Abstract

For hydrogen sensor and storage applications, films of Au and Pd were (i) co-sputtered at different rates or (ii) deposited in a sequentially alternating fashion to create a layered structure on a cover glass. Peculiarities of hydrogen uptake and release were optically monitored using 1.3 μm wavelength light. Increase of optical transmission was observed for hydrogenated Pd-rich films of 10–30 nm thickness. Up to a three times slower hydrogen release took place as compared with the hydrogen uptake. Compositional ratio of Au:Pd and thermal treatment of films provided control over the optical extinction changes and hydrogen uptake/release time constants. Higher uptake and release rates were observed in the annealed Au:Pd films as compared to those deposited at room temperature and were faster for the Auricher films. Three main parameters relevant for sensors: sensitivity, selectivity, stability (reproducibility) are discussed together with the hydrogenation mechanism in Au:Pd alloys.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A hydrogen curing effect on surface plasmon resonance fiber optic hydrogen sensors using an annealed Au/Ta2O5/Pd multi-layers film

Ai Hosoki, Michiko Nishiyama, Hirotaka Igawa, Atsushi Seki, and Kazuhiro Watanabe
Opt. Express 22(15) 18556-18563 (2014)

Side-polished fiber Bragg grating hydrogen sensor with WO3-Pd composite film as sensing materials

Jixiang Dai, Minghong Yang, Yun Chen, Kun Cao, Hansheng Liao, and Pengcheng Zhang
Opt. Express 19(7) 6141-6148 (2011)

Ultra-high sensitive optical fiber hydrogen sensor using self-referenced demodulation method and WO3-Pd2Pt-Pt composite film

Jixiang Dai, Wen Peng, Gaopeng Wang, Feng Xiang, Yuhuan Qin, Min Wang, Yutang Dai, Minghong Yang, Hui Deng, and Pengcheng Zhang
Opt. Express 25(3) 2009-2015 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. K. Earl, T. D. James, T. J. Davis, J. C. McCallum, R. E. Marvel, R. F. Haglund, and A. Roberts, “Tunable optical antennas enabled by the phase transition in vanadium dioxide,” Opt. Express 21(22), 27503–27508 (2013).
    [Crossref] [PubMed]
  2. A. Baumel, P. Drodten, E. Heitz, and R. Bender, Corrision Handbook, Platinum Metals (Ir, Os, Pd, Rh, Ru) (John Wiley and Sons, 2008), Chap. A 35.
  3. A. Tittl, C. Kremers, J. Dorfmuller, D. N. Chigrin, and H. Giessen, “Spectral shifts in optical nanoantenna-enhanced hydrogen sensors,” Opt. Mat. Express 2(2), 111–118 (2012).
    [Crossref]
  4. C. Wadell and C. Langhammer, “Drift-corrected nanoplasmonic hydrogen sensing by polarization,” Nanoscale 7(25), 10963–10969 (2015).
    [Crossref] [PubMed]
  5. N. Strohfeldt, J. Zhao, A. Tittl, and H. Giessen, “Sensitivity engineering in direct contact palladium-gold nano-sandwich hydrogen sensors,” Opt. Mater. Express 5(11), 2525–2535 (2015).
    [Crossref]
  6. N. S. Lewis and D. G. Nocera, “Powering the planet: chemical challenges in solar energy utilization,” Proc. Nat. Acad. Sci. U. S. A. 103(47), 15729–15735 (2006).
    [Crossref]
  7. K. Juodkazis, J. Juodkazyte, P. Kalinauskas, E. Jelmakas, and S. Juodkazis, “Photoelectrolysis of water: solar hydrogen-achievements and perspectives,” Opt. Express 18(S2), A147–A160 (2010).
    [Crossref]
  8. G. Gahleitner, “Hydrogen from renewable electricity: an international review of power-to-gas pilot plants for stationary applications,” Int. J. Hydrog. Ener. 38(5), 2039–2061 (2013).
    [Crossref]
  9. M. M. May, H. J. Lewerenz, D. Lackner, F. Dimroth, and T. Hannappel, “Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure,” Nat. Commun. 6, 8286 (2015).
    [Crossref] [PubMed]
  10. A. Nakamura, Y. Ota, K. Koike, Y. Hidaka, K. Nishioka, M. Sugiyama, and K. Fujii, “A 24.4 solar to hydrogen energy conversion efficiency by combining concentrator photovoltaic modules and electrochemical cells,” Appl. Phys. Express 8(10), 107101 (2015).
    [Crossref]
  11. A. D. Assl, D. E. Gomez, A. Roberts, and T. J. Davis, “Frequency-dependent optical steering from subwavelength plasmonic structures,” Opt. Lett. 37(20), 4206–4208 (2012).
    [Crossref]
  12. J. I. Avila, R. J. Matelon, R. Trabol, M. Favre, D. Lederman, U. G. Volkmann, and A. L. Cabrera, “Optical properties of Pd thin films exposed to hydrogen studied by transmittance and reflectance spectroscopy,” J. Appl. Phys. 107(2), 023504 (2010).
    [Crossref]
  13. I. Aruna, B. R. Metha, and L. K. Malhotra, “Faster H recovery in Pd nanoparticle layer based Gd switchable mirrors: Size-induced geometric and electronic effects,” Appl. Phys. Lett. 87(2), 103101 (2005).
    [Crossref]
  14. I. Aruna, B. R. Mehta, L. K. Malhotra, and S. M. Shivaprasad, “A color-neutral. Gd nanoparticle switchable mirror with improved optical contrast and response time,” Adv. Mater. 16(2), 169–173 (2004).
    [Crossref]
  15. S. Tomonari, H. Yoshida, M. Kamakura, K. Yoshida, K. Kawahito, M. Saitoh, H. Kawada, S. Juodkazis, and H. Misawa, “Efficient microvalve driven by a Si-Ni bimorph,” Jpn. J. Appl. Phys. 42(7A), 4464–4468 (2003).
    [Crossref]
  16. S. Tomonari, H. Yoshida, M. Kamakura, K. Yoshida, K. Kawahito, M. Saitoh, H. Kawada, S. Juodkazis, and H. Misawa, “Miniaturization of a thermally driven Ni-Si bimorph,” Jpn. J. Appl. Phys. 42(7A), 4593–4597 (2003).
    [Crossref]
  17. Y. Nishijima and S. Akiyama, “Unusual optical properties of the Au/Ag alloy at the matching mole fraction,” Opt. Mat. Express 2(9), 1226–1235 (2012).
    [Crossref]
  18. C. Gong and M. S. Leite, “Noble metal alloys for plasmonics,” ACS Photon. 3(4), 507–513 (2016).
    [Crossref]
  19. C. Gong, M. Rebello, S. Dias, G. C. Wessler, J. A. Taillon, L. G. Salamanca-Riba, and M. S. Leite, “Near-field optical properties of fully alloyed noble metal nanoparticles,” Adv. Opt. Mater. 5(1), 1600568 (2017).
    [Crossref]
  20. Y. Nishijima, Y. Hashimoto, G. Seniutinas, L. Rosa, and S. Juodkazis, “Engineering gold alloys for plasmonics,” Appl. Phys. A 117, (2)641–645 (2014).
    [Crossref]
  21. Y. Hashimoto, G. Seniutinas, A. Balcytis, S. Juodkazis, and Y. Nishijima, “Au-Ag-Cu nano-alloys: tailoring of permittivity,” Sci. Rep. 6, 25010 (2016).
    [Crossref] [PubMed]
  22. K. Kusada, M. Yamauchi, H. Kobayashi, H. Kitagawa, and Y. Kubota, “Solid solution alloy nanoparticles of immiscible Pd and Ru elements neighboring on Rh: changeover of the thermodynamic behavior for hydrogen storage and enhanced CO-oxidizing ability,” J. Am. Chem. Soc. 136(5), 1864–1871 (2014).
    [Crossref] [PubMed]
  23. K. Kusada, M. Yamauchi, H. Kobayashi, H. Kitagawa, and Y. Kubota, “Hydrogen-storage properties of solid-solution alloys of immiscible neighboring elements with Pd,” J. Am. Chem. Soc. 132(45), 15896–15898 (2010).
    [Crossref] [PubMed]
  24. M. Hirano, K. Enokida, K. Okazaki, S. Kuwabata, H. Yoshida, and T. Torimoto, “Compositio-dependent electrocatalytic activity of AuPd alloy nanoparticles prepared via simultaneous sputter deposition into an ionic liquid,” Phys. Chem. Chem. Phys. 15(19), 7286–7294 (2013).
    [Crossref] [PubMed]
  25. M. F. Juarez, G. Soldano, H. Guesimi, F. Tielens, and E. Santos, “Catalytic properties of au electrodes modified by an uderlayer of Pd,” Surf. Sci. 631, 235–247 (2015).
    [Crossref]
  26. H. Kobayashi, K. Kusada, and H. Kitagawa, “Creation of novel solid-solution alloy nanoparticles on the basis of density-ofstates engineering by interelement fusion,” Accounts Chem. Res. 48(6), 1551–1559 (2015).
    [Crossref]
  27. M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions (National Association of Corrosion Engineers, 1974).
  28. J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
    [Crossref] [PubMed]
  29. P. E. Blochl, “Projector augmented-wave method,” Phys. Rev. B 50, (24)17953–17979 (1994).
    [Crossref]
  30. G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Phys. Rev. B 47, (1)558–561 (1993).
    [Crossref]
  31. G. Kresse, “Ab initio molekular dynamik fur flussige Metalle,” Ph.D. thesis, Diss., Techn. Universitat Wien (1993).
  32. G. Kresse and J. Furthmuller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mat. Sci. 6(1), 15–50 (1996).
    [Crossref]
  33. G. Kresse and J. Furthmuller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, (16)11169–11186 (1996).
    [Crossref]
  34. S. Okazaki and S. Johjima, “Temperature dependence and degradation of gasochromic responsebehavior in hydrogen sensing with Pt/WO3 thin film,” Thin Solid Films 558, 411–415 (2014).
    [Crossref]
  35. A. E. Bon and I. K. Kagan, Stroyeniye I Svoistva Dvoinykh Metalicheskikh Sistem (Nauka, 1976).
  36. X. Teng, Q. Wang, P. Liu, W. Han, A. I. Frenkel, W. Wen, N. Marinkovic, J. C. Hanson, and J. A. Rodriguez, “Formation of Pd/Au nanostructures from pd nanowires via galvanic replacement reaction,” J. Am. Chem. Soc. 130(3), 1093–1101 (2008).
    [Crossref]
  37. M. Murakami, D. de Fontaine, and J. Fodor, “X-ray diffraction study of interdiffusion in bimetallic Au/Pd thin films,” J. Appl. Phys. 47(7), 2850–2856 (1976).
    [Crossref]
  38. H. Nakajima, H. Fujimori, and M. Koiwa, “Interdiffusion and structural relaxation in Mo/Si multilayer films,” J. Appl. Phys. 63(4), 1046–1051 (1988).
    [Crossref]
  39. I. K. Schuller, “New class of layered materials,” Phys. Rev. Lett. 44(24), 1597–1600 (1980).
    [Crossref]
  40. B. M. Clemens and J. G. Gay, “Effect of layer-thickness fluctions on superlattice diffraction,” Phys. Rev. B 35, (17)9337–9340 (1987).
    [Crossref]
  41. Y. Tominaga, Y. Kinoshita, K. Oe, and M. Yoshimotoa, “Structural investigation of GaAs1−x Bix/GaAsGaAs1−x Bix/GaAs multiquantum wells,” Appl. Phys. Lett. 93(13), 131915 (2008).
    [Crossref]
  42. Z. Zhao, M. Carpenter, H. Xi, and D. Welch, “All-optical hydrogen sensor based on a high alloy content palladium thin film,” Sens. Actuat. B-Chem. 113(1), 532–538 (2006).
    [Crossref]
  43. Y. Nishijima, A. Balčytis, G. Seniutinas, S. Juodkazis, T. Arakawa, S. Okazaki, and R. Petruškevičius, “Plasmonic Hydrogen Sensor at Infrared Wavelength,” Sens. Mater. 29(9), 1269–1274 (2017).
  44. A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11(10), 4366–4369 (2011).
    [Crossref] [PubMed]
  45. K. Juodkazis, J. Juodkazyte, B. Sebeka, and S. Juodkazis, “Reversible hydrogen evolution and oxidation on Pt electrode mediated by molecular ion,” Appl. Surf. Sci. 290(30), 13–17 (2014).
    [Crossref]
  46. K. Juodkazis, J. Juodkazyte, A. Grigucevicien, and S. Juodkazis, “Hydrogen species within the metals: role of molecular hydrogen ion H2+,” Appl. Surf. Sci. 258(2), 743–747 (2011).
    [Crossref]
  47. I. Wei and J. Brewer, “Desorption of hydrogen from palladium plating,” AMP J. Tech. 5, 49–53 (1996).
  48. S. Zhao, Z. Z. Tian, J. N. Liu, Y. L. Ren, and J. J. Wang, “Interaction of H2 with gold-palladium binary clusters: Molecular and dissociative adsorption,” Comput. Theor. Chem. 1055(1), 1–7 (2015).
    [Crossref]
  49. R. M. Holmes, “The effect of absorbed hydrogen on the thermoelectric properties of palladium,” Science 56(1442), 201–202 (1922).
    [Crossref] [PubMed]
  50. D. A. Otterson and R. J. Smith, NASA Report, Absorption of Hydrogen by Palladium and Electrical Resistivity up to H-Pd Atom Ratios of 0.97 (National Aeronautics and Space Administration, 1969).
  51. L. Pauling, “The nature of the chemical bond. iv. the energy of single bonds and the relative electronegativity of atoms,” J. Am. Chem. Soc. 54(9), 3570–3582 (1932).
    [Crossref]
  52. D. Monzon-Hernandez, D. Luna-Moreno, and D. Martinez-Escobar, “Fast response fiber optic hydrogen sensor based on palladium and gold,”" Sens. Actuat. B-Chem. 136(2), 562–566 (2009).
    [Crossref]
  53. L. Holleck, “Diffusion and solubility of hydrogen in palladium and palladium-silver alloys,” J. Phys. Chem. 74(3), 503–511 (1970).
    [Crossref]
  54. W. Y. Yu, G. M. Mullen, and C. B. Mullins, “Hydrogen adsorption and absorption with Pd-Au bimetallic surfaces,” J. Phys. Chem. C 117, (38)19535–19543 (2013).
    [Crossref]
  55. P. M. Quaino, R. Nazmutdinov, L. F. Peiretti, and E. Santos, “Unravelling the hydrogen absorption process in Pd overlayers on a Au(111) surface,” Phys. Chem. Chem. Phys. 18(5), 3659–3668 (2016).
    [Crossref] [PubMed]

