Abstract

One- and two-dimensional filament arrays are obtained in fused silica by using two and three interfered femtosecond laser beams, respectively. By modulating the number, cross angle, and azimuth of the beams, the dimension, period, orientation, and geometry of the filament-array can be controlled. The multiple beams interference method provides a convenient and effective method to generate and control the filament array in optical media with multiple degrees of freedom but without any external pulse modulation or focal element.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Femtosecond laser filament-fringes in fused silica

Zuoqiang Hao, Kamil Stelmaszczyk, Philipp Rohwetter, Walter M. Nakaema, and Ludger Woeste
Opt. Express 19(8) 7799-7806 (2011)

Control of laser filamentation in fused silica by a periodic microlens array

Acner Camino, Zuoqiang Hao, Xu Liu, and Jingquan Lin
Opt. Express 21(7) 7908-7915 (2013)

Filamentation-induced bulk modification in fused silica by excimer laser

Haibo Zhang, Zhijun Yuan, Ren Ye, Bing He, Yunfeng Qi, and Jun Zhou
Opt. Mater. Express 7(10) 3680-3690 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301(5629), 61–64 (2003).
    [Crossref] [PubMed]
  2. T. J. Wang, J. F. Daigle, S. Yuan, F. Theberge, M. Châteauneuf, J. Dubois, G. Roy, H. Zeng, and S. L. Chin, “Remote generation of high-energy terahertz pulses from two-color femtosecond laser filamentation in air,” Phys. Rev. A 83(5), 4563 (2011).
    [Crossref]
  3. C. Jing, H. Zhang, W. Chu, H. Xie, J. Ni, B. Zeng, G. Li, J. Yao, H. Xu, Y. Cheng, and Z. Xu, “Generation of an air laser at extended distances by femtosecond laser filamentation with telescope optics,” Opt. Express 22(3), 3151–3156 (2014).
    [Crossref] [PubMed]
  4. K. Cook, A. K. Kar, and R. A. Lamb, “White-light supercontinuum interference of self-focused filaments in water,” Appl. Phys. Lett. 83(19), 3861–3863 (2004).
    [Crossref]
  5. M. N. Shneider, A. M. Zheltikov, and R. B. Miles, “Long-lived laser-induced microwave plasma guides in the atmosphere: Self-consistent plasma-dynamic analysis and numerical simulations,” J. Appl. Phys. 108(3), 033113 (2010).
    [Crossref]
  6. C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79(6), 673–677 (2004).
    [Crossref]
  7. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2–4), 47–189 (2007).
    [Crossref]
  8. A. Dharmadhikari, F. Rajgara, D. Mathur, H. Schroeder, and J. Liu, “Efficient broadband emission from condensed media irradiated by low-intensity, unfocused, ultrashort laser light,” Opt. Express 13(21), 8555–8564 (2005).
    [Crossref] [PubMed]
  9. O. G. Kosareva, T. Nguyen, N. A. Panov, W. Liu, A. Saliminia, V. P. Kandidov, N. Akozbek, M. Scalora, R. Vallee, and S. L. Chin, “Array of femtosecond plasma channels in fused silica,” Opt. Commun. 267(2), 511–523 (2006).
    [Crossref]
  10. H. Schroeder, J. Liu, and S. Chin, “From random to controlled small-scale filamentation in water,” Opt. Express 12(20), 4768–4774 (2004).
    [Crossref] [PubMed]
  11. Z. Hao, K. Stelmaszczyk, P. Rohwetter, W. M. Nakaema, and L. Woeste, “Femtosecond laser filament-fringes in fused silica,” Opt. Express 19(8), 7799–7806 (2011).
    [Crossref] [PubMed]
  12. A. Camino, Z. Hao, X. Liu, and J. Lin, “Control of laser filamentation in fused silica by a periodic microlens array,” Opt. Express 21(7), 7908–7915 (2013).
    [Crossref] [PubMed]
  13. H. Gao, X. D. Sun, B. Zeng, S. Q. Xu, W. Chu, W. W. Liu, Y. Cheng, Z. Z. Xu, and G. G. Mu, “Cylindrical symmetry breaking leads to multiple filamentation generation when focusing femtosecond lasers with axicons in methanol,” J. Opt. 14(6), 065203 (2012).
    [Crossref]
  14. X. Sun, H. Gao, B. Zeng, S. Xu, W. Liu, Y. Cheng, Z. Xu, and G. Mu, “Multiple filamentation generated by focusing femtosecond laser with axicon,” Opt. Lett. 37(5), 857–859 (2012).
    [Crossref] [PubMed]
  15. Y. Fu, H. Xiong, H. Xu, J. Yao, B. Zeng, W. Chu, Y. Cheng, Z. Xu, W. Liu, and S. L. Chin, “Generation of extended filaments of femtosecond pulses in air by use of a single-step phase plate,” Opt. Lett. 34(23), 3752–3754 (2009).
    [Crossref] [PubMed]
  16. P. Rohwetter, M. Queißer, K. Stelmaszczyk, M. Fechner, and L. Wöste, “Laser multiple filamentation control in air using a smooth phase mask,” Phys. Rev. A 77(1), 013812 (2008).
    [Crossref]
  17. H. Gao, W. Chu, G. Yu, B. Zeng, J. Zhao, Z. Wang, W. Liu, Y. Cheng, and Z. Xu, “Femtosecond laser filament array generated with step phase plate in air,” Opt. Express 21(4), 4612–4622 (2013).
    [Crossref] [PubMed]
  18. D. Majus, V. Jukna, G. Valiulis, and A. Dubietis, “Generation of periodic filament arrays by self-focusing of highly elliptical ultrashort pulsed laser beams,” Phys. Rev. A 79(3), 033843 (2009).
    [Crossref]
  19. A. A. Ionin, N. G. Iroshnikov, O. G. Kosareva, A. V. Larichev, D. V. Mokrousova, N. A. Panov, L. V. Seleznev, D. V. Sinitsyn, and E. S. Sunchugasheva, “Filamentation of femtosecond laser pulses governed by variable wavefront distortions via a deformable mirror,” J. Opt. Soc. Am. B 30(8), 2257–2262 (2013).
    [Crossref]
  20. A. C. Englesbe, Z. He, J. A. Nees, A. G. R. Thomas, A. Schmitt-Sody, and K. Krushelnick, “Control of the configuration of multiple femtosecond filaments in air by adaptive wavefront manipulation,” Opt. Express 24(6), 6071–6082 (2016).
    [Crossref] [PubMed]
  21. G. Heck, J. Sloss, and R. J. Levis, “Adaptive control of the spatial position of white light filaments in an aqueous solution,” Opt. Commun. 259(1), 216–222 (2006).
    [Crossref]
  22. E. Frumker and Y. Silberberg, “Femtosecond pulse shaping using a two-dimensional liquid-crystal spatial light modulator,” Opt. Lett. 32(11), 1384–1386 (2007).
    [Crossref] [PubMed]
  23. M. Carbonell-Leal, C. Doñate-Buendía, G. Mínguez-Vega, and J. Lancis, “Diffractive control of 3D multifilamentation in fused silica with micrometric resolution,” Opt. Express 21(112), 1369–1377 (2016).
  24. N. Jhajj, E. W. Rosenthal, R. Birnbaum, J. K. Wahlstrand, and H. M. Milchberg, “Demonstration of long-lived high power optical waveguides in air,” Phys. Rev. X 4(1), 011027 (2014).
    [Crossref]
  25. J. Zhao, L. Guo, W. Chu, B. Zeng, H. Gao, Y. Cheng, and W. Liu, “Simple method to enhance terahertz radiation from femtosecond laser filament array with a step phase plate,” Opt. Lett. 40(16), 3838–3841 (2015).
    [Crossref] [PubMed]
  26. J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature 422(6928), 147–150 (2003).
    [Crossref] [PubMed]
  27. C. Lu and R. H. Lipson, “Interference lithography: a powerful tool for fabricating periodic structures,” Laser Photonics Rev. 4(4), 568–580 (2010).
    [Crossref]
  28. C. Corsi, A. Tortora, and M. Bellini, “Generation of a variable linear array of phase-coherent supercontinuum sources,” Appl. Phys. B 78(3), 299–304 (2004).
    [Crossref]
  29. D. E. Shipilo, N. A. Panov, E. S. Sunchugasheva, D. V. Mokrousova, V. A. Andreeva, O. G. Kosareva, L. V. Seleznev, A. B. Savel’ev, A. A. Ionin, and S. L. Chin, “Fusion of regularized femtosecond filaments in air: far field on-axis emission,” Laser Phys. Lett. 13(11), 116005 (2016).
    [Crossref]
  30. X. Yang, J. Wu, Y. Peng, Y. Tong, P. Lu, L. Ding, Z. Xu, and H. Zeng, “Plasma waveguide array induced by filament interaction,” Opt. Lett. 34(24), 3806–3808 (2009).
    [Crossref] [PubMed]
  31. A. C. Bernstein, M. McCormick, G. M. Dyer, J. C. Sanders, and T. Ditmire, “Two-beam coupling between filament-forming beams in air,” Phys. Rev. Lett. 102(12), 123902 (2009).
    [Crossref] [PubMed]
  32. Y. Liu, M. Durand, S. Chen, A. Houard, B. Prade, B. Forestier, and A. Mysyrowicz, “Energy exchange between femtosecond laser filaments in air,” Phys. Rev. Lett. 105(5), 055003 (2010).
    [Crossref] [PubMed]
  33. L. Shi, W. Li, Y. Wang, X. Lu, L. Ding, and H. Zeng, “Generation of high-density electrons based on plasma grating induced Bragg diffraction in air,” Phys. Rev. Lett. 107(9), 095004 (2011).
    [Crossref] [PubMed]
  34. Z. Liu, P. Ding, Y. Shi, X. Lu, S. Sun, X. Liu, Q. Liu, B. Ding, and B. Hu, “Control of third harmonic generation by plasma grating generated by two noncollinear IR femtosecond filaments,” Opt. Express 20(8), 8837–8847 (2012).
    [Crossref] [PubMed]
  35. M. S. Ahsan, F. Dewanda, F. Ahmed, M. B. G. Jun, and M. S. Lee, “Characterization of femtosecond laser filament-fringes in titanium,” Proc. SPIE 8611, 8611l (2013).
  36. Z. A. Kudyshev, M. C. Richardson, and N. M. Litchinitser, “Virtual hyperbolic metamaterials for manipulating radar signals in air,” Nat. Commun. 4, 2557 (2013).
    [Crossref] [PubMed]
  37. W. Walasik and N. M. Litchinitser, “Dynamics of large femtosecond filament arrays: Possibilities, limitations, and trade-offs,” ACS Photonics 3(4), 640–646 (2016).
    [Crossref]
  38. A. Camino, Z. Hao, X. Liu, and J. Lin, “High spectral power femtosecond supercontinuum source by use of microlens array,” Opt. Lett. 39(4), 747–750 (2014).
    [Crossref] [PubMed]

