Abstract

GaAs solar cells with nanostructured emitter layers were fabricated via metal-assisted chemical etching. Au nanoparticles produced via thermal treatment of Au thin films were used as etch catalysts to texture an emitter surface with nanohole structures. Epi-wafers with emitter layers 0.5, 1.0, and 1.5 um in thickness were directly textured and a window layer removal process was performed before metal catalyst deposition. A nanohole-textured emitter layer provides effective light trapping capabilities, reducing the surface reflection of a textured solar cell by 11.0%. However, because the nanostructures have high surface area to volume ratios and large numbers of defects, various photovoltaic properties were diminished by high recombination losses. Thus, we have studied the application of nanohole structures to GaAs emitter solar cells and investigated the cells’ antireflection and photovoltaic properties as a function of the nanohole structure and emitter thickness. Due to decreased surface reflection and improved shunt resistance, the solar cell efficiency increased from 4.25% for non-textured solar cells to 7.15% for solar cells textured for 5 min.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Wafer-scale broadband antireflective silicon fabricated by metal-assisted chemical etching using spin-coating Ag ink

Chan Il Yeo, Young Min Song, Sung Jun Jang, and Yong Tak Lee
Opt. Express 19(S5) A1109-A1116 (2011)

Single-material zinc sulfide bi-layer antireflection coatings for GaAs solar cells

Jung Woo Leem, Dong-Hwan Jun, Jonggon Heo, Won-Kyu Park, Jin-Hong Park, Woo Jin Cho, Do Eok Kim, and Jae Su Yu
Opt. Express 21(S5) A821-A828 (2013)

Electrochemically synthesized broadband antireflective and hydrophobic GaOOH nanopillars for III-V InGaP/GaAs/Ge triple-junction solar cell applications

Jung Woo Leem, Hee Kwan Lee, Dong-Hwan Jun, Jonggon Heo, Won-Kyu Park, Jin-Hong Park, and Jae Su Yu
Opt. Express 22(S2) A328-A334 (2014)

References

  • View by:
  • |
  • |
  • |

  1. E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
    [Crossref] [PubMed]
  2. S. Jeong, M. D. McGehee, and Y. Cui, “All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency,” Nat. Commun. 4, 2950 (2013).
    [Crossref] [PubMed]
  3. J. Kim, J.-H. Yun, H. Kim, Y. Cho, H.-H. Park, M. M. D. Kumar, J. Yi, W. A. Anderson, and D.-W. Kim, “Transparent conductor-embedding nanocones for selective emitters: optical and electrical improvements of Si solar cells,” Sci. Rep. 5(1), 9256 (2015).
    [Crossref] [PubMed]
  4. X. Li, P.-C. Li, L. Ji, C. Stender, S. R. Tatavarti, K. Sablon, and E. T. Yu, “Integration of subwavelength optical nanostructures for improved antireflection performance of mechanically flexible GaAs solar cells fabricated by epitaxial lift-off,” Sol. Energy Mater. Sol. Cells 143, 567–572 (2015).
    [Crossref]
  5. J. Oh, H.-C. Yuan, and H. M. Branz, “An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures,” Nat. Nanotechnol. 7(11), 743–748 (2012).
    [Crossref] [PubMed]
  6. H.-D. Um, N. Kim, K. Lee, I. Hwang, J. Hoon Seo, Y. J. Yu, P. Duane, M. Wober, and K. Seo, “Versatile control of metal-assisted chemical etching for vertical silicon microwire arrays and their photovoltaic applications,” Sci. Rep. 5(1), 11277 (2015).
    [Crossref] [PubMed]
  7. J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
    [Crossref] [PubMed]
  8. H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
    [Crossref]
  9. S. Yang, Y. Hsieh, and C. Jeng, “Optimal design of antireflection coating and experimental verification by plasma enhanced chemical vapor deposition in small displays,” J. Vac. Sci. Technol. A 27(2), 336–341 (2009).
    [Crossref]
  10. J. A. Dobrowolski, D. Poitras, P. Ma, H. Vakil, and M. Acree, “Toward perfect antireflection coatings: numerical investigation,” Appl. Opt. 41(16), 3075–3083 (2002).
    [Crossref] [PubMed]
  11. C. Martinet, V. Paillard, A. Gagnaire, and J. Joseph, “Deposition of SiO2 and TiO2 thin films by plasma enhanced chemical vapor deposition for antireflection coating,” J. Non-Cryst. Solids 216, 77–82 (1997).
    [Crossref]
  12. P. Clapham and M. Hutley, “Reduction of lens reflexion by the “Moth Eye” principle,” Nature 244(5414), 281–282 (1973).
    [Crossref]
  13. S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
    [Crossref] [PubMed]
  14. W.-L. Min, P. Jiang, and B. Jiang, “Large-scale assembly of colloidal nanoparticles and fabrication of periodic subwavelength structures,” Nanotechnology 19(47), 475604 (2008).
    [Crossref] [PubMed]
  15. H. Sai, T. Matsui, K. Saito, M. Kondo, and I. Yoshida, “Photocurrent enhancement in thin‐film silicon solar cells by combination of anti‐reflective sub‐wavelength structures and light‐trapping textures,” Prog. Photovolt. Res. Appl. 23(11), 1572–1580 (2015).
    [Crossref]
  16. Y. Kanamori, E. Roy, and Y. Chen, “Antireflection sub-wavelength gratings fabricated by spin-coating replication,” Microelectron. Eng. 78–79, 287–293 (2005).
    [Crossref]
  17. C. Aydin, A. Zaslavsky, G. Sonek, and J. Goldstein, “Reduction of reflection losses in ZnGeP 2 using motheye antireflection surface relief structures,” Appl. Phys. Lett. 80(13), 2242–2244 (2002).
    [Crossref]
  18. Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21(6), 2874–2877 (2003).
    [Crossref]
  19. S. Murad, M. Rahman, N. Johnson, S. Thoms, S. Beaumont, and C. Wilkinson, “Dry etching damage in III–V semiconductors,” J. Vac. Sci. Technol. B 14(6), 3658–3662 (1996).
    [Crossref]
  20. X. Liu, P. R. Coxon, M. Peters, B. Hoex, J. M. Cole, and D. J. Fray, “Black silicon: fabrication methods, properties and solar energy applications,” Energy Environ. Sci. 7(10), 3223–3263 (2014).
    [Crossref]
  21. S. J. Fonash, “An overview of dry etching damage and contamination effects,” J. Electrochem. Soc. 137(12), 3885–3892 (1990).
    [Crossref]
  22. S. H. Zaidi, D. S. Ruby, and J. M. Gee, “Characterization of random reactive ion etched-textured silicon solar cells,” IEEE Trans. Electron Dev. 48(6), 1200–1206 (2001).
    [Crossref]
  23. J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
    [Crossref] [PubMed]
  24. Y.-A. Dai, H.-C. Chang, K.-Y. Lai, C.-A. Lin, R.-J. Chung, G.-R. Lin, and J.-H. He, “Subwavelength Si nanowire arrays for self-cleaning antireflection coatings,” J. Mater. Chem. 20(48), 10924–10930 (2010).
    [Crossref]
  25. S. E. Han and G. Chen, “Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett. 10(11), 4692–4696 (2010).
    [Crossref] [PubMed]
  26. H. L. Chen, S. Y. Chuang, C. H. Lin, and Y. H. Lin, “Using colloidal lithography to fabricate and optimize sub-wavelength pyramidal and honeycomb structures in solar cells,” Opt. Express 15(22), 14793–14803 (2007).
    [Crossref] [PubMed]
  27. H. Xu, N. Lu, D. Qi, J. Hao, L. Gao, B. Zhang, and L. Chi, “Biomimetic antireflective Si nanopillar arrays,” Small 4(11), 1972–1975 (2008).
    [Crossref] [PubMed]
  28. B. Kiraly, S. Yang, and T. J. Huang, “Multifunctional porous silicon nanopillar arrays: antireflection, superhydrophobicity, photoluminescence, and surface-enhanced Raman scattering,” Nanotechnology 24(24), 245704 (2013).
    [Crossref] [PubMed]
  29. Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5(1), 7810 (2015).
    [Crossref] [PubMed]
  30. Z. Y. Wang, R. J. Zhang, H. L. Lu, X. Chen, Y. Sun, Y. Zhang, Y. F. Wei, J. P. Xu, S. Y. Wang, Y. X. Zheng, and L. Y. Chen, “The impact of thickness and thermal annealing on refractive index for aluminum oxide thin films deposited by atomic layer deposition,” Nanoscale Res. Lett. 10(1), 46 (2015).
    [Crossref] [PubMed]
  31. Y. Song, B. Ki, K. Choi, I. Oh, and J. Oh, “In-plane and out-of-plane mass transport during metal-assisted chemical etching of GaAs,” J. Mater. Chem. A Mater. Energy Sustain. 2(29), 11017–11021 (2014).
    [Crossref]
  32. C.-L. Lee, K. Tsujino, Y. Kanda, S. Ikeda, and M. Matsumura, “Pore formation in silicon by wet etching using micrometre-sized metal particles as catalysts,” J. Mater. Chem. 18(9), 1015–1020 (2008).
    [Crossref]
  33. J.-M. Lee and B.-I. Kim, “Thermal dewetting of Pt thin film: Etch-masks for the fabrication of semiconductor nanostructures,” Mater. Sci. Eng. A 449–451, 769–773 (2007).
    [Crossref]
  34. Y. M. Song, E. S. Choi, J. S. Yu, and Y. T. Lee, “Light-extraction enhancement of red AlGaInP light-emitting diodes with antireflective subwavelength structures,” Opt. Express 17(23), 20991–20997 (2009).
    [Crossref] [PubMed]
  35. J. W. Leem, Y. Yeh, and J. S. Yu, “Enhanced transmittance and hydrophilicity of nanostructured glass substrates with antireflective properties using disordered gold nanopatterns,” Opt. Express 20(4), 4056–4066 (2012).
    [Crossref] [PubMed]
  36. C. V. Thompson, “Solid-State Dewetting of Thin films,” Annu. Rev. Mater. Res. 42(1), 399–434 (2012).
    [Crossref]
  37. Y. Song and J. Oh, “Fabrication of three-dimensional GaAs antireflective structures by metal-assisted chemical etching,” Sol. Energy Mater. Sol. Cells 144, 159–164 (2016).
    [Crossref]
  38. Y. Song and J. Oh, “Thermally driven metal-assisted chemical etching of GaAs with in-position and out-of-position catalyst,” J. Mater. Chem. A Mater. Energy Sustain. 2(48), 20481–20485 (2014).
    [Crossref]
  39. H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovolt. Res. Appl. 15(5), 415–423 (2007).
    [Crossref]
  40. P. Panek, M. Lipiński, and J. Dutkiewicz, “Texturization of multicrystalline silicon by wet chemical etching for silicon solar cells,” J. Mater. Sci. 40(6), 1459–1463 (2005).
    [Crossref]
  41. I. O. Oladeji, L. Chow, C. S. Ferekides, V. Viswanathan, and Z. Zhao, “Metal/CdTe/CdS/Cd1-xZnxS/TCO/glass: A new CdTe thin film solar cell structure,” Sol. Energy Mater. Sol. Cells 61(2), 203–211 (2000).
    [Crossref]