2017 (2)

C. Gong, M. Rebello, S. Dias, G. C. Wessler, J. A. Taillon, L. G. Salamanca-Riba, and M. S. Leite, “Near-field optical properties of fully alloyed noble metal nanoparticles,” Adv. Opt. Mater. 5(1), 1600568 (2017).
[Crossref]

Y. Nishijima, A. Balčytis, G. Seniutinas, S. Juodkazis, T. Arakawa, S. Okazaki, and R. Petruškevičius, “Plasmonic Hydrogen Sensor at Infrared Wavelength,” Sens. Mater. 29(9), 1269–1274 (2017).

2016 (3)

C. Gong and M. S. Leite, “Noble metal alloys for plasmonics,” ACS Photon. 3(4), 507–513 (2016).
[Crossref]

Y. Hashimoto, G. Seniutinas, A. Balcytis, S. Juodkazis, and Y. Nishijima, “Au-Ag-Cu nano-alloys: tailoring of permittivity,” Sci. Rep. 6, 25010 (2016).
[Crossref] [PubMed]

P. M. Quaino, R. Nazmutdinov, L. F. Peiretti, and E. Santos, “Unravelling the hydrogen absorption process in Pd overlayers on a Au(111) surface,” Phys. Chem. Chem. Phys. 18(5), 3659–3668 (2016).
[Crossref] [PubMed]

2015 (7)

C. Wadell and C. Langhammer, “Drift-corrected nanoplasmonic hydrogen sensing by polarization,” Nanoscale 7(25), 10963–10969 (2015).
[Crossref] [PubMed]

M. M. May, H. J. Lewerenz, D. Lackner, F. Dimroth, and T. Hannappel, “Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure,” Nat. Commun. 6, 8286 (2015).
[Crossref] [PubMed]

A. Nakamura, Y. Ota, K. Koike, Y. Hidaka, K. Nishioka, M. Sugiyama, and K. Fujii, “A 24.4 solar to hydrogen energy conversion efficiency by combining concentrator photovoltaic modules and electrochemical cells,” Appl. Phys. Express 8(10), 107101 (2015).
[Crossref]

N. Strohfeldt, J. Zhao, A. Tittl, and H. Giessen, “Sensitivity engineering in direct contact palladium-gold nano-sandwich hydrogen sensors,” Opt. Mater. Express 5(11), 2525–2535 (2015).
[Crossref]

M. F. Juarez, G. Soldano, H. Guesimi, F. Tielens, and E. Santos, “Catalytic properties of au electrodes modified by an uderlayer of Pd,” Surf. Sci. 631, 235–247 (2015).
[Crossref]

H. Kobayashi, K. Kusada, and H. Kitagawa, “Creation of novel solid-solution alloy nanoparticles on the basis of density-ofstates engineering by interelement fusion,” Accounts Chem. Res. 48(6), 1551–1559 (2015).
[Crossref]

S. Zhao, Z. Z. Tian, J. N. Liu, Y. L. Ren, and J. J. Wang, “Interaction of H2 with gold-palladium binary clusters: Molecular and dissociative adsorption,” Comput. Theor. Chem. 1055(1), 1–7 (2015).
[Crossref]

2014 (4)

K. Juodkazis, J. Juodkazyte, B. Sebeka, and S. Juodkazis, “Reversible hydrogen evolution and oxidation on Pt electrode mediated by molecular ion,” Appl. Surf. Sci. 290(30), 13–17 (2014).
[Crossref]

S. Okazaki and S. Johjima, “Temperature dependence and degradation of gasochromic responsebehavior in hydrogen sensing with Pt/WO3 thin film,” Thin Solid Films 558, 411–415 (2014).
[Crossref]

K. Kusada, M. Yamauchi, H. Kobayashi, H. Kitagawa, and Y. Kubota, “Solid solution alloy nanoparticles of immiscible Pd and Ru elements neighboring on Rh: changeover of the thermodynamic behavior for hydrogen storage and enhanced CO-oxidizing ability,” J. Am. Chem. Soc. 136(5), 1864–1871 (2014).
[Crossref] [PubMed]

Y. Nishijima, Y. Hashimoto, G. Seniutinas, L. Rosa, and S. Juodkazis, “Engineering gold alloys for plasmonics,” Appl. Phys. A 117, (2)641–645 (2014).
[Crossref]

2013 (4)

M. Hirano, K. Enokida, K. Okazaki, S. Kuwabata, H. Yoshida, and T. Torimoto, “Compositio-dependent electrocatalytic activity of AuPd alloy nanoparticles prepared via simultaneous sputter deposition into an ionic liquid,” Phys. Chem. Chem. Phys. 15(19), 7286–7294 (2013).
[Crossref] [PubMed]

S. K. Earl, T. D. James, T. J. Davis, J. C. McCallum, R. E. Marvel, R. F. Haglund, and A. Roberts, “Tunable optical antennas enabled by the phase transition in vanadium dioxide,” Opt. Express 21(22), 27503–27508 (2013).
[Crossref] [PubMed]

G. Gahleitner, “Hydrogen from renewable electricity: an international review of power-to-gas pilot plants for stationary applications,” Int. J. Hydrog. Ener. 38(5), 2039–2061 (2013).
[Crossref]

W. Y. Yu, G. M. Mullen, and C. B. Mullins, “Hydrogen adsorption and absorption with Pd-Au bimetallic surfaces,” J. Phys. Chem. C 117, (38)19535–19543 (2013).
[Crossref]

2012 (3)

A. Tittl, C. Kremers, J. Dorfmuller, D. N. Chigrin, and H. Giessen, “Spectral shifts in optical nanoantenna-enhanced hydrogen sensors,” Opt. Mat. Express 2(2), 111–118 (2012).
[Crossref]

A. D. Assl, D. E. Gomez, A. Roberts, and T. J. Davis, “Frequency-dependent optical steering from subwavelength plasmonic structures,” Opt. Lett. 37(20), 4206–4208 (2012).
[Crossref]

Y. Nishijima and S. Akiyama, “Unusual optical properties of the Au/Ag alloy at the matching mole fraction,” Opt. Mat. Express 2(9), 1226–1235 (2012).
[Crossref]

2011 (2)

K. Juodkazis, J. Juodkazyte, A. Grigucevicien, and S. Juodkazis, “Hydrogen species within the metals: role of molecular hydrogen ion H2+,” Appl. Surf. Sci. 258(2), 743–747 (2011).
[Crossref]

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11(10), 4366–4369 (2011).
[Crossref] [PubMed]

2010 (3)

J. I. Avila, R. J. Matelon, R. Trabol, M. Favre, D. Lederman, U. G. Volkmann, and A. L. Cabrera, “Optical properties of Pd thin films exposed to hydrogen studied by transmittance and reflectance spectroscopy,” J. Appl. Phys. 107(2), 023504 (2010).
[Crossref]

K. Kusada, M. Yamauchi, H. Kobayashi, H. Kitagawa, and Y. Kubota, “Hydrogen-storage properties of solid-solution alloys of immiscible neighboring elements with Pd,” J. Am. Chem. Soc. 132(45), 15896–15898 (2010).
[Crossref] [PubMed]

K. Juodkazis, J. Juodkazyte, P. Kalinauskas, E. Jelmakas, and S. Juodkazis, “Photoelectrolysis of water: solar hydrogen-achievements and perspectives,” Opt. Express 18(S2), A147–A160 (2010).
[Crossref]

2009 (1)

D. Monzon-Hernandez, D. Luna-Moreno, and D. Martinez-Escobar, “Fast response fiber optic hydrogen sensor based on palladium and gold,”" Sens. Actuat. B-Chem. 136(2), 562–566 (2009).
[Crossref]

2008 (2)

Y. Tominaga, Y. Kinoshita, K. Oe, and M. Yoshimotoa, “Structural investigation of GaAs1−x Bix/GaAsGaAs1−x Bix/GaAs multiquantum wells,” Appl. Phys. Lett. 93(13), 131915 (2008).
[Crossref]

X. Teng, Q. Wang, P. Liu, W. Han, A. I. Frenkel, W. Wen, N. Marinkovic, J. C. Hanson, and J. A. Rodriguez, “Formation of Pd/Au nanostructures from pd nanowires via galvanic replacement reaction,” J. Am. Chem. Soc. 130(3), 1093–1101 (2008).
[Crossref]

2006 (2)

Z. Zhao, M. Carpenter, H. Xi, and D. Welch, “All-optical hydrogen sensor based on a high alloy content palladium thin film,” Sens. Actuat. B-Chem. 113(1), 532–538 (2006).
[Crossref]

N. S. Lewis and D. G. Nocera, “Powering the planet: chemical challenges in solar energy utilization,” Proc. Nat. Acad. Sci. U. S. A. 103(47), 15729–15735 (2006).
[Crossref]

2005 (1)

I. Aruna, B. R. Metha, and L. K. Malhotra, “Faster H recovery in Pd nanoparticle layer based Gd switchable mirrors: Size-induced geometric and electronic effects,” Appl. Phys. Lett. 87(2), 103101 (2005).
[Crossref]

2004 (1)

