Abstract

The acousto-optic tunable filter (AOTF) with wide wavelength range and high spectral resolution has long crystal and two transducers. A longer crystal length leads to a bigger chromatic focal shift and the double-transducer arrangement induces angular mutation in diffracted beam, which increase difficulty in longitudinal and lateral chromatic aberration correction respectively. In this study, the two chromatic aberrations are analyzed quantitatively based on an AOTF optical model and a novel catadioptric dual-path configuration is proposed to correct both the chromatic aberrations. The test results exhibit effectiveness of the optical configuration for this type of AOTF-based imaging spectrometer.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Field imaging system for hyperspectral data, 3D structural data and panchromatic image data measurement based on acousto-optic tunable filter

Huijie Zhao, Ziye Wang, Guorui Jia, Xudong Li, and Ying Zhang
Opt. Express 26(13) 17717-17730 (2018)

MWIR thermal imaging spectrometer based on the acousto-optic tunable filter

Huijie Zhao, Zheng Ji, Guorui Jia, Ying Zhang, Yansong Li, and Daming Wang
Appl. Opt. 56(25) 7269-7276 (2017)

Telecentric confocal optics for aberration correction of acousto-optic tunable filters

Dennis R. Suhre, Louis J. Denes, and Neelam Gupta
Appl. Opt. 43(6) 1255-1260 (2004)

