Abstract

The Moderate-resolution Wide-wavelengths Imager (MWI) is the ocean color sensor onboard the Chinese Tiangong-2 Space Lab, which was launched on Sept. 15, 2016. The MWI is also an experimental satellite sensor for the Chinese next generation ocean color satellites, HY-1E and HY-1F, which are scheduled for launch around 2021. With 100m spatial resolution and 18 bands in the visible light and infrared wavelengths, MWI provides high quality ocean color observations especially over coastal and inland waters. For the first time, this study presents some important results on water color products generated from the MWI for the oceanic and inland waters. Preliminary validation in turbid coastal and inland waters showed good agreement between the MWI-retrieved normalized water-leaving radiances (Lwn) and in situ data. Further, the MWI-retrieved Lwn values compared well with the GOCI-retrieved Lwn values, with the correlation coefficient greater than 0.90 and mean relative differences smaller than 26.63% (413 nm), 4.72% (443 nm), 3.69% (490 nm), 7.15% (565 nm), 9.45% (665 nm), 8.11% (682.5 nm), 14.68% (750 nm) and 18.55% (865 nm). As for the Level 2 product (e.g, total suspended matter TSM) in turbid Yangtze River Estuary and Hangzhou Bay waters, the relative difference between MWI and GOCI-derived TSM values was ~18.59% with the correlation coefficient of 0.956. In open-oceanic waters, the retrieved MWI-Chla distributions were well consistent with the MODIS/Aqua and VIIRS Chla values products and resolved finer spatial structures of phytoplankton blooms. This study provides encouraging results for the MWI’s performance and operational applications in oceanic and inland regions.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ocean color products from the Korean Geostationary Ocean Color Imager (GOCI)

Menghua Wang, Jae-Hyun Ahn, Lide Jiang, Wei Shi, SeungHyun Son, Young-Je Park, and Joo-Hyung Ryu
Opt. Express 21(3) 3835-3849 (2013)

Improved near-infrared ocean reflectance correction algorithm for satellite ocean color data processing

Lide Jiang and Menghua Wang
Opt. Express 22(18) 21657-21678 (2014)

References

  • View by:
  • |
  • |
  • |

  1. C. R. McClain, “A decade of satellite ocean color observations,” Annu. Rev. Mar. Sci. 1(1), 19–42 (2009).
    [Crossref] [PubMed]
  2. X. He, P. Delu, Q. Zhu, Z. Hao, and F. Gong, “On-orbit assessment of the polarization response of COCTS onboard HY-1B satellite,” Proc. SPIE 7862, 78620W (2010).
    [Crossref]
  3. C. D. Mobley, “Estimation of the remote-sensing reflectance from above-surface measurements,” Appl. Opt. 38(36), 7442–7455 (1999).
    [Crossref] [PubMed]
  4. Z. Lee, K. L. Carder, R. G. Steward, T. G. Peacock, C. O. Davis, and J. L. Mueller, “Protocols for measurement of remote-sensing reflectance from clear to turbid waters,” Presented at SeaWiFS Workshop, Halifax (1996).
  5. N. M. Komick, M. P. F. Costa, and J. Gower, “Bio-opticalalgorithm evaluation for MODIS for western Canada coast-al waters: an exploratory approach using in situ reflectance,” Remote Sens. Environ. 113(4), 794–804 (2009).
    [Crossref]
  6. B. Han, H. Loisel, V. Vantrepotte, X. Mériaux, P. Bryère, S. Ouillon, D. Dessailly, Q. Xing, and J. Zhu, “Development of a Semi-Analytical Algorithm for the Retrieval of Suspended Particulate Matter from Remote Sensing over Clear to Very Turbid Waters,” Remote Sens. 8(3), 211 (2016).
    [Crossref]
  7. X. He, Y. Bai, D. Pan, N. Huang, X. Dong, J. Chen, C.-T. A. Chen, and Q. Cui, “Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters,” Remote Sens. Environ. 133, 225–239 (2013).
    [Crossref]
  8. X. He, D. Pan, Y. Bai, Q. Zhu, and F. Gong, “Vector radiative transfer numerical model of coupled ocean-atmosphere system using matrix-operator method,” Sci. China. Ser. D 50(3), 442–452 (2007).
    [Crossref]
  9. X. He, Y. Bai, Q. Zhu, and F. Gong, “A vector radiative transfer model of coupled ocean-atmosphere system using matrix-operator method for rough sea-surface,” J. Quant. Spectrosc. Radiat. Transf. 111(10), 1426–1448 (2010).
    [Crossref]
  10. X. He, D. Pan, Y. Bai, and F. Gong, “A general purpose exact Rayleigh scattering look-up table for ocean color remote sensing,” Acta Oceanol. Sin. 25(1), 48–56 (2006).
  11. H. R. Gordon, “Remote sensing of ocean color: a methodology for dealing with broad spectral bands and significant out-of-band response,” Appl. Opt. 34(36), 8363–8374 (1995).
    [Crossref] [PubMed]
  12. M. Wang and H. R. Gordon, “A Simple,Moderately Accurate,Atmospheric Correction Algorithm for SeaWiFS,” Remote Sens. Environ. 50(3), 231–239 (1994).
    [Crossref]
  13. H. R. Gordon, “Atmospheric Correction of Ocean Color Imagery in the Earth Observing System Era,” J. Geophys. Res. 102(D14), 17081–17106 (1997).
    [Crossref]
  14. X. He, D. Pan, and Z. Mao, “Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters,” Acta Oceanol. Sin. 23(4), 609–615 (2004).
  15. X. He, Y. Bai, D. Pan, J. Tang, and D. Wang, “Atmospheric correction of satellite ocean color imagery using the ultraviolet wavelength for highly turbid waters,” Opt. Express 20(18), 20754–20770 (2012).
    [Crossref] [PubMed]
  16. R. H. Evans and H. R. Gordon, “Coastal Zone Color Scanner system calibration: A retrospective examination,” J. Geophys. Res. 99(C4), 7293–7307 (1994).
    [Crossref]
  17. M. Wang and W. Shi, “Estimation of ocean contribution at the MODIS near infrared wavelengths along the east coast of the U.S.: two case studies,” Geophys. Res. Lett. 32(13), L13606 (2005).
    [Crossref]
  18. M. Wang, “Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: simulations,” Appl. Opt. 46(9), 1535–1547 (2007).
    [Crossref] [PubMed]
  19. K. G. Ruddick, F. Ovidio, and M. Rijkeboer, “Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters,” Appl. Opt. 39(6), 897–912 (2000).
    [Crossref] [PubMed]
  20. K. G. Ruddick, V. De Cauwer, Y.-J. Park, and G. Moore, “Seaborne measurements of near infrared water-leaving reflectance - the similarity spectrum for turbid waters,” Limnol. Oceanogr. 51(2), 1167–1179 (2006).
    [Crossref]
  21. M. Viollier, D. Tanré, and P. Y. Deschamps, “An algorithm for remote sensing of water color from space,” Boundary-Layer Meteorol. 18, 247–267 (1980).
    [Crossref]
  22. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytical radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
    [Crossref]
  23. H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33(3), 443–452 (1994).
    [Crossref] [PubMed]
  24. M. Doron, S. Bélanger, D. Doxaran, and M. Babin, “Spectral variations in the near-infrared ocean reflectance,” Remote Sens. Environ. 115(7), 1617–1631 (2011).
    [Crossref]
  25. G. F. Moore, J. Aiken, and S. J. Lavender, “The atmospheric correction of water colour and quantitative retrieval of suspended particulate matter in Case II waters: application to MERIS,” Int. J. Remote Sens. 20(9), 1713–1733 (1999).
    [Crossref]
  26. W. Kim, J. Moon, Y. Park, and J. Ishizaka, “Evalution of chlorophyll retrievals from Geostationary Ocean color Imager (GOCI) for the North-East Asian region,” Remote Sens. Environ. 184, 482–495 (2016).
    [Crossref]
  27. Y. Bai, X. He, D. Pan, Q. Zhu, H. Lei, B. Tao, and Z. Hao, “The extremely highconcentration of suspended particulate matter in Changjiang Estuary detected by MERIS data,” Proc. SPIE 7858, 78581D (2010).
    [Crossref]