I. Aruna, B. R. Mehta, L. K. Malhotra, and S. M. Shivaprasad, “A color-neutral. Gd nanoparticle switchable mirror with improved optical contrast and response time,” Adv. Mater. 16(2), 169–173 (2004).
[Crossref]

2003 (2)

S. Tomonari, H. Yoshida, M. Kamakura, K. Yoshida, K. Kawahito, M. Saitoh, H. Kawada, S. Juodkazis, and H. Misawa, “Efficient microvalve driven by a Si-Ni bimorph,” Jpn. J. Appl. Phys. 42(7A), 4464–4468 (2003).
[Crossref]

S. Tomonari, H. Yoshida, M. Kamakura, K. Yoshida, K. Kawahito, M. Saitoh, H. Kawada, S. Juodkazis, and H. Misawa, “Miniaturization of a thermally driven Ni-Si bimorph,” Jpn. J. Appl. Phys. 42(7A), 4593–4597 (2003).
[Crossref]

1996 (4)

G. Kresse and J. Furthmuller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mat. Sci. 6(1), 15–50 (1996).
[Crossref]

G. Kresse and J. Furthmuller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, (16)11169–11186 (1996).
[Crossref]

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref] [PubMed]

I. Wei and J. Brewer, “Desorption of hydrogen from palladium plating,” AMP J. Tech. 5, 49–53 (1996).

1994 (1)

P. E. Blochl, “Projector augmented-wave method,” Phys. Rev. B 50, (24)17953–17979 (1994).
[Crossref]

1993 (1)

G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Phys. Rev. B 47, (1)558–561 (1993).
[Crossref]

1988 (1)

H. Nakajima, H. Fujimori, and M. Koiwa, “Interdiffusion and structural relaxation in Mo/Si multilayer films,” J. Appl. Phys. 63(4), 1046–1051 (1988).
[Crossref]

1987 (1)

B. M. Clemens and J. G. Gay, “Effect of layer-thickness fluctions on superlattice diffraction,” Phys. Rev. B 35, (17)9337–9340 (1987).
[Crossref]

1980 (1)

I. K. Schuller, “New class of layered materials,” Phys. Rev. Lett. 44(24), 1597–1600 (1980).
[Crossref]

1976 (1)

M. Murakami, D. de Fontaine, and J. Fodor, “X-ray diffraction study of interdiffusion in bimetallic Au/Pd thin films,” J. Appl. Phys. 47(7), 2850–2856 (1976).
[Crossref]

1970 (1)

L. Holleck, “Diffusion and solubility of hydrogen in palladium and palladium-silver alloys,” J. Phys. Chem. 74(3), 503–511 (1970).
[Crossref]

1932 (1)

L. Pauling, “The nature of the chemical bond. iv. the energy of single bonds and the relative electronegativity of atoms,” J. Am. Chem. Soc. 54(9), 3570–3582 (1932).
[Crossref]

1922 (1)

R. M. Holmes, “The effect of absorbed hydrogen on the thermoelectric properties of palladium,” Science 56(1442), 201–202 (1922).
[Crossref] [PubMed]

Akiyama, S.

Y. Nishijima and S. Akiyama, “Unusual optical properties of the Au/Ag alloy at the matching mole fraction,” Opt. Mat. Express 2(9), 1226–1235 (2012).
[Crossref]

Arakawa, T.

Y. Nishijima, A. Balčytis, G. Seniutinas, S. Juodkazis, T. Arakawa, S. Okazaki, and R. Petruškevičius, “Plasmonic Hydrogen Sensor at Infrared Wavelength,” Sens. Mater. 29(9), 1269–1274 (2017).

Aruna, I.

I. Aruna, B. R. Metha, and L. K. Malhotra, “Faster H recovery in Pd nanoparticle layer based Gd switchable mirrors: Size-induced geometric and electronic effects,” Appl. Phys. Lett. 87(2), 103101 (2005).
[Crossref]

I. Aruna, B. R. Mehta, L. K. Malhotra, and S. M. Shivaprasad, “A color-neutral. Gd nanoparticle switchable mirror with improved optical contrast and response time,” Adv. Mater. 16(2), 169–173 (2004).
[Crossref]

Assl, A. D.

Avila, J. I.

J. I. Avila, R. J. Matelon, R. Trabol, M. Favre, D. Lederman, U. G. Volkmann, and A. L. Cabrera, “Optical properties of Pd thin films exposed to hydrogen studied by transmittance and reflectance spectroscopy,” J. Appl. Phys. 107(2), 023504 (2010).
[Crossref]

Balcytis, A.

Y. Nishijima, A. Balčytis, G. Seniutinas, S. Juodkazis, T. Arakawa, S. Okazaki, and R. Petruškevičius, “Plasmonic Hydrogen Sensor at Infrared Wavelength,” Sens. Mater. 29(9), 1269–1274 (2017).

Y. Hashimoto, G. Seniutinas, A. Balcytis, S. Juodkazis, and Y. Nishijima, “Au-Ag-Cu nano-alloys: tailoring of permittivity,” Sci. Rep. 6, 25010 (2016).
[Crossref] [PubMed]

Baumel, A.

A. Baumel, P. Drodten, E. Heitz, and R. Bender, Corrision Handbook, Platinum Metals (Ir, Os, Pd, Rh, Ru) (John Wiley and Sons, 2008), Chap. A 35.

Bender, R.

A. Baumel, P. Drodten, E. Heitz, and R. Bender, Corrision Handbook, Platinum Metals (Ir, Os, Pd, Rh, Ru) (John Wiley and Sons, 2008), Chap. A 35.

Blochl, P. E.

P. E. Blochl, “Projector augmented-wave method,” Phys. Rev. B 50, (24)17953–17979 (1994).
[Crossref]

Bon, A. E.

A. E. Bon and I. K. Kagan, Stroyeniye I Svoistva Dvoinykh Metalicheskikh Sistem (Nauka, 1976).

Brewer, J.

I. Wei and J. Brewer, “Desorption of hydrogen from palladium plating,” AMP J. Tech. 5, 49–53 (1996).

Burke, K.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref] [PubMed]

Cabrera, A. L.

J. I. Avila, R. J. Matelon, R. Trabol, M. Favre, D. Lederman, U. G. Volkmann, and A. L. Cabrera, “Optical properties of Pd thin films exposed to hydrogen studied by transmittance and reflectance spectroscopy,” J. Appl. Phys. 107(2), 023504 (2010).
[Crossref]

Carpenter, M.

Z. Zhao, M. Carpenter, H. Xi, and D. Welch, “All-optical hydrogen sensor based on a high alloy content palladium thin film,” Sens. Actuat. B-Chem. 113(1), 532–538 (2006).
[Crossref]

Chigrin, D. N.

A. Tittl, C. Kremers, J. Dorfmuller, D. N. Chigrin, and H. Giessen, “Spectral shifts in optical nanoantenna-enhanced hydrogen sensors,” Opt. Mat. Express 2(2), 111–118 (2012).
[Crossref]

Clemens, B. M.

B. M. Clemens and J. G. Gay, “Effect of layer-thickness fluctions on superlattice diffraction,” Phys. Rev. B 35, (17)9337–9340 (1987).
[Crossref]

Davis, T. J.

de Fontaine, D.

M. Murakami, D. de Fontaine, and J. Fodor, “X-ray diffraction study of interdiffusion in bimetallic Au/Pd thin films,” J. Appl. Phys. 47(7), 2850–2856 (1976).
[Crossref]

Dias, S.

C. Gong, M. Rebello, S. Dias, G. C. Wessler, J. A. Taillon, L. G. Salamanca-Riba, and M. S. Leite, “Near-field optical properties of fully alloyed noble metal nanoparticles,” Adv. Opt. Mater. 5(1), 1600568 (2017).
[Crossref]

Dimroth, F.

M. M. May, H. J. Lewerenz, D. Lackner, F. Dimroth, and T. Hannappel, “Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure,” Nat. Commun. 6, 8286 (2015).
[Crossref] [PubMed]

Dorfmuller, J.

A. Tittl, C. Kremers, J. Dorfmuller, D. N. Chigrin, and H. Giessen, “Spectral shifts in optical nanoantenna-enhanced hydrogen sensors,” Opt. Mat. Express 2(2), 111–118 (2012).
[Crossref]

Dregely, D.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11(10), 4366–4369 (2011).
[Crossref] [PubMed]

Drodten, P.

A. Baumel, P. Drodten, E. Heitz, and R. Bender, Corrision Handbook, Platinum Metals (Ir, Os, Pd, Rh, Ru) (John Wiley and Sons, 2008), Chap. A 35.

Earl, S. K.

Enokida, K.

M. Hirano, K. Enokida, K. Okazaki, S. Kuwabata, H. Yoshida, and T. Torimoto, “Compositio-dependent electrocatalytic activity of AuPd alloy nanoparticles prepared via simultaneous sputter deposition into an ionic liquid,” Phys. Chem. Chem. Phys. 15(19), 7286–7294 (2013).
[Crossref] [PubMed]

Ernzerhof, M.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref] [PubMed]

Favre, M.

J. I. Avila, R. J. Matelon, R. Trabol, M. Favre, D. Lederman, U. G. Volkmann, and A. L. Cabrera, “Optical properties of Pd thin films exposed to hydrogen studied by transmittance and reflectance spectroscopy,” J. Appl. Phys. 107(2), 023504 (2010).
[Crossref]

Fodor, J.

M. Murakami, D. de Fontaine, and J. Fodor, “X-ray diffraction study of interdiffusion in bimetallic Au/Pd thin films,” J. Appl. Phys. 47(7), 2850–2856 (1976).
[Crossref]

Frenkel, A. I.

X. Teng, Q. Wang, P. Liu, W. Han, A. I. Frenkel, W. Wen, N. Marinkovic, J. C. Hanson, and J. A. Rodriguez, “Formation of Pd/Au nanostructures from pd nanowires via galvanic replacement reaction,” J. Am. Chem. Soc. 130(3), 1093–1101 (2008).
[Crossref]

Fujii, K.

A. Nakamura, Y. Ota, K. Koike, Y. Hidaka, K. Nishioka, M. Sugiyama, and K. Fujii, “A 24.4 solar to hydrogen energy conversion efficiency by combining concentrator photovoltaic modules and electrochemical cells,” Appl. Phys. Express 8(10), 107101 (2015).
[Crossref]

Fujimori, H.

H. Nakajima, H. Fujimori, and M. Koiwa, “Interdiffusion and structural relaxation in Mo/Si multilayer films,” J. Appl. Phys. 63(4), 1046–1051 (1988).
[Crossref]

Furthmuller, J.

G. Kresse and J. Furthmuller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mat. Sci. 6(1), 15–50 (1996).
[Crossref]

G. Kresse and J. Furthmuller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, (16)11169–11186 (1996).
[Crossref]

Gahleitner, G.

G. Gahleitner, “Hydrogen from renewable electricity: an international review of power-to-gas pilot plants for stationary applications,” Int. J. Hydrog. Ener. 38(5), 2039–2061 (2013).
[Crossref]

Gay, J. G.

B. M. Clemens and J. G. Gay, “Effect of layer-thickness fluctions on superlattice diffraction,” Phys. Rev. B 35, (17)9337–9340 (1987).
[Crossref]

Giessen, H.

N. Strohfeldt, J. Zhao, A. Tittl, and H. Giessen, “Sensitivity engineering in direct contact palladium-gold nano-sandwich hydrogen sensors,” Opt. Mater. Express 5(11), 2525–2535 (2015).
[Crossref]

A. Tittl, C. Kremers, J. Dorfmuller, D. N. Chigrin, and H. Giessen, “Spectral shifts in optical nanoantenna-enhanced hydrogen sensors,” Opt. Mat. Express 2(2), 111–118 (2012).
[Crossref]

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11(10), 4366–4369 (2011).
[Crossref] [PubMed]

Gomez, D. E.

Gong, C.