References

  • View by:
  • |
  • |
  • |

  1. I. C. Chang, “Acoustooptic devices and applications,” IEEE Trans. Son. Ultrason. 23(1), 2–21 (1976).
    [Crossref]
  2. D. A. Glenar, J. J. Hillman, B. Saif, and J. Bergstralh, “Acousto-optic imaging spectropolarimetry for remote sensing,” Appl. Opt. 33(31), 7412–7424 (1994).
    [Crossref] [PubMed]
  3. N. Gupta, “Development of agile wide spectral range hyperspectral/polarization imagers,” in Technical Digest for CLEO/QELS/PhAST Conference, PThA3 (2005).
  4. V. Alchanatis, L. Ridel, A. Hetzroni, and L. Yaroslavsky, “Weed detection in multi-spectral images of cotton fields,” Comput. Electron. Agric. 47(3), 243–260 (2005).
    [Crossref]
  5. D. A. Glenar, J. J. Hillman, B. Saif, and J. Bergstralh, “Acousto-optic imaging spectropolarimetry for remote sensing,” Appl. Opt. 33(31), 7412–7424 (1994).
    [Crossref] [PubMed]
  6. J. Vila, J. Calpe, F. Pla, L. Gómez, J. Connell, J. Marchant, J. Calleja, M. Mulqueen, J. Muñoz, and A. Klaren, “SmartSpectra: applying multispectral imaging to industrial environments,” Real-Time Imaging 11(2), 85–98 (2005).
    [Crossref]
  7. N. Gupta, “Acousto-optic-tunable-filter-based spectropolarimetric imagers for medical diagnostic applications--instrument design point of view,” J. Biomed. Opt. 10(5), 051802 (2005).
    [Crossref] [PubMed]
  8. I. C. Chang, “Tunable Acousto-Optic Filters: An Overview,” Proc. SPIE 16(5), 165455 (1976).
  9. D. R. Suhre, M. Gottlieb, L. H. Taylor, and N. T. Melamed, “Spatial resolution of imaging noncollinear acousto-optic tunable filters,” Opt. Eng. 31(10), 2118–2121 (1992).
    [Crossref]
  10. I. C. Chang, “Acoustooptic tunable filters,” Opt. Eng. 20(6), 206824 (1981).
    [Crossref]
  11. N. Gupta, R. Dahmani, K. Bennett, S. Simizu, D. R. Suhre, and N. B. Singh, “Progress in AOTF Hyperspectral Imagers,” in Automated Geo-Spatial Image and Data Exploitation, W. E. Roper, M. K. Hamilton, eds., Proc. SPIE 4054, 30–38 (2000).
  12. D. A. Glenar, D. L. Blaney, and J. J. Hillman, “AIMS: acousto-optic imaging spectrometer for spectral mapping of solid surfaces,” Acta Astronaut. 52(2-6), 389–396 (2003).
    [Crossref]
  13. J. Calpe-Maravilla, J. Vila-Frances, E. Ribes-Gomez, V. Duran-Bosch, J. Munoz-Mari, J. Amoros-Lopez, L. Gomez-Chova, and E. Tajahuerce-Romera, “400-to 1000-nm imaging spectrometer based on acousto-optic tunable filters,” J. Electron. Imaging 15(2), 023001 (2006).
    [Crossref]
  14. V. B. Voloshinov, K. B. Yushkov, and B. B. J. Linde, “Improvement in performance of a TeO2 acousto-optic imaging spectrometer,” J. Opt. A, Pure Appl. Opt. 9(4), 341–347 (2007).
    [Crossref]
  15. E. Dekemper, N. Loodts, B. Van Opstal, J. Maes, F. Vanhellemont, N. Mateshvili, G. Franssens, D. Pieroux, C. Bingen, C. Robert, L. De Vos, L. Aballea, and D. Fussen, “Tunable acousto-optic spectral imager for atmospheric composition measurements in the visible spectral domain,” Appl. Opt. 51(25), 6259–6267 (2012).
    [Crossref] [PubMed]
  16. J. Romier, J. Selves, and J. Gastellu-Etchegorry, “Imaging spectrometer based on acousto-optics tunable filter,” Rev. Sci. Instrum. 69(8), 2859–2867 (1998).
    [Crossref]
  17. A. Deslis, C. G. Kurzweil, C. C. LaBaw, A. E. Lowman, and J. C. Mahoney, “Optical design of an imaging spectrometer utilizing an acousto-optic tunable filter as a disperser,” Proc. SPIE 3482, 170–178 (1998).
    [Crossref]
  18. L. Y. Chang, D. W. Yao, B. C. Zhao, and Y. H. Qiu, “Optical System Design of Polarization Imaging Spectrometer for Ground-based Astronomical Observation,” Proc. SPIE 8910, 89101Z (2013).
    [Crossref]
  19. L. H. Taylor, D. R. Suhre, S. A. Wutzke, P. L. Ulerich, G. D. Baldwin, M. T. Meyers, and J. E. Odhner, “Infrared spectroradiometer design based on an acousto-optic tunable filter,” Proc. SPIE 2480, 334–345 (1995).
    [Crossref]
  20. E. S. Wachman, W. H. Niu, and D. L. Farkas, “Imaging acousto-optic tunable filter with 0.35-micrometer spatial resolution,” Appl. Opt. 35(25), 5220–5226 (1996).
    [Crossref] [PubMed]
  21. T. Yano and A. Watanabe, “Acoustooptic TeO2 tunable filter using far-off-axis anisotropic Bragg diffraction,” Appl. Opt. 15(9), 2250–2258 (1976).
    [Crossref] [PubMed]
  22. D. R. Suhre and J. G. Theodore, “White-light imaging by use of a multiple passband acousto-optic tunable filter,” Appl. Opt. 35(22), 4494–4501 (1996).
    [Crossref] [PubMed]
  23. S. Y. Ryu, J. W. You, Y. Kwak, and S. Kim, “Design of a prism to compensate the image-shifting error of the Acousto-Optic tunable filter,” Opt. Express 16(22), 17138–17147 (2008).
    [Crossref] [PubMed]
  24. H. J. Zhao, P. W. Zhou, Y. Zhang, and C. C. Li, “Lateral chromatic aberrations correction for AOTF imaging spectrometer based on doublet prism,” Spectrosc. Spectral Anal. 33(10), 2869–2874 (2013).
    [PubMed]
  25. D. R. Suhre, L. J. Denes, and N. Gupta, “Telecentric confocal optics for aberration correction of acousto-optic tunable filters,” Appl. Opt. 43(6), 1255–1260 (2004).
    [Crossref] [PubMed]
  26. J. Vila-Francés, J. Calpe-Maravilla, L. Gómez-Chova, and J. Amorós-López, “Improving the performance of acousto-optic tunable filters in imaging applications,” J. Electron. Imaging 19(4), 043022 (2010).
    [Crossref]
  27. A. Sivanayagam and D. Findlay, “High resolution noncollinear acoustooptic filters with variable passband characteristics: design,” Appl. Opt. 23(24), 4601–4608 (1984).
    [Crossref] [PubMed]
  28. C. Stedham, M. Draper, J. Ward, E. Wachman, and C. Pannell, “A novel acousto-optic tunable filter for use in hyperspectral imaging systems,” Proc. SPIE 6889, 68891C (2008).
    [Crossref]
  29. D. R. Suhre and N. Gupta, “Acousto-optic tunable filter sidelobe analysis and reduction with telecentric confocal optics,” Appl. Opt. 44(27), 5797–5801 (2005).
    [Crossref] [PubMed]
  30. E. S. Wachman, W. Niu, and D. L. Farkas, “AOTF microscope for imaging with increased speed and spectral versatility,” Biophys. J. 73(3), 1215–1222 (1997).
    [Crossref] [PubMed]
  31. L. J. Denes, M. S. Gottlieb, and B. Kaminsky, “Acousto-optic tunable filters in imaging applications,” Opt. Eng. 37(4), 1262–1267 (1998).
    [Crossref]
  32. H. Zhao, C. Li, and Y. Zhang, “Three-surface model for the ray tracing of an imaging acousto-optic tunable filter,” Appl. Opt. 53(32), 7684–7690 (2014).
    [Crossref] [PubMed]
  33. I. C. Chang, “Non-collinear acousto-optic filter with large angular aperture,” Appl. Phys. Lett. 25(7), 370–372 (1974).
    [Crossref]