2016 (1)

Y. Song and J. Oh, “Fabrication of three-dimensional GaAs antireflective structures by metal-assisted chemical etching,” Sol. Energy Mater. Sol. Cells 144, 159–164 (2016).
[Crossref]

2015 (6)

H.-D. Um, N. Kim, K. Lee, I. Hwang, J. Hoon Seo, Y. J. Yu, P. Duane, M. Wober, and K. Seo, “Versatile control of metal-assisted chemical etching for vertical silicon microwire arrays and their photovoltaic applications,” Sci. Rep. 5(1), 11277 (2015).
[Crossref] [PubMed]

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5(1), 7810 (2015).
[Crossref] [PubMed]

Z. Y. Wang, R. J. Zhang, H. L. Lu, X. Chen, Y. Sun, Y. Zhang, Y. F. Wei, J. P. Xu, S. Y. Wang, Y. X. Zheng, and L. Y. Chen, “The impact of thickness and thermal annealing on refractive index for aluminum oxide thin films deposited by atomic layer deposition,” Nanoscale Res. Lett. 10(1), 46 (2015).
[Crossref] [PubMed]

H. Sai, T. Matsui, K. Saito, M. Kondo, and I. Yoshida, “Photocurrent enhancement in thin‐film silicon solar cells by combination of anti‐reflective sub‐wavelength structures and light‐trapping textures,” Prog. Photovolt. Res. Appl. 23(11), 1572–1580 (2015).
[Crossref]

J. Kim, J.-H. Yun, H. Kim, Y. Cho, H.-H. Park, M. M. D. Kumar, J. Yi, W. A. Anderson, and D.-W. Kim, “Transparent conductor-embedding nanocones for selective emitters: optical and electrical improvements of Si solar cells,” Sci. Rep. 5(1), 9256 (2015).
[Crossref] [PubMed]

X. Li, P.-C. Li, L. Ji, C. Stender, S. R. Tatavarti, K. Sablon, and E. T. Yu, “Integration of subwavelength optical nanostructures for improved antireflection performance of mechanically flexible GaAs solar cells fabricated by epitaxial lift-off,” Sol. Energy Mater. Sol. Cells 143, 567–572 (2015).
[Crossref]

2014 (3)

X. Liu, P. R. Coxon, M. Peters, B. Hoex, J. M. Cole, and D. J. Fray, “Black silicon: fabrication methods, properties and solar energy applications,” Energy Environ. Sci. 7(10), 3223–3263 (2014).
[Crossref]

Y. Song, B. Ki, K. Choi, I. Oh, and J. Oh, “In-plane and out-of-plane mass transport during metal-assisted chemical etching of GaAs,” J. Mater. Chem. A Mater. Energy Sustain. 2(29), 11017–11021 (2014).
[Crossref]

Y. Song and J. Oh, “Thermally driven metal-assisted chemical etching of GaAs with in-position and out-of-position catalyst,” J. Mater. Chem. A Mater. Energy Sustain. 2(48), 20481–20485 (2014).
[Crossref]

2013 (3)

S. Jeong, M. D. McGehee, and Y. Cui, “All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency,” Nat. Commun. 4, 2950 (2013).
[Crossref] [PubMed]

B. Kiraly, S. Yang, and T. J. Huang, “Multifunctional porous silicon nanopillar arrays: antireflection, superhydrophobicity, photoluminescence, and surface-enhanced Raman scattering,” Nanotechnology 24(24), 245704 (2013).
[Crossref] [PubMed]

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

2012 (3)

C. V. Thompson, “Solid-State Dewetting of Thin films,” Annu. Rev. Mater. Res. 42(1), 399–434 (2012).
[Crossref]

J. Oh, H.-C. Yuan, and H. M. Branz, “An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures,” Nat. Nanotechnol. 7(11), 743–748 (2012).
[Crossref] [PubMed]

J. W. Leem, Y. Yeh, and J. S. Yu, “Enhanced transmittance and hydrophilicity of nanostructured glass substrates with antireflective properties using disordered gold nanopatterns,” Opt. Express 20(4), 4056–4066 (2012).
[Crossref] [PubMed]

2011 (1)

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
[Crossref]

2010 (4)

Y.-A. Dai, H.-C. Chang, K.-Y. Lai, C.-A. Lin, R.-J. Chung, G.-R. Lin, and J.-H. He, “Subwavelength Si nanowire arrays for self-cleaning antireflection coatings,” J. Mater. Chem. 20(48), 10924–10930 (2010).
[Crossref]

S. E. Han and G. Chen, “Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett. 10(11), 4692–4696 (2010).
[Crossref] [PubMed]

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[Crossref] [PubMed]

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
[Crossref] [PubMed]

2009 (3)

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

S. Yang, Y. Hsieh, and C. Jeng, “Optimal design of antireflection coating and experimental verification by plasma enhanced chemical vapor deposition in small displays,” J. Vac. Sci. Technol. A 27(2), 336–341 (2009).
[Crossref]

Y. M. Song, E. S. Choi, J. S. Yu, and Y. T. Lee, “Light-extraction enhancement of red AlGaInP light-emitting diodes with antireflective subwavelength structures,” Opt. Express 17(23), 20991–20997 (2009).
[Crossref] [PubMed]

2008 (3)

H. Xu, N. Lu, D. Qi, J. Hao, L. Gao, B. Zhang, and L. Chi, “Biomimetic antireflective Si nanopillar arrays,” Small 4(11), 1972–1975 (2008).
[Crossref] [PubMed]

C.-L. Lee, K. Tsujino, Y. Kanda, S. Ikeda, and M. Matsumura, “Pore formation in silicon by wet etching using micrometre-sized metal particles as catalysts,” J. Mater. Chem. 18(9), 1015–1020 (2008).
[Crossref]

W.-L. Min, P. Jiang, and B. Jiang, “Large-scale assembly of colloidal nanoparticles and fabrication of periodic subwavelength structures,” Nanotechnology 19(47), 475604 (2008).
[Crossref] [PubMed]

2007 (3)

J.-M. Lee and B.-I. Kim, “Thermal dewetting of Pt thin film: Etch-masks for the fabrication of semiconductor nanostructures,” Mater. Sci. Eng. A 449–451, 769–773 (2007).
[Crossref]

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovolt. Res. Appl. 15(5), 415–423 (2007).
[Crossref]

H. L. Chen, S. Y. Chuang, C. H. Lin, and Y. H. Lin, “Using colloidal lithography to fabricate and optimize sub-wavelength pyramidal and honeycomb structures in solar cells,” Opt. Express 15(22), 14793–14803 (2007).
[Crossref] [PubMed]

2005 (2)

P. Panek, M. Lipiński, and J. Dutkiewicz, “Texturization of multicrystalline silicon by wet chemical etching for silicon solar cells,” J. Mater. Sci. 40(6), 1459–1463 (2005).
[Crossref]

Y. Kanamori, E. Roy, and Y. Chen, “Antireflection sub-wavelength gratings fabricated by spin-coating replication,” Microelectron. Eng. 78–79, 287–293 (2005).
[Crossref]