C. Gong, M. Rebello, S. Dias, G. C. Wessler, J. A. Taillon, L. G. Salamanca-Riba, and M. S. Leite, “Near-field optical properties of fully alloyed noble metal nanoparticles,” Adv. Opt. Mater. 5(1), 1600568 (2017).
[Crossref]

C. Gong and M. S. Leite, “Noble metal alloys for plasmonics,” ACS Photon. 3(4), 507–513 (2016).
[Crossref]

Grigucevicien, A.

K. Juodkazis, J. Juodkazyte, A. Grigucevicien, and S. Juodkazis, “Hydrogen species within the metals: role of molecular hydrogen ion H2+,” Appl. Surf. Sci. 258(2), 743–747 (2011).
[Crossref]

Guesimi, H.

M. F. Juarez, G. Soldano, H. Guesimi, F. Tielens, and E. Santos, “Catalytic properties of au electrodes modified by an uderlayer of Pd,” Surf. Sci. 631, 235–247 (2015).
[Crossref]

Hafner, J.

G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Phys. Rev. B 47, (1)558–561 (1993).
[Crossref]

Haglund, R. F.

Han, W.

X. Teng, Q. Wang, P. Liu, W. Han, A. I. Frenkel, W. Wen, N. Marinkovic, J. C. Hanson, and J. A. Rodriguez, “Formation of Pd/Au nanostructures from pd nanowires via galvanic replacement reaction,” J. Am. Chem. Soc. 130(3), 1093–1101 (2008).
[Crossref]

Hannappel, T.

M. M. May, H. J. Lewerenz, D. Lackner, F. Dimroth, and T. Hannappel, “Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure,” Nat. Commun. 6, 8286 (2015).
[Crossref] [PubMed]

Hanson, J. C.

X. Teng, Q. Wang, P. Liu, W. Han, A. I. Frenkel, W. Wen, N. Marinkovic, J. C. Hanson, and J. A. Rodriguez, “Formation of Pd/Au nanostructures from pd nanowires via galvanic replacement reaction,” J. Am. Chem. Soc. 130(3), 1093–1101 (2008).
[Crossref]

Hashimoto, Y.

Y. Hashimoto, G. Seniutinas, A. Balcytis, S. Juodkazis, and Y. Nishijima, “Au-Ag-Cu nano-alloys: tailoring of permittivity,” Sci. Rep. 6, 25010 (2016).
[Crossref] [PubMed]

Y. Nishijima, Y. Hashimoto, G. Seniutinas, L. Rosa, and S. Juodkazis, “Engineering gold alloys for plasmonics,” Appl. Phys. A 117, (2)641–645 (2014).
[Crossref]

Heitz, E.

A. Baumel, P. Drodten, E. Heitz, and R. Bender, Corrision Handbook, Platinum Metals (Ir, Os, Pd, Rh, Ru) (John Wiley and Sons, 2008), Chap. A 35.

Hidaka, Y.

A. Nakamura, Y. Ota, K. Koike, Y. Hidaka, K. Nishioka, M. Sugiyama, and K. Fujii, “A 24.4 solar to hydrogen energy conversion efficiency by combining concentrator photovoltaic modules and electrochemical cells,” Appl. Phys. Express 8(10), 107101 (2015).
[Crossref]

Hirano, M.

M. Hirano, K. Enokida, K. Okazaki, S. Kuwabata, H. Yoshida, and T. Torimoto, “Compositio-dependent electrocatalytic activity of AuPd alloy nanoparticles prepared via simultaneous sputter deposition into an ionic liquid,” Phys. Chem. Chem. Phys. 15(19), 7286–7294 (2013).
[Crossref] [PubMed]

Holleck, L.

L. Holleck, “Diffusion and solubility of hydrogen in palladium and palladium-silver alloys,” J. Phys. Chem. 74(3), 503–511 (1970).
[Crossref]

Holmes, R. M.

R. M. Holmes, “The effect of absorbed hydrogen on the thermoelectric properties of palladium,” Science 56(1442), 201–202 (1922).
[Crossref] [PubMed]

James, T. D.

Jelmakas, E.

Johjima, S.

S. Okazaki and S. Johjima, “Temperature dependence and degradation of gasochromic responsebehavior in hydrogen sensing with Pt/WO3 thin film,” Thin Solid Films 558, 411–415 (2014).
[Crossref]

Juarez, M. F.

M. F. Juarez, G. Soldano, H. Guesimi, F. Tielens, and E. Santos, “Catalytic properties of au electrodes modified by an uderlayer of Pd,” Surf. Sci. 631, 235–247 (2015).
[Crossref]

Juodkazis, K.

K. Juodkazis, J. Juodkazyte, B. Sebeka, and S. Juodkazis, “Reversible hydrogen evolution and oxidation on Pt electrode mediated by molecular ion,” Appl. Surf. Sci. 290(30), 13–17 (2014).
[Crossref]

K. Juodkazis, J. Juodkazyte, A. Grigucevicien, and S. Juodkazis, “Hydrogen species within the metals: role of molecular hydrogen ion H2+,” Appl. Surf. Sci. 258(2), 743–747 (2011).
[Crossref]

K. Juodkazis, J. Juodkazyte, P. Kalinauskas, E. Jelmakas, and S. Juodkazis, “Photoelectrolysis of water: solar hydrogen-achievements and perspectives,” Opt. Express 18(S2), A147–A160 (2010).
[Crossref]

Juodkazis, S.

Y. Nishijima, A. Balčytis, G. Seniutinas, S. Juodkazis, T. Arakawa, S. Okazaki, and R. Petruškevičius, “Plasmonic Hydrogen Sensor at Infrared Wavelength,” Sens. Mater. 29(9), 1269–1274 (2017).

Y. Hashimoto, G. Seniutinas, A. Balcytis, S. Juodkazis, and Y. Nishijima, “Au-Ag-Cu nano-alloys: tailoring of permittivity,” Sci. Rep. 6, 25010 (2016).
[Crossref] [PubMed]

Y. Nishijima, Y. Hashimoto, G. Seniutinas, L. Rosa, and S. Juodkazis, “Engineering gold alloys for plasmonics,” Appl. Phys. A 117, (2)641–645 (2014).
[Crossref]

K. Juodkazis, J. Juodkazyte, B. Sebeka, and S. Juodkazis, “Reversible hydrogen evolution and oxidation on Pt electrode mediated by molecular ion,” Appl. Surf. Sci. 290(30), 13–17 (2014).
[Crossref]

K. Juodkazis, J. Juodkazyte, A. Grigucevicien, and S. Juodkazis, “Hydrogen species within the metals: role of molecular hydrogen ion H2+,” Appl. Surf. Sci. 258(2), 743–747 (2011).
[Crossref]

K. Juodkazis, J. Juodkazyte, P. Kalinauskas, E. Jelmakas, and S. Juodkazis, “Photoelectrolysis of water: solar hydrogen-achievements and perspectives,” Opt. Express 18(S2), A147–A160 (2010).
[Crossref]

S. Tomonari, H. Yoshida, M. Kamakura, K. Yoshida, K. Kawahito, M. Saitoh, H. Kawada, S. Juodkazis, and H. Misawa, “Miniaturization of a thermally driven Ni-Si bimorph,” Jpn. J. Appl. Phys. 42(7A), 4593–4597 (2003).
[Crossref]

S. Tomonari, H. Yoshida, M. Kamakura, K. Yoshida, K. Kawahito, M. Saitoh, H. Kawada, S. Juodkazis, and H. Misawa, “Efficient microvalve driven by a Si-Ni bimorph,” Jpn. J. Appl. Phys. 42(7A), 4464–4468 (2003).
[Crossref]

Juodkazyte, J.

K. Juodkazis, J. Juodkazyte, B. Sebeka, and S. Juodkazis, “Reversible hydrogen evolution and oxidation on Pt electrode mediated by molecular ion,” Appl. Surf. Sci. 290(30), 13–17 (2014).
[Crossref]

K. Juodkazis, J. Juodkazyte, A. Grigucevicien, and S. Juodkazis, “Hydrogen species within the metals: role of molecular hydrogen ion H2+,” Appl. Surf. Sci. 258(2), 743–747 (2011).
[Crossref]

K. Juodkazis, J. Juodkazyte, P. Kalinauskas, E. Jelmakas, and S. Juodkazis, “Photoelectrolysis of water: solar hydrogen-achievements and perspectives,” Opt. Express 18(S2), A147–A160 (2010).
[Crossref]

Kagan, I. K.

A. E. Bon and I. K. Kagan, Stroyeniye I Svoistva Dvoinykh Metalicheskikh Sistem (Nauka, 1976).

Kalinauskas, P.

Kamakura, M.

S. Tomonari, H. Yoshida, M. Kamakura, K. Yoshida, K. Kawahito, M. Saitoh, H. Kawada, S. Juodkazis, and H. Misawa, “Miniaturization of a thermally driven Ni-Si bimorph,” Jpn. J. Appl. Phys. 42(7A), 4593–4597 (2003).
[Crossref]

S. Tomonari, H. Yoshida, M. Kamakura, K. Yoshida, K. Kawahito, M. Saitoh, H. Kawada, S. Juodkazis, and H. Misawa, “Efficient microvalve driven by a Si-Ni bimorph,” Jpn. J. Appl. Phys. 42(7A), 4464–4468 (2003).
[Crossref]

Kawada, H.

S. Tomonari, H. Yoshida, M. Kamakura, K. Yoshida, K. Kawahito, M. Saitoh, H. Kawada, S. Juodkazis, and H. Misawa, “Efficient microvalve driven by a Si-Ni bimorph,” Jpn. J. Appl. Phys. 42(7A), 4464–4468 (2003).
[Crossref]

S. Tomonari, H. Yoshida, M. Kamakura, K. Yoshida, K. Kawahito, M. Saitoh, H. Kawada, S. Juodkazis, and H. Misawa, “Miniaturization of a thermally driven Ni-Si bimorph,” Jpn. J. Appl. Phys. 42(7A), 4593–4597 (2003).
[Crossref]

Kawahito, K.

S. Tomonari, H. Yoshida, M. Kamakura, K. Yoshida, K. Kawahito, M. Saitoh, H. Kawada, S. Juodkazis, and H. Misawa, “Miniaturization of a thermally driven Ni-Si bimorph,” Jpn. J. Appl. Phys. 42(7A), 4593–4597 (2003).
[Crossref]

S. Tomonari, H. Yoshida, M. Kamakura, K. Yoshida, K. Kawahito, M. Saitoh, H. Kawada, S. Juodkazis, and H. Misawa, “Efficient microvalve driven by a Si-Ni bimorph,” Jpn. J. Appl. Phys. 42(7A), 4464–4468 (2003).
[Crossref]

Kinoshita, Y.

Y. Tominaga, Y. Kinoshita, K. Oe, and M. Yoshimotoa, “Structural investigation of GaAs1−x Bix/GaAsGaAs1−x Bix/GaAs multiquantum wells,” Appl. Phys. Lett. 93(13), 131915 (2008).
[Crossref]

Kitagawa, H.

H. Kobayashi, K. Kusada, and H. Kitagawa, “Creation of novel solid-solution alloy nanoparticles on the basis of density-ofstates engineering by interelement fusion,” Accounts Chem. Res. 48(6), 1551–1559 (2015).
[Crossref]

K. Kusada, M. Yamauchi, H. Kobayashi, H. Kitagawa, and Y. Kubota, “Solid solution alloy nanoparticles of immiscible Pd and Ru elements neighboring on Rh: changeover of the thermodynamic behavior for hydrogen storage and enhanced CO-oxidizing ability,” J. Am. Chem. Soc. 136(5), 1864–1871 (2014).
[Crossref] [PubMed]

K. Kusada, M. Yamauchi, H. Kobayashi, H. Kitagawa, and Y. Kubota, “Hydrogen-storage properties of solid-solution alloys of immiscible neighboring elements with Pd,” J. Am. Chem. Soc. 132(45), 15896–15898 (2010).
[Crossref] [PubMed]

Kobayashi, H.

