Abstract

This paper proposes an approach to measure double-sided near-right-angle structured surfaces based on dual-probe wavelength scanning interferometry (DPWSI). The principle and mathematical model is discussed and the measurement system is calibrated with a combination of standard step-height samples for both probes vertical calibrations and a specially designed calibration artefact for building up the space coordinate relationship of the dual-probe measurement system. The topography of the specially designed artefact is acquired by combining the measurement results with white light scanning interferometer (WLSI) and scanning electron microscope (SEM) for reference. The relative location of the two probes is then determined with 3D registration algorithm. Experimental validation of the approach is provided and the results show that the method is able to measure double-sided near-right-angle structured surfaces with nanometer vertical resolution and micrometer lateral resolution.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Stylus profiling at high resolution and low force

J. F. Song and Theodore V. Vorburger
Appl. Opt. 30(1) 42-50 (1991)

Quadrature wavelength scanning interferometry

Giuseppe Moschetti, Alistair Forbes, Richard K. Leach, Xiang Jiang, and Daniel O’Connor
Appl. Opt. 55(20) 5332-5340 (2016)

References

  • View by:
  • |
  • |
  • |

  1. X. Zhang, L. Jiang, Z. Zeng, F. Fang, and X. Liu, “High angular accuracy manufacture method of micro v-grooves based on tool alignment by on-machine measurement,” Opt. Express 23(21), 27819–27828 (2015).
    [Crossref] [PubMed]
  2. D. Li, C. F. Cheung, M. Ren, L. Zhou, and X. Zhao, “Autostereoscopy-based three-dimensional on-machine measuring system for micro-structured surfaces,” Opt. Express 22(21), 25635–25650 (2014).
    [Crossref] [PubMed]
  3. D. Li, C. F. Cheung, M. Ren, D. Whitehouse, and X. Zhao, “Disparity pattern-based autostereoscopic 3D metrology system for in situ measurement of microstructured surfaces,” Opt. Lett. 40(22), 5271–5274 (2015).
    [Crossref] [PubMed]
  4. D. Purcell, A. Suratkar, A. Davies, F. Farahi, H. Ottevaere, and H. Thienpont, “Interferometric technique for faceted microstructure metrology using an index matching liquid,” Appl. Opt. 49(4), 732–738 (2010).
    [Crossref] [PubMed]
  5. F. Fang, Z. Zeng, X. Zhang, and L. Jiang, “Measurement of micro-V-groove dihedral using white light interferometry,” Opt. Commun. 359, 297–303 (2016).
    [Crossref]
  6. F. Gao, J. Coupland, and J. Petzing, “V-groove measurements using white light interferometry,” in Photon06, Manchester, (2006) pp. 4–7.
  7. C. J. Evans and J. B. Bryan, “’Structured’, ‘textured’ or ‘engineered’ surfaces,” CIRP Ann. Manuf. Tech. 48(2), 541–556 (1999).
  8. L. Singleton, R. Leach, A. Lewis, and Z. Cui, “Report on the analysis of the MEMSTAND survey on Standardisation of MicroSystems Technology,” MEMSTAND Project IST-2001- 37682 (2002).
  9. B. F. Ju, Y. L. Chen, W. Zhang, and F. Z. Fang, “Rapid measurement of a high step microstructure with 90° steep sidewall,” Rev. Sci. Instrum. 83(1), 013706 (2012).
    [Crossref] [PubMed]
  10. A. P. Tafti, A. B. Kirkpatrick, Z. Alavi, H. A. Owen, and Z. Yu, “Recent advances in 3D SEM surface reconstruction,” Micron 78, 54–66 (2015).
    [Crossref] [PubMed]
  11. D. Malacara, Optical shop testing (John Wiley & Sons, 2007).
  12. M. J. Jansen, H. Haitjema, and P. H. Schellekens, “Scanning wafer thickness and flatness interferometer,” Proc. SPIE 5252, 334–345 (2004).
    [Crossref]
  13. X. Jiang, K. Wang, F. Gao, and H. Muhamedsalih, “Fast surface measurement using wavelength scanning interferometry with compensation of environmental noise,” Appl. Opt. 49(15), 2903–2909 (2010).
    [Crossref] [PubMed]
  14. H. Muhamedsalih, F. Gao, and X. Jiang, “Comparison study of algorithms and accuracy in the wavelength scanning interferometry,” Appl. Opt. 51(36), 8854–8862 (2012).
    [Crossref] [PubMed]
  15. M. Takeda and H. Yamamoto, “Fourier-transform speckle profilometry: three-dimensional shape measurements of diffuse objects with large height steps and/or spatially isolated surfaces,” Appl. Opt. 33(34), 7829–7837 (1994).
    [Crossref] [PubMed]
  16. G. D. MacAulay, N. Senin, C. L. Giusca, and R. K. Leach, “Study of manufacturing and measurement reproducibility on a laser textured structured surface,” Measurement 94, 942–948 (2016).
    [Crossref]
  17. G. D. MacAulay, N. Senin, C. L. Giusca, and R. K. Leach, “Comparison of segmentation techniques to determine the geometric parameters of structured surfaces,” Surf. Topog. Metrol. Prop. 2(4), 044004 (2014).
    [Crossref]