2003 (1)

Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21(6), 2874–2877 (2003).
[Crossref]

2002 (2)

C. Aydin, A. Zaslavsky, G. Sonek, and J. Goldstein, “Reduction of reflection losses in ZnGeP 2 using motheye antireflection surface relief structures,” Appl. Phys. Lett. 80(13), 2242–2244 (2002).
[Crossref]

J. A. Dobrowolski, D. Poitras, P. Ma, H. Vakil, and M. Acree, “Toward perfect antireflection coatings: numerical investigation,” Appl. Opt. 41(16), 3075–3083 (2002).
[Crossref] [PubMed]

2001 (1)

S. H. Zaidi, D. S. Ruby, and J. M. Gee, “Characterization of random reactive ion etched-textured silicon solar cells,” IEEE Trans. Electron Dev. 48(6), 1200–1206 (2001).
[Crossref]

2000 (1)

I. O. Oladeji, L. Chow, C. S. Ferekides, V. Viswanathan, and Z. Zhao, “Metal/CdTe/CdS/Cd1-xZnxS/TCO/glass: A new CdTe thin film solar cell structure,” Sol. Energy Mater. Sol. Cells 61(2), 203–211 (2000).
[Crossref]

1997 (1)

C. Martinet, V. Paillard, A. Gagnaire, and J. Joseph, “Deposition of SiO2 and TiO2 thin films by plasma enhanced chemical vapor deposition for antireflection coating,” J. Non-Cryst. Solids 216, 77–82 (1997).
[Crossref]

1996 (1)

S. Murad, M. Rahman, N. Johnson, S. Thoms, S. Beaumont, and C. Wilkinson, “Dry etching damage in III–V semiconductors,” J. Vac. Sci. Technol. B 14(6), 3658–3662 (1996).
[Crossref]

1990 (1)

S. J. Fonash, “An overview of dry etching damage and contamination effects,” J. Electrochem. Soc. 137(12), 3885–3892 (1990).
[Crossref]

1973 (1)

P. Clapham and M. Hutley, “Reduction of lens reflexion by the “Moth Eye” principle,” Nature 244(5414), 281–282 (1973).
[Crossref]

Åberg, I.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Acree, M.

Anderson, W. A.

J. Kim, J.-H. Yun, H. Kim, Y. Cho, H.-H. Park, M. M. D. Kumar, J. Yi, W. A. Anderson, and D.-W. Kim, “Transparent conductor-embedding nanocones for selective emitters: optical and electrical improvements of Si solar cells,” Sci. Rep. 5(1), 9256 (2015).
[Crossref] [PubMed]

Anttu, N.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Arafune, K.

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovolt. Res. Appl. 15(5), 415–423 (2007).
[Crossref]

Asoli, D.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Aydin, C.

C. Aydin, A. Zaslavsky, G. Sonek, and J. Goldstein, “Reduction of reflection losses in ZnGeP 2 using motheye antireflection surface relief structures,” Appl. Phys. Lett. 80(13), 2242–2244 (2002).
[Crossref]

Beaumont, S.

S. Murad, M. Rahman, N. Johnson, S. Thoms, S. Beaumont, and C. Wilkinson, “Dry etching damage in III–V semiconductors,” J. Vac. Sci. Technol. B 14(6), 3658–3662 (1996).
[Crossref]

Borgström, M. T.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Branz, H. M.

J. Oh, H.-C. Yuan, and H. M. Branz, “An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures,” Nat. Nanotechnol. 7(11), 743–748 (2012).
[Crossref] [PubMed]

Burkhard, G. F.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

Chang, H.-C.

Y.-A. Dai, H.-C. Chang, K.-Y. Lai, C.-A. Lin, R.-J. Chung, G.-R. Lin, and J.-H. He, “Subwavelength Si nanowire arrays for self-cleaning antireflection coatings,” J. Mater. Chem. 20(48), 10924–10930 (2010).
[Crossref]

Chen, G.

S. E. Han and G. Chen, “Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett. 10(11), 4692–4696 (2010).
[Crossref] [PubMed]

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
[Crossref] [PubMed]

Chen, H. L.

Chen, L. Y.

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5(1), 7810 (2015).
[Crossref] [PubMed]

Z. Y. Wang, R. J. Zhang, H. L. Lu, X. Chen, Y. Sun, Y. Zhang, Y. F. Wei, J. P. Xu, S. Y. Wang, Y. X. Zheng, and L. Y. Chen, “The impact of thickness and thermal annealing on refractive index for aluminum oxide thin films deposited by atomic layer deposition,” Nanoscale Res. Lett. 10(1), 46 (2015).
[Crossref] [PubMed]

Chen, X.

Z. Y. Wang, R. J. Zhang, H. L. Lu, X. Chen, Y. Sun, Y. Zhang, Y. F. Wei, J. P. Xu, S. Y. Wang, Y. X. Zheng, and L. Y. Chen, “The impact of thickness and thermal annealing on refractive index for aluminum oxide thin films deposited by atomic layer deposition,” Nanoscale Res. Lett. 10(1), 46 (2015).
[Crossref] [PubMed]

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5(1), 7810 (2015).
[Crossref] [PubMed]

Chen, Y.

Y. Kanamori, E. Roy, and Y. Chen, “Antireflection sub-wavelength gratings fabricated by spin-coating replication,” Microelectron. Eng. 78–79, 287–293 (2005).
[Crossref]

Chi, L.

H. Xu, N. Lu, D. Qi, J. Hao, L. Gao, B. Zhang, and L. Chi, “Biomimetic antireflective Si nanopillar arrays,” Small 4(11), 1972–1975 (2008).
[Crossref] [PubMed]

Cho, Y.

J. Kim, J.-H. Yun, H. Kim, Y. Cho, H.-H. Park, M. M. D. Kumar, J. Yi, W. A. Anderson, and D.-W. Kim, “Transparent conductor-embedding nanocones for selective emitters: optical and electrical improvements of Si solar cells,” Sci. Rep. 5(1), 9256 (2015).
[Crossref] [PubMed]

Choi, E. S.

Choi, K.

Y. Song, B. Ki, K. Choi, I. Oh, and J. Oh, “In-plane and out-of-plane mass transport during metal-assisted chemical etching of GaAs,” J. Mater. Chem. A Mater. Energy Sustain. 2(29), 11017–11021 (2014).
[Crossref]

Chou, S. Y.

Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21(6), 2874–2877 (2003).
[Crossref]

Chow, L.

I. O. Oladeji, L. Chow, C. S. Ferekides, V. Viswanathan, and Z. Zhao, “Metal/CdTe/CdS/Cd1-xZnxS/TCO/glass: A new CdTe thin film solar cell structure,” Sol. Energy Mater. Sol. Cells 61(2), 203–211 (2000).
[Crossref]

Chuang, S. Y.

Chung, R.-J.

Y.-A. Dai, H.-C. Chang, K.-Y. Lai, C.-A. Lin, R.-J. Chung, G.-R. Lin, and J.-H. He, “Subwavelength Si nanowire arrays for self-cleaning antireflection coatings,” J. Mater. Chem. 20(48), 10924–10930 (2010).
[Crossref]

Clapham, P.

P. Clapham and M. Hutley, “Reduction of lens reflexion by the “Moth Eye” principle,” Nature 244(5414), 281–282 (1973).
[Crossref]

Cole, J. M.

X. Liu, P. R. Coxon, M. Peters, B. Hoex, J. M. Cole, and D. J. Fray, “Black silicon: fabrication methods, properties and solar energy applications,” Energy Environ. Sci. 7(10), 3223–3263 (2014).
[Crossref]

Connor, S. T.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

Coxon, P. R.

X. Liu, P. R. Coxon, M. Peters, B. Hoex, J. M. Cole, and D. J. Fray, “Black silicon: fabrication methods, properties and solar energy applications,” Energy Environ. Sci. 7(10), 3223–3263 (2014).
[Crossref]

Cui, Y.

S. Jeong, M. D. McGehee, and Y. Cui, “All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency,” Nat. Commun. 4, 2950 (2013).
[Crossref] [PubMed]

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

Dai, Y.-A.

Y.-A. Dai, H.-C. Chang, K.-Y. Lai, C.-A. Lin, R.-J. Chung, G.-R. Lin, and J.-H. He, “Subwavelength Si nanowire arrays for self-cleaning antireflection coatings,” J. Mater. Chem. 20(48), 10924–10930 (2010).
[Crossref]

Deppert, K.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Dimroth, F.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Dobrowolski, J. A.

Duane, P.

H.-D. Um, N. Kim, K. Lee, I. Hwang, J. Hoon Seo, Y. J. Yu, P. Duane, M. Wober, and K. Seo, “Versatile control of metal-assisted chemical etching for vertical silicon microwire arrays and their photovoltaic applications,” Sci. Rep. 5(1), 11277 (2015).
[Crossref] [PubMed]

Dutkiewicz, J.

P. Panek, M. Lipiński, and J. Dutkiewicz, “Texturization of multicrystalline silicon by wet chemical etching for silicon solar cells,” J. Mater. Sci. 40(6), 1459–1463 (2005).
[Crossref]

Fan, S.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

Ferekides, C. S.