H. Kobayashi, K. Kusada, and H. Kitagawa, “Creation of novel solid-solution alloy nanoparticles on the basis of density-ofstates engineering by interelement fusion,” Accounts Chem. Res. 48(6), 1551–1559 (2015).
[Crossref]

K. Kusada, M. Yamauchi, H. Kobayashi, H. Kitagawa, and Y. Kubota, “Solid solution alloy nanoparticles of immiscible Pd and Ru elements neighboring on Rh: changeover of the thermodynamic behavior for hydrogen storage and enhanced CO-oxidizing ability,” J. Am. Chem. Soc. 136(5), 1864–1871 (2014).
[Crossref] [PubMed]

K. Kusada, M. Yamauchi, H. Kobayashi, H. Kitagawa, and Y. Kubota, “Hydrogen-storage properties of solid-solution alloys of immiscible neighboring elements with Pd,” J. Am. Chem. Soc. 132(45), 15896–15898 (2010).
[Crossref] [PubMed]

Koike, K.

A. Nakamura, Y. Ota, K. Koike, Y. Hidaka, K. Nishioka, M. Sugiyama, and K. Fujii, “A 24.4 solar to hydrogen energy conversion efficiency by combining concentrator photovoltaic modules and electrochemical cells,” Appl. Phys. Express 8(10), 107101 (2015).
[Crossref]

Koiwa, M.

H. Nakajima, H. Fujimori, and M. Koiwa, “Interdiffusion and structural relaxation in Mo/Si multilayer films,” J. Appl. Phys. 63(4), 1046–1051 (1988).
[Crossref]

Kremers, C.

A. Tittl, C. Kremers, J. Dorfmuller, D. N. Chigrin, and H. Giessen, “Spectral shifts in optical nanoantenna-enhanced hydrogen sensors,” Opt. Mat. Express 2(2), 111–118 (2012).
[Crossref]

Kresse, G.

G. Kresse and J. Furthmuller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, (16)11169–11186 (1996).
[Crossref]

G. Kresse and J. Furthmuller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mat. Sci. 6(1), 15–50 (1996).
[Crossref]

G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Phys. Rev. B 47, (1)558–561 (1993).
[Crossref]

G. Kresse, “Ab initio molekular dynamik fur flussige Metalle,” Ph.D. thesis, Diss., Techn. Universitat Wien (1993).

Kubota, Y.

K. Kusada, M. Yamauchi, H. Kobayashi, H. Kitagawa, and Y. Kubota, “Solid solution alloy nanoparticles of immiscible Pd and Ru elements neighboring on Rh: changeover of the thermodynamic behavior for hydrogen storage and enhanced CO-oxidizing ability,” J. Am. Chem. Soc. 136(5), 1864–1871 (2014).
[Crossref] [PubMed]

K. Kusada, M. Yamauchi, H. Kobayashi, H. Kitagawa, and Y. Kubota, “Hydrogen-storage properties of solid-solution alloys of immiscible neighboring elements with Pd,” J. Am. Chem. Soc. 132(45), 15896–15898 (2010).
[Crossref] [PubMed]

Kusada, K.

H. Kobayashi, K. Kusada, and H. Kitagawa, “Creation of novel solid-solution alloy nanoparticles on the basis of density-ofstates engineering by interelement fusion,” Accounts Chem. Res. 48(6), 1551–1559 (2015).
[Crossref]

K. Kusada, M. Yamauchi, H. Kobayashi, H. Kitagawa, and Y. Kubota, “Solid solution alloy nanoparticles of immiscible Pd and Ru elements neighboring on Rh: changeover of the thermodynamic behavior for hydrogen storage and enhanced CO-oxidizing ability,” J. Am. Chem. Soc. 136(5), 1864–1871 (2014).
[Crossref] [PubMed]

K. Kusada, M. Yamauchi, H. Kobayashi, H. Kitagawa, and Y. Kubota, “Hydrogen-storage properties of solid-solution alloys of immiscible neighboring elements with Pd,” J. Am. Chem. Soc. 132(45), 15896–15898 (2010).
[Crossref] [PubMed]

Kuwabata, S.

M. Hirano, K. Enokida, K. Okazaki, S. Kuwabata, H. Yoshida, and T. Torimoto, “Compositio-dependent electrocatalytic activity of AuPd alloy nanoparticles prepared via simultaneous sputter deposition into an ionic liquid,” Phys. Chem. Chem. Phys. 15(19), 7286–7294 (2013).
[Crossref] [PubMed]

Lackner, D.

M. M. May, H. J. Lewerenz, D. Lackner, F. Dimroth, and T. Hannappel, “Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure,” Nat. Commun. 6, 8286 (2015).
[Crossref] [PubMed]

Langhammer, C.

C. Wadell and C. Langhammer, “Drift-corrected nanoplasmonic hydrogen sensing by polarization,” Nanoscale 7(25), 10963–10969 (2015).
[Crossref] [PubMed]

Lederman, D.

J. I. Avila, R. J. Matelon, R. Trabol, M. Favre, D. Lederman, U. G. Volkmann, and A. L. Cabrera, “Optical properties of Pd thin films exposed to hydrogen studied by transmittance and reflectance spectroscopy,” J. Appl. Phys. 107(2), 023504 (2010).
[Crossref]

Leite, M. S.

C. Gong, M. Rebello, S. Dias, G. C. Wessler, J. A. Taillon, L. G. Salamanca-Riba, and M. S. Leite, “Near-field optical properties of fully alloyed noble metal nanoparticles,” Adv. Opt. Mater. 5(1), 1600568 (2017).
[Crossref]

C. Gong and M. S. Leite, “Noble metal alloys for plasmonics,” ACS Photon. 3(4), 507–513 (2016).
[Crossref]

Lewerenz, H. J.

M. M. May, H. J. Lewerenz, D. Lackner, F. Dimroth, and T. Hannappel, “Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure,” Nat. Commun. 6, 8286 (2015).
[Crossref] [PubMed]

Lewis, N. S.

N. S. Lewis and D. G. Nocera, “Powering the planet: chemical challenges in solar energy utilization,” Proc. Nat. Acad. Sci. U. S. A. 103(47), 15729–15735 (2006).
[Crossref]

Liu, J. N.

S. Zhao, Z. Z. Tian, J. N. Liu, Y. L. Ren, and J. J. Wang, “Interaction of H2 with gold-palladium binary clusters: Molecular and dissociative adsorption,” Comput. Theor. Chem. 1055(1), 1–7 (2015).
[Crossref]

Liu, N.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11(10), 4366–4369 (2011).
[Crossref] [PubMed]

Liu, P.

X. Teng, Q. Wang, P. Liu, W. Han, A. I. Frenkel, W. Wen, N. Marinkovic, J. C. Hanson, and J. A. Rodriguez, “Formation of Pd/Au nanostructures from pd nanowires via galvanic replacement reaction,” J. Am. Chem. Soc. 130(3), 1093–1101 (2008).
[Crossref]

Luna-Moreno, D.

D. Monzon-Hernandez, D. Luna-Moreno, and D. Martinez-Escobar, “Fast response fiber optic hydrogen sensor based on palladium and gold,”" Sens. Actuat. B-Chem. 136(2), 562–566 (2009).
[Crossref]

Mai, P.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11(10), 4366–4369 (2011).
[Crossref] [PubMed]

Malhotra, L. K.

I. Aruna, B. R. Metha, and L. K. Malhotra, “Faster H recovery in Pd nanoparticle layer based Gd switchable mirrors: Size-induced geometric and electronic effects,” Appl. Phys. Lett. 87(2), 103101 (2005).
[Crossref]

I. Aruna, B. R. Mehta, L. K. Malhotra, and S. M. Shivaprasad, “A color-neutral. Gd nanoparticle switchable mirror with improved optical contrast and response time,” Adv. Mater. 16(2), 169–173 (2004).
[Crossref]

Marinkovic, N.

X. Teng, Q. Wang, P. Liu, W. Han, A. I. Frenkel, W. Wen, N. Marinkovic, J. C. Hanson, and J. A. Rodriguez, “Formation of Pd/Au nanostructures from pd nanowires via galvanic replacement reaction,” J. Am. Chem. Soc. 130(3), 1093–1101 (2008).
[Crossref]

Martinez-Escobar, D.

D. Monzon-Hernandez, D. Luna-Moreno, and D. Martinez-Escobar, “Fast response fiber optic hydrogen sensor based on palladium and gold,”" Sens. Actuat. B-Chem. 136(2), 562–566 (2009).
[Crossref]

Marvel, R. E.

Matelon, R. J.

J. I. Avila, R. J. Matelon, R. Trabol, M. Favre, D. Lederman, U. G. Volkmann, and A. L. Cabrera, “Optical properties of Pd thin films exposed to hydrogen studied by transmittance and reflectance spectroscopy,” J. Appl. Phys. 107(2), 023504 (2010).
[Crossref]

May, M. M.

M. M. May, H. J. Lewerenz, D. Lackner, F. Dimroth, and T. Hannappel, “Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure,” Nat. Commun. 6, 8286 (2015).
[Crossref] [PubMed]

McCallum, J. C.

Mehta, B. R.

I. Aruna, B. R. Mehta, L. K. Malhotra, and S. M. Shivaprasad, “A color-neutral. Gd nanoparticle switchable mirror with improved optical contrast and response time,” Adv. Mater. 16(2), 169–173 (2004).
[Crossref]

Metha, B. R.

I. Aruna, B. R. Metha, and L. K. Malhotra, “Faster H recovery in Pd nanoparticle layer based Gd switchable mirrors: Size-induced geometric and electronic effects,” Appl. Phys. Lett. 87(2), 103101 (2005).
[Crossref]

Misawa, H.

S. Tomonari, H. Yoshida, M. Kamakura, K. Yoshida, K. Kawahito, M. Saitoh, H. Kawada, S. Juodkazis, and H. Misawa, “Miniaturization of a thermally driven Ni-Si bimorph,” Jpn. J. Appl. Phys. 42(7A), 4593–4597 (2003).
[Crossref]

S. Tomonari, H. Yoshida, M. Kamakura, K. Yoshida, K. Kawahito, M. Saitoh, H. Kawada, S. Juodkazis, and H. Misawa, “Efficient microvalve driven by a Si-Ni bimorph,” Jpn. J. Appl. Phys. 42(7A), 4464–4468 (2003).
[Crossref]

Monzon-Hernandez, D.

D. Monzon-Hernandez, D. Luna-Moreno, and D. Martinez-Escobar, “Fast response fiber optic hydrogen sensor based on palladium and gold,”" Sens. Actuat. B-Chem. 136(2), 562–566 (2009).
[Crossref]

Mullen, G. M.

W. Y. Yu, G. M. Mullen, and C. B. Mullins, “Hydrogen adsorption and absorption with Pd-Au bimetallic surfaces,” J. Phys. Chem. C 117, (38)19535–19543 (2013).
[Crossref]

Mullins, C. B.

W. Y. Yu, G. M. Mullen, and C. B. Mullins, “Hydrogen adsorption and absorption with Pd-Au bimetallic surfaces,” J. Phys. Chem. C 117, (38)19535–19543 (2013).
[Crossref]

Murakami, M.

M. Murakami, D. de Fontaine, and J. Fodor, “X-ray diffraction study of interdiffusion in bimetallic Au/Pd thin films,” J. Appl. Phys. 47(7), 2850–2856 (1976).
[Crossref]

Nakajima, H.

H. Nakajima, H. Fujimori, and M. Koiwa, “Interdiffusion and structural relaxation in Mo/Si multilayer films,” J. Appl. Phys. 63(4), 1046–1051 (1988).
[Crossref]

Nakamura, A.

A. Nakamura, Y. Ota, K. Koike, Y. Hidaka, K. Nishioka, M. Sugiyama, and K. Fujii, “A 24.4 solar to hydrogen energy conversion efficiency by combining concentrator photovoltaic modules and electrochemical cells,” Appl. Phys. Express 8(10), 107101 (2015).
[Crossref]

Nazmutdinov, R.

