite,” Biofabrication 3(2), 025001 (2011).
[Crossref] [PubMed]

Guillotin, B.

S. Catros, J.-C. Fricain, B. Guillotin, B. Pippenger, R. Bareille, M. Remy, E. Lebraud, B. Desbat, J. Amédée, and F. Guillemot, “Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite,” Biofabrication 3(2), 025001 (2011).
[Crossref] [PubMed]

Heungsoo, K.

A. J. Birnbaum, K. Heungsoo, N. A. Charipar, and A. Piqué, “Laser printing of multi-layered polymer/metal heterostructures for electronic and MEMS devices,” Appl. Phys., A Mater. Sci. Process. 99(4), 711–716 (2010).
[Crossref]

Hoppenbrouwers, M. B.

Huis in ’T Veld, B.

C. W. Visser, R. Pohl, C. Sun, G.-W. Römer, B. Huis in ’T Veld, T Veld, and D. Lohse, “Toward 3D Printing of Pure Metals by Laser-Induced Forward Transfer,” Adv. Mater. 27(27), 4087–4092 (2015).
[Crossref] [PubMed]

R. Pohl, C. W. Visser, G.-W. Römer, D. Lohse, C. Sun, and B. Huis in ’t Veld, “Ejection regimes in picosecond laser-induced forward transfer of Metals,” Phys. Rev. Applied 3(2), 024001 (2015).
[Crossref]

Hung, D. L. S.

Y. Wang, X. Liu, K.-S. Im, W.-K. Lee, J. Wang, K. Fezzaa, D. L. S. Hung, and J. R. Winkelman, “Ultrafast X-ray study of dense-liquid-jet flow dynamics using structure-tracking velocimetry,” Nat. Phys. 4(4), 305–309 (2008).
[Crossref]

Im, K.-S.

Y. Wang, X. Liu, K.-S. Im, W.-K. Lee, J. Wang, K. Fezzaa, D. L. S. Hung, and J. R. Winkelman, “Ultrafast X-ray study of dense-liquid-jet flow dynamics using structure-tracking velocimetry,” Nat. Phys. 4(4), 305–309 (2008).
[Crossref]

Kalpyris, I.

C. Boutopoulos, I. Kalpyris, E. Serpetzoglou, and I. Zergioti, “Laser-induced forward transfer of silver nanoparticle ink: Time-resolved imaging of the jetting dynamics and correlation with the printing quality,” Microfluid. Nanofluid. 16(3), 493–500 (2014).
[Crossref]

Kattamis, N. T.

N. T. Kattamis, N. D. McDaniel, S. Bernhard, and C. B. Arnold, “Ambient laser direct-write printing of a patterned organo-metallic electroluminescent device,” Org. Electron. 12(7), 1152–1158 (2011).
[Crossref]

Kawaguchi, Y.

A. Narazaki, R. Kurosaki, T. Sato, Y. Kawaguchi, and H. Niino, “On-demand deposition of functional oxide microdots by double-pulse laser-induced dot transfer,” J. Laser Micro/Nanoeng. 9(1), 10–14 (2014).
[Crossref]

Kim, B. F.

J. Bohandy, B. F. Kim, and F. J. Adrian, “Metal deposition from a supported metal film using an excimer laser,” J. Appl. Phys. 60(4), 1538–1539 (1986).
[Crossref]

Kim, H.

A. Pique, R. C. Y. Auyeung, H. Kim, K. M. Metkus, and S. A. Mathews, “Digital microfabrication by laser decal transfer,” J. Laser Micro/Nanoeng. 3(3), 163–169 (2008).
[Crossref]

Kiyan, R.

Klini, A.

Koch, J.

A. I. Kuznetsov, C. Unger, J. Koch, and B. N. Chichkov, “Laser-induced jet formation and droplet ejection from thin metal films,” Appl. Phys., A Mater. Sci. Process. 106(3), 479–487 (2012).
[Crossref]

C. Unger, J. Koch, L. Overmeyer, and B. N. Chichkov, “Time-resolved studies of femtosecond-laser induced melt dynamics,” Opt. Express 20(22), 24864–24872 (2012).
[Crossref] [PubMed]

Koch, L.

L. Koch, A. Deiwick, S. Schlie, S. Michael, M. Gruene, V. Coger, D. Zychlinski, A. Schambach, K. Reimers, P. M. Vogt, and B. N. Chichkov, “Skin tissue generation by laser cell printing,” Biotechnol. Bioeng. 109(7), 1855–1863 (2012).
[Crossref] [PubMed]

Kotler, Z.