2016 (2)

B. Han, H. Loisel, V. Vantrepotte, X. Mériaux, P. Bryère, S. Ouillon, D. Dessailly, Q. Xing, and J. Zhu, “Development of a Semi-Analytical Algorithm for the Retrieval of Suspended Particulate Matter from Remote Sensing over Clear to Very Turbid Waters,” Remote Sens. 8(3), 211 (2016).
[Crossref]

W. Kim, J. Moon, Y. Park, and J. Ishizaka, “Evalution of chlorophyll retrievals from Geostationary Ocean color Imager (GOCI) for the North-East Asian region,” Remote Sens. Environ. 184, 482–495 (2016).
[Crossref]

2013 (1)

X. He, Y. Bai, D. Pan, N. Huang, X. Dong, J. Chen, C.-T. A. Chen, and Q. Cui, “Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters,” Remote Sens. Environ. 133, 225–239 (2013).
[Crossref]

2012 (1)

2011 (1)

M. Doron, S. Bélanger, D. Doxaran, and M. Babin, “Spectral variations in the near-infrared ocean reflectance,” Remote Sens. Environ. 115(7), 1617–1631 (2011).
[Crossref]

2010 (3)

X. He, P. Delu, Q. Zhu, Z. Hao, and F. Gong, “On-orbit assessment of the polarization response of COCTS onboard HY-1B satellite,” Proc. SPIE 7862, 78620W (2010).
[Crossref]

X. He, Y. Bai, Q. Zhu, and F. Gong, “A vector radiative transfer model of coupled ocean-atmosphere system using matrix-operator method for rough sea-surface,” J. Quant. Spectrosc. Radiat. Transf. 111(10), 1426–1448 (2010).
[Crossref]

Y. Bai, X. He, D. Pan, Q. Zhu, H. Lei, B. Tao, and Z. Hao, “The extremely highconcentration of suspended particulate matter in Changjiang Estuary detected by MERIS data,” Proc. SPIE 7858, 78581D (2010).
[Crossref]

2009 (2)

N. M. Komick, M. P. F. Costa, and J. Gower, “Bio-opticalalgorithm evaluation for MODIS for western Canada coast-al waters: an exploratory approach using in situ reflectance,” Remote Sens. Environ. 113(4), 794–804 (2009).
[Crossref]

C. R. McClain, “A decade of satellite ocean color observations,” Annu. Rev. Mar. Sci. 1(1), 19–42 (2009).
[Crossref] [PubMed]

2007 (2)

X. He, D. Pan, Y. Bai, Q. Zhu, and F. Gong, “Vector radiative transfer numerical model of coupled ocean-atmosphere system using matrix-operator method,” Sci. China. Ser. D 50(3), 442–452 (2007).
[Crossref]

M. Wang, “Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: simulations,” Appl. Opt. 46(9), 1535–1547 (2007).
[Crossref] [PubMed]

2006 (2)

X. He, D. Pan, Y. Bai, and F. Gong, “A general purpose exact Rayleigh scattering look-up table for ocean color remote sensing,” Acta Oceanol. Sin. 25(1), 48–56 (2006).

K. G. Ruddick, V. De Cauwer, Y.-J. Park, and G. Moore, “Seaborne measurements of near infrared water-leaving reflectance - the similarity spectrum for turbid waters,” Limnol. Oceanogr. 51(2), 1167–1179 (2006).
[Crossref]

2005 (1)

M. Wang and W. Shi, “Estimation of ocean contribution at the MODIS near infrared wavelengths along the east coast of the U.S.: two case studies,” Geophys. Res. Lett. 32(13), L13606 (2005).
[Crossref]

2004 (1)

X. He, D. Pan, and Z. Mao, “Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters,” Acta Oceanol. Sin. 23(4), 609–615 (2004).