I. O. Oladeji, L. Chow, C. S. Ferekides, V. Viswanathan, and Z. Zhao, “Metal/CdTe/CdS/Cd1-xZnxS/TCO/glass: A new CdTe thin film solar cell structure,” Sol. Energy Mater. Sol. Cells 61(2), 203–211 (2000).
[Crossref]

Fonash, S. J.

S. J. Fonash, “An overview of dry etching damage and contamination effects,” J. Electrochem. Soc. 137(12), 3885–3892 (1990).
[Crossref]

Fray, D. J.

X. Liu, P. R. Coxon, M. Peters, B. Hoex, J. M. Cole, and D. J. Fray, “Black silicon: fabrication methods, properties and solar energy applications,” Energy Environ. Sci. 7(10), 3223–3263 (2014).
[Crossref]

Fuss-Kailuweit, P.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Gagnaire, A.

C. Martinet, V. Paillard, A. Gagnaire, and J. Joseph, “Deposition of SiO2 and TiO2 thin films by plasma enhanced chemical vapor deposition for antireflection coating,” J. Non-Cryst. Solids 216, 77–82 (1997).
[Crossref]

Ganesh, V. A.

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
[Crossref]

Gao, H.

Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21(6), 2874–2877 (2003).
[Crossref]

Gao, L.

H. Xu, N. Lu, D. Qi, J. Hao, L. Gao, B. Zhang, and L. Chi, “Biomimetic antireflective Si nanopillar arrays,” Small 4(11), 1972–1975 (2008).
[Crossref] [PubMed]

Garnett, E.

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[Crossref] [PubMed]

Ge, H.

Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21(6), 2874–2877 (2003).
[Crossref]

Gee, J. M.

S. H. Zaidi, D. S. Ruby, and J. M. Gee, “Characterization of random reactive ion etched-textured silicon solar cells,” IEEE Trans. Electron Dev. 48(6), 1200–1206 (2001).
[Crossref]

Goldstein, J.

C. Aydin, A. Zaslavsky, G. Sonek, and J. Goldstein, “Reduction of reflection losses in ZnGeP 2 using motheye antireflection surface relief structures,” Appl. Phys. Lett. 80(13), 2242–2244 (2002).
[Crossref]

Han, S. E.

S. E. Han and G. Chen, “Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett. 10(11), 4692–4696 (2010).
[Crossref] [PubMed]

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
[Crossref] [PubMed]

Hao, J.

H. Xu, N. Lu, D. Qi, J. Hao, L. Gao, B. Zhang, and L. Chi, “Biomimetic antireflective Si nanopillar arrays,” Small 4(11), 1972–1975 (2008).
[Crossref] [PubMed]

He, J.-H.

Y.-A. Dai, H.-C. Chang, K.-Y. Lai, C.-A. Lin, R.-J. Chung, G.-R. Lin, and J.-H. He, “Subwavelength Si nanowire arrays for self-cleaning antireflection coatings,” J. Mater. Chem. 20(48), 10924–10930 (2010).
[Crossref]

Ho, K. M.

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5(1), 7810 (2015).
[Crossref] [PubMed]

Hoex, B.

X. Liu, P. R. Coxon, M. Peters, B. Hoex, J. M. Cole, and D. J. Fray, “Black silicon: fabrication methods, properties and solar energy applications,” Energy Environ. Sci. 7(10), 3223–3263 (2014).
[Crossref]

Hoon Seo, J.

H.-D. Um, N. Kim, K. Lee, I. Hwang, J. Hoon Seo, Y. J. Yu, P. Duane, M. Wober, and K. Seo, “Versatile control of metal-assisted chemical etching for vertical silicon microwire arrays and their photovoltaic applications,” Sci. Rep. 5(1), 11277 (2015).
[Crossref] [PubMed]

Hsieh, Y.

S. Yang, Y. Hsieh, and C. Jeng, “Optimal design of antireflection coating and experimental verification by plasma enhanced chemical vapor deposition in small displays,” J. Vac. Sci. Technol. A 27(2), 336–341 (2009).
[Crossref]

Hsu, C.-M.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

Huang, T. J.

B. Kiraly, S. Yang, and T. J. Huang, “Multifunctional porous silicon nanopillar arrays: antireflection, superhydrophobicity, photoluminescence, and surface-enhanced Raman scattering,” Nanotechnology 24(24), 245704 (2013).
[Crossref] [PubMed]

Huffman, M.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Hutley, M.

P. Clapham and M. Hutley, “Reduction of lens reflexion by the “Moth Eye” principle,” Nature 244(5414), 281–282 (1973).
[Crossref]

Hwang, I.

H.-D. Um, N. Kim, K. Lee, I. Hwang, J. Hoon Seo, Y. J. Yu, P. Duane, M. Wober, and K. Seo, “Versatile control of metal-assisted chemical etching for vertical silicon microwire arrays and their photovoltaic applications,” Sci. Rep. 5(1), 11277 (2015).
[Crossref] [PubMed]

Ikeda, S.

C.-L. Lee, K. Tsujino, Y. Kanda, S. Ikeda, and M. Matsumura, “Pore formation in silicon by wet etching using micrometre-sized metal particles as catalysts,” J. Mater. Chem. 18(9), 1015–1020 (2008).
[Crossref]

Jeng, C.

S. Yang, Y. Hsieh, and C. Jeng, “Optimal design of antireflection coating and experimental verification by plasma enhanced chemical vapor deposition in small displays,” J. Vac. Sci. Technol. A 27(2), 336–341 (2009).
[Crossref]

Jeong, S.

S. Jeong, M. D. McGehee, and Y. Cui, “All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency,” Nat. Commun. 4, 2950 (2013).
[Crossref] [PubMed]

Ji, L.

X. Li, P.-C. Li, L. Ji, C. Stender, S. R. Tatavarti, K. Sablon, and E. T. Yu, “Integration of subwavelength optical nanostructures for improved antireflection performance of mechanically flexible GaAs solar cells fabricated by epitaxial lift-off,” Sol. Energy Mater. Sol. Cells 143, 567–572 (2015).
[Crossref]

Jiang, B.

W.-L. Min, P. Jiang, and B. Jiang, “Large-scale assembly of colloidal nanoparticles and fabrication of periodic subwavelength structures,” Nanotechnology 19(47), 475604 (2008).
[Crossref] [PubMed]

Jiang, P.

W.-L. Min, P. Jiang, and B. Jiang, “Large-scale assembly of colloidal nanoparticles and fabrication of periodic subwavelength structures,” Nanotechnology 19(47), 475604 (2008).
[Crossref] [PubMed]

Johnson, N.

S. Murad, M. Rahman, N. Johnson, S. Thoms, S. Beaumont, and C. Wilkinson, “Dry etching damage in III–V semiconductors,” J. Vac. Sci. Technol. B 14(6), 3658–3662 (1996).
[Crossref]

Joseph, J.

C. Martinet, V. Paillard, A. Gagnaire, and J. Joseph, “Deposition of SiO2 and TiO2 thin films by plasma enhanced chemical vapor deposition for antireflection coating,” J. Non-Cryst. Solids 216, 77–82 (1997).
[Crossref]

Kanamori, Y.

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovolt. Res. Appl. 15(5), 415–423 (2007).
[Crossref]

Y. Kanamori, E. Roy, and Y. Chen, “Antireflection sub-wavelength gratings fabricated by spin-coating replication,” Microelectron. Eng. 78–79, 287–293 (2005).
[Crossref]

Kanda, Y.

C.-L. Lee, K. Tsujino, Y. Kanda, S. Ikeda, and M. Matsumura, “Pore formation in silicon by wet etching using micrometre-sized metal particles as catalysts,” J. Mater. Chem. 18(9), 1015–1020 (2008).
[Crossref]

Ki, B.

Y. Song, B. Ki, K. Choi, I. Oh, and J. Oh, “In-plane and out-of-plane mass transport during metal-assisted chemical etching of GaAs,” J. Mater. Chem. A Mater. Energy Sustain. 2(29), 11017–11021 (2014).
[Crossref]

Kim, B.-I.

J.-M. Lee and B.-I. Kim, “Thermal dewetting of Pt thin film: Etch-masks for the fabrication of semiconductor nanostructures,” Mater. Sci. Eng. A 449–451, 769–773 (2007).
[Crossref]

Kim, D.-W.

J. Kim, J.-H. Yun, H. Kim, Y. Cho, H.-H. Park, M. M. D. Kumar, J. Yi, W. A. Anderson, and D.-W. Kim, “Transparent conductor-embedding nanocones for selective emitters: optical and electrical improvements of Si solar cells,” Sci. Rep. 5(1), 9256 (2015).
[Crossref] [PubMed]

Kim, H.

J. Kim, J.-H. Yun, H. Kim, Y. Cho, H.-H. Park, M. M. D. Kumar, J. Yi, W. A. Anderson, and D.-W. Kim, “Transparent conductor-embedding nanocones for selective emitters: optical and electrical improvements of Si solar cells,” Sci. Rep. 5(1), 9256 (2015).
[Crossref] [PubMed]

Kim, J.