M. Zenou and Z. Kotler, “Printing of metallic 3D micro-objects by laser induced forward transfer,” Opt. Express 24(2), 1431–1446 (2016).
[Crossref] [PubMed]

M. Zenou, A. Sa’ar, and Z. Kotler, “Laser jetting of femto-liter metal droplets for high resolution 3D printed structures,” Sci. Rep. 5, 17265 (2015).
[Crossref] [PubMed]

Kurosaki, R.

A. Narazaki, R. Kurosaki, T. Sato, Y. Kawaguchi, and H. Niino, “On-demand deposition of functional oxide microdots by double-pulse laser-induced dot transfer,” J. Laser Micro/Nanoeng. 9(1), 10–14 (2014).
[Crossref]

Kuznetsov, A. I.

A. I. Kuznetsov, C. Unger, J. Koch, and B. N. Chichkov, “Laser-induced jet formation and droplet ejection from thin metal films,” Appl. Phys., A Mater. Sci. Process. 106(3), 479–487 (2012).
[Crossref]

A. I. Kuznetsov, R. Kiyan, and B. N. Chichkov, “Laser fabrication of 2D and 3D metal nanoparticle structures and arrays,” Opt. Express 18(20), 21198–21203 (2010).
[Crossref] [PubMed]

Lebraud, E.

S. Catros, J.-C. Fricain, B. Guillotin, B. Pippenger, R. Bareille, M. Remy, E. Lebraud, B. Desbat, J. Amédée, and F. Guillemot, “Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite,” Biofabrication 3(2), 025001 (2011).
[Crossref] [PubMed]

Lee, W.-K.

Y. Wang, X. Liu, K.-S. Im, W.-K. Lee, J. Wang, K. Fezzaa, D. L. S. Hung, and J. R. Winkelman, “Ultrafast X-ray study of dense-liquid-jet flow dynamics using structure-tracking velocimetry,” Nat. Phys. 4(4), 305–309 (2008).
[Crossref]

Lippert, T.

F. Di Pietrantonio, M. Benetti, D. Cannatà, E. Verona, A. Palla-Papavlu, V. Dinca, M. Dinescu, T. Mattle, and T. Lippert, “Volatile toxic compound detection by surface acoustic wave sensor array coated with chemoselective polymers deposited by laser induced forward transfer: Application to sarin,” Sens. Actuators B Chem. 174, 158–167 (2012).
[Crossref]

R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Fabrication of organic light-emitting diode pixels by laser-assisted forward transfer,” Appl. Phys. Lett. 91(6), 061103 (2007).
[Crossref]

Liu, X.

Y. Wang, X. Liu, K.-S. Im, W.-K. Lee, J. Wang, K. Fezzaa, D. L. S. Hung, and J. R. Winkelman, “Ultrafast X-ray study of dense-liquid-jet flow dynamics using structure-tracking velocimetry,” Nat. Phys. 4(4), 305–309 (2008).
[Crossref]

Lohse, D.

C. W. Visser, R. Pohl, C. Sun, G.-W. Römer, B. Huis in ’T Veld, T Veld, and D. Lohse, “Toward 3D Printing of Pure Metals by Laser-Induced Forward Transfer,” Adv. Mater. 27(27), 4087–4092 (2015).
[Crossref] [PubMed]

R. Pohl, C. W. Visser, G.-W. Römer, D. Lohse, C. Sun, and B. Huis in ’t Veld, “Ejection regimes in picosecond laser-induced forward transfer of Metals,” Phys. Rev. Applied 3(2), 024001 (2015).
[Crossref]

Loukakos, P. A.

Makrygianni, M.

M. Makrygianni, E. Verrelli, N. Boukos, S. Chatzandroulis, D. Tsoukalas, and I. Zergioti, “Laser printing and characterization of semiconducting polymers for organic electronics,” Appl. Phys., A Mater. Sci. Process. 110(3), 559–563 (2013).
[Crossref]

Manousaki, A.

Mathews, S. A.

A. Pique, R. C. Y. Auyeung, H. Kim, K. M. Metkus, and S. A. Mathews, “Digital microfabrication by laser decal transfer,” J. Laser Micro/Nanoeng. 3(3), 163–169 (2008).
[Crossref]

Mattle, T.

F. Di Pietrantonio, M. Benetti, D. Cannatà, E. Verona, A. Palla-Papavlu, V. Dinca, M. Dinescu, T. Mattle, and T. Lippert, “Volatile toxic compound detection by surface acoustic wave sensor array coated with chemoselective polymers deposited by laser induced forward transfer: Application to sarin,” Sens. Actuators B Chem. 174, 158–167 (2012).
[Crossref]

McDaniel, N. D.