2016 (4)

A. C. Englesbe, Z. He, J. A. Nees, A. G. R. Thomas, A. Schmitt-Sody, and K. Krushelnick, “Control of the configuration of multiple femtosecond filaments in air by adaptive wavefront manipulation,” Opt. Express 24(6), 6071–6082 (2016).
[Crossref] [PubMed]

M. Carbonell-Leal, C. Doñate-Buendía, G. Mínguez-Vega, and J. Lancis, “Diffractive control of 3D multifilamentation in fused silica with micrometric resolution,” Opt. Express 21(112), 1369–1377 (2016).

D. E. Shipilo, N. A. Panov, E. S. Sunchugasheva, D. V. Mokrousova, V. A. Andreeva, O. G. Kosareva, L. V. Seleznev, A. B. Savel’ev, A. A. Ionin, and S. L. Chin, “Fusion of regularized femtosecond filaments in air: far field on-axis emission,” Laser Phys. Lett. 13(11), 116005 (2016).
[Crossref]

W. Walasik and N. M. Litchinitser, “Dynamics of large femtosecond filament arrays: Possibilities, limitations, and trade-offs,” ACS Photonics 3(4), 640–646 (2016).
[Crossref]

2015 (1)

2014 (3)

2013 (5)

2012 (3)

2011 (3)

T. J. Wang, J. F. Daigle, S. Yuan, F. Theberge, M. Châteauneuf, J. Dubois, G. Roy, H. Zeng, and S. L. Chin, “Remote generation of high-energy terahertz pulses from two-color femtosecond laser filamentation in air,” Phys. Rev. A 83(5), 4563 (2011).
[Crossref]

L. Shi, W. Li, Y. Wang, X. Lu, L. Ding, and H. Zeng, “Generation of high-density electrons based on plasma grating induced Bragg diffraction in air,” Phys. Rev. Lett. 107(9), 095004 (2011).
[Crossref] [PubMed]

Z. Hao, K. Stelmaszczyk, P. Rohwetter, W. M. Nakaema, and L. Woeste, “Femtosecond laser filament-fringes in fused silica,” Opt. Express 19(8), 7799–7806 (2011).
[Crossref] [PubMed]

2010 (3)

Y. Liu, M. Durand, S. Chen, A. Houard, B. Prade, B. Forestier, and A. Mysyrowicz, “Energy exchange between femtosecond laser filaments in air,” Phys. Rev. Lett. 105(5), 055003 (2010).
[Crossref] [PubMed]

C. Lu and R. H. Lipson, “Interference lithography: a powerful tool for fabricating periodic structures,” Laser Photonics Rev. 4(4), 568–580 (2010).
[Crossref]

M. N. Shneider, A. M. Zheltikov, and R. B. Miles, “Long-lived laser-induced microwave plasma guides in the atmosphere: Self-consistent plasma-dynamic analysis and numerical simulations,” J. Appl. Phys. 108(3), 033113 (2010).
[Crossref]

2009 (4)

Y. Fu, H. Xiong, H. Xu, J. Yao, B. Zeng, W. Chu, Y. Cheng, Z. Xu, W. Liu, and S. L. Chin, “Generation of extended filaments of femtosecond pulses in air by use of a single-step phase plate,” Opt. Lett. 34(23), 3752–3754 (2009).
[Crossref] [PubMed]

D. Majus, V. Jukna, G. Valiulis, and A. Dubietis, “Generation of periodic filament arrays by self-focusing of highly elliptical ultrashort pulsed laser beams,” Phys. Rev. A 79(3), 033843 (2009).
[Crossref]

X. Yang, J. Wu, Y. Peng, Y. Tong, P. Lu, L. Ding, Z. Xu, and H. Zeng, “Plasma waveguide array induced by filament interaction,” Opt. Lett. 34(24), 3806–3808 (2009).
[Crossref] [PubMed]

A. C. Bernstein, M. McCormick, G. M. Dyer, J. C. Sanders, and T. Ditmire, “Two-beam coupling between filament-forming beams in air,” Phys. Rev. Lett. 102(12), 123902 (2009).
[Crossref] [PubMed]

2008 (1)

P. Rohwetter, M. Queißer, K. Stelmaszczyk, M. Fechner, and L. Wöste, “Laser multiple filamentation control in air using a smooth phase mask,” Phys. Rev. A 77(1), 013812 (2008).
[Crossref]

2007 (2)

2006 (2)

G. Heck, J. Sloss, and R. J. Levis, “Adaptive control of the spatial position of white light filaments in an aqueous solution,” Opt. Commun. 259(1), 216–222 (2006).
[Crossref]

O. G. Kosareva, T. Nguyen, N. A. Panov, W. Liu, A. Saliminia, V. P. Kandidov, N. Akozbek, M. Scalora, R. Vallee, and S. L. Chin, “Array of femtosecond plasma channels in fused silica,” Opt. Commun. 267(2), 511–523 (2006).
[Crossref]

2005 (1)

2004 (4)

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79(6), 673–677 (2004).
[Crossref]

K. Cook, A. K. Kar, and R. A. Lamb, “White-light supercontinuum interference of self-focused filaments in water,” Appl. Phys. Lett. 83(19), 3861–3863 (2004).
[Crossref]

H. Schroeder, J. Liu, and S. Chin, “From random to controlled small-scale filamentation in water,” Opt. Express 12(20), 4768–4774 (2004).
[Crossref] [PubMed]

C. Corsi, A. Tortora, and M. Bellini, “Generation of a variable linear array of phase-coherent supercontinuum sources,” Appl. Phys. B 78(3), 299–304 (2004).
[Crossref]

2003 (2)

J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature 422(6928), 147–150 (2003).
[Crossref] [PubMed]

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301(5629), 61–64 (2003).
[Crossref] [PubMed]

Ahmed, F.