2016 (2)

F. Fang, Z. Zeng, X. Zhang, and L. Jiang, “Measurement of micro-V-groove dihedral using white light interferometry,” Opt. Commun. 359, 297–303 (2016).
[Crossref]

G. D. MacAulay, N. Senin, C. L. Giusca, and R. K. Leach, “Study of manufacturing and measurement reproducibility on a laser textured structured surface,” Measurement 94, 942–948 (2016).
[Crossref]

2015 (3)

2014 (2)

D. Li, C. F. Cheung, M. Ren, L. Zhou, and X. Zhao, “Autostereoscopy-based three-dimensional on-machine measuring system for micro-structured surfaces,” Opt. Express 22(21), 25635–25650 (2014).
[Crossref] [PubMed]

G. D. MacAulay, N. Senin, C. L. Giusca, and R. K. Leach, “Comparison of segmentation techniques to determine the geometric parameters of structured surfaces,” Surf. Topog. Metrol. Prop. 2(4), 044004 (2014).
[Crossref]

2012 (2)

B. F. Ju, Y. L. Chen, W. Zhang, and F. Z. Fang, “Rapid measurement of a high step microstructure with 90° steep sidewall,” Rev. Sci. Instrum. 83(1), 013706 (2012).
[Crossref] [PubMed]

H. Muhamedsalih, F. Gao, and X. Jiang, “Comparison study of algorithms and accuracy in the wavelength scanning interferometry,” Appl. Opt. 51(36), 8854–8862 (2012).
[Crossref] [PubMed]

2010 (2)

2004 (1)

M. J. Jansen, H. Haitjema, and P. H. Schellekens, “Scanning wafer thickness and flatness interferometer,” Proc. SPIE 5252, 334–345 (2004).
[Crossref]

1999 (1)

C. J. Evans and J. B. Bryan, “’Structured’, ‘textured’ or ‘engineered’ surfaces,” CIRP Ann. Manuf. Tech. 48(2), 541–556 (1999).

1994 (1)

Alavi, Z.

A. P. Tafti, A. B. Kirkpatrick, Z. Alavi, H. A. Owen, and Z. Yu, “Recent advances in 3D SEM surface reconstruction,” Micron 78, 54–66 (2015).
[Crossref] [PubMed]

Bryan, J. B.

C. J. Evans and J. B. Bryan, “’Structured’, ‘textured’ or ‘engineered’ surfaces,” CIRP Ann. Manuf. Tech. 48(2), 541–556 (1999).

Chen, Y. L.

B. F. Ju, Y. L. Chen, W. Zhang, and F. Z. Fang, “Rapid measurement of a high step microstructure with 90° steep sidewall,” Rev. Sci. Instrum. 83(1), 013706 (2012).
[Crossref] [PubMed]

Cheung, C. F.

Davies, A.

Evans, C. J.

C. J. Evans and J. B. Bryan, “’Structured’, ‘textured’ or ‘engineered’ surfaces,” CIRP Ann. Manuf. Tech. 48(2), 541–556 (1999).

Fang, F.

Fang, F. Z.

B. F. Ju, Y. L. Chen, W. Zhang, and F. Z. Fang, “Rapid measurement of a high step microstructure with 90° steep sidewall,” Rev. Sci. Instrum. 83(1), 013706 (2012).
[Crossref] [PubMed]

Farahi, F.

Gao, F.

Giusca, C. L.

G. D. MacAulay, N. Senin, C. L. Giusca, and R. K. Leach, “Study of manufacturing and measurement reproducibility on a laser textured structured surface,” Measurement 94, 942–948 (2016).
[Crossref]

G. D. MacAulay, N. Senin, C. L. Giusca, and R. K. Leach, “Comparison of segmentation techniques to determine the geometric parameters of structured surfaces,” Surf. Topog. Metrol. Prop. 2(4), 044004 (2014).
[Crossref]

Haitjema, H.