N. T. Kattamis, N. D. McDaniel, S. Bernhard, and C. B. Arnold, “Ambient laser direct-write printing of a patterned organo-metallic electroluminescent device,” Org. Electron. 12(7), 1152–1158 (2011).
[Crossref]

Metkus, K. M.

A. Pique, R. C. Y. Auyeung, H. Kim, K. M. Metkus, and S. A. Mathews, “Digital microfabrication by laser decal transfer,” J. Laser Micro/Nanoeng. 3(3), 163–169 (2008).
[Crossref]

Michael, S.

L. Koch, A. Deiwick, S. Schlie, S. Michael, M. Gruene, V. Coger, D. Zychlinski, A. Schambach, K. Reimers, P. M. Vogt, and B. N. Chichkov, “Skin tissue generation by laser cell printing,” Biotechnol. Bioeng. 109(7), 1855–1863 (2012).
[Crossref] [PubMed]

Mills, B.

Mills, J. D.

D. P. Banks, C. Grivas, J. D. Mills, R. W. Eason, and I. Zergioti, “Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer,” Appl. Phys. Lett. 89(19), 87–90 (2006).
[Crossref]

Momma, C.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

Morenza, J. L.

M. Duocastella, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Time-resolved imaging of the laser forward transfer of liquids,” J. Appl. Phys. 106(8), 084907 (2009).
[Crossref]

Nagel, M.

R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Fabrication of organic light-emitting diode pixels by laser-assisted forward transfer,” Appl. Phys. Lett. 91(6), 061103 (2007).
[Crossref]

Narazaki, A.

A. Narazaki, R. Kurosaki, T. Sato, Y. Kawaguchi, and H. Niino, “On-demand deposition of functional oxide microdots by double-pulse laser-induced dot transfer,” J. Laser Micro/Nanoeng. 9(1), 10–14 (2014).
[Crossref]

Niino, H.

A. Narazaki, R. Kurosaki, T. Sato, Y. Kawaguchi, and H. Niino, “On-demand deposition of functional oxide microdots by double-pulse laser-induced dot transfer,” J. Laser Micro/Nanoeng. 9(1), 10–14 (2014).
[Crossref]

Nolte, S.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

Nüesch, F.

R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Fabrication of organic light-emitting diode pixels by laser-assisted forward transfer,” Appl. Phys. Lett. 91(6), 061103 (2007).
[Crossref]

Oosterhuis, G.

Overmeyer, L.

Palla-Papavlu, A.

F. Di Pietrantonio, M. Benetti, D. Cannatà, E. Verona, A. Palla-Papavlu, V. Dinca, M. Dinescu, T. Mattle, and T. Lippert, “Volatile toxic compound detection by surface acoustic wave sensor array coated with chemoselective polymers deposited by laser induced forward transfer: Application to sarin,” Sens. Actuators B Chem. 174, 158–167 (2012).
[Crossref]

Pezzotti, I.

C. Boutopoulos, E. Touloupakis, I. Pezzotti, M. T. Giardi, and I. Zergioti, “Direct laser immobilization of photosynthetic material on screen printed electrodes for amperometric biosensor,” Appl. Phys. Lett. 98(9), 093703 (2011).
[Crossref]

Piazza, S.

C. Florian, S. Piazza, A. Diaspro, P. Serra, and M. Duocastella, “Direct Laser Printing of Tailored Polymeric Microlenses,” ACS Appl. Mater. Interfaces 8(27), 17028–17032 (2016).
[Crossref] [PubMed]

Pietrantonio, F. Di

F. Di Pietrantonio, M. Benetti, D. Cannatà, E. Verona, A. Palla-Papavlu, V. Dinca, M. Dinescu, T. Mattle, and T. Lippert, “Volatile toxic compound detection by surface acoustic wave sensor array coated with chemoselective polymers deposited by laser induced forward transfer: Application to sarin,” Sens. Actuators B Chem. 174, 158–167 (2012).
[Crossref]

Pippenger, B.

S. Catros, J.-C. Fricain, B. Guillotin, B. Pippenger, R. Bareille, M. Remy, E. Lebraud, B. Desbat, J. Amédée, and F. Guillemot, “Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite,” Biofabrication 3(2), 025001 (2011).
[Crossref] [PubMed]

Pique, A.

A. Pique, R. C. Y. Auyeung, H. Kim, K. M. Metkus, and S. A. Mathews, “Digital microfabrication by laser decal transfer,” J. Laser Micro/Nanoeng. 3(3), 163–169 (2008).
[Crossref]

Piqué, A.