2000 (1)

1999 (2)

C. D. Mobley, “Estimation of the remote-sensing reflectance from above-surface measurements,” Appl. Opt. 38(36), 7442–7455 (1999).
[Crossref] [PubMed]

G. F. Moore, J. Aiken, and S. J. Lavender, “The atmospheric correction of water colour and quantitative retrieval of suspended particulate matter in Case II waters: application to MERIS,” Int. J. Remote Sens. 20(9), 1713–1733 (1999).
[Crossref]

1997 (1)

H. R. Gordon, “Atmospheric Correction of Ocean Color Imagery in the Earth Observing System Era,” J. Geophys. Res. 102(D14), 17081–17106 (1997).
[Crossref]

1995 (1)

1994 (3)

H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33(3), 443–452 (1994).
[Crossref] [PubMed]

M. Wang and H. R. Gordon, “A Simple,Moderately Accurate,Atmospheric Correction Algorithm for SeaWiFS,” Remote Sens. Environ. 50(3), 231–239 (1994).
[Crossref]

R. H. Evans and H. R. Gordon, “Coastal Zone Color Scanner system calibration: A retrospective examination,” J. Geophys. Res. 99(C4), 7293–7307 (1994).
[Crossref]

1988 (1)

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytical radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[Crossref]

1980 (1)

M. Viollier, D. Tanré, and P. Y. Deschamps, “An algorithm for remote sensing of water color from space,” Boundary-Layer Meteorol. 18, 247–267 (1980).
[Crossref]

Aiken, J.

G. F. Moore, J. Aiken, and S. J. Lavender, “The atmospheric correction of water colour and quantitative retrieval of suspended particulate matter in Case II waters: application to MERIS,” Int. J. Remote Sens. 20(9), 1713–1733 (1999).
[Crossref]

Babin, M.

M. Doron, S. Bélanger, D. Doxaran, and M. Babin, “Spectral variations in the near-infrared ocean reflectance,” Remote Sens. Environ. 115(7), 1617–1631 (2011).
[Crossref]

Bai, Y.

X. He, Y. Bai, D. Pan, N. Huang, X. Dong, J. Chen, C.-T. A. Chen, and Q. Cui, “Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters,” Remote Sens. Environ. 133, 225–239 (2013).
[Crossref]

X. He, Y. Bai, D. Pan, J. Tang, and D. Wang, “Atmospheric correction of satellite ocean color imagery using the ultraviolet wavelength for highly turbid waters,” Opt. Express 20(18), 20754–20770 (2012).
[Crossref] [PubMed]

Y. Bai, X. He, D. Pan, Q. Zhu, H. Lei, B. Tao, and Z. Hao, “The extremely highconcentration of suspended particulate matter in Changjiang Estuary detected by MERIS data,” Proc. SPIE 7858, 78581D (2010).
[Crossref]

X. He, Y. Bai, Q. Zhu, and F. Gong, “A vector radiative transfer model of coupled ocean-atmosphere system using matrix-operator method for rough sea-surface,” J. Quant. Spectrosc. Radiat. Transf. 111(10), 1426–1448 (2010).
[Crossref]

X. He, D. Pan, Y. Bai, Q. Zhu, and F. Gong, “Vector radiative transfer numerical model of coupled ocean-atmosphere system using matrix-operator method,” Sci. China. Ser. D 50(3), 442–452 (2007).
[Crossref]

X. He, D. Pan, Y. Bai, and F. Gong, “A general purpose exact Rayleigh scattering look-up table for ocean color remote sensing,” Acta Oceanol. Sin. 25(1), 48–56 (2006).

Baker, K. S.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytical radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[Crossref]

Bélanger, S.

M. Doron, S. Bélanger, D. Doxaran, and M. Babin, “Spectral variations in the near-infrared ocean reflectance,” Remote Sens. Environ. 115(7), 1617–1631 (2011).
[Crossref]

Brown, J. W.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytical radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[Crossref]

Brown, O. B.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytical radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[Crossref]

Bryère, P.

B. Han, H. Loisel, V. Vantrepotte, X. Mériaux, P. Bryère, S. Ouillon, D. Dessailly, Q. Xing, and J. Zhu, “Development of a Semi-Analytical Algorithm for the Retrieval of Suspended Particulate Matter from Remote Sensing over Clear to Very Turbid Waters,” Remote Sens. 8(3), 211 (2016).
[Crossref]

Carder, K. L.

Z. Lee, K. L. Carder, R. G. Steward, T. G. Peacock, C. O. Davis, and J. L. Mueller, “Protocols for measurement of remote-sensing reflectance from clear to turbid waters,” Presented at SeaWiFS Workshop, Halifax (1996).

Chen, C.-T. A.

X. He, Y. Bai, D. Pan, N. Huang, X. Dong, J. Chen, C.-T. A. Chen, and Q. Cui, “Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters,” Remote Sens. Environ. 133, 225–239 (2013).
[Crossref]

Chen, J.

X. He, Y. Bai, D. Pan, N. Huang, X. Dong, J. Chen, C.-T. A. Chen, and Q. Cui, “Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters,” Remote Sens. Environ. 133, 225–239 (2013).
[Crossref]

Clark, D. K.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytical radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[Crossref]

Costa, M. P. F.

N. M. Komick, M. P. F. Costa, and J. Gower, “Bio-opticalalgorithm evaluation for MODIS for western Canada coast-al waters: an exploratory approach using in situ reflectance,” Remote Sens. Environ. 113(4), 794–804 (2009).
[Crossref]

Cui, Q.

X. He, Y. Bai, D. Pan, N. Huang, X. Dong, J. Chen, C.-T. A. Chen, and Q. Cui, “Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters,” Remote Sens. Environ. 133, 225–239 (2013).
[Crossref]

Davis, C. O.

Z. Lee, K. L. Carder, R. G. Steward, T. G. Peacock, C. O. Davis, and J. L. Mueller, “Protocols for measurement of remote-sensing reflectance from clear to turbid waters,” Presented at SeaWiFS Workshop, Halifax (1996).

De Cauwer, V.