J. Kim, J.-H. Yun, H. Kim, Y. Cho, H.-H. Park, M. M. D. Kumar, J. Yi, W. A. Anderson, and D.-W. Kim, “Transparent conductor-embedding nanocones for selective emitters: optical and electrical improvements of Si solar cells,” Sci. Rep. 5(1), 9256 (2015).
[Crossref] [PubMed]

Kim, N.

H.-D. Um, N. Kim, K. Lee, I. Hwang, J. Hoon Seo, Y. J. Yu, P. Duane, M. Wober, and K. Seo, “Versatile control of metal-assisted chemical etching for vertical silicon microwire arrays and their photovoltaic applications,” Sci. Rep. 5(1), 11277 (2015).
[Crossref] [PubMed]

Kiraly, B.

B. Kiraly, S. Yang, and T. J. Huang, “Multifunctional porous silicon nanopillar arrays: antireflection, superhydrophobicity, photoluminescence, and surface-enhanced Raman scattering,” Nanotechnology 24(24), 245704 (2013).
[Crossref] [PubMed]

Kondo, M.

H. Sai, T. Matsui, K. Saito, M. Kondo, and I. Yoshida, “Photocurrent enhancement in thin‐film silicon solar cells by combination of anti‐reflective sub‐wavelength structures and light‐trapping textures,” Prog. Photovolt. Res. Appl. 23(11), 1572–1580 (2015).
[Crossref]

Kumar, M. M. D.

J. Kim, J.-H. Yun, H. Kim, Y. Cho, H.-H. Park, M. M. D. Kumar, J. Yi, W. A. Anderson, and D.-W. Kim, “Transparent conductor-embedding nanocones for selective emitters: optical and electrical improvements of Si solar cells,” Sci. Rep. 5(1), 9256 (2015).
[Crossref] [PubMed]

Lai, K.-Y.

Y.-A. Dai, H.-C. Chang, K.-Y. Lai, C.-A. Lin, R.-J. Chung, G.-R. Lin, and J.-H. He, “Subwavelength Si nanowire arrays for self-cleaning antireflection coatings,” J. Mater. Chem. 20(48), 10924–10930 (2010).
[Crossref]

Lee, C.-L.

C.-L. Lee, K. Tsujino, Y. Kanda, S. Ikeda, and M. Matsumura, “Pore formation in silicon by wet etching using micrometre-sized metal particles as catalysts,” J. Mater. Chem. 18(9), 1015–1020 (2008).
[Crossref]

Lee, J.-M.

J.-M. Lee and B.-I. Kim, “Thermal dewetting of Pt thin film: Etch-masks for the fabrication of semiconductor nanostructures,” Mater. Sci. Eng. A 449–451, 769–773 (2007).
[Crossref]

Lee, K.

H.-D. Um, N. Kim, K. Lee, I. Hwang, J. Hoon Seo, Y. J. Yu, P. Duane, M. Wober, and K. Seo, “Versatile control of metal-assisted chemical etching for vertical silicon microwire arrays and their photovoltaic applications,” Sci. Rep. 5(1), 11277 (2015).
[Crossref] [PubMed]

Lee, Y. T.

Leem, J. W.

Li, P.-C.

X. Li, P.-C. Li, L. Ji, C. Stender, S. R. Tatavarti, K. Sablon, and E. T. Yu, “Integration of subwavelength optical nanostructures for improved antireflection performance of mechanically flexible GaAs solar cells fabricated by epitaxial lift-off,” Sol. Energy Mater. Sol. Cells 143, 567–572 (2015).
[Crossref]

Li, X.

X. Li, P.-C. Li, L. Ji, C. Stender, S. R. Tatavarti, K. Sablon, and E. T. Yu, “Integration of subwavelength optical nanostructures for improved antireflection performance of mechanically flexible GaAs solar cells fabricated by epitaxial lift-off,” Sol. Energy Mater. Sol. Cells 143, 567–572 (2015).
[Crossref]

Lin, C. H.

Lin, C.-A.

Y.-A. Dai, H.-C. Chang, K.-Y. Lai, C.-A. Lin, R.-J. Chung, G.-R. Lin, and J.-H. He, “Subwavelength Si nanowire arrays for self-cleaning antireflection coatings,” J. Mater. Chem. 20(48), 10924–10930 (2010).
[Crossref]

Lin, G.-R.

Y.-A. Dai, H.-C. Chang, K.-Y. Lai, C.-A. Lin, R.-J. Chung, G.-R. Lin, and J.-H. He, “Subwavelength Si nanowire arrays for self-cleaning antireflection coatings,” J. Mater. Chem. 20(48), 10924–10930 (2010).
[Crossref]

Lin, Y. H.

Lipinski, M.

P. Panek, M. Lipiński, and J. Dutkiewicz, “Texturization of multicrystalline silicon by wet chemical etching for silicon solar cells,” J. Mater. Sci. 40(6), 1459–1463 (2005).
[Crossref]

Liu, X.

X. Liu, P. R. Coxon, M. Peters, B. Hoex, J. M. Cole, and D. J. Fray, “Black silicon: fabrication methods, properties and solar energy applications,” Energy Environ. Sci. 7(10), 3223–3263 (2014).
[Crossref]

Lu, H. L.

Z. Y. Wang, R. J. Zhang, H. L. Lu, X. Chen, Y. Sun, Y. Zhang, Y. F. Wei, J. P. Xu, S. Y. Wang, Y. X. Zheng, and L. Y. Chen, “The impact of thickness and thermal annealing on refractive index for aluminum oxide thin films deposited by atomic layer deposition,” Nanoscale Res. Lett. 10(1), 46 (2015).
[Crossref] [PubMed]

Lu, M.

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5(1), 7810 (2015).
[Crossref] [PubMed]

Lu, N.

H. Xu, N. Lu, D. Qi, J. Hao, L. Gao, B. Zhang, and L. Chi, “Biomimetic antireflective Si nanopillar arrays,” Small 4(11), 1972–1975 (2008).
[Crossref] [PubMed]

Ma, P.

Magnusson, M. H.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Martinet, C.

C. Martinet, V. Paillard, A. Gagnaire, and J. Joseph, “Deposition of SiO2 and TiO2 thin films by plasma enhanced chemical vapor deposition for antireflection coating,” J. Non-Cryst. Solids 216, 77–82 (1997).
[Crossref]

Matsui, T.

H. Sai, T. Matsui, K. Saito, M. Kondo, and I. Yoshida, “Photocurrent enhancement in thin‐film silicon solar cells by combination of anti‐reflective sub‐wavelength structures and light‐trapping textures,” Prog. Photovolt. Res. Appl. 23(11), 1572–1580 (2015).
[Crossref]

Matsumura, M.

C.-L. Lee, K. Tsujino, Y. Kanda, S. Ikeda, and M. Matsumura, “Pore formation in silicon by wet etching using micrometre-sized metal particles as catalysts,” J. Mater. Chem. 18(9), 1015–1020 (2008).
[Crossref]

McGehee, M.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

McGehee, M. D.

S. Jeong, M. D. McGehee, and Y. Cui, “All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency,” Nat. Commun. 4, 2950 (2013).
[Crossref] [PubMed]

Min, W.-L.

W.-L. Min, P. Jiang, and B. Jiang, “Large-scale assembly of colloidal nanoparticles and fabrication of periodic subwavelength structures,” Nanotechnology 19(47), 475604 (2008).
[Crossref] [PubMed]

Murad, S.

S. Murad, M. Rahman, N. Johnson, S. Thoms, S. Beaumont, and C. Wilkinson, “Dry etching damage in III–V semiconductors,” J. Vac. Sci. Technol. B 14(6), 3658–3662 (1996).
[Crossref]

Nair, A. S.

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
[Crossref]

Oh, I.

Y. Song, B. Ki, K. Choi, I. Oh, and J. Oh, “In-plane and out-of-plane mass transport during metal-assisted chemical etching of GaAs,” J. Mater. Chem. A Mater. Energy Sustain. 2(29), 11017–11021 (2014).
[Crossref]

Oh, J.

Y. Song and J. Oh, “Fabrication of three-dimensional GaAs antireflective structures by metal-assisted chemical etching,” Sol. Energy Mater. Sol. Cells 144, 159–164 (2016).
[Crossref]

Y. Song and J. Oh, “Thermally driven metal-assisted chemical etching of GaAs with in-position and out-of-position catalyst,” J. Mater. Chem. A Mater. Energy Sustain. 2(48), 20481–20485 (2014).
[Crossref]

Y. Song, B. Ki, K. Choi, I. Oh, and J. Oh, “In-plane and out-of-plane mass transport during metal-assisted chemical etching of GaAs,” J. Mater. Chem. A Mater. Energy Sustain. 2(29), 11017–11021 (2014).
[Crossref]

J. Oh, H.-C. Yuan, and H. M. Branz, “An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures,” Nat. Nanotechnol. 7(11), 743–748 (2012).
[Crossref] [PubMed]

Ohshita, Y.

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovolt. Res. Appl. 15(5), 415–423 (2007).
[Crossref]

Oladeji, I. O.