A. J. Birnbaum, K. Heungsoo, N. A. Charipar, and A. Piqué, “Laser printing of multi-layered polymer/metal heterostructures for electronic and MEMS devices,” Appl. Phys., A Mater. Sci. Process. 99(4), 711–716 (2010).
[Crossref]

Pohl, R.

R. Pohl, C. W. Visser, G.-W. Römer, D. Lohse, C. Sun, and B. Huis in ’t Veld, “Ejection regimes in picosecond laser-induced forward transfer of Metals,” Phys. Rev. Applied 3(2), 024001 (2015).
[Crossref]

C. W. Visser, R. Pohl, C. Sun, G.-W. Römer, B. Huis in ’T Veld, T Veld, and D. Lohse, “Toward 3D Printing of Pure Metals by Laser-Induced Forward Transfer,” Adv. Mater. 27(27), 4087–4092 (2015).
[Crossref] [PubMed]

Rapp, L.

E. Biver, L. Rapp, A. P. Alloncle, and P. Delaporte, “Multi-jets formation using laser forward transfer,” Appl. Surf. Sci. 302, 153–158 (2014).
[Crossref]

L. Rapp, A. K. Diallo, A. P. Alloncle, C. Videlot-Ackermann, F. Fages, and P. Delaporte, “Pulsed-laser printing of organic thin-film transistors,” Appl. Phys. Lett. 95(17), 1–4 (2009).
[Crossref]

Rayleigh, W. S.

W. S. Rayleigh, “On the stability of jets,” Proc. Lond. Math. Soc. 4, 10–13 (1878).

Reimers, K.

L. Koch, A. Deiwick, S. Schlie, S. Michael, M. Gruene, V. Coger, D. Zychlinski, A. Schambach, K. Reimers, P. M. Vogt, and B. N. Chichkov, “Skin tissue generation by laser cell printing,” Biotechnol. Bioeng. 109(7), 1855–1863 (2012).
[Crossref] [PubMed]

Reinhardt, C.

U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5, 3402 (2014).
[Crossref] [PubMed]

Reitz, R. D.

N. Chigier and R. D. Reitz, Recent Advances in Spray Combustion: Spray Atomization Drop Burning Phenomena (AIAA, 1996), Chap. Regimes of jet breakup and breakup mechanisms (Physical Aspects), 109–135.

Remy, M.

S. Catros, J.-C. Fricain, B. Guillotin, B. Pippenger, R. Bareille, M. Remy, E. Lebraud, B. Desbat, J. Amédée, and F. Guillemot, “Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite,” Biofabrication 3(2), 025001 (2011).
[Crossref] [PubMed]

Römer, G.-W.

C. W. Visser, R. Pohl, C. Sun, G.-W. Römer, B. Huis in ’T Veld, T Veld, and D. Lohse, “Toward 3D Printing of Pure Metals by Laser-Induced Forward Transfer,” Adv. Mater. 27(27), 4087–4092 (2015).
[Crossref] [PubMed]

R. Pohl, C. W. Visser, G.-W. Römer, D. Lohse, C. Sun, and B. Huis in ’t Veld, “Ejection regimes in picosecond laser-induced forward transfer of Metals,” Phys. Rev. Applied 3(2), 024001 (2015).
[Crossref]

Sa’ar, A.

M. Zenou, A. Sa’ar, and Z. Kotler, “Laser jetting of femto-liter metal droplets for high resolution 3D printed structures,” Sci. Rep. 5, 17265 (2015).
[Crossref] [PubMed]

Sato, T.

A. Narazaki, R. Kurosaki, T. Sato, Y. Kawaguchi, and H. Niino, “On-demand deposition of functional oxide microdots by double-pulse laser-induced dot transfer,” J. Laser Micro/Nanoeng. 9(1), 10–14 (2014).
[Crossref]

Schambach, A.

L. Koch, A. Deiwick, S. Schlie, S. Michael, M. Gruene, V. Coger, D. Zychlinski, A. Schambach, K. Reimers, P. M. Vogt, and B. N. Chichkov, “Skin tissue generation by laser cell printing,” Biotechnol. Bioeng. 109(7), 1855–1863 (2012).
[Crossref] [PubMed]

Schlie, S.

L. Koch, A. Deiwick, S. Schlie, S. Michael, M. Gruene, V. Coger, D. Zychlinski, A. Schambach, K. Reimers, P. M. Vogt, and B. N. Chichkov, “Skin tissue generation by laser cell printing,” Biotechnol. Bioeng. 109(7), 1855–1863 (2012).
[Crossref] [PubMed]

Serpetzoglou, E.