P. M. Quaino, R. Nazmutdinov, L. F. Peiretti, and E. Santos, “Unravelling the hydrogen absorption process in Pd overlayers on a Au(111) surface,” Phys. Chem. Chem. Phys. 18(5), 3659–3668 (2016).
[Crossref] [PubMed]

Nishijima, Y.

Y. Nishijima, A. Balčytis, G. Seniutinas, S. Juodkazis, T. Arakawa, S. Okazaki, and R. Petruškevičius, “Plasmonic Hydrogen Sensor at Infrared Wavelength,” Sens. Mater. 29(9), 1269–1274 (2017).

Y. Hashimoto, G. Seniutinas, A. Balcytis, S. Juodkazis, and Y. Nishijima, “Au-Ag-Cu nano-alloys: tailoring of permittivity,” Sci. Rep. 6, 25010 (2016).
[Crossref] [PubMed]

Y. Nishijima, Y. Hashimoto, G. Seniutinas, L. Rosa, and S. Juodkazis, “Engineering gold alloys for plasmonics,” Appl. Phys. A 117, (2)641–645 (2014).
[Crossref]

Y. Nishijima and S. Akiyama, “Unusual optical properties of the Au/Ag alloy at the matching mole fraction,” Opt. Mat. Express 2(9), 1226–1235 (2012).
[Crossref]

Nishioka, K.

A. Nakamura, Y. Ota, K. Koike, Y. Hidaka, K. Nishioka, M. Sugiyama, and K. Fujii, “A 24.4 solar to hydrogen energy conversion efficiency by combining concentrator photovoltaic modules and electrochemical cells,” Appl. Phys. Express 8(10), 107101 (2015).
[Crossref]

Nocera, D. G.

N. S. Lewis and D. G. Nocera, “Powering the planet: chemical challenges in solar energy utilization,” Proc. Nat. Acad. Sci. U. S. A. 103(47), 15729–15735 (2006).
[Crossref]

Oe, K.

Y. Tominaga, Y. Kinoshita, K. Oe, and M. Yoshimotoa, “Structural investigation of GaAs1−x Bix/GaAsGaAs1−x Bix/GaAs multiquantum wells,” Appl. Phys. Lett. 93(13), 131915 (2008).
[Crossref]

Okazaki, K.

M. Hirano, K. Enokida, K. Okazaki, S. Kuwabata, H. Yoshida, and T. Torimoto, “Compositio-dependent electrocatalytic activity of AuPd alloy nanoparticles prepared via simultaneous sputter deposition into an ionic liquid,” Phys. Chem. Chem. Phys. 15(19), 7286–7294 (2013).
[Crossref] [PubMed]

Okazaki, S.

Y. Nishijima, A. Balčytis, G. Seniutinas, S. Juodkazis, T. Arakawa, S. Okazaki, and R. Petruškevičius, “Plasmonic Hydrogen Sensor at Infrared Wavelength,” Sens. Mater. 29(9), 1269–1274 (2017).

S. Okazaki and S. Johjima, “Temperature dependence and degradation of gasochromic responsebehavior in hydrogen sensing with Pt/WO3 thin film,” Thin Solid Films 558, 411–415 (2014).
[Crossref]

Ota, Y.

A. Nakamura, Y. Ota, K. Koike, Y. Hidaka, K. Nishioka, M. Sugiyama, and K. Fujii, “A 24.4 solar to hydrogen energy conversion efficiency by combining concentrator photovoltaic modules and electrochemical cells,” Appl. Phys. Express 8(10), 107101 (2015).
[Crossref]

Otterson, D. A.

D. A. Otterson and R. J. Smith, NASA Report, Absorption of Hydrogen by Palladium and Electrical Resistivity up to H-Pd Atom Ratios of 0.97 (National Aeronautics and Space Administration, 1969).

Pauling, L.

L. Pauling, “The nature of the chemical bond. iv. the energy of single bonds and the relative electronegativity of atoms,” J. Am. Chem. Soc. 54(9), 3570–3582 (1932).
[Crossref]

Peiretti, L. F.

P. M. Quaino, R. Nazmutdinov, L. F. Peiretti, and E. Santos, “Unravelling the hydrogen absorption process in Pd overlayers on a Au(111) surface,” Phys. Chem. Chem. Phys. 18(5), 3659–3668 (2016).
[Crossref] [PubMed]

Perdew, J. P.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref] [PubMed]

Petruškevicius, R.

Y. Nishijima, A. Balčytis, G. Seniutinas, S. Juodkazis, T. Arakawa, S. Okazaki, and R. Petruškevičius, “Plasmonic Hydrogen Sensor at Infrared Wavelength,” Sens. Mater. 29(9), 1269–1274 (2017).

Pourbaix, M.

M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions (National Association of Corrosion Engineers, 1974).

Quaino, P. M.

P. M. Quaino, R. Nazmutdinov, L. F. Peiretti, and E. Santos, “Unravelling the hydrogen absorption process in Pd overlayers on a Au(111) surface,” Phys. Chem. Chem. Phys. 18(5), 3659–3668 (2016).
[Crossref] [PubMed]

Rebello, M.

C. Gong, M. Rebello, S. Dias, G. C. Wessler, J. A. Taillon, L. G. Salamanca-Riba, and M. S. Leite, “Near-field optical properties of fully alloyed noble metal nanoparticles,” Adv. Opt. Mater. 5(1), 1600568 (2017).
[Crossref]

Ren, Y. L.

S. Zhao, Z. Z. Tian, J. N. Liu, Y. L. Ren, and J. J. Wang, “Interaction of H2 with gold-palladium binary clusters: Molecular and dissociative adsorption,” Comput. Theor. Chem. 1055(1), 1–7 (2015).
[Crossref]

Roberts, A.

Rodriguez, J. A.

X. Teng, Q. Wang, P. Liu, W. Han, A. I. Frenkel, W. Wen, N. Marinkovic, J. C. Hanson, and J. A. Rodriguez, “Formation of Pd/Au nanostructures from pd nanowires via galvanic replacement reaction,” J. Am. Chem. Soc. 130(3), 1093–1101 (2008).
[Crossref]

Rosa, L.

Y. Nishijima, Y. Hashimoto, G. Seniutinas, L. Rosa, and S. Juodkazis, “Engineering gold alloys for plasmonics,” Appl. Phys. A 117, (2)641–645 (2014).
[Crossref]

Saitoh, M.

S. Tomonari, H. Yoshida, M. Kamakura, K. Yoshida, K. Kawahito, M. Saitoh, H. Kawada, S. Juodkazis, and H. Misawa, “Miniaturization of a thermally driven Ni-Si bimorph,” Jpn. J. Appl. Phys. 42(7A), 4593–4597 (2003).
[Crossref]

S. Tomonari, H. Yoshida, M. Kamakura, K. Yoshida, K. Kawahito, M. Saitoh, H. Kawada, S. Juodkazis, and H. Misawa, “Efficient microvalve driven by a Si-Ni bimorph,” Jpn. J. Appl. Phys. 42(7A), 4464–4468 (2003).
[Crossref]

Salamanca-Riba, L. G.

C. Gong, M. Rebello, S. Dias, G. C. Wessler, J. A. Taillon, L. G. Salamanca-Riba, and M. S. Leite, “Near-field optical properties of fully alloyed noble metal nanoparticles,” Adv. Opt. Mater. 5(1), 1600568 (2017).
[Crossref]

Santos, E.

P. M. Quaino, R. Nazmutdinov, L. F. Peiretti, and E. Santos, “Unravelling the hydrogen absorption process in Pd overlayers on a Au(111) surface,” Phys. Chem. Chem. Phys. 18(5), 3659–3668 (2016).
[Crossref] [PubMed]

M. F. Juarez, G. Soldano, H. Guesimi, F. Tielens, and E. Santos, “Catalytic properties of au electrodes modified by an uderlayer of Pd,” Surf. Sci. 631, 235–247 (2015).
[Crossref]

Schuller, I. K.

I. K. Schuller, “New class of layered materials,” Phys. Rev. Lett. 44(24), 1597–1600 (1980).
[Crossref]

Sebeka, B.

K. Juodkazis, J. Juodkazyte, B. Sebeka, and S. Juodkazis, “Reversible hydrogen evolution and oxidation on Pt electrode mediated by molecular ion,” Appl. Surf. Sci. 290(30), 13–17 (2014).
[Crossref]

Seniutinas, G.

Y. Nishijima, A. Balčytis, G. Seniutinas, S. Juodkazis, T. Arakawa, S. Okazaki, and R. Petruškevičius, “Plasmonic Hydrogen Sensor at Infrared Wavelength,” Sens. Mater. 29(9), 1269–1274 (2017).

Y. Hashimoto, G. Seniutinas, A. Balcytis, S. Juodkazis, and Y. Nishijima, “Au-Ag-Cu nano-alloys: tailoring of permittivity,” Sci. Rep. 6, 25010 (2016).
[Crossref] [PubMed]

Y. Nishijima, Y. Hashimoto, G. Seniutinas, L. Rosa, and S. Juodkazis, “Engineering gold alloys for plasmonics,” Appl. Phys. A 117, (2)641–645 (2014).
[Crossref]

Shivaprasad, S. M.

I. Aruna, B. R. Mehta, L. K. Malhotra, and S. M. Shivaprasad, “A color-neutral. Gd nanoparticle switchable mirror with improved optical contrast and response time,” Adv. Mater. 16(2), 169–173 (2004).
[Crossref]

Smith, R. J.

D. A. Otterson and R. J. Smith, NASA Report, Absorption of Hydrogen by Palladium and Electrical Resistivity up to H-Pd Atom Ratios of 0.97 (National Aeronautics and Space Administration, 1969).

Soldano, G.

M. F. Juarez, G. Soldano, H. Guesimi, F. Tielens, and E. Santos, “Catalytic properties of au electrodes modified by an uderlayer of Pd,” Surf. Sci. 631, 235–247 (2015).
[Crossref]

Strohfeldt, N.

Sugiyama, M.

A. Nakamura, Y. Ota, K. Koike, Y. Hidaka, K. Nishioka, M. Sugiyama, and K. Fujii, “A 24.4 solar to hydrogen energy conversion efficiency by combining concentrator photovoltaic modules and electrochemical cells,” Appl. Phys. Express 8(10), 107101 (2015).
[Crossref]

Taillon, J. A.

C. Gong, M. Rebello, S. Dias, G. C. Wessler, J. A. Taillon, L. G. Salamanca-Riba, and M. S. Leite, “Near-field optical properties of fully alloyed noble metal nanoparticles,” Adv. Opt. Mater. 5(1), 1600568 (2017).
[Crossref]

Taubert, R.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11(10), 4366–4369 (2011).
[Crossref] [PubMed]

Teng, X.

X. Teng, Q. Wang, P. Liu, W. Han, A. I. Frenkel, W. Wen, N. Marinkovic, J. C. Hanson, and J. A. Rodriguez, “Formation of Pd/Au nanostructures from pd nanowires via galvanic replacement reaction,” J. Am. Chem. Soc. 130(3), 1093–1101 (2008).
[Crossref]

Tian, Z. Z.

S. Zhao, Z. Z. Tian, J. N. Liu, Y. L. Ren, and J. J. Wang, “Interaction of H2 with gold-palladium binary clusters: Molecular and dissociative adsorption,” Comput. Theor. Chem. 1055(1), 1–7 (2015).
[Crossref]

Tielens, F.

M. F. Juarez, G. Soldano, H. Guesimi, F. Tielens, and E. Santos, “Catalytic properties of au electrodes modified by an uderlayer of Pd,” Surf. Sci. 631, 235–247 (2015).
[Crossref]

Tittl, A.

N. Strohfeldt, J. Zhao, A. Tittl, and H. Giessen, “Sensitivity engineering in direct contact palladium-gold nano-sandwich hydrogen sensors,” Opt. Mater. Express 5(11), 2525–2535 (2015).
[Crossref]

A. Tittl, C. Kremers, J. Dorfmuller, D. N. Chigrin, and H. Giessen, “Spectral shifts in optical nanoantenna-enhanced hydrogen sensors,” Opt. Mat. Express 2(2), 111–118 (2012).
[Crossref]

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11(10), 4366–4369 (2011).
[Crossref] [PubMed]

Tominaga, Y.