2014 (1)

2013 (2)

H. J. Zhao, P. W. Zhou, Y. Zhang, and C. C. Li, “Lateral chromatic aberrations correction for AOTF imaging spectrometer based on doublet prism,” Spectrosc. Spectral Anal. 33(10), 2869–2874 (2013).
[PubMed]

L. Y. Chang, D. W. Yao, B. C. Zhao, and Y. H. Qiu, “Optical System Design of Polarization Imaging Spectrometer for Ground-based Astronomical Observation,” Proc. SPIE 8910, 89101Z (2013).
[Crossref]

2012 (1)

2010 (1)

J. Vila-Francés, J. Calpe-Maravilla, L. Gómez-Chova, and J. Amorós-López, “Improving the performance of acousto-optic tunable filters in imaging applications,” J. Electron. Imaging 19(4), 043022 (2010).
[Crossref]

2008 (2)

C. Stedham, M. Draper, J. Ward, E. Wachman, and C. Pannell, “A novel acousto-optic tunable filter for use in hyperspectral imaging systems,” Proc. SPIE 6889, 68891C (2008).
[Crossref]

S. Y. Ryu, J. W. You, Y. Kwak, and S. Kim, “Design of a prism to compensate the image-shifting error of the Acousto-Optic tunable filter,” Opt. Express 16(22), 17138–17147 (2008).
[Crossref] [PubMed]

2007 (1)

V. B. Voloshinov, K. B. Yushkov, and B. B. J. Linde, “Improvement in performance of a TeO2 acousto-optic imaging spectrometer,” J. Opt. A, Pure Appl. Opt. 9(4), 341–347 (2007).
[Crossref]

2006 (1)

J. Calpe-Maravilla, J. Vila-Frances, E. Ribes-Gomez, V. Duran-Bosch, J. Munoz-Mari, J. Amoros-Lopez, L. Gomez-Chova, and E. Tajahuerce-Romera, “400-to 1000-nm imaging spectrometer based on acousto-optic tunable filters,” J. Electron. Imaging 15(2), 023001 (2006).
[Crossref]

2005 (4)

V. Alchanatis, L. Ridel, A. Hetzroni, and L. Yaroslavsky, “Weed detection in multi-spectral images of cotton fields,” Comput. Electron. Agric. 47(3), 243–260 (2005).
[Crossref]

J. Vila, J. Calpe, F. Pla, L. Gómez, J. Connell, J. Marchant, J. Calleja, M. Mulqueen, J. Muñoz, and A. Klaren, “SmartSpectra: applying multispectral imaging to industrial environments,” Real-Time Imaging 11(2), 85–98 (2005).
[Crossref]

N. Gupta, “Acousto-optic-tunable-filter-based spectropolarimetric imagers for medical diagnostic applications--instrument design point of view,” J. Biomed. Opt. 10(5), 051802 (2005).
[Crossref] [PubMed]

D. R. Suhre and N. Gupta, “Acousto-optic tunable filter sidelobe analysis and reduction with telecentric confocal optics,” Appl. Opt. 44(27), 5797–5801 (2005).
[Crossref] [PubMed]

2004 (1)

2003 (1)

D. A. Glenar, D. L. Blaney, and J. J. Hillman, “AIMS: acousto-optic imaging spectrometer for spectral mapping of solid surfaces,” Acta Astronaut. 52(2-6), 389–396 (2003).
[Crossref]