M. S. Ahsan, F. Dewanda, F. Ahmed, M. B. G. Jun, and M. S. Lee, “Characterization of femtosecond laser filament-fringes in titanium,” Proc. SPIE 8611, 8611l (2013).

Ahsan, M. S.

M. S. Ahsan, F. Dewanda, F. Ahmed, M. B. G. Jun, and M. S. Lee, “Characterization of femtosecond laser filament-fringes in titanium,” Proc. SPIE 8611, 8611l (2013).

Akozbek, N.

O. G. Kosareva, T. Nguyen, N. A. Panov, W. Liu, A. Saliminia, V. P. Kandidov, N. Akozbek, M. Scalora, R. Vallee, and S. L. Chin, “Array of femtosecond plasma channels in fused silica,” Opt. Commun. 267(2), 511–523 (2006).
[Crossref]

André, Y.-B.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301(5629), 61–64 (2003).
[Crossref] [PubMed]

Andreeva, V. A.

D. E. Shipilo, N. A. Panov, E. S. Sunchugasheva, D. V. Mokrousova, V. A. Andreeva, O. G. Kosareva, L. V. Seleznev, A. B. Savel’ev, A. A. Ionin, and S. L. Chin, “Fusion of regularized femtosecond filaments in air: far field on-axis emission,” Laser Phys. Lett. 13(11), 116005 (2016).
[Crossref]

Bellini, M.

C. Corsi, A. Tortora, and M. Bellini, “Generation of a variable linear array of phase-coherent supercontinuum sources,” Appl. Phys. B 78(3), 299–304 (2004).
[Crossref]

Bernstein, A. C.

A. C. Bernstein, M. McCormick, G. M. Dyer, J. C. Sanders, and T. Ditmire, “Two-beam coupling between filament-forming beams in air,” Phys. Rev. Lett. 102(12), 123902 (2009).
[Crossref] [PubMed]

Biegert, J.

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79(6), 673–677 (2004).
[Crossref]

Birnbaum, R.

N. Jhajj, E. W. Rosenthal, R. Birnbaum, J. K. Wahlstrand, and H. M. Milchberg, “Demonstration of long-lived high power optical waveguides in air,” Phys. Rev. X 4(1), 011027 (2014).
[Crossref]

Bourayou, R.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301(5629), 61–64 (2003).
[Crossref] [PubMed]

Camino, A.

Carbonell-Leal, M.

M. Carbonell-Leal, C. Doñate-Buendía, G. Mínguez-Vega, and J. Lancis, “Diffractive control of 3D multifilamentation in fused silica with micrometric resolution,” Opt. Express 21(112), 1369–1377 (2016).

Châteauneuf, M.

T. J. Wang, J. F. Daigle, S. Yuan, F. Theberge, M. Châteauneuf, J. Dubois, G. Roy, H. Zeng, and S. L. Chin, “Remote generation of high-energy terahertz pulses from two-color femtosecond laser filamentation in air,” Phys. Rev. A 83(5), 4563 (2011).
[Crossref]

Chen, S.

Y. Liu, M. Durand, S. Chen, A. Houard, B. Prade, B. Forestier, and A. Mysyrowicz, “Energy exchange between femtosecond laser filaments in air,” Phys. Rev. Lett. 105(5), 055003 (2010).
[Crossref] [PubMed]

Cheng, Y.

Chin, S.

Chin, S. L.

D. E. Shipilo, N. A. Panov, E. S. Sunchugasheva, D. V. Mokrousova, V. A. Andreeva, O. G. Kosareva, L. V. Seleznev, A. B. Savel’ev, A. A. Ionin, and S. L. Chin, “Fusion of regularized femtosecond filaments in air: far field on-axis emission,” Laser Phys. Lett. 13(11), 116005 (2016).
[Crossref]

T. J. Wang, J. F. Daigle, S. Yuan, F. Theberge, M. Châteauneuf, J. Dubois, G. Roy, H. Zeng, and S. L. Chin, “Remote generation of high-energy terahertz pulses from two-color femtosecond laser filamentation in air,” Phys. Rev. A 83(5), 4563 (2011).
[Crossref]

Y. Fu, H. Xiong, H. Xu, J. Yao, B. Zeng, W. Chu, Y. Cheng, Z. Xu, W. Liu, and S. L. Chin, “Generation of extended filaments of femtosecond pulses in air by use of a single-step phase plate,” Opt. Lett. 34(23), 3752–3754 (2009).
[Crossref] [PubMed]

O. G. Kosareva, T. Nguyen, N. A. Panov, W. Liu, A. Saliminia, V. P. Kandidov, N. Akozbek, M. Scalora, R. Vallee, and S. L. Chin, “Array of femtosecond plasma channels in fused silica,” Opt. Commun. 267(2), 511–523 (2006).
[Crossref]

Christodoulides, D. N.

J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature 422(6928), 147–150 (2003).
[Crossref] [PubMed]

Chu, W.

Cook, K.

K. Cook, A. K. Kar, and R. A. Lamb, “White-light supercontinuum interference of self-focused filaments in water,” Appl. Phys. Lett. 83(19), 3861–3863 (2004).
[Crossref]

Corsi, C.

C. Corsi, A. Tortora, and M. Bellini, “Generation of a variable linear array of phase-coherent supercontinuum sources,” Appl. Phys. B 78(3), 299–304 (2004).
[Crossref]

Couairon, A.

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2–4), 47–189 (2007).
[Crossref]

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79(6), 673–677 (2004).
[Crossref]

Daigle, J. F.

T. J. Wang, J. F. Daigle, S. Yuan, F. Theberge, M. Châteauneuf, J. Dubois, G. Roy, H. Zeng, and S. L. Chin, “Remote generation of high-energy terahertz pulses from two-color femtosecond laser filamentation in air,” Phys. Rev. A 83(5), 4563 (2011).
[Crossref]

Dewanda, F.

M. S. Ahsan, F. Dewanda, F. Ahmed, M. B. G. Jun, and M. S. Lee, “Characterization of femtosecond laser filament-fringes in titanium,” Proc. SPIE 8611, 8611l (2013).

Dharmadhikari, A.

Ding, B.

Ding, L.

L. Shi, W. Li, Y. Wang, X. Lu, L. Ding, and H. Zeng, “Generation of high-density electrons based on plasma grating induced Bragg diffraction in air,” Phys. Rev. Lett. 107(9), 095004 (2011).
[Crossref] [PubMed]

X. Yang, J. Wu, Y. Peng, Y. Tong, P. Lu, L. Ding, Z. Xu, and H. Zeng, “Plasma waveguide array induced by filament interaction,” Opt. Lett. 34(24), 3806–3808 (2009).
[Crossref] [PubMed]

Ding, P.

Ditmire, T.

A. C. Bernstein, M. McCormick, G. M. Dyer, J. C. Sanders, and T. Ditmire, “Two-beam coupling between filament-forming beams in air,” Phys. Rev. Lett. 102(12), 123902 (2009).
[Crossref] [PubMed]

Doñate-Buendía, C.