M. J. Jansen, H. Haitjema, and P. H. Schellekens, “Scanning wafer thickness and flatness interferometer,” Proc. SPIE 5252, 334–345 (2004).
[Crossref]

Jansen, M. J.

M. J. Jansen, H. Haitjema, and P. H. Schellekens, “Scanning wafer thickness and flatness interferometer,” Proc. SPIE 5252, 334–345 (2004).
[Crossref]

Jiang, L.

Jiang, X.

Ju, B. F.

B. F. Ju, Y. L. Chen, W. Zhang, and F. Z. Fang, “Rapid measurement of a high step microstructure with 90° steep sidewall,” Rev. Sci. Instrum. 83(1), 013706 (2012).
[Crossref] [PubMed]

Kirkpatrick, A. B.

A. P. Tafti, A. B. Kirkpatrick, Z. Alavi, H. A. Owen, and Z. Yu, “Recent advances in 3D SEM surface reconstruction,” Micron 78, 54–66 (2015).
[Crossref] [PubMed]

Leach, R. K.

G. D. MacAulay, N. Senin, C. L. Giusca, and R. K. Leach, “Study of manufacturing and measurement reproducibility on a laser textured structured surface,” Measurement 94, 942–948 (2016).
[Crossref]

G. D. MacAulay, N. Senin, C. L. Giusca, and R. K. Leach, “Comparison of segmentation techniques to determine the geometric parameters of structured surfaces,” Surf. Topog. Metrol. Prop. 2(4), 044004 (2014).
[Crossref]

Li, D.

Liu, X.

MacAulay, G. D.

G. D. MacAulay, N. Senin, C. L. Giusca, and R. K. Leach, “Study of manufacturing and measurement reproducibility on a laser textured structured surface,” Measurement 94, 942–948 (2016).
[Crossref]

G. D. MacAulay, N. Senin, C. L. Giusca, and R. K. Leach, “Comparison of segmentation techniques to determine the geometric parameters of structured surfaces,” Surf. Topog. Metrol. Prop. 2(4), 044004 (2014).
[Crossref]

Muhamedsalih, H.

Ottevaere, H.

Owen, H. A.

A. P. Tafti, A. B. Kirkpatrick, Z. Alavi, H. A. Owen, and Z. Yu, “Recent advances in 3D SEM surface reconstruction,” Micron 78, 54–66 (2015).
[Crossref] [PubMed]

Purcell, D.

Ren, M.

Schellekens, P. H.

M. J. Jansen, H. Haitjema, and P. H. Schellekens, “Scanning wafer thickness and flatness interferometer,” Proc. SPIE 5252, 334–345 (2004).
[Crossref]

Senin, N.

G. D. MacAulay, N. Senin, C. L. Giusca, and R. K. Leach, “Study of manufacturing and measurement reproducibility on a laser textured structured surface,” Measurement 94, 942–948 (2016).
[Crossref]

G. D. MacAulay, N. Senin, C. L. Giusca, and R. K. Leach, “Comparison of segmentation techniques to determine the geometric parameters of structured surfaces,” Surf. Topog. Metrol. Prop. 2(4), 044004 (2014).
[Crossref]

Suratkar, A.

Tafti, A. P.

A. P. Tafti, A. B. Kirkpatrick, Z. Alavi, H. A. Owen, and Z. Yu, “Recent advances in 3D SEM surface reconstruction,” Micron 78, 54–66 (2015).
[Crossref] [PubMed]

Takeda, M.

Thienpont, H.

Wang, K.

Whitehouse, D.

Yamamoto, H.

Yu, Z.

A. P. Tafti, A. B. Kirkpatrick, Z. Alavi, H. A. Owen, and Z. Yu, “Recent advances in 3D SEM surface reconstruction,” Micron 78, 54–66 (2015).
[Crossref] [PubMed]

Zeng, Z.

Zhang, W.

B. F. Ju, Y. L. Chen, W. Zhang, and F. Z. Fang, “Rapid measurement of a high step microstructure with 90° steep sidewall,” Rev. Sci. Instrum. 83(1), 013706 (2012).
[Crossref] [PubMed]

Zhang, X.

Zhao, X.

Zhou, L.