K. G. Ruddick, V. De Cauwer, Y.-J. Park, and G. Moore, “Seaborne measurements of near infrared water-leaving reflectance - the similarity spectrum for turbid waters,” Limnol. Oceanogr. 51(2), 1167–1179 (2006).
[Crossref]

Delu, P.

X. He, P. Delu, Q. Zhu, Z. Hao, and F. Gong, “On-orbit assessment of the polarization response of COCTS onboard HY-1B satellite,” Proc. SPIE 7862, 78620W (2010).
[Crossref]

Deschamps, P. Y.

M. Viollier, D. Tanré, and P. Y. Deschamps, “An algorithm for remote sensing of water color from space,” Boundary-Layer Meteorol. 18, 247–267 (1980).
[Crossref]

Dessailly, D.

B. Han, H. Loisel, V. Vantrepotte, X. Mériaux, P. Bryère, S. Ouillon, D. Dessailly, Q. Xing, and J. Zhu, “Development of a Semi-Analytical Algorithm for the Retrieval of Suspended Particulate Matter from Remote Sensing over Clear to Very Turbid Waters,” Remote Sens. 8(3), 211 (2016).
[Crossref]

Dong, X.

X. He, Y. Bai, D. Pan, N. Huang, X. Dong, J. Chen, C.-T. A. Chen, and Q. Cui, “Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters,” Remote Sens. Environ. 133, 225–239 (2013).
[Crossref]

Doron, M.

M. Doron, S. Bélanger, D. Doxaran, and M. Babin, “Spectral variations in the near-infrared ocean reflectance,” Remote Sens. Environ. 115(7), 1617–1631 (2011).
[Crossref]

Doxaran, D.

M. Doron, S. Bélanger, D. Doxaran, and M. Babin, “Spectral variations in the near-infrared ocean reflectance,” Remote Sens. Environ. 115(7), 1617–1631 (2011).
[Crossref]

Evans, R. H.

R. H. Evans and H. R. Gordon, “Coastal Zone Color Scanner system calibration: A retrospective examination,” J. Geophys. Res. 99(C4), 7293–7307 (1994).
[Crossref]

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytical radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[Crossref]

Gong, F.

X. He, P. Delu, Q. Zhu, Z. Hao, and F. Gong, “On-orbit assessment of the polarization response of COCTS onboard HY-1B satellite,” Proc. SPIE 7862, 78620W (2010).
[Crossref]

X. He, Y. Bai, Q. Zhu, and F. Gong, “A vector radiative transfer model of coupled ocean-atmosphere system using matrix-operator method for rough sea-surface,” J. Quant. Spectrosc. Radiat. Transf. 111(10), 1426–1448 (2010).
[Crossref]

X. He, D. Pan, Y. Bai, Q. Zhu, and F. Gong, “Vector radiative transfer numerical model of coupled ocean-atmosphere system using matrix-operator method,” Sci. China. Ser. D 50(3), 442–452 (2007).
[Crossref]

X. He, D. Pan, Y. Bai, and F. Gong, “A general purpose exact Rayleigh scattering look-up table for ocean color remote sensing,” Acta Oceanol. Sin. 25(1), 48–56 (2006).

Gordon, H. R.

H. R. Gordon, “Atmospheric Correction of Ocean Color Imagery in the Earth Observing System Era,” J. Geophys. Res. 102(D14), 17081–17106 (1997).
[Crossref]

H. R. Gordon, “Remote sensing of ocean color: a methodology for dealing with broad spectral bands and significant out-of-band response,” Appl. Opt. 34(36), 8363–8374 (1995).
[Crossref] [PubMed]

H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33(3), 443–452 (1994).
[Crossref] [PubMed]

R. H. Evans and H. R. Gordon, “Coastal Zone Color Scanner system calibration: A retrospective examination,” J. Geophys. Res. 99(C4), 7293–7307 (1994).
[Crossref]

M. Wang and H. R. Gordon, “A Simple,Moderately Accurate,Atmospheric Correction Algorithm for SeaWiFS,” Remote Sens. Environ. 50(3), 231–239 (1994).
[Crossref]

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytical radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[Crossref]

Gower, J.

N. M. Komick, M. P. F. Costa, and J. Gower, “Bio-opticalalgorithm evaluation for MODIS for western Canada coast-al waters: an exploratory approach using in situ reflectance,” Remote Sens. Environ. 113(4), 794–804 (2009).
[Crossref]

Han, B.

B. Han, H. Loisel, V. Vantrepotte, X. Mériaux, P. Bryère, S. Ouillon, D. Dessailly, Q. Xing, and J. Zhu, “Development of a Semi-Analytical Algorithm for the Retrieval of Suspended Particulate Matter from Remote Sensing over Clear to Very Turbid Waters,” Remote Sens. 8(3), 211 (2016).
[Crossref]

Hao, Z.

X. He, P. Delu, Q. Zhu, Z. Hao, and F. Gong, “On-orbit assessment of the polarization response of COCTS onboard HY-1B satellite,” Proc. SPIE 7862, 78620W (2010).
[Crossref]

Y. Bai, X. He, D. Pan, Q. Zhu, H. Lei, B. Tao, and Z. Hao, “The extremely highconcentration of suspended particulate matter in Changjiang Estuary detected by MERIS data,” Proc. SPIE 7858, 78581D (2010).
[Crossref]

He, X.