1998 (3)

J. Romier, J. Selves, and J. Gastellu-Etchegorry, “Imaging spectrometer based on acousto-optics tunable filter,” Rev. Sci. Instrum. 69(8), 2859–2867 (1998).
[Crossref]

A. Deslis, C. G. Kurzweil, C. C. LaBaw, A. E. Lowman, and J. C. Mahoney, “Optical design of an imaging spectrometer utilizing an acousto-optic tunable filter as a disperser,” Proc. SPIE 3482, 170–178 (1998).
[Crossref]

L. J. Denes, M. S. Gottlieb, and B. Kaminsky, “Acousto-optic tunable filters in imaging applications,” Opt. Eng. 37(4), 1262–1267 (1998).
[Crossref]

1997 (1)

E. S. Wachman, W. Niu, and D. L. Farkas, “AOTF microscope for imaging with increased speed and spectral versatility,” Biophys. J. 73(3), 1215–1222 (1997).
[Crossref] [PubMed]

1996 (2)

1995 (1)

L. H. Taylor, D. R. Suhre, S. A. Wutzke, P. L. Ulerich, G. D. Baldwin, M. T. Meyers, and J. E. Odhner, “Infrared spectroradiometer design based on an acousto-optic tunable filter,” Proc. SPIE 2480, 334–345 (1995).
[Crossref]

1994 (2)

1992 (1)

D. R. Suhre, M. Gottlieb, L. H. Taylor, and N. T. Melamed, “Spatial resolution of imaging noncollinear acousto-optic tunable filters,” Opt. Eng. 31(10), 2118–2121 (1992).
[Crossref]

1984 (1)

1981 (1)

I. C. Chang, “Acoustooptic tunable filters,” Opt. Eng. 20(6), 206824 (1981).
[Crossref]

1976 (3)

I. C. Chang, “Tunable Acousto-Optic Filters: An Overview,” Proc. SPIE 16(5), 165455 (1976).

I. C. Chang, “Acoustooptic devices and applications,” IEEE Trans. Son. Ultrason. 23(1), 2–21 (1976).
[Crossref]

T. Yano and A. Watanabe, “Acoustooptic TeO2 tunable filter using far-off-axis anisotropic Bragg diffraction,” Appl. Opt. 15(9), 2250–2258 (1976).
[Crossref] [PubMed]

1974 (1)

I. C. Chang, “Non-collinear acousto-optic filter with large angular aperture,” Appl. Phys. Lett. 25(7), 370–372 (1974).
[Crossref]

Aballea, L.

Alchanatis, V.

V. Alchanatis, L. Ridel, A. Hetzroni, and L. Yaroslavsky, “Weed detection in multi-spectral images of cotton fields,” Comput. Electron. Agric. 47(3), 243–260 (2005).
[Crossref]

Amoros-Lopez, J.

J. Calpe-Maravilla, J. Vila-Frances, E. Ribes-Gomez, V. Duran-Bosch, J. Munoz-Mari, J. Amoros-Lopez, L. Gomez-Chova, and E. Tajahuerce-Romera, “400-to 1000-nm imaging spectrometer based on acousto-optic tunable filters,” J. Electron. Imaging 15(2), 023001 (2006).
[Crossref]

Amorós-López, J.

J. Vila-Francés, J. Calpe-Maravilla, L. Gómez-Chova, and J. Amorós-López, “Improving the performance of acousto-optic tunable filters in imaging applications,” J. Electron. Imaging 19(4), 043022 (2010).
[Crossref]

Baldwin, G. D.

L. H. Taylor, D. R. Suhre, S. A. Wutzke, P. L. Ulerich, G. D. Baldwin, M. T. Meyers, and J. E. Odhner, “Infrared spectroradiometer design based on an acousto-optic tunable filter,” Proc. SPIE 2480, 334–345 (1995).
[Crossref]

Bergstralh, J.

Bingen, C.

Blaney, D. L.

D. A. Glenar, D. L. Blaney, and J. J. Hillman, “AIMS: acousto-optic imaging spectrometer for spectral mapping of solid surfaces,” Acta Astronaut. 52(2-6), 389–396 (2003).
[Crossref]

Calleja, J.

J. Vila, J. Calpe, F. Pla, L. Gómez, J. Connell, J. Marchant, J. Calleja, M. Mulqueen, J. Muñoz, and A. Klaren, “SmartSpectra: applying multispectral imaging to industrial environments,” Real-Time Imaging 11(2), 85–98 (2005).
[Crossref]

Calpe, J.