I. O. Oladeji, L. Chow, C. S. Ferekides, V. Viswanathan, and Z. Zhao, “Metal/CdTe/CdS/Cd1-xZnxS/TCO/glass: A new CdTe thin film solar cell structure,” Sol. Energy Mater. Sol. Cells 61(2), 203–211 (2000).
[Crossref]

Paillard, V.

C. Martinet, V. Paillard, A. Gagnaire, and J. Joseph, “Deposition of SiO2 and TiO2 thin films by plasma enhanced chemical vapor deposition for antireflection coating,” J. Non-Cryst. Solids 216, 77–82 (1997).
[Crossref]

Panek, P.

P. Panek, M. Lipiński, and J. Dutkiewicz, “Texturization of multicrystalline silicon by wet chemical etching for silicon solar cells,” J. Mater. Sci. 40(6), 1459–1463 (2005).
[Crossref]

Park, H.-H.

J. Kim, J.-H. Yun, H. Kim, Y. Cho, H.-H. Park, M. M. D. Kumar, J. Yi, W. A. Anderson, and D.-W. Kim, “Transparent conductor-embedding nanocones for selective emitters: optical and electrical improvements of Si solar cells,” Sci. Rep. 5(1), 9256 (2015).
[Crossref] [PubMed]

Peters, M.

X. Liu, P. R. Coxon, M. Peters, B. Hoex, J. M. Cole, and D. J. Fray, “Black silicon: fabrication methods, properties and solar energy applications,” Energy Environ. Sci. 7(10), 3223–3263 (2014).
[Crossref]

Poitras, D.

Qi, D.

H. Xu, N. Lu, D. Qi, J. Hao, L. Gao, B. Zhang, and L. Chi, “Biomimetic antireflective Si nanopillar arrays,” Small 4(11), 1972–1975 (2008).
[Crossref] [PubMed]

Rahman, M.

S. Murad, M. Rahman, N. Johnson, S. Thoms, S. Beaumont, and C. Wilkinson, “Dry etching damage in III–V semiconductors,” J. Vac. Sci. Technol. B 14(6), 3658–3662 (1996).
[Crossref]

Ramakrishna, S.

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
[Crossref]

Raut, H. K.

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
[Crossref]

Roy, E.

Y. Kanamori, E. Roy, and Y. Chen, “Antireflection sub-wavelength gratings fabricated by spin-coating replication,” Microelectron. Eng. 78–79, 287–293 (2005).
[Crossref]

Ruby, D. S.

S. H. Zaidi, D. S. Ruby, and J. M. Gee, “Characterization of random reactive ion etched-textured silicon solar cells,” IEEE Trans. Electron Dev. 48(6), 1200–1206 (2001).
[Crossref]

Sablon, K.

X. Li, P.-C. Li, L. Ji, C. Stender, S. R. Tatavarti, K. Sablon, and E. T. Yu, “Integration of subwavelength optical nanostructures for improved antireflection performance of mechanically flexible GaAs solar cells fabricated by epitaxial lift-off,” Sol. Energy Mater. Sol. Cells 143, 567–572 (2015).
[Crossref]

Sai, H.

H. Sai, T. Matsui, K. Saito, M. Kondo, and I. Yoshida, “Photocurrent enhancement in thin‐film silicon solar cells by combination of anti‐reflective sub‐wavelength structures and light‐trapping textures,” Prog. Photovolt. Res. Appl. 23(11), 1572–1580 (2015).
[Crossref]

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovolt. Res. Appl. 15(5), 415–423 (2007).
[Crossref]

Saito, K.

H. Sai, T. Matsui, K. Saito, M. Kondo, and I. Yoshida, “Photocurrent enhancement in thin‐film silicon solar cells by combination of anti‐reflective sub‐wavelength structures and light‐trapping textures,” Prog. Photovolt. Res. Appl. 23(11), 1572–1580 (2015).
[Crossref]

Samuelson, L.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Seo, K.

H.-D. Um, N. Kim, K. Lee, I. Hwang, J. Hoon Seo, Y. J. Yu, P. Duane, M. Wober, and K. Seo, “Versatile control of metal-assisted chemical etching for vertical silicon microwire arrays and their photovoltaic applications,” Sci. Rep. 5(1), 11277 (2015).
[Crossref] [PubMed]

Siefer, G.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Sonek, G.

C. Aydin, A. Zaslavsky, G. Sonek, and J. Goldstein, “Reduction of reflection losses in ZnGeP 2 using motheye antireflection surface relief structures,” Appl. Phys. Lett. 80(13), 2242–2244 (2002).
[Crossref]

Song, Y.

Y. Song and J. Oh, “Fabrication of three-dimensional GaAs antireflective structures by metal-assisted chemical etching,” Sol. Energy Mater. Sol. Cells 144, 159–164 (2016).
[Crossref]

Y. Song and J. Oh, “Thermally driven metal-assisted chemical etching of GaAs with in-position and out-of-position catalyst,” J. Mater. Chem. A Mater. Energy Sustain. 2(48), 20481–20485 (2014).
[Crossref]

Y. Song, B. Ki, K. Choi, I. Oh, and J. Oh, “In-plane and out-of-plane mass transport during metal-assisted chemical etching of GaAs,” J. Mater. Chem. A Mater. Energy Sustain. 2(29), 11017–11021 (2014).
[Crossref]

Song, Y. M.

Stender, C.

X. Li, P.-C. Li, L. Ji, C. Stender, S. R. Tatavarti, K. Sablon, and E. T. Yu, “Integration of subwavelength optical nanostructures for improved antireflection performance of mechanically flexible GaAs solar cells fabricated by epitaxial lift-off,” Sol. Energy Mater. Sol. Cells 143, 567–572 (2015).
[Crossref]

Sun, Y.

Z. Y. Wang, R. J. Zhang, H. L. Lu, X. Chen, Y. Sun, Y. Zhang, Y. F. Wei, J. P. Xu, S. Y. Wang, Y. X. Zheng, and L. Y. Chen, “The impact of thickness and thermal annealing on refractive index for aluminum oxide thin films deposited by atomic layer deposition,” Nanoscale Res. Lett. 10(1), 46 (2015).
[Crossref] [PubMed]

Tatavarti, S. R.

X. Li, P.-C. Li, L. Ji, C. Stender, S. R. Tatavarti, K. Sablon, and E. T. Yu, “Integration of subwavelength optical nanostructures for improved antireflection performance of mechanically flexible GaAs solar cells fabricated by epitaxial lift-off,” Sol. Energy Mater. Sol. Cells 143, 567–572 (2015).
[Crossref]

Thompson, C. V.

C. V. Thompson, “Solid-State Dewetting of Thin films,” Annu. Rev. Mater. Res. 42(1), 399–434 (2012).
[Crossref]

Thoms, S.

S. Murad, M. Rahman, N. Johnson, S. Thoms, S. Beaumont, and C. Wilkinson, “Dry etching damage in III–V semiconductors,” J. Vac. Sci. Technol. B 14(6), 3658–3662 (1996).
[Crossref]

Tsujino, K.

C.-L. Lee, K. Tsujino, Y. Kanda, S. Ikeda, and M. Matsumura, “Pore formation in silicon by wet etching using micrometre-sized metal particles as catalysts,” J. Mater. Chem. 18(9), 1015–1020 (2008).
[Crossref]

Um, H.-D.

H.-D. Um, N. Kim, K. Lee, I. Hwang, J. Hoon Seo, Y. J. Yu, P. Duane, M. Wober, and K. Seo, “Versatile control of metal-assisted chemical etching for vertical silicon microwire arrays and their photovoltaic applications,” Sci. Rep. 5(1), 11277 (2015).
[Crossref] [PubMed]

Vakil, H.

Viswanathan, V.

I. O. Oladeji, L. Chow, C. S. Ferekides, V. Viswanathan, and Z. Zhao, “Metal/CdTe/CdS/Cd1-xZnxS/TCO/glass: A new CdTe thin film solar cell structure,” Sol. Energy Mater. Sol. Cells 61(2), 203–211 (2000).
[Crossref]

Wallentin, J.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Wang, C. Z.

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5(1), 7810 (2015).
[Crossref] [PubMed]

Wang, Q.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

Wang, S. Y.

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5(1), 7810 (2015).
[Crossref] [PubMed]

Z. Y. Wang, R. J. Zhang, H. L. Lu, X. Chen, Y. Sun, Y. Zhang, Y. F. Wei, J. P. Xu, S. Y. Wang, Y. X. Zheng, and L. Y. Chen, “The impact of thickness and thermal annealing on refractive index for aluminum oxide thin films deposited by atomic layer deposition,” Nanoscale Res. Lett. 10(1), 46 (2015).
[Crossref] [PubMed]

Wang, Z. Y.

Z. Y. Wang, R. J. Zhang, H. L. Lu, X. Chen, Y. Sun, Y. Zhang, Y. F. Wei, J. P. Xu, S. Y. Wang, Y. X. Zheng, and L. Y. Chen, “The impact of thickness and thermal annealing on refractive index for aluminum oxide thin films deposited by atomic layer deposition,” Nanoscale Res. Lett. 10(1), 46 (2015).
[Crossref] [PubMed]

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5(1), 7810 (2015).
[Crossref] [PubMed]

Wei, Y. F.