M. Carbonell-Leal, C. Doñate-Buendía, G. Mínguez-Vega, and J. Lancis, “Diffractive control of 3D multifilamentation in fused silica with micrometric resolution,” Opt. Express 21(112), 1369–1377 (2016).

Dubietis, A.

D. Majus, V. Jukna, G. Valiulis, and A. Dubietis, “Generation of periodic filament arrays by self-focusing of highly elliptical ultrashort pulsed laser beams,” Phys. Rev. A 79(3), 033843 (2009).
[Crossref]

Dubois, J.

T. J. Wang, J. F. Daigle, S. Yuan, F. Theberge, M. Châteauneuf, J. Dubois, G. Roy, H. Zeng, and S. L. Chin, “Remote generation of high-energy terahertz pulses from two-color femtosecond laser filamentation in air,” Phys. Rev. A 83(5), 4563 (2011).
[Crossref]

Durand, M.

Y. Liu, M. Durand, S. Chen, A. Houard, B. Prade, B. Forestier, and A. Mysyrowicz, “Energy exchange between femtosecond laser filaments in air,” Phys. Rev. Lett. 105(5), 055003 (2010).
[Crossref] [PubMed]

Dyer, G. M.

A. C. Bernstein, M. McCormick, G. M. Dyer, J. C. Sanders, and T. Ditmire, “Two-beam coupling between filament-forming beams in air,” Phys. Rev. Lett. 102(12), 123902 (2009).
[Crossref] [PubMed]

Efremidis, N. K.

J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature 422(6928), 147–150 (2003).
[Crossref] [PubMed]

Englesbe, A. C.

Fechner, M.

P. Rohwetter, M. Queißer, K. Stelmaszczyk, M. Fechner, and L. Wöste, “Laser multiple filamentation control in air using a smooth phase mask,” Phys. Rev. A 77(1), 013812 (2008).
[Crossref]

Fleischer, J. W.

J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature 422(6928), 147–150 (2003).
[Crossref] [PubMed]

Forestier, B.

Y. Liu, M. Durand, S. Chen, A. Houard, B. Prade, B. Forestier, and A. Mysyrowicz, “Energy exchange between femtosecond laser filaments in air,” Phys. Rev. Lett. 105(5), 055003 (2010).
[Crossref] [PubMed]

Frey, S.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301(5629), 61–64 (2003).
[Crossref] [PubMed]

Frumker, E.

Fu, Y.

Gao, H.

Guo, L.

Hao, Z.

Hauri, C. P.

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79(6), 673–677 (2004).
[Crossref]

He, Z.

Heck, G.

G. Heck, J. Sloss, and R. J. Levis, “Adaptive control of the spatial position of white light filaments in an aqueous solution,” Opt. Commun. 259(1), 216–222 (2006).
[Crossref]

Heinrich, A.

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79(6), 673–677 (2004).
[Crossref]

Helbing, F. W.

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79(6), 673–677 (2004).
[Crossref]

Houard, A.

Y. Liu, M. Durand, S. Chen, A. Houard, B. Prade, B. Forestier, and A. Mysyrowicz, “Energy exchange between femtosecond laser filaments in air,” Phys. Rev. Lett. 105(5), 055003 (2010).
[Crossref] [PubMed]

Hu, B.

Ionin, A. A.

D. E. Shipilo, N. A. Panov, E. S. Sunchugasheva, D. V. Mokrousova, V. A. Andreeva, O. G. Kosareva, L. V. Seleznev, A. B. Savel’ev, A. A. Ionin, and S. L. Chin, “Fusion of regularized femtosecond filaments in air: far field on-axis emission,” Laser Phys. Lett. 13(11), 116005 (2016).
[Crossref]

A. A. Ionin, N. G. Iroshnikov, O. G. Kosareva, A. V. Larichev, D. V. Mokrousova, N. A. Panov, L. V. Seleznev, D. V. Sinitsyn, and E. S. Sunchugasheva, “Filamentation of femtosecond laser pulses governed by variable wavefront distortions via a deformable mirror,” J. Opt. Soc. Am. B 30(8), 2257–2262 (2013).
[Crossref]

Iroshnikov, N. G.

Jhajj, N.

N. Jhajj, E. W. Rosenthal, R. Birnbaum, J. K. Wahlstrand, and H. M. Milchberg, “Demonstration of long-lived high power optical waveguides in air,” Phys. Rev. X 4(1), 011027 (2014).
[Crossref]

Jing, C.

Jukna, V.

D. Majus, V. Jukna, G. Valiulis, and A. Dubietis, “Generation of periodic filament arrays by self-focusing of highly elliptical ultrashort pulsed laser beams,” Phys. Rev. A 79(3), 033843 (2009).
[Crossref]

Jun, M. B. G.

M. S. Ahsan, F. Dewanda, F. Ahmed, M. B. G. Jun, and M. S. Lee, “Characterization of femtosecond laser filament-fringes in titanium,” Proc. SPIE 8611, 8611l (2013).

Kandidov, V. P.

O. G. Kosareva, T. Nguyen, N. A. Panov, W. Liu, A. Saliminia, V. P. Kandidov, N. Akozbek, M. Scalora, R. Vallee, and S. L. Chin, “Array of femtosecond plasma channels in fused silica,” Opt. Commun. 267(2), 511–523 (2006).
[Crossref]

Kar, A. K.

K. Cook, A. K. Kar, and R. A. Lamb, “White-light supercontinuum interference of self-focused filaments in water,” Appl. Phys. Lett. 83(19), 3861–3863 (2004).
[Crossref]

Kasparian, J.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301(5629), 61–64 (2003).
[Crossref] [PubMed]

Keller, U.

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79(6), 673–677 (2004).
[Crossref]

Kornelis, W.

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79(6), 673–677 (2004).
[Crossref]

Kosareva, O. G.

D. E. Shipilo, N. A. Panov, E. S. Sunchugasheva, D. V. Mokrousova, V. A. Andreeva, O. G. Kosareva, L. V. Seleznev, A. B. Savel’ev, A. A. Ionin, and S. L. Chin, “Fusion of regularized femtosecond filaments in air: far field on-axis emission,” Laser Phys. Lett. 13(11), 116005 (2016).
[Crossref]

A. A. Ionin, N. G. Iroshnikov, O. G. Kosareva, A. V. Larichev, D. V. Mokrousova, N. A. Panov, L. V. Seleznev, D. V. Sinitsyn, and E. S. Sunchugasheva, “Filamentation of femtosecond laser pulses governed by variable wavefront distortions via a deformable mirror,” J. Opt. Soc. Am. B 30(8), 2257–2262 (2013).
[Crossref]

O. G. Kosareva, T. Nguyen, N. A. Panov, W. Liu, A. Saliminia, V. P. Kandidov, N. Akozbek, M. Scalora, R. Vallee, and S. L. Chin, “Array of femtosecond plasma channels in fused silica,” Opt. Commun. 267(2), 511–523 (2006).
[Crossref]

Krushelnick, K.

Kudyshev, Z. A.

Z. A. Kudyshev, M. C. Richardson, and N. M. Litchinitser, “Virtual hyperbolic metamaterials for manipulating radar signals in air,” Nat. Commun. 4, 2557 (2013).
[Crossref] [PubMed]

Lamb, R. A.

K. Cook, A. K. Kar, and R. A. Lamb, “White-light supercontinuum interference of self-focused filaments in water,” Appl. Phys. Lett. 83(19), 3861–3863 (2004).
[Crossref]

Lancis, J.

M. Carbonell-Leal, C. Doñate-Buendía, G. Mínguez-Vega, and J. Lancis, “Diffractive control of 3D multifilamentation in fused silica with micrometric resolution,” Opt. Express 21(112), 1369–1377 (2016).

Larichev, A. V.

Lee, M. S.