C. Boutopoulos, I. Kalpyris, E. Serpetzoglou, and I. Zergioti, “Laser-induced forward transfer of silver nanoparticle ink: Time-resolved imaging of the jetting dynamics and correlation with the printing quality,” Microfluid. Nanofluid. 16(3), 493–500 (2014).
[Crossref]

Serra, P.

C. Florian, S. Piazza, A. Diaspro, P. Serra, and M. Duocastella, “Direct Laser Printing of Tailored Polymeric Microlenses,” ACS Appl. Mater. Interfaces 8(27), 17028–17032 (2016).
[Crossref] [PubMed]

M. Duocastella, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Time-resolved imaging of the laser forward transfer of liquids,” J. Appl. Phys. 106(8), 084907 (2009).
[Crossref]

Sones, C. L.

Sposito, A.

Sun, C.

R. Pohl, C. W. Visser, G.-W. Römer, D. Lohse, C. Sun, and B. Huis in ’t Veld, “Ejection regimes in picosecond laser-induced forward transfer of Metals,” Phys. Rev. Applied 3(2), 024001 (2015).
[Crossref]

C. W. Visser, R. Pohl, C. Sun, G.-W. Römer, B. Huis in ’T Veld, T Veld, and D. Lohse, “Toward 3D Printing of Pure Metals by Laser-Induced Forward Transfer,” Adv. Mater. 27(27), 4087–4092 (2015).
[Crossref] [PubMed]

Touloupakis, E.

C. Boutopoulos, E. Touloupakis, I. Pezzotti, M. T. Giardi, and I. Zergioti, “Direct laser immobilization of photosynthetic material on screen printed electrodes for amperometric biosensor,” Appl. Phys. Lett. 98(9), 093703 (2011).
[Crossref]

Tsoukalas, D.

M. Makrygianni, E. Verrelli, N. Boukos, S. Chatzandroulis, D. Tsoukalas, and I. Zergioti, “Laser printing and characterization of semiconducting polymers for organic electronics,” Appl. Phys., A Mater. Sci. Process. 110(3), 559–563 (2013).
[Crossref]

Tünnermann, A.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

Unger, C.

A. I. Kuznetsov, C. Unger, J. Koch, and B. N. Chichkov, “Laser-induced jet formation and droplet ejection from thin metal films,” Appl. Phys., A Mater. Sci. Process. 106(3), 479–487 (2012).
[Crossref]

C. Unger, J. Koch, L. Overmeyer, and B. N. Chichkov, “Time-resolved studies of femtosecond-laser induced melt dynamics,” Opt. Express 20(22), 24864–24872 (2012).
[Crossref] [PubMed]

Veld, T

C. W. Visser, R. Pohl, C. Sun, G.-W. Römer, B. Huis in ’T Veld, T Veld, and D. Lohse, “Toward 3D Printing of Pure Metals by Laser-Induced Forward Transfer,” Adv. Mater. 27(27), 4087–4092 (2015).
[Crossref] [PubMed]

Ventikos, Y.

M. S. Brown, C. F. Brasz, Y. Ventikos, and C. B. Arnold, “Impulsively actuated jets from thin liquid films for high-resolution printing applications,” J. Fluid Mech. 709, 341–370 (2012).
[Crossref]

Verona, E.

F. Di Pietrantonio, M. Benetti, D. Cannatà, E. Verona, A. Palla-Papavlu, V. Dinca, M. Dinescu, T. Mattle, and T. Lippert, “Volatile toxic compound detection by surface acoustic wave sensor array coated with chemoselective polymers deposited by laser induced forward transfer: Application to sarin,” Sens. Actuators B Chem. 174, 158–167 (2012).
[Crossref]

Verrelli, E.

M. Makrygianni, E. Verrelli, N. Boukos, S. Chatzandroulis, D. Tsoukalas, and I. Zergioti, “Laser printing and characterization of semiconducting polymers for organic electronics,” Appl. Phys., A Mater. Sci. Process. 110(3), 559–563 (2013).
[Crossref]

Videlot-Ackermann, C.

L. Rapp, A. K. Diallo, A. P. Alloncle, C. Videlot-Ackermann, F. Fages, and P. Delaporte, “Pulsed-laser printing of organic thin-film transistors,” Appl. Phys. Lett. 95(17), 1–4 (2009).
[Crossref]

Visser, C. W.

C. W. Visser, R. Pohl, C. Sun, G.-W. Römer, B. Huis in ’T Veld, T Veld, and D. Lohse, “Toward 3D Printing of Pure Metals by Laser-Induced Forward Transfer,” Adv. Mater. 27(27), 4087–4092 (2015).
[Crossref] [PubMed]

R. Pohl, C. W. Visser, G.-W. Römer, D. Lohse, C. Sun, and B. Huis in ’t Veld, “Ejection regimes in picosecond laser-induced forward transfer of Metals,” Phys. Rev. Applied 3(2), 024001 (2015).
[Crossref]

Vogt, P. M.