J. Vila, J. Calpe, F. Pla, L. Gómez, J. Connell, J. Marchant, J. Calleja, M. Mulqueen, J. Muñoz, and A. Klaren, “SmartSpectra: applying multispectral imaging to industrial environments,” Real-Time Imaging 11(2), 85–98 (2005).
[Crossref]

Calpe-Maravilla, J.

J. Vila-Francés, J. Calpe-Maravilla, L. Gómez-Chova, and J. Amorós-López, “Improving the performance of acousto-optic tunable filters in imaging applications,” J. Electron. Imaging 19(4), 043022 (2010).
[Crossref]

J. Calpe-Maravilla, J. Vila-Frances, E. Ribes-Gomez, V. Duran-Bosch, J. Munoz-Mari, J. Amoros-Lopez, L. Gomez-Chova, and E. Tajahuerce-Romera, “400-to 1000-nm imaging spectrometer based on acousto-optic tunable filters,” J. Electron. Imaging 15(2), 023001 (2006).
[Crossref]

Chang, I. C.

I. C. Chang, “Acoustooptic tunable filters,” Opt. Eng. 20(6), 206824 (1981).
[Crossref]

I. C. Chang, “Tunable Acousto-Optic Filters: An Overview,” Proc. SPIE 16(5), 165455 (1976).

I. C. Chang, “Acoustooptic devices and applications,” IEEE Trans. Son. Ultrason. 23(1), 2–21 (1976).
[Crossref]

I. C. Chang, “Non-collinear acousto-optic filter with large angular aperture,” Appl. Phys. Lett. 25(7), 370–372 (1974).
[Crossref]

Chang, L. Y.

L. Y. Chang, D. W. Yao, B. C. Zhao, and Y. H. Qiu, “Optical System Design of Polarization Imaging Spectrometer for Ground-based Astronomical Observation,” Proc. SPIE 8910, 89101Z (2013).
[Crossref]

Connell, J.

J. Vila, J. Calpe, F. Pla, L. Gómez, J. Connell, J. Marchant, J. Calleja, M. Mulqueen, J. Muñoz, and A. Klaren, “SmartSpectra: applying multispectral imaging to industrial environments,” Real-Time Imaging 11(2), 85–98 (2005).
[Crossref]

De Vos, L.

Dekemper, E.

Denes, L. J.

D. R. Suhre, L. J. Denes, and N. Gupta, “Telecentric confocal optics for aberration correction of acousto-optic tunable filters,” Appl. Opt. 43(6), 1255–1260 (2004).
[Crossref] [PubMed]

L. J. Denes, M. S. Gottlieb, and B. Kaminsky, “Acousto-optic tunable filters in imaging applications,” Opt. Eng. 37(4), 1262–1267 (1998).
[Crossref]

Deslis, A.

A. Deslis, C. G. Kurzweil, C. C. LaBaw, A. E. Lowman, and J. C. Mahoney, “Optical design of an imaging spectrometer utilizing an acousto-optic tunable filter as a disperser,” Proc. SPIE 3482, 170–178 (1998).
[Crossref]

Draper, M.

C. Stedham, M. Draper, J. Ward, E. Wachman, and C. Pannell, “A novel acousto-optic tunable filter for use in hyperspectral imaging systems,” Proc. SPIE 6889, 68891C (2008).
[Crossref]

Duran-Bosch, V.

J. Calpe-Maravilla, J. Vila-Frances, E. Ribes-Gomez, V. Duran-Bosch, J. Munoz-Mari, J. Amoros-Lopez, L. Gomez-Chova, and E. Tajahuerce-Romera, “400-to 1000-nm imaging spectrometer based on acousto-optic tunable filters,” J. Electron. Imaging 15(2), 023001 (2006).
[Crossref]

Farkas, D. L.

E. S. Wachman, W. Niu, and D. L. Farkas, “AOTF microscope for imaging with increased speed and spectral versatility,” Biophys. J. 73(3), 1215–1222 (1997).
[Crossref] [PubMed]

E. S. Wachman, W. H. Niu, and D. L. Farkas, “Imaging acousto-optic tunable filter with 0.35-micrometer spatial resolution,” Appl. Opt. 35(25), 5220–5226 (1996).
[Crossref] [PubMed]

Findlay, D.

Franssens, G.

Fussen, D.