M. S. Ahsan, F. Dewanda, F. Ahmed, M. B. G. Jun, and M. S. Lee, “Characterization of femtosecond laser filament-fringes in titanium,” Proc. SPIE 8611, 8611l (2013).

Levis, R. J.

G. Heck, J. Sloss, and R. J. Levis, “Adaptive control of the spatial position of white light filaments in an aqueous solution,” Opt. Commun. 259(1), 216–222 (2006).
[Crossref]

Li, G.

Li, W.

L. Shi, W. Li, Y. Wang, X. Lu, L. Ding, and H. Zeng, “Generation of high-density electrons based on plasma grating induced Bragg diffraction in air,” Phys. Rev. Lett. 107(9), 095004 (2011).
[Crossref] [PubMed]

Lin, J.

Lipson, R. H.

C. Lu and R. H. Lipson, “Interference lithography: a powerful tool for fabricating periodic structures,” Laser Photonics Rev. 4(4), 568–580 (2010).
[Crossref]

Litchinitser, N. M.

W. Walasik and N. M. Litchinitser, “Dynamics of large femtosecond filament arrays: Possibilities, limitations, and trade-offs,” ACS Photonics 3(4), 640–646 (2016).
[Crossref]

Z. A. Kudyshev, M. C. Richardson, and N. M. Litchinitser, “Virtual hyperbolic metamaterials for manipulating radar signals in air,” Nat. Commun. 4, 2557 (2013).
[Crossref] [PubMed]

Liu, J.

Liu, Q.

Liu, W.

Liu, W. W.

H. Gao, X. D. Sun, B. Zeng, S. Q. Xu, W. Chu, W. W. Liu, Y. Cheng, Z. Z. Xu, and G. G. Mu, “Cylindrical symmetry breaking leads to multiple filamentation generation when focusing femtosecond lasers with axicons in methanol,” J. Opt. 14(6), 065203 (2012).
[Crossref]

Liu, X.

Liu, Y.

Y. Liu, M. Durand, S. Chen, A. Houard, B. Prade, B. Forestier, and A. Mysyrowicz, “Energy exchange between femtosecond laser filaments in air,” Phys. Rev. Lett. 105(5), 055003 (2010).
[Crossref] [PubMed]

Liu, Z.

Lu, C.

C. Lu and R. H. Lipson, “Interference lithography: a powerful tool for fabricating periodic structures,” Laser Photonics Rev. 4(4), 568–580 (2010).
[Crossref]

Lu, P.

Lu, X.

Z. Liu, P. Ding, Y. Shi, X. Lu, S. Sun, X. Liu, Q. Liu, B. Ding, and B. Hu, “Control of third harmonic generation by plasma grating generated by two noncollinear IR femtosecond filaments,” Opt. Express 20(8), 8837–8847 (2012).
[Crossref] [PubMed]

L. Shi, W. Li, Y. Wang, X. Lu, L. Ding, and H. Zeng, “Generation of high-density electrons based on plasma grating induced Bragg diffraction in air,” Phys. Rev. Lett. 107(9), 095004 (2011).
[Crossref] [PubMed]

Majus, D.

D. Majus, V. Jukna, G. Valiulis, and A. Dubietis, “Generation of periodic filament arrays by self-focusing of highly elliptical ultrashort pulsed laser beams,” Phys. Rev. A 79(3), 033843 (2009).
[Crossref]

Mathur, D.

McCormick, M.

A. C. Bernstein, M. McCormick, G. M. Dyer, J. C. Sanders, and T. Ditmire, “Two-beam coupling between filament-forming beams in air,” Phys. Rev. Lett. 102(12), 123902 (2009).
[Crossref] [PubMed]

Méjean, G.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301(5629), 61–64 (2003).
[Crossref] [PubMed]

Milchberg, H. M.

N. Jhajj, E. W. Rosenthal, R. Birnbaum, J. K. Wahlstrand, and H. M. Milchberg, “Demonstration of long-lived high power optical waveguides in air,” Phys. Rev. X 4(1), 011027 (2014).
[Crossref]

Miles, R. B.

M. N. Shneider, A. M. Zheltikov, and R. B. Miles, “Long-lived laser-induced microwave plasma guides in the atmosphere: Self-consistent plasma-dynamic analysis and numerical simulations,” J. Appl. Phys. 108(3), 033113 (2010).
[Crossref]

Mínguez-Vega, G.

M. Carbonell-Leal, C. Doñate-Buendía, G. Mínguez-Vega, and J. Lancis, “Diffractive control of 3D multifilamentation in fused silica with micrometric resolution,” Opt. Express 21(112), 1369–1377 (2016).

Mokrousova, D. V.

D. E. Shipilo, N. A. Panov, E. S. Sunchugasheva, D. V. Mokrousova, V. A. Andreeva, O. G. Kosareva, L. V. Seleznev, A. B. Savel’ev, A. A. Ionin, and S. L. Chin, “Fusion of regularized femtosecond filaments in air: far field on-axis emission,” Laser Phys. Lett. 13(11), 116005 (2016).
[Crossref]

A. A. Ionin, N. G. Iroshnikov, O. G. Kosareva, A. V. Larichev, D. V. Mokrousova, N. A. Panov, L. V. Seleznev, D. V. Sinitsyn, and E. S. Sunchugasheva, “Filamentation of femtosecond laser pulses governed by variable wavefront distortions via a deformable mirror,” J. Opt. Soc. Am. B 30(8), 2257–2262 (2013).
[Crossref]

Mu, G.

Mu, G. G.

H. Gao, X. D. Sun, B. Zeng, S. Q. Xu, W. Chu, W. W. Liu, Y. Cheng, Z. Z. Xu, and G. G. Mu, “Cylindrical symmetry breaking leads to multiple filamentation generation when focusing femtosecond lasers with axicons in methanol,” J. Opt. 14(6), 065203 (2012).
[Crossref]

Mysyrowicz, A.

Y. Liu, M. Durand, S. Chen, A. Houard, B. Prade, B. Forestier, and A. Mysyrowicz, “Energy exchange between femtosecond laser filaments in air,” Phys. Rev. Lett. 105(5), 055003 (2010).
[Crossref] [PubMed]

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2–4), 47–189 (2007).
[Crossref]

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79(6), 673–677 (2004).
[Crossref]

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301(5629), 61–64 (2003).
[Crossref] [PubMed]

Nakaema, W. M.

Nees, J. A.

Nguyen, T.

O. G. Kosareva, T. Nguyen, N. A. Panov, W. Liu, A. Saliminia, V. P. Kandidov, N. Akozbek, M. Scalora, R. Vallee, and S. L. Chin, “Array of femtosecond plasma channels in fused silica,” Opt. Commun. 267(2), 511–523 (2006).
[Crossref]

Ni, J.

Panov, N. A.

D. E. Shipilo, N. A. Panov, E. S. Sunchugasheva, D. V. Mokrousova, V. A. Andreeva, O. G. Kosareva, L. V. Seleznev, A. B. Savel’ev, A. A. Ionin, and S. L. Chin, “Fusion of regularized femtosecond filaments in air: far field on-axis emission,” Laser Phys. Lett. 13(11), 116005 (2016).
[Crossref]

A. A. Ionin, N. G. Iroshnikov, O. G. Kosareva, A. V. Larichev, D. V. Mokrousova, N. A. Panov, L. V. Seleznev, D. V. Sinitsyn, and E. S. Sunchugasheva, “Filamentation of femtosecond laser pulses governed by variable wavefront distortions via a deformable mirror,” J. Opt. Soc. Am. B 30(8), 2257–2262 (2013).
[Crossref]

O. G. Kosareva, T. Nguyen, N. A. Panov, W. Liu, A. Saliminia, V. P. Kandidov, N. Akozbek, M. Scalora, R. Vallee, and S. L. Chin, “Array of femtosecond plasma channels in fused silica,” Opt. Commun. 267(2), 511–523 (2006).
[Crossref]

Peng, Y.