L. Koch, A. Deiwick, S. Schlie, S. Michael, M. Gruene, V. Coger, D. Zychlinski, A. Schambach, K. Reimers, P. M. Vogt, and B. N. Chichkov, “Skin tissue generation by laser cell printing,” Biotechnol. Bioeng. 109(7), 1855–1863 (2012).
[Crossref] [PubMed]

von Alvensleben, F.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

Wang, J.

Y. Wang, X. Liu, K.-S. Im, W.-K. Lee, J. Wang, K. Fezzaa, D. L. S. Hung, and J. R. Winkelman, “Ultrafast X-ray study of dense-liquid-jet flow dynamics using structure-tracking velocimetry,” Nat. Phys. 4(4), 305–309 (2008).
[Crossref]

Wang, Y.

Y. Wang, X. Liu, K.-S. Im, W.-K. Lee, J. Wang, K. Fezzaa, D. L. S. Hung, and J. R. Winkelman, “Ultrafast X-ray study of dense-liquid-jet flow dynamics using structure-tracking velocimetry,” Nat. Phys. 4(4), 305–309 (2008).
[Crossref]

Winkelman, J. R.

Y. Wang, X. Liu, K.-S. Im, W.-K. Lee, J. Wang, K. Fezzaa, D. L. S. Hung, and J. R. Winkelman, “Ultrafast X-ray study of dense-liquid-jet flow dynamics using structure-tracking velocimetry,” Nat. Phys. 4(4), 305–309 (2008).
[Crossref]

Wokaun, A.

R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Fabrication of organic light-emitting diode pixels by laser-assisted forward transfer,” Appl. Phys. Lett. 91(6), 061103 (2007).
[Crossref]

Zenou, M.

M. Zenou and Z. Kotler, “Printing of metallic 3D micro-objects by laser induced forward transfer,” Opt. Express 24(2), 1431–1446 (2016).
[Crossref] [PubMed]

M. Zenou, A. Sa’ar, and Z. Kotler, “Laser jetting of femto-liter metal droplets for high resolution 3D printed structures,” Sci. Rep. 5, 17265 (2015).
[Crossref] [PubMed]

Zergioti, I.

C. Boutopoulos, I. Kalpyris, E. Serpetzoglou, and I. Zergioti, “Laser-induced forward transfer of silver nanoparticle ink: Time-resolved imaging of the jetting dynamics and correlation with the printing quality,” Microfluid. Nanofluid. 16(3), 493–500 (2014).
[Crossref]

M. Makrygianni, E. Verrelli, N. Boukos, S. Chatzandroulis, D. Tsoukalas, and I. Zergioti, “Laser printing and characterization of semiconducting polymers for organic electronics,” Appl. Phys., A Mater. Sci. Process. 110(3), 559–563 (2013).
[Crossref]

C. Boutopoulos, E. Touloupakis, I. Pezzotti, M. T. Giardi, and I. Zergioti, “Direct laser immobilization of photosynthetic material on screen printed electrodes for amperometric biosensor,” Appl. Phys. Lett. 98(9), 093703 (2011).
[Crossref]

D. P. Banks, C. Grivas, J. D. Mills, R. W. Eason, and I. Zergioti, “Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer,” Appl. Phys. Lett. 89(19), 87–90 (2006).
[Crossref]

Zychlinski, D.

L. Koch, A. Deiwick, S. Schlie, S. Michael, M. Gruene, V. Coger, D. Zychlinski, A. Schambach, K. Reimers, P. M. Vogt, and B. N. Chichkov, “Skin tissue generation by laser cell printing,” Biotechnol. Bioeng. 109(7), 1855–1863 (2012).
[Crossref] [PubMed]

Zywietz, U.

U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5, 3402 (2014).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

C. Florian, S. Piazza, A. Diaspro, P. Serra, and M. Duocastella, “Direct Laser Printing of Tailored Polymeric Microlenses,” ACS Appl. Mater. Interfaces 8(27), 17028–17032 (2016).
[Crossref] [PubMed]

Acta Metall. (1)

L. Battezzati and A. L. Greer, “The viscosity of liquid metals and alloys,” Acta Metall. 37(7), 1791–1802 (1989).
[Crossref]

Adv. Mater. (1)

C. W. Visser, R. Pohl, C. Sun, G.-W. Römer, B. Huis in ’T Veld, T Veld, and D. Lohse, “Toward 3D Printing of Pure Metals by Laser-Induced Forward Transfer,” Adv. Mater. 27(27), 4087–4092 (2015).
[Crossref] [PubMed]