Gastellu-Etchegorry, J.

J. Romier, J. Selves, and J. Gastellu-Etchegorry, “Imaging spectrometer based on acousto-optics tunable filter,” Rev. Sci. Instrum. 69(8), 2859–2867 (1998).
[Crossref]

Glenar, D. A.

Gómez, L.

J. Vila, J. Calpe, F. Pla, L. Gómez, J. Connell, J. Marchant, J. Calleja, M. Mulqueen, J. Muñoz, and A. Klaren, “SmartSpectra: applying multispectral imaging to industrial environments,” Real-Time Imaging 11(2), 85–98 (2005).
[Crossref]

Gomez-Chova, L.

J. Calpe-Maravilla, J. Vila-Frances, E. Ribes-Gomez, V. Duran-Bosch, J. Munoz-Mari, J. Amoros-Lopez, L. Gomez-Chova, and E. Tajahuerce-Romera, “400-to 1000-nm imaging spectrometer based on acousto-optic tunable filters,” J. Electron. Imaging 15(2), 023001 (2006).
[Crossref]

Gómez-Chova, L.

J. Vila-Francés, J. Calpe-Maravilla, L. Gómez-Chova, and J. Amorós-López, “Improving the performance of acousto-optic tunable filters in imaging applications,” J. Electron. Imaging 19(4), 043022 (2010).
[Crossref]

Gottlieb, M.

D. R. Suhre, M. Gottlieb, L. H. Taylor, and N. T. Melamed, “Spatial resolution of imaging noncollinear acousto-optic tunable filters,” Opt. Eng. 31(10), 2118–2121 (1992).
[Crossref]

Gottlieb, M. S.

L. J. Denes, M. S. Gottlieb, and B. Kaminsky, “Acousto-optic tunable filters in imaging applications,” Opt. Eng. 37(4), 1262–1267 (1998).
[Crossref]

Gupta, N.

Hetzroni, A.

V. Alchanatis, L. Ridel, A. Hetzroni, and L. Yaroslavsky, “Weed detection in multi-spectral images of cotton fields,” Comput. Electron. Agric. 47(3), 243–260 (2005).
[Crossref]

Hillman, J. J.

Kaminsky, B.

L. J. Denes, M. S. Gottlieb, and B. Kaminsky, “Acousto-optic tunable filters in imaging applications,” Opt. Eng. 37(4), 1262–1267 (1998).
[Crossref]

Kim, S.

Klaren, A.

J. Vila, J. Calpe, F. Pla, L. Gómez, J. Connell, J. Marchant, J. Calleja, M. Mulqueen, J. Muñoz, and A. Klaren, “SmartSpectra: applying multispectral imaging to industrial environments,” Real-Time Imaging 11(2), 85–98 (2005).
[Crossref]

Kurzweil, C. G.

A. Deslis, C. G. Kurzweil, C. C. LaBaw, A. E. Lowman, and J. C. Mahoney, “Optical design of an imaging spectrometer utilizing an acousto-optic tunable filter as a disperser,” Proc. SPIE 3482, 170–178 (1998).
[Crossref]

Kwak, Y.

LaBaw, C. C.

A. Deslis, C. G. Kurzweil, C. C. LaBaw, A. E. Lowman, and J. C. Mahoney, “Optical design of an imaging spectrometer utilizing an acousto-optic tunable filter as a disperser,” Proc. SPIE 3482, 170–178 (1998).
[Crossref]

Li, C.

Li, C. C.

H. J. Zhao, P. W. Zhou, Y. Zhang, and C. C. Li, “Lateral chromatic aberrations correction for AOTF imaging spectrometer based on doublet prism,” Spectrosc. Spectral Anal. 33(10), 2869–2874 (2013).
[PubMed]

Linde, B. B. J.

V. B. Voloshinov, K. B. Yushkov, and B. B. J. Linde, “Improvement in performance of a TeO2 acousto-optic imaging spectrometer,” J. Opt. A, Pure Appl. Opt. 9(4), 341–347 (2007).
[Crossref]

Loodts, N.

Lowman, A. E.

A. Deslis, C. G. Kurzweil, C. C. LaBaw, A. E. Lowman, and J. C. Mahoney, “Optical design of an imaging spectrometer utilizing an acousto-optic tunable filter as a disperser,” Proc. SPIE 3482, 170–178 (1998).
[Crossref]

Maes, J.

Mahoney, J. C.