Prade, B.

Y. Liu, M. Durand, S. Chen, A. Houard, B. Prade, B. Forestier, and A. Mysyrowicz, “Energy exchange between femtosecond laser filaments in air,” Phys. Rev. Lett. 105(5), 055003 (2010).
[Crossref] [PubMed]

Queißer, M.

P. Rohwetter, M. Queißer, K. Stelmaszczyk, M. Fechner, and L. Wöste, “Laser multiple filamentation control in air using a smooth phase mask,” Phys. Rev. A 77(1), 013812 (2008).
[Crossref]

Rajgara, F.

Richardson, M. C.

Z. A. Kudyshev, M. C. Richardson, and N. M. Litchinitser, “Virtual hyperbolic metamaterials for manipulating radar signals in air,” Nat. Commun. 4, 2557 (2013).
[Crossref] [PubMed]

Rodriguez, M.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301(5629), 61–64 (2003).
[Crossref] [PubMed]

Rohwetter, P.

Z. Hao, K. Stelmaszczyk, P. Rohwetter, W. M. Nakaema, and L. Woeste, “Femtosecond laser filament-fringes in fused silica,” Opt. Express 19(8), 7799–7806 (2011).
[Crossref] [PubMed]

P. Rohwetter, M. Queißer, K. Stelmaszczyk, M. Fechner, and L. Wöste, “Laser multiple filamentation control in air using a smooth phase mask,” Phys. Rev. A 77(1), 013812 (2008).
[Crossref]

Rosenthal, E. W.

N. Jhajj, E. W. Rosenthal, R. Birnbaum, J. K. Wahlstrand, and H. M. Milchberg, “Demonstration of long-lived high power optical waveguides in air,” Phys. Rev. X 4(1), 011027 (2014).
[Crossref]

Roy, G.

T. J. Wang, J. F. Daigle, S. Yuan, F. Theberge, M. Châteauneuf, J. Dubois, G. Roy, H. Zeng, and S. L. Chin, “Remote generation of high-energy terahertz pulses from two-color femtosecond laser filamentation in air,” Phys. Rev. A 83(5), 4563 (2011).
[Crossref]

Saliminia, A.

O. G. Kosareva, T. Nguyen, N. A. Panov, W. Liu, A. Saliminia, V. P. Kandidov, N. Akozbek, M. Scalora, R. Vallee, and S. L. Chin, “Array of femtosecond plasma channels in fused silica,” Opt. Commun. 267(2), 511–523 (2006).
[Crossref]

Salmon, E.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301(5629), 61–64 (2003).
[Crossref] [PubMed]

Sanders, J. C.

A. C. Bernstein, M. McCormick, G. M. Dyer, J. C. Sanders, and T. Ditmire, “Two-beam coupling between filament-forming beams in air,” Phys. Rev. Lett. 102(12), 123902 (2009).
[Crossref] [PubMed]

Sauerbrey, R.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301(5629), 61–64 (2003).
[Crossref] [PubMed]

Savel’ev, A. B.

D. E. Shipilo, N. A. Panov, E. S. Sunchugasheva, D. V. Mokrousova, V. A. Andreeva, O. G. Kosareva, L. V. Seleznev, A. B. Savel’ev, A. A. Ionin, and S. L. Chin, “Fusion of regularized femtosecond filaments in air: far field on-axis emission,” Laser Phys. Lett. 13(11), 116005 (2016).
[Crossref]

Scalora, M.

O. G. Kosareva, T. Nguyen, N. A. Panov, W. Liu, A. Saliminia, V. P. Kandidov, N. Akozbek, M. Scalora, R. Vallee, and S. L. Chin, “Array of femtosecond plasma channels in fused silica,” Opt. Commun. 267(2), 511–523 (2006).
[Crossref]

Schmitt-Sody, A.

Schroeder, H.

Segev, M.

J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature 422(6928), 147–150 (2003).
[Crossref] [PubMed]

Seleznev, L. V.

D. E. Shipilo, N. A. Panov, E. S. Sunchugasheva, D. V. Mokrousova, V. A. Andreeva, O. G. Kosareva, L. V. Seleznev, A. B. Savel’ev, A. A. Ionin, and S. L. Chin, “Fusion of regularized femtosecond filaments in air: far field on-axis emission,” Laser Phys. Lett. 13(11), 116005 (2016).
[Crossref]

A. A. Ionin, N. G. Iroshnikov, O. G. Kosareva, A. V. Larichev, D. V. Mokrousova, N. A. Panov, L. V. Seleznev, D. V. Sinitsyn, and E. S. Sunchugasheva, “Filamentation of femtosecond laser pulses governed by variable wavefront distortions via a deformable mirror,” J. Opt. Soc. Am. B 30(8), 2257–2262 (2013).
[Crossref]

Shi, L.

L. Shi, W. Li, Y. Wang, X. Lu, L. Ding, and H. Zeng, “Generation of high-density electrons based on plasma grating induced Bragg diffraction in air,” Phys. Rev. Lett. 107(9), 095004 (2011).
[Crossref] [PubMed]

Shi, Y.

Shipilo, D. E.

D. E. Shipilo, N. A. Panov, E. S. Sunchugasheva, D. V. Mokrousova, V. A. Andreeva, O. G. Kosareva, L. V. Seleznev, A. B. Savel’ev, A. A. Ionin, and S. L. Chin, “Fusion of regularized femtosecond filaments in air: far field on-axis emission,” Laser Phys. Lett. 13(11), 116005 (2016).
[Crossref]

Shneider, M. N.

M. N. Shneider, A. M. Zheltikov, and R. B. Miles, “Long-lived laser-induced microwave plasma guides in the atmosphere: Self-consistent plasma-dynamic analysis and numerical simulations,” J. Appl. Phys. 108(3), 033113 (2010).
[Crossref]

Silberberg, Y.

Sinitsyn, D. V.

Sloss, J.

G. Heck, J. Sloss, and R. J. Levis, “Adaptive control of the spatial position of white light filaments in an aqueous solution,” Opt. Commun. 259(1), 216–222 (2006).
[Crossref]

Stelmaszczyk, K.

Z. Hao, K. Stelmaszczyk, P. Rohwetter, W. M. Nakaema, and L. Woeste, “Femtosecond laser filament-fringes in fused silica,” Opt. Express 19(8), 7799–7806 (2011).
[Crossref] [PubMed]

P. Rohwetter, M. Queißer, K. Stelmaszczyk, M. Fechner, and L. Wöste, “Laser multiple filamentation control in air using a smooth phase mask,” Phys. Rev. A 77(1), 013812 (2008).
[Crossref]

Sun, S.

Sun, X.

Sun, X. D.

H. Gao, X. D. Sun, B. Zeng, S. Q. Xu, W. Chu, W. W. Liu, Y. Cheng, Z. Z. Xu, and G. G. Mu, “Cylindrical symmetry breaking leads to multiple filamentation generation when focusing femtosecond lasers with axicons in methanol,” J. Opt. 14(6), 065203 (2012).
[Crossref]

Sunchugasheva, E. S.

D. E. Shipilo, N. A. Panov, E. S. Sunchugasheva, D. V. Mokrousova, V. A. Andreeva, O. G. Kosareva, L. V. Seleznev, A. B. Savel’ev, A. A. Ionin, and S. L. Chin, “Fusion of regularized femtosecond filaments in air: far field on-axis emission,” Laser Phys. Lett. 13(11), 116005 (2016).
[Crossref]

A. A. Ionin, N. G. Iroshnikov, O. G. Kosareva, A. V. Larichev, D. V. Mokrousova, N. A. Panov, L. V. Seleznev, D. V. Sinitsyn, and E. S. Sunchugasheva, “Filamentation of femtosecond laser pulses governed by variable wavefront distortions via a deformable mirror,” J. Opt. Soc. Am. B 30(8), 2257–2262 (2013).
[Crossref]

Theberge, F.