Appl. Phys. Lett. (4)

D. P. Banks, C. Grivas, J. D. Mills, R. W. Eason, and I. Zergioti, “Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer,” Appl. Phys. Lett. 89(19), 87–90 (2006).
[Crossref]

C. Boutopoulos, E. Touloupakis, I. Pezzotti, M. T. Giardi, and I. Zergioti, “Direct laser immobilization of photosynthetic material on screen printed electrodes for amperometric biosensor,” Appl. Phys. Lett. 98(9), 093703 (2011).
[Crossref]

L. Rapp, A. K. Diallo, A. P. Alloncle, C. Videlot-Ackermann, F. Fages, and P. Delaporte, “Pulsed-laser printing of organic thin-film transistors,” Appl. Phys. Lett. 95(17), 1–4 (2009).
[Crossref]

R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Fabrication of organic light-emitting diode pixels by laser-assisted forward transfer,” Appl. Phys. Lett. 91(6), 061103 (2007).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (4)

M. Makrygianni, E. Verrelli, N. Boukos, S. Chatzandroulis, D. Tsoukalas, and I. Zergioti, “Laser printing and characterization of semiconducting polymers for organic electronics,” Appl. Phys., A Mater. Sci. Process. 110(3), 559–563 (2013).
[Crossref]

A. J. Birnbaum, K. Heungsoo, N. A. Charipar, and A. Piqué, “Laser printing of multi-layered polymer/metal heterostructures for electronic and MEMS devices,” Appl. Phys., A Mater. Sci. Process. 99(4), 711–716 (2010).
[Crossref]

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

A. I. Kuznetsov, C. Unger, J. Koch, and B. N. Chichkov, “Laser-induced jet formation and droplet ejection from thin metal films,” Appl. Phys., A Mater. Sci. Process. 106(3), 479–487 (2012).
[Crossref]

Appl. Surf. Sci. (1)

E. Biver, L. Rapp, A. P. Alloncle, and P. Delaporte, “Multi-jets formation using laser forward transfer,” Appl. Surf. Sci. 302, 153–158 (2014).
[Crossref]

Biofabrication (1)

S. Catros, J.-C. Fricain, B. Guillotin, B. Pippenger, R. Bareille, M. Remy, E. Lebraud, B. Desbat, J. Amédée, and F. Guillemot, “Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite,” Biofabrication 3(2), 025001 (2011).
[Crossref] [PubMed]

Biotechnol. Bioeng. (1)

L. Koch, A. Deiwick, S. Schlie, S. Michael, M. Gruene, V. Coger, D. Zychlinski, A. Schambach, K. Reimers, P. M. Vogt, and B. N. Chichkov, “Skin tissue generation by laser cell printing,” Biotechnol. Bioeng. 109(7), 1855–1863 (2012).
[Crossref] [PubMed]

J. Appl. Phys. (2)

M. Duocastella, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Time-resolved imaging of the laser forward transfer of liquids,” J. Appl. Phys. 106(8), 084907 (2009).
[Crossref]

J. Bohandy, B. F. Kim, and F. J. Adrian, “Metal deposition from a supported metal film using an excimer laser,” J. Appl. Phys. 60(4), 1538–1539 (1986).
[Crossref]

J. Fluid Mech. (1)

M. S. Brown, C. F. Brasz, Y. Ventikos, and C. B. Arnold, “Impulsively actuated jets from thin liquid films for high-resolution printing applications,” J. Fluid Mech. 709, 341–370 (2012).
[Crossref]

J. Laser Micro/Nanoeng. (2)

A. Narazaki, R. Kurosaki, T. Sato, Y. Kawaguchi, and H. Niino, “On-demand deposition of functional oxide microdots by double-pulse laser-induced dot transfer,” J. Laser Micro/Nanoeng. 9(1), 10–14 (2014).
[Crossref]

A. Pique, R. C. Y. Auyeung, H. Kim, K. M. Metkus, and S. A. Mathews, “Digital microfabrication by laser decal transfer,” J. Laser Micro/Nanoeng. 3(3), 163–169 (2008).
[Crossref]

Microfluid. Nanofluid. (1)

C. Boutopoulos, I. Kalpyris, E. Serpetzoglou, and I. Zergioti, “Laser-induced forward transfer of silver nanoparticle ink: Time-resolved imaging of the jetting dynamics and correlation with the printing quality,” Microfluid. Nanofluid. 16(3), 493–500 (2014).
[Crossref]

Nat. Commun. (1)