X. He, Y. Bai, D. Pan, N. Huang, X. Dong, J. Chen, C.-T. A. Chen, and Q. Cui, “Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters,” Remote Sens. Environ. 133, 225–239 (2013).
[Crossref]

X. He, Y. Bai, D. Pan, J. Tang, and D. Wang, “Atmospheric correction of satellite ocean color imagery using the ultraviolet wavelength for highly turbid waters,” Opt. Express 20(18), 20754–20770 (2012).
[Crossref] [PubMed]

Y. Bai, X. He, D. Pan, Q. Zhu, H. Lei, B. Tao, and Z. Hao, “The extremely highconcentration of suspended particulate matter in Changjiang Estuary detected by MERIS data,” Proc. SPIE 7858, 78581D (2010).
[Crossref]

X. He, Y. Bai, Q. Zhu, and F. Gong, “A vector radiative transfer model of coupled ocean-atmosphere system using matrix-operator method for rough sea-surface,” J. Quant. Spectrosc. Radiat. Transf. 111(10), 1426–1448 (2010).
[Crossref]

X. He, P. Delu, Q. Zhu, Z. Hao, and F. Gong, “On-orbit assessment of the polarization response of COCTS onboard HY-1B satellite,” Proc. SPIE 7862, 78620W (2010).
[Crossref]

X. He, D. Pan, Y. Bai, Q. Zhu, and F. Gong, “Vector radiative transfer numerical model of coupled ocean-atmosphere system using matrix-operator method,” Sci. China. Ser. D 50(3), 442–452 (2007).
[Crossref]

X. He, D. Pan, Y. Bai, and F. Gong, “A general purpose exact Rayleigh scattering look-up table for ocean color remote sensing,” Acta Oceanol. Sin. 25(1), 48–56 (2006).

X. He, D. Pan, and Z. Mao, “Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters,” Acta Oceanol. Sin. 23(4), 609–615 (2004).

Huang, N.

X. He, Y. Bai, D. Pan, N. Huang, X. Dong, J. Chen, C.-T. A. Chen, and Q. Cui, “Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters,” Remote Sens. Environ. 133, 225–239 (2013).
[Crossref]

Ishizaka, J.

W. Kim, J. Moon, Y. Park, and J. Ishizaka, “Evalution of chlorophyll retrievals from Geostationary Ocean color Imager (GOCI) for the North-East Asian region,” Remote Sens. Environ. 184, 482–495 (2016).
[Crossref]

Kim, W.

W. Kim, J. Moon, Y. Park, and J. Ishizaka, “Evalution of chlorophyll retrievals from Geostationary Ocean color Imager (GOCI) for the North-East Asian region,” Remote Sens. Environ. 184, 482–495 (2016).
[Crossref]

Komick, N. M.

N. M. Komick, M. P. F. Costa, and J. Gower, “Bio-opticalalgorithm evaluation for MODIS for western Canada coast-al waters: an exploratory approach using in situ reflectance,” Remote Sens. Environ. 113(4), 794–804 (2009).
[Crossref]

Lavender, S. J.

G. F. Moore, J. Aiken, and S. J. Lavender, “The atmospheric correction of water colour and quantitative retrieval of suspended particulate matter in Case II waters: application to MERIS,” Int. J. Remote Sens. 20(9), 1713–1733 (1999).
[Crossref]

Lee, Z.

Z. Lee, K. L. Carder, R. G. Steward, T. G. Peacock, C. O. Davis, and J. L. Mueller, “Protocols for measurement of remote-sensing reflectance from clear to turbid waters,” Presented at SeaWiFS Workshop, Halifax (1996).

Lei, H.

Y. Bai, X. He, D. Pan, Q. Zhu, H. Lei, B. Tao, and Z. Hao, “The extremely highconcentration of suspended particulate matter in Changjiang Estuary detected by MERIS data,” Proc. SPIE 7858, 78581D (2010).
[Crossref]

Loisel, H.

B. Han, H. Loisel, V. Vantrepotte, X. Mériaux, P. Bryère, S. Ouillon, D. Dessailly, Q. Xing, and J. Zhu, “Development of a Semi-Analytical Algorithm for the Retrieval of Suspended Particulate Matter from Remote Sensing over Clear to Very Turbid Waters,” Remote Sens. 8(3), 211 (2016).
[Crossref]

Mao, Z.

X. He, D. Pan, and Z. Mao, “Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters,” Acta Oceanol. Sin. 23(4), 609–615 (2004).

McClain, C. R.

C. R. McClain, “A decade of satellite ocean color observations,” Annu. Rev. Mar. Sci. 1(1), 19–42 (2009).
[Crossref] [PubMed]

Mériaux, X.

B. Han, H. Loisel, V. Vantrepotte, X. Mériaux, P. Bryère, S. Ouillon, D. Dessailly, Q. Xing, and J. Zhu, “Development of a Semi-Analytical Algorithm for the Retrieval of Suspended Particulate Matter from Remote Sensing over Clear to Very Turbid Waters,” Remote Sens. 8(3), 211 (2016).
[Crossref]

Mobley, C. D.

Moon, J.

W. Kim, J. Moon, Y. Park, and J. Ishizaka, “Evalution of chlorophyll retrievals from Geostationary Ocean color Imager (GOCI) for the North-East Asian region,” Remote Sens. Environ. 184, 482–495 (2016).
[Crossref]

Moore, G.

K. G. Ruddick, V. De Cauwer, Y.-J. Park, and G. Moore, “Seaborne measurements of near infrared water-leaving reflectance - the similarity spectrum for turbid waters,” Limnol. Oceanogr. 51(2), 1167–1179 (2006).
[Crossref]

Moore, G. F.

G. F. Moore, J. Aiken, and S. J. Lavender, “The atmospheric correction of water colour and quantitative retrieval of suspended particulate matter in Case II waters: application to MERIS,” Int. J. Remote Sens. 20(9), 1713–1733 (1999).
[Crossref]

Mueller, J. L.

Z. Lee, K. L. Carder, R. G. Steward, T. G. Peacock, C. O. Davis, and J. L. Mueller, “Protocols for measurement of remote-sensing reflectance from clear to turbid waters,” Presented at SeaWiFS Workshop, Halifax (1996).

Ouillon, S.

B. Han, H. Loisel, V. Vantrepotte, X. Mériaux, P. Bryère, S. Ouillon, D. Dessailly, Q. Xing, and J. Zhu, “Development of a Semi-Analytical Algorithm for the Retrieval of Suspended Particulate Matter from Remote Sensing over Clear to Very Turbid Waters,” Remote Sens. 8(3), 211 (2016).
[Crossref]

Ovidio, F.

Pan, D.