T. J. Wang, J. F. Daigle, S. Yuan, F. Theberge, M. Châteauneuf, J. Dubois, G. Roy, H. Zeng, and S. L. Chin, “Remote generation of high-energy terahertz pulses from two-color femtosecond laser filamentation in air,” Phys. Rev. A 83(5), 4563 (2011).
[Crossref]

Thomas, A. G. R.

Tong, Y.

Tortora, A.

C. Corsi, A. Tortora, and M. Bellini, “Generation of a variable linear array of phase-coherent supercontinuum sources,” Appl. Phys. B 78(3), 299–304 (2004).
[Crossref]

Valiulis, G.

D. Majus, V. Jukna, G. Valiulis, and A. Dubietis, “Generation of periodic filament arrays by self-focusing of highly elliptical ultrashort pulsed laser beams,” Phys. Rev. A 79(3), 033843 (2009).
[Crossref]

Vallee, R.

O. G. Kosareva, T. Nguyen, N. A. Panov, W. Liu, A. Saliminia, V. P. Kandidov, N. Akozbek, M. Scalora, R. Vallee, and S. L. Chin, “Array of femtosecond plasma channels in fused silica,” Opt. Commun. 267(2), 511–523 (2006).
[Crossref]

Wahlstrand, J. K.

N. Jhajj, E. W. Rosenthal, R. Birnbaum, J. K. Wahlstrand, and H. M. Milchberg, “Demonstration of long-lived high power optical waveguides in air,” Phys. Rev. X 4(1), 011027 (2014).
[Crossref]

Walasik, W.

W. Walasik and N. M. Litchinitser, “Dynamics of large femtosecond filament arrays: Possibilities, limitations, and trade-offs,” ACS Photonics 3(4), 640–646 (2016).
[Crossref]

Wang, T. J.

T. J. Wang, J. F. Daigle, S. Yuan, F. Theberge, M. Châteauneuf, J. Dubois, G. Roy, H. Zeng, and S. L. Chin, “Remote generation of high-energy terahertz pulses from two-color femtosecond laser filamentation in air,” Phys. Rev. A 83(5), 4563 (2011).
[Crossref]

Wang, Y.

L. Shi, W. Li, Y. Wang, X. Lu, L. Ding, and H. Zeng, “Generation of high-density electrons based on plasma grating induced Bragg diffraction in air,” Phys. Rev. Lett. 107(9), 095004 (2011).
[Crossref] [PubMed]

Wang, Z.

Wille, H.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301(5629), 61–64 (2003).
[Crossref] [PubMed]

Woeste, L.

Wolf, J.-P.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301(5629), 61–64 (2003).
[Crossref] [PubMed]

Wöste, L.

P. Rohwetter, M. Queißer, K. Stelmaszczyk, M. Fechner, and L. Wöste, “Laser multiple filamentation control in air using a smooth phase mask,” Phys. Rev. A 77(1), 013812 (2008).
[Crossref]

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301(5629), 61–64 (2003).
[Crossref] [PubMed]

Wu, J.

Xie, H.

Xiong, H.

Xu, H.

Xu, S.

Xu, S. Q.

H. Gao, X. D. Sun, B. Zeng, S. Q. Xu, W. Chu, W. W. Liu, Y. Cheng, Z. Z. Xu, and G. G. Mu, “Cylindrical symmetry breaking leads to multiple filamentation generation when focusing femtosecond lasers with axicons in methanol,” J. Opt. 14(6), 065203 (2012).
[Crossref]

Xu, Z.

Xu, Z. Z.

H. Gao, X. D. Sun, B. Zeng, S. Q. Xu, W. Chu, W. W. Liu, Y. Cheng, Z. Z. Xu, and G. G. Mu, “Cylindrical symmetry breaking leads to multiple filamentation generation when focusing femtosecond lasers with axicons in methanol,” J. Opt. 14(6), 065203 (2012).
[Crossref]

Yang, X.

Yao, J.

Yu, G.

Yu, J.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301(5629), 61–64 (2003).
[Crossref] [PubMed]

Yuan, S.

T. J. Wang, J. F. Daigle, S. Yuan, F. Theberge, M. Châteauneuf, J. Dubois, G. Roy, H. Zeng, and S. L. Chin, “Remote generation of high-energy terahertz pulses from two-color femtosecond laser filamentation in air,” Phys. Rev. A 83(5), 4563 (2011).
[Crossref]

Zeng, B.

Zeng, H.

T. J. Wang, J. F. Daigle, S. Yuan, F. Theberge, M. Châteauneuf, J. Dubois, G. Roy, H. Zeng, and S. L. Chin, “Remote generation of high-energy terahertz pulses from two-color femtosecond laser filamentation in air,” Phys. Rev. A 83(5), 4563 (2011).
[Crossref]

L. Shi, W. Li, Y. Wang, X. Lu, L. Ding, and H. Zeng, “Generation of high-density electrons based on plasma grating induced Bragg diffraction in air,” Phys. Rev. Lett. 107(9), 095004 (2011).
[Crossref] [PubMed]

X. Yang, J. Wu, Y. Peng, Y. Tong, P. Lu, L. Ding, Z. Xu, and H. Zeng, “Plasma waveguide array induced by filament interaction,” Opt. Lett. 34(24), 3806–3808 (2009).
[Crossref] [PubMed]

Zhang, H.

Zhao, J.

Zheltikov, A. M.

M. N. Shneider, A. M. Zheltikov, and R. B. Miles, “Long-lived laser-induced microwave plasma guides in the atmosphere: Self-consistent plasma-dynamic analysis and numerical simulations,” J. Appl. Phys. 108(3), 033113 (2010).
[Crossref]

ACS Photonics (1)

W. Walasik and N. M. Litchinitser, “Dynamics of large femtosecond filament arrays: Possibilities, limitations, and trade-offs,” ACS Photonics 3(4), 640–646 (2016).
[Crossref]

Appl. Phys. B (2)

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79(6), 673–677 (2004).
[Crossref]

C. Corsi, A. Tortora, and M. Bellini, “Generation of a variable linear array of phase-coherent supercontinuum sources,” Appl. Phys. B 78(3), 299–304 (2004).
[Crossref]

Appl. Phys. Lett. (1)

K. Cook, A. K. Kar, and R. A. Lamb, “White-light supercontinuum interference of self-focused filaments in water,” Appl. Phys. Lett. 83(19), 3861–3863 (2004).
[Crossref]

J. Appl. Phys. (1)

M. N. Shneider, A. M. Zheltikov, and R. B. Miles, “Long-lived laser-induced microwave plasma guides in the atmosphere: Self-consistent plasma-dynamic analysis and numerical simulations,” J. Appl. Phys. 108(3), 033113 (2010).
[Crossref]

J. Opt. (1)

H. Gao, X. D. Sun, B. Zeng, S. Q. Xu, W. Chu, W. W. Liu, Y. Cheng, Z. Z. Xu, and G. G. Mu, “Cylindrical symmetry breaking leads to multiple filamentation generation when focusing femtosecond lasers with axicons in methanol,” J. Opt. 14(6), 065203 (2012).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

C. Lu and R. H. Lipson, “Interference lithography: a powerful tool for fabricating periodic structures,” Laser Photonics Rev. 4(4), 568–580 (2010).
[Crossref]

Laser Phys. Lett. (1)

D. E. Shipilo, N. A. Panov, E. S. Sunchugasheva, D. V. Mokrousova, V. A. Andreeva, O. G. Kosareva, L. V. Seleznev, A. B. Savel’ev, A. A. Ionin, and S. L. Chin, “Fusion of regularized femtosecond filaments in air: far field on-axis emission,” Laser Phys. Lett. 13(11), 116005 (2016).
[Crossref]

Nat. Commun. (1)

Z. A. Kudyshev, M. C. Richardson, and N. M. Litchinitser, “Virtual hyperbolic metamaterials for manipulating radar signals in air,” Nat. Commun. 4, 2557 (2013).
[Crossref] [PubMed]

Nature (1)

J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature 422(6928), 147–150 (2003).
[Crossref] [PubMed]

Opt. Commun. (2)

G. Heck, J. Sloss, and R. J. Levis, “Adaptive control of the spatial position of white light filaments in an aqueous solution,” Opt. Commun. 259(1), 216–222 (2006).
[Crossref]

O. G. Kosareva, T. Nguyen, N. A. Panov, W. Liu, A. Saliminia, V. P. Kandidov, N. Akozbek, M. Scalora, R. Vallee, and S. L. Chin, “Array of femtosecond plasma channels in fused silica,” Opt. Commun. 267(2), 511–523 (2006).
[Crossref]

Opt. Express (9)

M. Carbonell-Leal, C. Doñate-Buendía, G. Mínguez-Vega, and J. Lancis, “Diffractive control of 3D multifilamentation in fused silica with micrometric resolution,” Opt. Express 21(112), 1369–1377 (2016).