U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5, 3402 (2014).
[Crossref] [PubMed]

Nat. Phys. (1)

Y. Wang, X. Liu, K.-S. Im, W.-K. Lee, J. Wang, K. Fezzaa, D. L. S. Hung, and J. R. Winkelman, “Ultrafast X-ray study of dense-liquid-jet flow dynamics using structure-tracking velocimetry,” Nat. Phys. 4(4), 305–309 (2008).
[Crossref]

Opt. Express (5)

Opt. Mater. Express (1)

Optics & Laser Technology (1)

P. Delaporte and A.-P. Alloncle, “Laser-induced forward transfer: A high resolution additive manufacturing technology,” Optics & Laser Technology 78, 33–41 (2016).
[Crossref]

Org. Electron. (1)

N. T. Kattamis, N. D. McDaniel, S. Bernhard, and C. B. Arnold, “Ambient laser direct-write printing of a patterned organo-metallic electroluminescent device,” Org. Electron. 12(7), 1152–1158 (2011).
[Crossref]

Phys. Rev. Applied (1)

R. Pohl, C. W. Visser, G.-W. Römer, D. Lohse, C. Sun, and B. Huis in ’t Veld, “Ejection regimes in picosecond laser-induced forward transfer of Metals,” Phys. Rev. Applied 3(2), 024001 (2015).
[Crossref]

Proc. Lond. Math. Soc. (1)

W. S. Rayleigh, “On the stability of jets,” Proc. Lond. Math. Soc. 4, 10–13 (1878).

Sci. Rep. (1)

M. Zenou, A. Sa’ar, and Z. Kotler, “Laser jetting of femto-liter metal droplets for high resolution 3D printed structures,” Sci. Rep. 5, 17265 (2015).
[Crossref] [PubMed]

Sens. Actuators B Chem. (1)

F. Di Pietrantonio, M. Benetti, D. Cannatà, E. Verona, A. Palla-Papavlu, V. Dinca, M. Dinescu, T. Mattle, and T. Lippert, “Volatile toxic compound detection by surface acoustic wave sensor array coated with chemoselective polymers deposited by laser induced forward transfer: Application to sarin,” Sens. Actuators B Chem. 174, 158–167 (2012).
[Crossref]

Other (1)

N. Chigier and R. D. Reitz, Recent Advances in Spray Combustion: Spray Atomization Drop Burning Phenomena (AIAA, 1996), Chap. Regimes of jet breakup and breakup mechanisms (Physical Aspects), 109–135.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Experimental arrangement. Beam paths of the pre-heating (QCW) and the picosecond lasers are displayed in red and purple respectively. λ/2, half-wave plate; P, polarizer; BS, beam splitter; TL, tube lens; OBJ, objective lens; FLASH, nanosecond flash lamp; OBJ_SL, super-long working distance objective lens; C1 and C2, cameras; L1, L2 and L3, lenses; DM, dichroic mirror; M, mirror. (b) Optical image of a modified region of a copper donor film after double-pulse processing. The timing sequence of our experiment has been set as that the picosecond pulse is synchronized with respect to the falling edge of the sub-millisecond pulse and the flash illuminate the ejections with a tunable delay.
Fig. 2
Fig. 2 Shadowgraph imaging of the ejection from copper films of different thicknesses: (a) 180-nm, (b) 410-nm, (c) 620-nm. (a1–a3), (b1–b3) and (c1–c3) are ejections induced by single picosecond pulses with different fluences given at the top of each image (unit: mJ/cm2). (a4–a6), (b4–b6) and (c4–c6) are ejections induced by double-pulse LIFT with different picosecond pulse fluences given at the top of each image (unit: mJ/cm2) and a first pre-melting pulse with respective duration and energy of 120 μs and 2.6 mJ for 180-nm films, 200-μs and 4.3 mJ for 410-nm films and 250 μs and 13.4 mJ for 620-nm films. (d1) and (d2) are SEM images of the residual crater left on the 410-nm donor film after single (b1) and double (b6) pulse LIFT (scale bars: 1 μm). (e1) and (e2) are residual craters left on the 620-nm donor film after single (c2) and double (c5) pulse LIFT (scale bars: 2μm). For each ejection image, the white dash line stands for the location of the donor film and the shady region near the donor film is due to tilted imaging and laser-induced changes of the surface reflectivity.
Fig. 3
Fig. 3 Time-resolved shadowgraphy images acquired for double-pulse LIFT with a 620-nm copper film.
Fig. 4
Fig. 4 (a) Array of copper droplets printed by double-pulse LIFT from a 410-nm donor film. (b) SEM image of a single copper droplet of this array.

Metrics