X. He, Y. Bai, D. Pan, N. Huang, X. Dong, J. Chen, C.-T. A. Chen, and Q. Cui, “Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters,” Remote Sens. Environ. 133, 225–239 (2013).
[Crossref]

X. He, Y. Bai, D. Pan, J. Tang, and D. Wang, “Atmospheric correction of satellite ocean color imagery using the ultraviolet wavelength for highly turbid waters,” Opt. Express 20(18), 20754–20770 (2012).
[Crossref] [PubMed]

Y. Bai, X. He, D. Pan, Q. Zhu, H. Lei, B. Tao, and Z. Hao, “The extremely highconcentration of suspended particulate matter in Changjiang Estuary detected by MERIS data,” Proc. SPIE 7858, 78581D (2010).
[Crossref]

X. He, D. Pan, Y. Bai, Q. Zhu, and F. Gong, “Vector radiative transfer numerical model of coupled ocean-atmosphere system using matrix-operator method,” Sci. China. Ser. D 50(3), 442–452 (2007).
[Crossref]

X. He, D. Pan, Y. Bai, and F. Gong, “A general purpose exact Rayleigh scattering look-up table for ocean color remote sensing,” Acta Oceanol. Sin. 25(1), 48–56 (2006).

X. He, D. Pan, and Z. Mao, “Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters,” Acta Oceanol. Sin. 23(4), 609–615 (2004).

Park, Y.

W. Kim, J. Moon, Y. Park, and J. Ishizaka, “Evalution of chlorophyll retrievals from Geostationary Ocean color Imager (GOCI) for the North-East Asian region,” Remote Sens. Environ. 184, 482–495 (2016).
[Crossref]

Park, Y.-J.

K. G. Ruddick, V. De Cauwer, Y.-J. Park, and G. Moore, “Seaborne measurements of near infrared water-leaving reflectance - the similarity spectrum for turbid waters,” Limnol. Oceanogr. 51(2), 1167–1179 (2006).
[Crossref]

Peacock, T. G.

Z. Lee, K. L. Carder, R. G. Steward, T. G. Peacock, C. O. Davis, and J. L. Mueller, “Protocols for measurement of remote-sensing reflectance from clear to turbid waters,” Presented at SeaWiFS Workshop, Halifax (1996).

Rijkeboer, M.

Ruddick, K. G.

K. G. Ruddick, V. De Cauwer, Y.-J. Park, and G. Moore, “Seaborne measurements of near infrared water-leaving reflectance - the similarity spectrum for turbid waters,” Limnol. Oceanogr. 51(2), 1167–1179 (2006).
[Crossref]

K. G. Ruddick, F. Ovidio, and M. Rijkeboer, “Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters,” Appl. Opt. 39(6), 897–912 (2000).
[Crossref] [PubMed]

Shi, W.

M. Wang and W. Shi, “Estimation of ocean contribution at the MODIS near infrared wavelengths along the east coast of the U.S.: two case studies,” Geophys. Res. Lett. 32(13), L13606 (2005).
[Crossref]

Smith, R. C.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytical radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[Crossref]

Steward, R. G.

Z. Lee, K. L. Carder, R. G. Steward, T. G. Peacock, C. O. Davis, and J. L. Mueller, “Protocols for measurement of remote-sensing reflectance from clear to turbid waters,” Presented at SeaWiFS Workshop, Halifax (1996).

Tang, J.

Tanré, D.

M. Viollier, D. Tanré, and P. Y. Deschamps, “An algorithm for remote sensing of water color from space,” Boundary-Layer Meteorol. 18, 247–267 (1980).
[Crossref]

Tao, B.

Y. Bai, X. He, D. Pan, Q. Zhu, H. Lei, B. Tao, and Z. Hao, “The extremely highconcentration of suspended particulate matter in Changjiang Estuary detected by MERIS data,” Proc. SPIE 7858, 78581D (2010).
[Crossref]

Vantrepotte, V.

B. Han, H. Loisel, V. Vantrepotte, X. Mériaux, P. Bryère, S. Ouillon, D. Dessailly, Q. Xing, and J. Zhu, “Development of a Semi-Analytical Algorithm for the Retrieval of Suspended Particulate Matter from Remote Sensing over Clear to Very Turbid Waters,” Remote Sens. 8(3), 211 (2016).
[Crossref]

Viollier, M.

M. Viollier, D. Tanré, and P. Y. Deschamps, “An algorithm for remote sensing of water color from space,” Boundary-Layer Meteorol. 18, 247–267 (1980).
[Crossref]

Wang, D.

Wang, M.

M. Wang, “Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: simulations,” Appl. Opt. 46(9), 1535–1547 (2007).
[Crossref] [PubMed]

M. Wang and W. Shi, “Estimation of ocean contribution at the MODIS near infrared wavelengths along the east coast of the U.S.: two case studies,” Geophys. Res. Lett. 32(13), L13606 (2005).
[Crossref]

M. Wang and H. R. Gordon, “A Simple,Moderately Accurate,Atmospheric Correction Algorithm for SeaWiFS,” Remote Sens. Environ. 50(3), 231–239 (1994).
[Crossref]

H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33(3), 443–452 (1994).
[Crossref] [PubMed]

Xing, Q.

B. Han, H. Loisel, V. Vantrepotte, X. Mériaux, P. Bryère, S. Ouillon, D. Dessailly, Q. Xing, and J. Zhu, “Development of a Semi-Analytical Algorithm for the Retrieval of Suspended Particulate Matter from Remote Sensing over Clear to Very Turbid Waters,” Remote Sens. 8(3), 211 (2016).
[Crossref]

Zhu, J.

B. Han, H. Loisel, V. Vantrepotte, X. Mériaux, P. Bryère, S. Ouillon, D. Dessailly, Q. Xing, and J. Zhu, “Development of a Semi-Analytical Algorithm for the Retrieval of Suspended Particulate Matter from Remote Sensing over Clear to Very Turbid Waters,” Remote Sens. 8(3), 211 (2016).
[Crossref]

Zhu, Q.