Z. Hao, K. Stelmaszczyk, P. Rohwetter, W. M. Nakaema, and L. Woeste, “Femtosecond laser filament-fringes in fused silica,” Opt. Express 19(8), 7799–7806 (2011).
[Crossref] [PubMed]

H. Schroeder, J. Liu, and S. Chin, “From random to controlled small-scale filamentation in water,” Opt. Express 12(20), 4768–4774 (2004).
[Crossref] [PubMed]

A. Dharmadhikari, F. Rajgara, D. Mathur, H. Schroeder, and J. Liu, “Efficient broadband emission from condensed media irradiated by low-intensity, unfocused, ultrashort laser light,” Opt. Express 13(21), 8555–8564 (2005).
[Crossref] [PubMed]

Z. Liu, P. Ding, Y. Shi, X. Lu, S. Sun, X. Liu, Q. Liu, B. Ding, and B. Hu, “Control of third harmonic generation by plasma grating generated by two noncollinear IR femtosecond filaments,” Opt. Express 20(8), 8837–8847 (2012).
[Crossref] [PubMed]

H. Gao, W. Chu, G. Yu, B. Zeng, J. Zhao, Z. Wang, W. Liu, Y. Cheng, and Z. Xu, “Femtosecond laser filament array generated with step phase plate in air,” Opt. Express 21(4), 4612–4622 (2013).
[Crossref] [PubMed]

A. Camino, Z. Hao, X. Liu, and J. Lin, “Control of laser filamentation in fused silica by a periodic microlens array,” Opt. Express 21(7), 7908–7915 (2013).
[Crossref] [PubMed]

C. Jing, H. Zhang, W. Chu, H. Xie, J. Ni, B. Zeng, G. Li, J. Yao, H. Xu, Y. Cheng, and Z. Xu, “Generation of an air laser at extended distances by femtosecond laser filamentation with telescope optics,” Opt. Express 22(3), 3151–3156 (2014).
[Crossref] [PubMed]

A. C. Englesbe, Z. He, J. A. Nees, A. G. R. Thomas, A. Schmitt-Sody, and K. Krushelnick, “Control of the configuration of multiple femtosecond filaments in air by adaptive wavefront manipulation,” Opt. Express 24(6), 6071–6082 (2016).
[Crossref] [PubMed]

Opt. Lett. (6)

Phys. Rep. (1)

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2–4), 47–189 (2007).
[Crossref]

Phys. Rev. A (3)

P. Rohwetter, M. Queißer, K. Stelmaszczyk, M. Fechner, and L. Wöste, “Laser multiple filamentation control in air using a smooth phase mask,” Phys. Rev. A 77(1), 013812 (2008).
[Crossref]

D. Majus, V. Jukna, G. Valiulis, and A. Dubietis, “Generation of periodic filament arrays by self-focusing of highly elliptical ultrashort pulsed laser beams,” Phys. Rev. A 79(3), 033843 (2009).
[Crossref]

T. J. Wang, J. F. Daigle, S. Yuan, F. Theberge, M. Châteauneuf, J. Dubois, G. Roy, H. Zeng, and S. L. Chin, “Remote generation of high-energy terahertz pulses from two-color femtosecond laser filamentation in air,” Phys. Rev. A 83(5), 4563 (2011).
[Crossref]

Phys. Rev. Lett. (3)

A. C. Bernstein, M. McCormick, G. M. Dyer, J. C. Sanders, and T. Ditmire, “Two-beam coupling between filament-forming beams in air,” Phys. Rev. Lett. 102(12), 123902 (2009).
[Crossref] [PubMed]

Y. Liu, M. Durand, S. Chen, A. Houard, B. Prade, B. Forestier, and A. Mysyrowicz, “Energy exchange between femtosecond laser filaments in air,” Phys. Rev. Lett. 105(5), 055003 (2010).
[Crossref] [PubMed]

L. Shi, W. Li, Y. Wang, X. Lu, L. Ding, and H. Zeng, “Generation of high-density electrons based on plasma grating induced Bragg diffraction in air,” Phys. Rev. Lett. 107(9), 095004 (2011).
[Crossref] [PubMed]

Phys. Rev. X (1)

N. Jhajj, E. W. Rosenthal, R. Birnbaum, J. K. Wahlstrand, and H. M. Milchberg, “Demonstration of long-lived high power optical waveguides in air,” Phys. Rev. X 4(1), 011027 (2014).
[Crossref]

Proc. SPIE (1)

M. S. Ahsan, F. Dewanda, F. Ahmed, M. B. G. Jun, and M. S. Lee, “Characterization of femtosecond laser filament-fringes in titanium,” Proc. SPIE 8611, 8611l (2013).

Science (1)

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301(5629), 61–64 (2003).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 The sketch of experimental setup for two-beam interference experiment.
Fig. 2
Fig. 2 The sketch of experimental setup for three-beam interference.
Fig. 3
Fig. 3 Interference patterns of the two laser beams with different cross angles of (a) 0.009°, (b) 0.022°, (c) 0.028°, and (d) 0.042°, and corresponding (e)–(h) MF distributions (filament-fringes) formed in the fused silica block.
Fig. 4
Fig. 4 Two-beam interference patterns when the cross angle is 0.028° and azimuthal angles are (a) 0, (b) π/4, (c) 3π/4, and (d) π/2, respectively, and corresponding (e-h) filament-fringes formed in the fused silica block.
Fig. 5
Fig. 5 The distribution of filament-fringes at different laser propagation distances in the fused silica under conditions of φ = π/2, (a) θ = 0.042° and (b) θ = 0.022°, respectively.
Fig. 6
Fig. 6 Typical top views of filamentation in fused silica with the azimuthal angle of π/2, and different cross angles of (a) 0.009°, (b) 0.022°, (c) 0.028°, and (d) 0.042°, and (e) side view under the condition of φ = π/2 and θ = 0.042°.
Fig. 7
Fig. 7 Interference patterns from (a) beams A and B with θ1 = 0.048°, (b) beams A and C with θ2 = 0.060°, (c) beams B and C with θ3 = 0.072°, and (d) beams A, B, and C with θ1 = 0.048°, θ2 = 0.060°, and θ3 = 0.072°, and corresponding (e-h) MF distributions formed in fused silica block.
Fig. 8
Fig. 8 Three-beam interference patterns and corresponding MF distributions formed in the fused silica block when the cross angles among the three beams are (a,d) θ1 = 0.048°, θ2 = 0.060°, and θ3 = 0.072°, (b,e) θ1 = 0.074°, θ2 = 0.090°, and θ3 = 0.122°, (c,f)θ1 = 0.122°, θ2 = 0.168°, and θ3 = 0.210°, respectively.
Fig. 9
Fig. 9 Three-beam interference pattern and corresponding MF distribution formed in the fused silica block when the three beams are placed symmetrically around the Z axis with a same cross angle of θ1 = θ2 = θ3 = 0.048°.

Metrics