Y. Tominaga, Y. Kinoshita, K. Oe, and M. Yoshimotoa, “Structural investigation of GaAs1−x Bix/GaAsGaAs1−x Bix/GaAs multiquantum wells,” Appl. Phys. Lett. 93(13), 131915 (2008).
[Crossref]

Tomonari, S.

S. Tomonari, H. Yoshida, M. Kamakura, K. Yoshida, K. Kawahito, M. Saitoh, H. Kawada, S. Juodkazis, and H. Misawa, “Efficient microvalve driven by a Si-Ni bimorph,” Jpn. J. Appl. Phys. 42(7A), 4464–4468 (2003).
[Crossref]

S. Tomonari, H. Yoshida, M. Kamakura, K. Yoshida, K. Kawahito, M. Saitoh, H. Kawada, S. Juodkazis, and H. Misawa, “Miniaturization of a thermally driven Ni-Si bimorph,” Jpn. J. Appl. Phys. 42(7A), 4593–4597 (2003).
[Crossref]

Torimoto, T.

M. Hirano, K. Enokida, K. Okazaki, S. Kuwabata, H. Yoshida, and T. Torimoto, “Compositio-dependent electrocatalytic activity of AuPd alloy nanoparticles prepared via simultaneous sputter deposition into an ionic liquid,” Phys. Chem. Chem. Phys. 15(19), 7286–7294 (2013).
[Crossref] [PubMed]

Trabol, R.

J. I. Avila, R. J. Matelon, R. Trabol, M. Favre, D. Lederman, U. G. Volkmann, and A. L. Cabrera, “Optical properties of Pd thin films exposed to hydrogen studied by transmittance and reflectance spectroscopy,” J. Appl. Phys. 107(2), 023504 (2010).
[Crossref]

Volkmann, U. G.

J. I. Avila, R. J. Matelon, R. Trabol, M. Favre, D. Lederman, U. G. Volkmann, and A. L. Cabrera, “Optical properties of Pd thin films exposed to hydrogen studied by transmittance and reflectance spectroscopy,” J. Appl. Phys. 107(2), 023504 (2010).
[Crossref]

Wadell, C.

C. Wadell and C. Langhammer, “Drift-corrected nanoplasmonic hydrogen sensing by polarization,” Nanoscale 7(25), 10963–10969 (2015).
[Crossref] [PubMed]

Wang, J. J.

S. Zhao, Z. Z. Tian, J. N. Liu, Y. L. Ren, and J. J. Wang, “Interaction of H2 with gold-palladium binary clusters: Molecular and dissociative adsorption,” Comput. Theor. Chem. 1055(1), 1–7 (2015).
[Crossref]

Wang, Q.

X. Teng, Q. Wang, P. Liu, W. Han, A. I. Frenkel, W. Wen, N. Marinkovic, J. C. Hanson, and J. A. Rodriguez, “Formation of Pd/Au nanostructures from pd nanowires via galvanic replacement reaction,” J. Am. Chem. Soc. 130(3), 1093–1101 (2008).
[Crossref]

Wei, I.

I. Wei and J. Brewer, “Desorption of hydrogen from palladium plating,” AMP J. Tech. 5, 49–53 (1996).

Welch, D.

Z. Zhao, M. Carpenter, H. Xi, and D. Welch, “All-optical hydrogen sensor based on a high alloy content palladium thin film,” Sens. Actuat. B-Chem. 113(1), 532–538 (2006).
[Crossref]

Wen, W.

X. Teng, Q. Wang, P. Liu, W. Han, A. I. Frenkel, W. Wen, N. Marinkovic, J. C. Hanson, and J. A. Rodriguez, “Formation of Pd/Au nanostructures from pd nanowires via galvanic replacement reaction,” J. Am. Chem. Soc. 130(3), 1093–1101 (2008).
[Crossref]

Wessler, G. C.

C. Gong, M. Rebello, S. Dias, G. C. Wessler, J. A. Taillon, L. G. Salamanca-Riba, and M. S. Leite, “Near-field optical properties of fully alloyed noble metal nanoparticles,” Adv. Opt. Mater. 5(1), 1600568 (2017).
[Crossref]

Xi, H.

Z. Zhao, M. Carpenter, H. Xi, and D. Welch, “All-optical hydrogen sensor based on a high alloy content palladium thin film,” Sens. Actuat. B-Chem. 113(1), 532–538 (2006).
[Crossref]

Yamauchi, M.

K. Kusada, M. Yamauchi, H. Kobayashi, H. Kitagawa, and Y. Kubota, “Solid solution alloy nanoparticles of immiscible Pd and Ru elements neighboring on Rh: changeover of the thermodynamic behavior for hydrogen storage and enhanced CO-oxidizing ability,” J. Am. Chem. Soc. 136(5), 1864–1871 (2014).
[Crossref] [PubMed]

K. Kusada, M. Yamauchi, H. Kobayashi, H. Kitagawa, and Y. Kubota, “Hydrogen-storage properties of solid-solution alloys of immiscible neighboring elements with Pd,” J. Am. Chem. Soc. 132(45), 15896–15898 (2010).
[Crossref] [PubMed]

Yoshida, H.

M. Hirano, K. Enokida, K. Okazaki, S. Kuwabata, H. Yoshida, and T. Torimoto, “Compositio-dependent electrocatalytic activity of AuPd alloy nanoparticles prepared via simultaneous sputter deposition into an ionic liquid,” Phys. Chem. Chem. Phys. 15(19), 7286–7294 (2013).
[Crossref] [PubMed]

S. Tomonari, H. Yoshida, M. Kamakura, K. Yoshida, K. Kawahito, M. Saitoh, H. Kawada, S. Juodkazis, and H. Misawa, “Efficient microvalve driven by a Si-Ni bimorph,” Jpn. J. Appl. Phys. 42(7A), 4464–4468 (2003).
[Crossref]

S. Tomonari, H. Yoshida, M. Kamakura, K. Yoshida, K. Kawahito, M. Saitoh, H. Kawada, S. Juodkazis, and H. Misawa, “Miniaturization of a thermally driven Ni-Si bimorph,” Jpn. J. Appl. Phys. 42(7A), 4593–4597 (2003).
[Crossref]

Yoshida, K.

S. Tomonari, H. Yoshida, M. Kamakura, K. Yoshida, K. Kawahito, M. Saitoh, H. Kawada, S. Juodkazis, and H. Misawa, “Miniaturization of a thermally driven Ni-Si bimorph,” Jpn. J. Appl. Phys. 42(7A), 4593–4597 (2003).
[Crossref]

S. Tomonari, H. Yoshida, M. Kamakura, K. Yoshida, K. Kawahito, M. Saitoh, H. Kawada, S. Juodkazis, and H. Misawa, “Efficient microvalve driven by a Si-Ni bimorph,” Jpn. J. Appl. Phys. 42(7A), 4464–4468 (2003).
[Crossref]

Yoshimotoa, M.

Y. Tominaga, Y. Kinoshita, K. Oe, and M. Yoshimotoa, “Structural investigation of GaAs1−x Bix/GaAsGaAs1−x Bix/GaAs multiquantum wells,” Appl. Phys. Lett. 93(13), 131915 (2008).
[Crossref]

Yu, W. Y.

W. Y. Yu, G. M. Mullen, and C. B. Mullins, “Hydrogen adsorption and absorption with Pd-Au bimetallic surfaces,” J. Phys. Chem. C 117, (38)19535–19543 (2013).
[Crossref]

Zhao, J.

Zhao, S.

S. Zhao, Z. Z. Tian, J. N. Liu, Y. L. Ren, and J. J. Wang, “Interaction of H2 with gold-palladium binary clusters: Molecular and dissociative adsorption,” Comput. Theor. Chem. 1055(1), 1–7 (2015).
[Crossref]

Zhao, Z.

Z. Zhao, M. Carpenter, H. Xi, and D. Welch, “All-optical hydrogen sensor based on a high alloy content palladium thin film,” Sens. Actuat. B-Chem. 113(1), 532–538 (2006).
[Crossref]

Accounts Chem. Res. (1)

H. Kobayashi, K. Kusada, and H. Kitagawa, “Creation of novel solid-solution alloy nanoparticles on the basis of density-ofstates engineering by interelement fusion,” Accounts Chem. Res. 48(6), 1551–1559 (2015).
[Crossref]

ACS Photon. (1)

C. Gong and M. S. Leite, “Noble metal alloys for plasmonics,” ACS Photon. 3(4), 507–513 (2016).
[Crossref]

Adv. Mater. (1)

I. Aruna, B. R. Mehta, L. K. Malhotra, and S. M. Shivaprasad, “A color-neutral. Gd nanoparticle switchable mirror with improved optical contrast and response time,” Adv. Mater. 16(2), 169–173 (2004).
[Crossref]

Adv. Opt. Mater. (1)

C. Gong, M. Rebello, S. Dias, G. C. Wessler, J. A. Taillon, L. G. Salamanca-Riba, and M. S. Leite, “Near-field optical properties of fully alloyed noble metal nanoparticles,” Adv. Opt. Mater. 5(1), 1600568 (2017).
[Crossref]

AMP J. Tech. (1)

I. Wei and J. Brewer, “Desorption of hydrogen from palladium plating,” AMP J. Tech. 5, 49–53 (1996).

Appl. Phys. A (1)

Y. Nishijima, Y. Hashimoto, G. Seniutinas, L. Rosa, and S. Juodkazis, “Engineering gold alloys for plasmonics,” Appl. Phys. A 117, (2)641–645 (2014).
[Crossref]

Appl. Phys. Express (1)

A. Nakamura, Y. Ota, K. Koike, Y. Hidaka, K. Nishioka, M. Sugiyama, and K. Fujii, “A 24.4 solar to hydrogen energy conversion efficiency by combining concentrator photovoltaic modules and electrochemical cells,” Appl. Phys. Express 8(10), 107101 (2015).
[Crossref]

Appl. Phys. Lett. (2)

I. Aruna, B. R. Metha, and L. K. Malhotra, “Faster H recovery in Pd nanoparticle layer based Gd switchable mirrors: Size-induced geometric and electronic effects,” Appl. Phys. Lett. 87(2), 103101 (2005).
[Crossref]

Y. Tominaga, Y. Kinoshita, K. Oe, and M. Yoshimotoa, “Structural investigation of GaAs1−x Bix/GaAsGaAs1−x Bix/GaAs multiquantum wells,” Appl. Phys. Lett. 93(13), 131915 (2008).
[Crossref]

Appl. Surf. Sci. (2)

K. Juodkazis, J. Juodkazyte, B. Sebeka, and S. Juodkazis, “Reversible hydrogen evolution and oxidation on Pt electrode mediated by molecular ion,” Appl. Surf. Sci. 290(30), 13–17 (2014).
[Crossref]

K. Juodkazis, J. Juodkazyte, A. Grigucevicien, and S. Juodkazis, “Hydrogen species within the metals: role of molecular hydrogen ion H2+,” Appl. Surf. Sci. 258(2), 743–747 (2011).
[Crossref]

Comput. Mat. Sci. (1)

G. Kresse and J. Furthmuller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mat. Sci. 6(1), 15–50 (1996).
[Crossref]

Comput. Theor. Chem. (1)

S. Zhao, Z. Z. Tian, J. N. Liu, Y. L. Ren, and J. J. Wang, “Interaction of H2 with gold-palladium binary clusters: Molecular and dissociative adsorption,” Comput. Theor. Chem. 1055(1), 1–7 (2015).
[Crossref]

Int. J. Hydrog. Ener. (1)

G. Gahleitner, “Hydrogen from renewable electricity: an international review of power-to-gas pilot plants for stationary applications,” Int. J. Hydrog. Ener. 38(5), 2039–2061 (2013).
[Crossref]