Z. Y. Wang, R. J. Zhang, H. L. Lu, X. Chen, Y. Sun, Y. Zhang, Y. F. Wei, J. P. Xu, S. Y. Wang, Y. X. Zheng, and L. Y. Chen, “The impact of thickness and thermal annealing on refractive index for aluminum oxide thin films deposited by atomic layer deposition,” Nanoscale Res. Lett. 10(1), 46 (2015).
[Crossref] [PubMed]

Wilkinson, C.

S. Murad, M. Rahman, N. Johnson, S. Thoms, S. Beaumont, and C. Wilkinson, “Dry etching damage in III–V semiconductors,” J. Vac. Sci. Technol. B 14(6), 3658–3662 (1996).
[Crossref]

Witzigmann, B.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Wober, M.

H.-D. Um, N. Kim, K. Lee, I. Hwang, J. Hoon Seo, Y. J. Yu, P. Duane, M. Wober, and K. Seo, “Versatile control of metal-assisted chemical etching for vertical silicon microwire arrays and their photovoltaic applications,” Sci. Rep. 5(1), 11277 (2015).
[Crossref] [PubMed]

Wu, W.

Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21(6), 2874–2877 (2003).
[Crossref]

Xu, H.

H. Xu, N. Lu, D. Qi, J. Hao, L. Gao, B. Zhang, and L. Chi, “Biomimetic antireflective Si nanopillar arrays,” Small 4(11), 1972–1975 (2008).
[Crossref] [PubMed]

Xu, H. Q.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Xu, J. P.

Z. Y. Wang, R. J. Zhang, H. L. Lu, X. Chen, Y. Sun, Y. Zhang, Y. F. Wei, J. P. Xu, S. Y. Wang, Y. X. Zheng, and L. Y. Chen, “The impact of thickness and thermal annealing on refractive index for aluminum oxide thin films deposited by atomic layer deposition,” Nanoscale Res. Lett. 10(1), 46 (2015).
[Crossref] [PubMed]

Xu, Y.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

Yamaguchi, M.

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovolt. Res. Appl. 15(5), 415–423 (2007).
[Crossref]

Yang, P.

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[Crossref] [PubMed]

Yang, S.

B. Kiraly, S. Yang, and T. J. Huang, “Multifunctional porous silicon nanopillar arrays: antireflection, superhydrophobicity, photoluminescence, and surface-enhanced Raman scattering,” Nanotechnology 24(24), 245704 (2013).
[Crossref] [PubMed]

S. Yang, Y. Hsieh, and C. Jeng, “Optimal design of antireflection coating and experimental verification by plasma enhanced chemical vapor deposition in small displays,” J. Vac. Sci. Technol. A 27(2), 336–341 (2009).
[Crossref]

Ye, Z.

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5(1), 7810 (2015).
[Crossref] [PubMed]

Yeh, Y.

Yi, J.

J. Kim, J.-H. Yun, H. Kim, Y. Cho, H.-H. Park, M. M. D. Kumar, J. Yi, W. A. Anderson, and D.-W. Kim, “Transparent conductor-embedding nanocones for selective emitters: optical and electrical improvements of Si solar cells,” Sci. Rep. 5(1), 9256 (2015).
[Crossref] [PubMed]

Yoshida, I.

H. Sai, T. Matsui, K. Saito, M. Kondo, and I. Yoshida, “Photocurrent enhancement in thin‐film silicon solar cells by combination of anti‐reflective sub‐wavelength structures and light‐trapping textures,” Prog. Photovolt. Res. Appl. 23(11), 1572–1580 (2015).
[Crossref]

Yu, E. T.

X. Li, P.-C. Li, L. Ji, C. Stender, S. R. Tatavarti, K. Sablon, and E. T. Yu, “Integration of subwavelength optical nanostructures for improved antireflection performance of mechanically flexible GaAs solar cells fabricated by epitaxial lift-off,” Sol. Energy Mater. Sol. Cells 143, 567–572 (2015).
[Crossref]

Yu, J. S.

Yu, Y. J.

H.-D. Um, N. Kim, K. Lee, I. Hwang, J. Hoon Seo, Y. J. Yu, P. Duane, M. Wober, and K. Seo, “Versatile control of metal-assisted chemical etching for vertical silicon microwire arrays and their photovoltaic applications,” Sci. Rep. 5(1), 11277 (2015).
[Crossref] [PubMed]

Yu, Z.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21(6), 2874–2877 (2003).
[Crossref]

Yuan, H.-C.

J. Oh, H.-C. Yuan, and H. M. Branz, “An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures,” Nat. Nanotechnol. 7(11), 743–748 (2012).
[Crossref] [PubMed]

Yun, J.-H.

J. Kim, J.-H. Yun, H. Kim, Y. Cho, H.-H. Park, M. M. D. Kumar, J. Yi, W. A. Anderson, and D.-W. Kim, “Transparent conductor-embedding nanocones for selective emitters: optical and electrical improvements of Si solar cells,” Sci. Rep. 5(1), 9256 (2015).
[Crossref] [PubMed]

Zaidi, S. H.

S. H. Zaidi, D. S. Ruby, and J. M. Gee, “Characterization of random reactive ion etched-textured silicon solar cells,” IEEE Trans. Electron Dev. 48(6), 1200–1206 (2001).
[Crossref]

Zaslavsky, A.

C. Aydin, A. Zaslavsky, G. Sonek, and J. Goldstein, “Reduction of reflection losses in ZnGeP 2 using motheye antireflection surface relief structures,” Appl. Phys. Lett. 80(13), 2242–2244 (2002).
[Crossref]

Zhang, B.

H. Xu, N. Lu, D. Qi, J. Hao, L. Gao, B. Zhang, and L. Chi, “Biomimetic antireflective Si nanopillar arrays,” Small 4(11), 1972–1975 (2008).
[Crossref] [PubMed]

Zhang, R. J.

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5(1), 7810 (2015).
[Crossref] [PubMed]

Z. Y. Wang, R. J. Zhang, H. L. Lu, X. Chen, Y. Sun, Y. Zhang, Y. F. Wei, J. P. Xu, S. Y. Wang, Y. X. Zheng, and L. Y. Chen, “The impact of thickness and thermal annealing on refractive index for aluminum oxide thin films deposited by atomic layer deposition,” Nanoscale Res. Lett. 10(1), 46 (2015).
[Crossref] [PubMed]

Zhang, Y.

Z. Y. Wang, R. J. Zhang, H. L. Lu, X. Chen, Y. Sun, Y. Zhang, Y. F. Wei, J. P. Xu, S. Y. Wang, Y. X. Zheng, and L. Y. Chen, “The impact of thickness and thermal annealing on refractive index for aluminum oxide thin films deposited by atomic layer deposition,” Nanoscale Res. Lett. 10(1), 46 (2015).
[Crossref] [PubMed]

Zhao, Z.

I. O. Oladeji, L. Chow, C. S. Ferekides, V. Viswanathan, and Z. Zhao, “Metal/CdTe/CdS/Cd1-xZnxS/TCO/glass: A new CdTe thin film solar cell structure,” Sol. Energy Mater. Sol. Cells 61(2), 203–211 (2000).
[Crossref]

Zheng, Y. X.

Z. Y. Wang, R. J. Zhang, H. L. Lu, X. Chen, Y. Sun, Y. Zhang, Y. F. Wei, J. P. Xu, S. Y. Wang, Y. X. Zheng, and L. Y. Chen, “The impact of thickness and thermal annealing on refractive index for aluminum oxide thin films deposited by atomic layer deposition,” Nanoscale Res. Lett. 10(1), 46 (2015).
[Crossref] [PubMed]

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5(1), 7810 (2015).
[Crossref] [PubMed]

Zhu, J.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

Annu. Rev. Mater. Res. (1)

C. V. Thompson, “Solid-State Dewetting of Thin films,” Annu. Rev. Mater. Res. 42(1), 399–434 (2012).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

C. Aydin, A. Zaslavsky, G. Sonek, and J. Goldstein, “Reduction of reflection losses in ZnGeP 2 using motheye antireflection surface relief structures,” Appl. Phys. Lett. 80(13), 2242–2244 (2002).
[Crossref]

Energy Environ. Sci. (2)

X. Liu, P. R. Coxon, M. Peters, B. Hoex, J. M. Cole, and D. J. Fray, “Black silicon: fabrication methods, properties and solar energy applications,” Energy Environ. Sci. 7(10), 3223–3263 (2014).
[Crossref]

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
[Crossref]

IEEE Trans. Electron Dev. (1)

S. H. Zaidi, D. S. Ruby, and J. M. Gee, “Characterization of random reactive ion etched-textured silicon solar cells,” IEEE Trans. Electron Dev. 48(6), 1200–1206 (2001).
[Crossref]

J. Electrochem. Soc. (1)

S. J. Fonash, “An overview of dry etching damage and contamination effects,” J. Electrochem. Soc. 137(12), 3885–3892 (1990).
[Crossref]