Appl. Opt. (4)

CIRP Ann. Manuf. Tech. (1)

C. J. Evans and J. B. Bryan, “’Structured’, ‘textured’ or ‘engineered’ surfaces,” CIRP Ann. Manuf. Tech. 48(2), 541–556 (1999).

Measurement (1)

G. D. MacAulay, N. Senin, C. L. Giusca, and R. K. Leach, “Study of manufacturing and measurement reproducibility on a laser textured structured surface,” Measurement 94, 942–948 (2016).
[Crossref]

Micron (1)

A. P. Tafti, A. B. Kirkpatrick, Z. Alavi, H. A. Owen, and Z. Yu, “Recent advances in 3D SEM surface reconstruction,” Micron 78, 54–66 (2015).
[Crossref] [PubMed]

Opt. Commun. (1)

F. Fang, Z. Zeng, X. Zhang, and L. Jiang, “Measurement of micro-V-groove dihedral using white light interferometry,” Opt. Commun. 359, 297–303 (2016).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Proc. SPIE (1)

M. J. Jansen, H. Haitjema, and P. H. Schellekens, “Scanning wafer thickness and flatness interferometer,” Proc. SPIE 5252, 334–345 (2004).
[Crossref]

Rev. Sci. Instrum. (1)

B. F. Ju, Y. L. Chen, W. Zhang, and F. Z. Fang, “Rapid measurement of a high step microstructure with 90° steep sidewall,” Rev. Sci. Instrum. 83(1), 013706 (2012).
[Crossref] [PubMed]

Surf. Topog. Metrol. Prop. (1)

G. D. MacAulay, N. Senin, C. L. Giusca, and R. K. Leach, “Comparison of segmentation techniques to determine the geometric parameters of structured surfaces,” Surf. Topog. Metrol. Prop. 2(4), 044004 (2014).
[Crossref]

Other (3)

F. Gao, J. Coupland, and J. Petzing, “V-groove measurements using white light interferometry,” in Photon06, Manchester, (2006) pp. 4–7.

D. Malacara, Optical shop testing (John Wiley & Sons, 2007).

L. Singleton, R. Leach, A. Lewis, and Z. Cui, “Report on the analysis of the MEMSTAND survey on Standardisation of MicroSystems Technology,” MEMSTAND Project IST-2001- 37682 (2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Block diagram of the setup.
Fig. 2
Fig. 2 The coordinate system of the probes.
Fig. 3
Fig. 3 The relative location of the 2 faces of the artefact.
Fig. 4
Fig. 4 The measurement result of a 178 nm standard step-height sample by one of the probes.
Fig. 5
Fig. 5 (a) The topography measured with the DPWSI. (b) The residual error of the topography compared to the reference topography measured with Taylor Hobson CCI 3000 and FEI Quanta 200 3D FIB/SEM workstation. (c) The extended 2D plots of the DPWSI topography.
Fig. 6
Fig. 6 The measurement result of the diamond turned specimen by DPWSI.
Fig. 7
Fig. 7 The measurement result of the diamond turned specimen by Taylor Hobson CCI 3000.
Fig. 8
Fig. 8 The measurement result of a metallised prismatic film.
Fig. 9
Fig. 9 The comparison of the measurement results of the metallised prismatic film by: (a) DPWSI and (b) Taylor Hobson PGI Form Talysurf Series 2, red is before deconvolution, blue is after deconvolution.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

( R 1 t 1 0 1 ) Q n ' = P n ' .
( R 2 t 2 0 1 ) Q n = P n .
R n =( 1 0 0 0 0 cos α n sin α n 0 0 sin α n cos α n 0 0 0 0 1 )( cos β n 0 sin β n 0 0 1 0 0 sin β n 0 cos β n 0 0 0 0 1 )( cos γ n sin γ n 0 0 sin γ n cos γ n 0 0 0 0 1 0 0 0 0 1 ).
t n =( t nx t ny t nz ).
( ( R 1 t 1 0 1 )X ( R 2 t 2 0 1 )Y )( ( R 1 t 1 0 1 ) 1 ( R 1 t 1 0 1 )X ( R 1 t 1 0 1 ) 1 ( R 2 t 2 0 1 )Y )=( X ( R 1 t 1 0 1 ) 1 ( R 2 t 2 0 1 )Y ).
{ distance( f 1, p 1 , f 1, p 2 )= d 1 distance( f 2, p 1 , p 2 )= d 2 distance( f 2, p 2 , p 1 )= d 3 .

Metrics