J. Am. Chem. Soc. (4)

L. Pauling, “The nature of the chemical bond. iv. the energy of single bonds and the relative electronegativity of atoms,” J. Am. Chem. Soc. 54(9), 3570–3582 (1932).
[Crossref]

X. Teng, Q. Wang, P. Liu, W. Han, A. I. Frenkel, W. Wen, N. Marinkovic, J. C. Hanson, and J. A. Rodriguez, “Formation of Pd/Au nanostructures from pd nanowires via galvanic replacement reaction,” J. Am. Chem. Soc. 130(3), 1093–1101 (2008).
[Crossref]

K. Kusada, M. Yamauchi, H. Kobayashi, H. Kitagawa, and Y. Kubota, “Solid solution alloy nanoparticles of immiscible Pd and Ru elements neighboring on Rh: changeover of the thermodynamic behavior for hydrogen storage and enhanced CO-oxidizing ability,” J. Am. Chem. Soc. 136(5), 1864–1871 (2014).
[Crossref] [PubMed]

K. Kusada, M. Yamauchi, H. Kobayashi, H. Kitagawa, and Y. Kubota, “Hydrogen-storage properties of solid-solution alloys of immiscible neighboring elements with Pd,” J. Am. Chem. Soc. 132(45), 15896–15898 (2010).
[Crossref] [PubMed]

J. Appl. Phys. (3)

J. I. Avila, R. J. Matelon, R. Trabol, M. Favre, D. Lederman, U. G. Volkmann, and A. L. Cabrera, “Optical properties of Pd thin films exposed to hydrogen studied by transmittance and reflectance spectroscopy,” J. Appl. Phys. 107(2), 023504 (2010).
[Crossref]

M. Murakami, D. de Fontaine, and J. Fodor, “X-ray diffraction study of interdiffusion in bimetallic Au/Pd thin films,” J. Appl. Phys. 47(7), 2850–2856 (1976).
[Crossref]

H. Nakajima, H. Fujimori, and M. Koiwa, “Interdiffusion and structural relaxation in Mo/Si multilayer films,” J. Appl. Phys. 63(4), 1046–1051 (1988).
[Crossref]

J. Phys. Chem. (1)

L. Holleck, “Diffusion and solubility of hydrogen in palladium and palladium-silver alloys,” J. Phys. Chem. 74(3), 503–511 (1970).
[Crossref]

J. Phys. Chem. C (1)

W. Y. Yu, G. M. Mullen, and C. B. Mullins, “Hydrogen adsorption and absorption with Pd-Au bimetallic surfaces,” J. Phys. Chem. C 117, (38)19535–19543 (2013).
[Crossref]

Jpn. J. Appl. Phys. (2)

S. Tomonari, H. Yoshida, M. Kamakura, K. Yoshida, K. Kawahito, M. Saitoh, H. Kawada, S. Juodkazis, and H. Misawa, “Efficient microvalve driven by a Si-Ni bimorph,” Jpn. J. Appl. Phys. 42(7A), 4464–4468 (2003).
[Crossref]

S. Tomonari, H. Yoshida, M. Kamakura, K. Yoshida, K. Kawahito, M. Saitoh, H. Kawada, S. Juodkazis, and H. Misawa, “Miniaturization of a thermally driven Ni-Si bimorph,” Jpn. J. Appl. Phys. 42(7A), 4593–4597 (2003).
[Crossref]

Nano Lett. (1)

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11(10), 4366–4369 (2011).
[Crossref] [PubMed]

Nanoscale (1)

C. Wadell and C. Langhammer, “Drift-corrected nanoplasmonic hydrogen sensing by polarization,” Nanoscale 7(25), 10963–10969 (2015).
[Crossref] [PubMed]

Nat. Commun. (1)

M. M. May, H. J. Lewerenz, D. Lackner, F. Dimroth, and T. Hannappel, “Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure,” Nat. Commun. 6, 8286 (2015).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Opt. Mat. Express (2)

A. Tittl, C. Kremers, J. Dorfmuller, D. N. Chigrin, and H. Giessen, “Spectral shifts in optical nanoantenna-enhanced hydrogen sensors,” Opt. Mat. Express 2(2), 111–118 (2012).
[Crossref]

Y. Nishijima and S. Akiyama, “Unusual optical properties of the Au/Ag alloy at the matching mole fraction,” Opt. Mat. Express 2(9), 1226–1235 (2012).
[Crossref]

Opt. Mater. Express (1)

Phys. Chem. Chem. Phys. (2)

P. M. Quaino, R. Nazmutdinov, L. F. Peiretti, and E. Santos, “Unravelling the hydrogen absorption process in Pd overlayers on a Au(111) surface,” Phys. Chem. Chem. Phys. 18(5), 3659–3668 (2016).
[Crossref] [PubMed]

M. Hirano, K. Enokida, K. Okazaki, S. Kuwabata, H. Yoshida, and T. Torimoto, “Compositio-dependent electrocatalytic activity of AuPd alloy nanoparticles prepared via simultaneous sputter deposition into an ionic liquid,” Phys. Chem. Chem. Phys. 15(19), 7286–7294 (2013).
[Crossref] [PubMed]

Phys. Rev. B (4)

G. Kresse and J. Furthmuller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, (16)11169–11186 (1996).
[Crossref]

P. E. Blochl, “Projector augmented-wave method,” Phys. Rev. B 50, (24)17953–17979 (1994).
[Crossref]

G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Phys. Rev. B 47, (1)558–561 (1993).
[Crossref]

B. M. Clemens and J. G. Gay, “Effect of layer-thickness fluctions on superlattice diffraction,” Phys. Rev. B 35, (17)9337–9340 (1987).
[Crossref]

Phys. Rev. Lett. (2)

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref] [PubMed]

I. K. Schuller, “New class of layered materials,” Phys. Rev. Lett. 44(24), 1597–1600 (1980).
[Crossref]

Proc. Nat. Acad. Sci. U. S. A. (1)

N. S. Lewis and D. G. Nocera, “Powering the planet: chemical challenges in solar energy utilization,” Proc. Nat. Acad. Sci. U. S. A. 103(47), 15729–15735 (2006).
[Crossref]

Sci. Rep. (1)

Y. Hashimoto, G. Seniutinas, A. Balcytis, S. Juodkazis, and Y. Nishijima, “Au-Ag-Cu nano-alloys: tailoring of permittivity,” Sci. Rep. 6, 25010 (2016).
[Crossref] [PubMed]

Science (1)

R. M. Holmes, “The effect of absorbed hydrogen on the thermoelectric properties of palladium,” Science 56(1442), 201–202 (1922).
[Crossref] [PubMed]

Sens. Actuat. B-Chem. (2)

D. Monzon-Hernandez, D. Luna-Moreno, and D. Martinez-Escobar, “Fast response fiber optic hydrogen sensor based on palladium and gold,”" Sens. Actuat. B-Chem. 136(2), 562–566 (2009).
[Crossref]

Z. Zhao, M. Carpenter, H. Xi, and D. Welch, “All-optical hydrogen sensor based on a high alloy content palladium thin film,” Sens. Actuat. B-Chem. 113(1), 532–538 (2006).
[Crossref]

Sens. Mater. (1)

Y. Nishijima, A. Balčytis, G. Seniutinas, S. Juodkazis, T. Arakawa, S. Okazaki, and R. Petruškevičius, “Plasmonic Hydrogen Sensor at Infrared Wavelength,” Sens. Mater. 29(9), 1269–1274 (2017).

Surf. Sci. (1)

M. F. Juarez, G. Soldano, H. Guesimi, F. Tielens, and E. Santos, “Catalytic properties of au electrodes modified by an uderlayer of Pd,” Surf. Sci. 631, 235–247 (2015).
[Crossref]

Thin Solid Films (1)

S. Okazaki and S. Johjima, “Temperature dependence and degradation of gasochromic responsebehavior in hydrogen sensing with Pt/WO3 thin film,” Thin Solid Films 558, 411–415 (2014).
[Crossref]

Other (5)

A. E. Bon and I. K. Kagan, Stroyeniye I Svoistva Dvoinykh Metalicheskikh Sistem (Nauka, 1976).

G. Kresse, “Ab initio molekular dynamik fur flussige Metalle,” Ph.D. thesis, Diss., Techn. Universitat Wien (1993).

M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions (National Association of Corrosion Engineers, 1974).

D. A. Otterson and R. J. Smith, NASA Report, Absorption of Hydrogen by Palladium and Electrical Resistivity up to H-Pd Atom Ratios of 0.97 (National Aeronautics and Space Administration, 1969).

A. Baumel, P. Drodten, E. Heitz, and R. Bender, Corrision Handbook, Platinum Metals (Ir, Os, Pd, Rh, Ru) (John Wiley and Sons, 2008), Chap. A 35.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Setup for measurement of hydrogenation. (b) Extinction losses Ext ∼ −10 lg(It/I0) [dB] where It,0 are the transmitted and reference intensities, respectively. Hydrogenated Pd becomes more transparent. ΔExt is the change of extinction losses between hydrogen saturated and depleted states.
Fig. 2
Fig. 2 (a) XRD of Au:Pd films co-sputtered onto a 250°C pre-heated glass substrate at different sputtering rates. Vertical lines mark 〈111〉 position of the fcc-Au and Pd peaks. (b) XRD of layered Au:Pd films in the range 40 to 70 nm thickness deposited at layer cycles: 2, 4, 10, 20 (corresponding thicknesses are 7.50, 3.75, 1.50, 0.75 nm, respectively) and co-sputtering deposition at RT. (c) The experimentally measured XRD spectra (Meas.) and simulation (Sim.) results of alternating sputtering
Fig. 3
Fig. 3 (a) Optical transmission and reflection of Pd thin films (thickness 20, 30 40 nm) with 4% H2 or N2 (without H2) condition, and (b) optical permittivity of the Pd with/without H2
Fig. 4
Fig. 4 Hydrogen response of alternating layer Au-Pd film deposited over 2, 4, 20 cycles with total layer thickness ranging from 40 to 70 nm. (a) Extinction [dB] changes during ON/OFF cycling of H2 flow (marked by arrows). (b) Transient of the Au-Pd 4-cycle alternating layer sample fitted using single exponential uptake and release time constants τin,out, respectively. (c) Hydrogen uptake time constants τin for Au-Pd alternating layer films deposited over different number of cycles. (d) Hydrogen release time constants τout for alternating layer Au-Pd films. (e) Extinction change (ΔExt) during hydrogen reaction.
Fig. 5
Fig. 5 Extinction losses, Ext, during hydrogenation of pure Pd and Au:Pd (1:1) co-sputtered films of different thickness on pre-heated 250°C and RT glass substrates. For Au, Ext is constant and is unaffected by the presence of H2 (horizontal line for Au of 20 nm).
Fig. 6
Fig. 6 Change of extinction, ΔExt, for simultaneously co-sputtered Au:Pd films. Error bars are ±20% and the lines are guides for eye with starting point at origin of coordinates (0;0).
Fig. 7
Fig. 7 Hydrogen uptake (a) and release (b) time constants τin,out, respectively, for Au:Pd films prepared by co-sputtering with and without annealing.
Fig. 8
Fig. 8 The density of state (DOS) for Au:Pd alloy and pure Au, and Pd systems for the 〈001〉 (left column) and 〈111〉 (right column) orientations. Gold and silver spheres show Au and Pd, respectively. Zero in the energy x axis indicates the top of the occupied valence band.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ε ( ω ) = ω ( ) ω p 2 ω 2 + i ω / τ + Σ j A j ω 0 , j ( ω 0 , j ) ( ω ) 2 i ω / τ j ,
Λ = m n sin θ m sin θ n λ 2 ,
T 16 n s ( n 2 + k 2 ) [ ( n + n s ) 2 + k 2 ] [ ( 1 + n ) 2 + k 2 ] e 4 π k d   λ , R ( 1 n ) 2 + k 2 ( 1 + n ) 2 + k 2
H P d = 0.69 + ln p H / p 0 36.8 ,

Metrics