J. Mater. Chem. (2)

Y.-A. Dai, H.-C. Chang, K.-Y. Lai, C.-A. Lin, R.-J. Chung, G.-R. Lin, and J.-H. He, “Subwavelength Si nanowire arrays for self-cleaning antireflection coatings,” J. Mater. Chem. 20(48), 10924–10930 (2010).
[Crossref]

C.-L. Lee, K. Tsujino, Y. Kanda, S. Ikeda, and M. Matsumura, “Pore formation in silicon by wet etching using micrometre-sized metal particles as catalysts,” J. Mater. Chem. 18(9), 1015–1020 (2008).
[Crossref]

J. Mater. Chem. A Mater. Energy Sustain. (2)

Y. Song and J. Oh, “Thermally driven metal-assisted chemical etching of GaAs with in-position and out-of-position catalyst,” J. Mater. Chem. A Mater. Energy Sustain. 2(48), 20481–20485 (2014).
[Crossref]

Y. Song, B. Ki, K. Choi, I. Oh, and J. Oh, “In-plane and out-of-plane mass transport during metal-assisted chemical etching of GaAs,” J. Mater. Chem. A Mater. Energy Sustain. 2(29), 11017–11021 (2014).
[Crossref]

J. Mater. Sci. (1)

P. Panek, M. Lipiński, and J. Dutkiewicz, “Texturization of multicrystalline silicon by wet chemical etching for silicon solar cells,” J. Mater. Sci. 40(6), 1459–1463 (2005).
[Crossref]

J. Non-Cryst. Solids (1)

C. Martinet, V. Paillard, A. Gagnaire, and J. Joseph, “Deposition of SiO2 and TiO2 thin films by plasma enhanced chemical vapor deposition for antireflection coating,” J. Non-Cryst. Solids 216, 77–82 (1997).
[Crossref]

J. Vac. Sci. Technol. A (1)

S. Yang, Y. Hsieh, and C. Jeng, “Optimal design of antireflection coating and experimental verification by plasma enhanced chemical vapor deposition in small displays,” J. Vac. Sci. Technol. A 27(2), 336–341 (2009).
[Crossref]

J. Vac. Sci. Technol. B (2)

Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21(6), 2874–2877 (2003).
[Crossref]

S. Murad, M. Rahman, N. Johnson, S. Thoms, S. Beaumont, and C. Wilkinson, “Dry etching damage in III–V semiconductors,” J. Vac. Sci. Technol. B 14(6), 3658–3662 (1996).
[Crossref]

Mater. Sci. Eng. A (1)

J.-M. Lee and B.-I. Kim, “Thermal dewetting of Pt thin film: Etch-masks for the fabrication of semiconductor nanostructures,” Mater. Sci. Eng. A 449–451, 769–773 (2007).
[Crossref]

Microelectron. Eng. (1)

Y. Kanamori, E. Roy, and Y. Chen, “Antireflection sub-wavelength gratings fabricated by spin-coating replication,” Microelectron. Eng. 78–79, 287–293 (2005).
[Crossref]

Nano Lett. (4)

S. E. Han and G. Chen, “Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett. 10(11), 4692–4696 (2010).
[Crossref] [PubMed]

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
[Crossref] [PubMed]

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

Z. Y. Wang, R. J. Zhang, H. L. Lu, X. Chen, Y. Sun, Y. Zhang, Y. F. Wei, J. P. Xu, S. Y. Wang, Y. X. Zheng, and L. Y. Chen, “The impact of thickness and thermal annealing on refractive index for aluminum oxide thin films deposited by atomic layer deposition,” Nanoscale Res. Lett. 10(1), 46 (2015).
[Crossref] [PubMed]

Nanotechnology (2)

B. Kiraly, S. Yang, and T. J. Huang, “Multifunctional porous silicon nanopillar arrays: antireflection, superhydrophobicity, photoluminescence, and surface-enhanced Raman scattering,” Nanotechnology 24(24), 245704 (2013).
[Crossref] [PubMed]

W.-L. Min, P. Jiang, and B. Jiang, “Large-scale assembly of colloidal nanoparticles and fabrication of periodic subwavelength structures,” Nanotechnology 19(47), 475604 (2008).
[Crossref] [PubMed]

Nat. Commun. (1)

S. Jeong, M. D. McGehee, and Y. Cui, “All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency,” Nat. Commun. 4, 2950 (2013).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

J. Oh, H.-C. Yuan, and H. M. Branz, “An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures,” Nat. Nanotechnol. 7(11), 743–748 (2012).
[Crossref] [PubMed]

Nature (1)

P. Clapham and M. Hutley, “Reduction of lens reflexion by the “Moth Eye” principle,” Nature 244(5414), 281–282 (1973).
[Crossref]

Opt. Express (3)

Prog. Photovolt. Res. Appl. (2)

H. Sai, T. Matsui, K. Saito, M. Kondo, and I. Yoshida, “Photocurrent enhancement in thin‐film silicon solar cells by combination of anti‐reflective sub‐wavelength structures and light‐trapping textures,” Prog. Photovolt. Res. Appl. 23(11), 1572–1580 (2015).
[Crossref]

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovolt. Res. Appl. 15(5), 415–423 (2007).
[Crossref]

Sci. Rep. (3)

H.-D. Um, N. Kim, K. Lee, I. Hwang, J. Hoon Seo, Y. J. Yu, P. Duane, M. Wober, and K. Seo, “Versatile control of metal-assisted chemical etching for vertical silicon microwire arrays and their photovoltaic applications,” Sci. Rep. 5(1), 11277 (2015).
[Crossref] [PubMed]

J. Kim, J.-H. Yun, H. Kim, Y. Cho, H.-H. Park, M. M. D. Kumar, J. Yi, W. A. Anderson, and D.-W. Kim, “Transparent conductor-embedding nanocones for selective emitters: optical and electrical improvements of Si solar cells,” Sci. Rep. 5(1), 9256 (2015).
[Crossref] [PubMed]

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5(1), 7810 (2015).
[Crossref] [PubMed]

Science (1)

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Small (1)

H. Xu, N. Lu, D. Qi, J. Hao, L. Gao, B. Zhang, and L. Chi, “Biomimetic antireflective Si nanopillar arrays,” Small 4(11), 1972–1975 (2008).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (3)

Y. Song and J. Oh, “Fabrication of three-dimensional GaAs antireflective structures by metal-assisted chemical etching,” Sol. Energy Mater. Sol. Cells 144, 159–164 (2016).
[Crossref]

X. Li, P.-C. Li, L. Ji, C. Stender, S. R. Tatavarti, K. Sablon, and E. T. Yu, “Integration of subwavelength optical nanostructures for improved antireflection performance of mechanically flexible GaAs solar cells fabricated by epitaxial lift-off,” Sol. Energy Mater. Sol. Cells 143, 567–572 (2015).
[Crossref]

I. O. Oladeji, L. Chow, C. S. Ferekides, V. Viswanathan, and Z. Zhao, “Metal/CdTe/CdS/Cd1-xZnxS/TCO/glass: A new CdTe thin film solar cell structure,” Sol. Energy Mater. Sol. Cells 61(2), 203–211 (2000).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic illustration of GaAs nanostructured emitter solar cells (5 x 5mm2) with top contact grids of 8μm and 242μm spaces. Three types of epi-wafer were grown on different thicknesses of emitter (1.5 μm, 1 μm and 0.5 μm) and base (2.5 μm, 3 μm and 3.5 μm) layers.
Fig. 2
Fig. 2 Top view SEM images of (A) the nano-scale Au catalysts on GaAs emitter layer after RTA at 600 °C for 3nm-thick Au film and (B) the subwavelength nanohole structures after metal-assisted chemical etching for 5min.
Fig. 3
Fig. 3 (A) Cross-sectional SEM images of GaAs nanostructured emitter layer after metal-assisted chemical etching for 5, 10, 15 and 20 min at room temperature. (B) The etch depth of Au nanoparticles submerged in GaAs emitter layer as a function of etch time.
Fig. 4
Fig. 4 (A) Reflectance spectra and (B) solar-weighted total reflectance of GaAs nanostructured emitter solar cells without and with texturing for 5, 10, 15 and 20 min as a function of the wavelength (200-850 nm).
Fig. 5
Fig. 5 J-V characterizations of GaAs nanostructured solar cells under 1 sun illumination. Samples with 1.5μm-thick emitter layer was textured by metal-assisted chemical etching for 5, 10, 15 and 20 min.
Fig. 6
Fig. 6 J-V characterizations of GaAs nanostructured solar cells under 1 sun illumination. Samples with 0.5, 1.0 and 1.5 μm-thick emitter layer was etched for 5 min.

Tables (2)

Tables Icon

Table 1 Parameters of measured electrical characteristics under 1 sun illumination for GaAs solar cells without and with nanohole texturing for 5, 10, 15 and 20 min. Initial thickness of emitter layer is 1.5 μm.

Tables Icon

Table 2 Parameters of measured electrical characteristics under 1 sun illumination for GaAs solar cells with nanohole texture for 5 min. Initial thickness of emitter layer is 0.5, 1.0 and 1.5 μm, respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R S W = ( R ( λ ) N p h o t o n ( λ ) d λ ) ( N p h o t o n ( λ ) d λ )

Metrics