X. He, Y. Bai, Q. Zhu, and F. Gong, “A vector radiative transfer model of coupled ocean-atmosphere system using matrix-operator method for rough sea-surface,” J. Quant. Spectrosc. Radiat. Transf. 111(10), 1426–1448 (2010).
[Crossref]

X. He, P. Delu, Q. Zhu, Z. Hao, and F. Gong, “On-orbit assessment of the polarization response of COCTS onboard HY-1B satellite,” Proc. SPIE 7862, 78620W (2010).
[Crossref]

Y. Bai, X. He, D. Pan, Q. Zhu, H. Lei, B. Tao, and Z. Hao, “The extremely highconcentration of suspended particulate matter in Changjiang Estuary detected by MERIS data,” Proc. SPIE 7858, 78581D (2010).
[Crossref]

X. He, D. Pan, Y. Bai, Q. Zhu, and F. Gong, “Vector radiative transfer numerical model of coupled ocean-atmosphere system using matrix-operator method,” Sci. China. Ser. D 50(3), 442–452 (2007).
[Crossref]

Acta Oceanol. Sin. (2)

X. He, D. Pan, Y. Bai, and F. Gong, “A general purpose exact Rayleigh scattering look-up table for ocean color remote sensing,” Acta Oceanol. Sin. 25(1), 48–56 (2006).

X. He, D. Pan, and Z. Mao, “Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters,” Acta Oceanol. Sin. 23(4), 609–615 (2004).

Annu. Rev. Mar. Sci. (1)

C. R. McClain, “A decade of satellite ocean color observations,” Annu. Rev. Mar. Sci. 1(1), 19–42 (2009).
[Crossref] [PubMed]

Appl. Opt. (5)

Boundary-Layer Meteorol. (1)

M. Viollier, D. Tanré, and P. Y. Deschamps, “An algorithm for remote sensing of water color from space,” Boundary-Layer Meteorol. 18, 247–267 (1980).
[Crossref]

Geophys. Res. Lett. (1)

M. Wang and W. Shi, “Estimation of ocean contribution at the MODIS near infrared wavelengths along the east coast of the U.S.: two case studies,” Geophys. Res. Lett. 32(13), L13606 (2005).
[Crossref]

Int. J. Remote Sens. (1)

G. F. Moore, J. Aiken, and S. J. Lavender, “The atmospheric correction of water colour and quantitative retrieval of suspended particulate matter in Case II waters: application to MERIS,” Int. J. Remote Sens. 20(9), 1713–1733 (1999).
[Crossref]

J. Geophys. Res. (3)

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytical radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[Crossref]

H. R. Gordon, “Atmospheric Correction of Ocean Color Imagery in the Earth Observing System Era,” J. Geophys. Res. 102(D14), 17081–17106 (1997).
[Crossref]

R. H. Evans and H. R. Gordon, “Coastal Zone Color Scanner system calibration: A retrospective examination,” J. Geophys. Res. 99(C4), 7293–7307 (1994).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (1)

X. He, Y. Bai, Q. Zhu, and F. Gong, “A vector radiative transfer model of coupled ocean-atmosphere system using matrix-operator method for rough sea-surface,” J. Quant. Spectrosc. Radiat. Transf. 111(10), 1426–1448 (2010).
[Crossref]

Limnol. Oceanogr. (1)

K. G. Ruddick, V. De Cauwer, Y.-J. Park, and G. Moore, “Seaborne measurements of near infrared water-leaving reflectance - the similarity spectrum for turbid waters,” Limnol. Oceanogr. 51(2), 1167–1179 (2006).
[Crossref]

Opt. Express (1)

Proc. SPIE (2)

Y. Bai, X. He, D. Pan, Q. Zhu, H. Lei, B. Tao, and Z. Hao, “The extremely highconcentration of suspended particulate matter in Changjiang Estuary detected by MERIS data,” Proc. SPIE 7858, 78581D (2010).
[Crossref]

X. He, P. Delu, Q. Zhu, Z. Hao, and F. Gong, “On-orbit assessment of the polarization response of COCTS onboard HY-1B satellite,” Proc. SPIE 7862, 78620W (2010).
[Crossref]

Remote Sens. (1)

B. Han, H. Loisel, V. Vantrepotte, X. Mériaux, P. Bryère, S. Ouillon, D. Dessailly, Q. Xing, and J. Zhu, “Development of a Semi-Analytical Algorithm for the Retrieval of Suspended Particulate Matter from Remote Sensing over Clear to Very Turbid Waters,” Remote Sens. 8(3), 211 (2016).
[Crossref]

Remote Sens. Environ. (5)

X. He, Y. Bai, D. Pan, N. Huang, X. Dong, J. Chen, C.-T. A. Chen, and Q. Cui, “Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters,” Remote Sens. Environ. 133, 225–239 (2013).
[Crossref]

N. M. Komick, M. P. F. Costa, and J. Gower, “Bio-opticalalgorithm evaluation for MODIS for western Canada coast-al waters: an exploratory approach using in situ reflectance,” Remote Sens. Environ. 113(4), 794–804 (2009).
[Crossref]

M. Wang and H. R. Gordon, “A Simple,Moderately Accurate,Atmospheric Correction Algorithm for SeaWiFS,” Remote Sens. Environ. 50(3), 231–239 (1994).
[Crossref]

M. Doron, S. Bélanger, D. Doxaran, and M. Babin, “Spectral variations in the near-infrared ocean reflectance,” Remote Sens. Environ. 115(7), 1617–1631 (2011).
[Crossref]

W. Kim, J. Moon, Y. Park, and J. Ishizaka, “Evalution of chlorophyll retrievals from Geostationary Ocean color Imager (GOCI) for the North-East Asian region,” Remote Sens. Environ. 184, 482–495 (2016).
[Crossref]

Sci. China. Ser. D (1)

X. He, D. Pan, Y. Bai, Q. Zhu, and F. Gong, “Vector radiative transfer numerical model of coupled ocean-atmosphere system using matrix-operator method,” Sci. China. Ser. D 50(3), 442–452 (2007).
[Crossref]

Other (1)

Z. Lee, K. L. Carder, R. G. Steward, T. G. Peacock, C. O. Davis, and J. L. Mueller, “Protocols for measurement of remote-sensing reflectance from clear to turbid waters,” Presented at SeaWiFS Workshop, Halifax (1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

The layout of the opto-mechanical head assembly of the MWI.

Fig. 2
Fig. 2

Locations of the in situ measurements. (a) The sampling stations of the cruise measurement; (b)The spectrums of R rs at 15 daytime stations; (c)The two fixed stations (red points) at the Datong hydrologic station (west point) and Hangzhou Bay Bridge station (east point).

Fig. 3
Fig. 3

The MWI-retrieved Lwn products from the three atmospheric correction algorithms at 2:58 GMT on Jan. 22, 2017. (a) UV-AC algorithm; (b) SWIR-AC algorithm; (c) MUMM algorithm.

Fig. 4
Fig. 4

Comparisons of the MWI-retrieved Lwn with the in situ data from the two fixed stations. (a) Lwn at the Hangzhou Bay Bridge station on Jan. 22, 2017; (b) Lwn at the Datong hydrologic station on Jan. 22, 2017; (c) Lwn at the Datong hydrologic station on Dec. 2, 2016; (d) comparison of the MWI-retrieved Lwn values from the UV-AC algorithm and the in situ data with combining all the three matchups and first MWI 9 bands together.

Fig. 5
Fig. 5

Comparisons of the MWI-retrieved Lwn with the cruise data. (a)-(j) are the comparisons of the Lwn spectrums at the matchup stations D4, E2, E3, E4, F3, F4, F5, H2, Q1 and Q7, respectively. (k) is the comparison between the UV-AC retrieved and in situ Lwn with combing all the first 11 bands of the MWI together.

Fig. 6
Fig. 6

GOCI-retrieved Lwn at 2:30 GMT on Jan. 22, 2017. (a) produced from the UV-AC algorithm; (b) the standard Level-2 product from the KOSC.

Fig. 7
Fig. 7

Comparisons of the MWI and GOCI retrieved Lwn values with unit of mW/(cm2µmsr) on Jan. 22, 2017.

Fig. 8
Fig. 8

Comparison of the TSM products derived from MWI and GOCI data on Jan. 22, 2017. (a) MWI-derived TSM at 2:58 GMT; (b) GOCI-derived TSM at 2:30 GMT.

Fig. 9
Fig. 9

Comparison of the MWI and GOCI retrieved TSM values on Jan. 22, 2017.

Fig. 10
Fig. 10

The fine structures of the TSM in the Hangzhou Bay retrieved by the MWI at 2:58 GMT on Jan. 22, 2017.

Fig. 11
Fig. 11

The variation of the TSM along the Amazon River retrieved by the MWI at 13:40 GMT on Sept. 22, 2016.

Fig. 12
Fig. 12

Comparison of the Chla products derived different satellite sensors in the northeast part of the Gulf of Mexico on Oct. 13, 2016. (a) MWI Chla; (b) MODIS/Aqua Chla; (c) VIIRS Chla.

Fig. 13
Fig. 13

Comparison of the MWI-retrieved Chla with the MODIS/Aqua and VIIRS Chla values in the Gulf of Mexico on Oct. 13, 2016. (a) Comparison between MWI and MODIS/Aqua Chla data; (b) Comparison between MWI and VIIRS Chla data.

Fig. 14
Fig. 14

Comparison of the Chla products derived from different satellite sensors in the north part of the Bengal Bay on Jan. 22, 2017. (a) MWI Chla; (b) MODIS/Aqua Chla; (c) VIIRS Chla.

Tables (1)

Tables Icon

Table 1 The default bands configuration of the MWI sensor.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

{ L wn ( λ )= F 0 ( λ ) β p ( λ )[ L t ( λ ) β s ( λ ) L sky ( λ ) ]/ [ π L p ( λ ) ] R rs ( λ )= L wn ( λ )/ F 0 ( λ )
L wn ( λ )= F 0 ( λ )[ L t ( λ ) β s ( λ ) L sky ( λ ) ]/ E s ( λ )
{ Chla= 10 c 0 + c 1 r+ c 2 r 2 + c 3 r 3 + c 4 r 4 r= max[ R rs ( 443nm ), R rs ( 490nm ) ]/ R rs ( 555nm )
{ TSM= 10 1.0758+1.1230×ratio ratio= R rs ( 750nm )/ R rs ( 490nm )
L t ( λ )= L r ( λ )+ L a ( λ )+ t v ( λ ) L w ( λ )
ρ( λ )= πL( λ )/ [ F 0 ( λ )cos( θ 0 ) ]
ρ t ( λ )= ρ r ( λ )+ ρ a ( λ )+ t v ( λ ) ρ w ( λ )
{ τ R ( band )= λ i = λ min λ max τ R ( λ i ) F 0 ( λ i )B( λ i ) / λ i = λ min λ max F 0 ( λ i )B( λ i ) F 0 ( band )= λ i = λ min λ max F 0 ( λ i )B( λ i ) / λ i = λ min λ max B( λ i )
ρ rc ( λ )= ρ t ( λ ) ρ r ( λ )= ρ a ( λ )+ t v ( λ ) ρ w ( λ )
{ c= ln[ ρ rc ( λ NIR1 )/ ρ rc ( λ NIR2 ) ]/ ( λ NIR2 λ NIR1 ) ρ a ( λ band )= ρ rc ( λ NIR2 )exp[ c( λ NIR2 λ band ) ]
{ ρ a ( 865nm )= ρ rc ( 413nm )exp[ c( 413865 ) ] c= ln[ ρ rc ( 750nm )/ ρ rc ( 865nm ) ]/ ( 865750 )
{ ρ a ( 865nm )= αγ ρ rc ( 865nm ) ρ rc ( 750nm ) αγε ρ a ( 750nm )=ε ρ a ( 865nm )
α= a w ( 865nm )+ a s * TSM a w ( 750nm )+ a s * TSM

Metrics