A. Deslis, C. G. Kurzweil, C. C. LaBaw, A. E. Lowman, and J. C. Mahoney, “Optical design of an imaging spectrometer utilizing an acousto-optic tunable filter as a disperser,” Proc. SPIE 3482, 170–178 (1998).
[Crossref]

Marchant, J.

J. Vila, J. Calpe, F. Pla, L. Gómez, J. Connell, J. Marchant, J. Calleja, M. Mulqueen, J. Muñoz, and A. Klaren, “SmartSpectra: applying multispectral imaging to industrial environments,” Real-Time Imaging 11(2), 85–98 (2005).
[Crossref]

Mateshvili, N.

Melamed, N. T.

D. R. Suhre, M. Gottlieb, L. H. Taylor, and N. T. Melamed, “Spatial resolution of imaging noncollinear acousto-optic tunable filters,” Opt. Eng. 31(10), 2118–2121 (1992).
[Crossref]

Meyers, M. T.

L. H. Taylor, D. R. Suhre, S. A. Wutzke, P. L. Ulerich, G. D. Baldwin, M. T. Meyers, and J. E. Odhner, “Infrared spectroradiometer design based on an acousto-optic tunable filter,” Proc. SPIE 2480, 334–345 (1995).
[Crossref]

Mulqueen, M.

J. Vila, J. Calpe, F. Pla, L. Gómez, J. Connell, J. Marchant, J. Calleja, M. Mulqueen, J. Muñoz, and A. Klaren, “SmartSpectra: applying multispectral imaging to industrial environments,” Real-Time Imaging 11(2), 85–98 (2005).
[Crossref]

Muñoz, J.

J. Vila, J. Calpe, F. Pla, L. Gómez, J. Connell, J. Marchant, J. Calleja, M. Mulqueen, J. Muñoz, and A. Klaren, “SmartSpectra: applying multispectral imaging to industrial environments,” Real-Time Imaging 11(2), 85–98 (2005).
[Crossref]

Munoz-Mari, J.

J. Calpe-Maravilla, J. Vila-Frances, E. Ribes-Gomez, V. Duran-Bosch, J. Munoz-Mari, J. Amoros-Lopez, L. Gomez-Chova, and E. Tajahuerce-Romera, “400-to 1000-nm imaging spectrometer based on acousto-optic tunable filters,” J. Electron. Imaging 15(2), 023001 (2006).
[Crossref]

Niu, W.

E. S. Wachman, W. Niu, and D. L. Farkas, “AOTF microscope for imaging with increased speed and spectral versatility,” Biophys. J. 73(3), 1215–1222 (1997).
[Crossref] [PubMed]

Niu, W. H.

Odhner, J. E.

L. H. Taylor, D. R. Suhre, S. A. Wutzke, P. L. Ulerich, G. D. Baldwin, M. T. Meyers, and J. E. Odhner, “Infrared spectroradiometer design based on an acousto-optic tunable filter,” Proc. SPIE 2480, 334–345 (1995).
[Crossref]

Pannell, C.

C. Stedham, M. Draper, J. Ward, E. Wachman, and C. Pannell, “A novel acousto-optic tunable filter for use in hyperspectral imaging systems,” Proc. SPIE 6889, 68891C (2008).
[Crossref]

Pieroux, D.

Pla, F.

J. Vila, J. Calpe, F. Pla, L. Gómez, J. Connell, J. Marchant, J. Calleja, M. Mulqueen, J. Muñoz, and A. Klaren, “SmartSpectra: applying multispectral imaging to industrial environments,” Real-Time Imaging 11(2), 85–98 (2005).
[Crossref]

Qiu, Y. H.

L. Y. Chang, D. W. Yao, B. C. Zhao, and Y. H. Qiu, “Optical System Design of Polarization Imaging Spectrometer for Ground-based Astronomical Observation,” Proc. SPIE 8910, 89101Z (2013).
[Crossref]

Ribes-Gomez, E.

J. Calpe-Maravilla, J. Vila-Frances, E. Ribes-Gomez, V. Duran-Bosch, J. Munoz-Mari, J. Amoros-Lopez, L. Gomez-Chova, and E. Tajahuerce-Romera, “400-to 1000-nm imaging spectrometer based on acousto-optic tunable filters,” J. Electron. Imaging 15(2), 023001 (2006).
[Crossref]

Ridel, L.

V. Alchanatis, L. Ridel, A. Hetzroni, and L. Yaroslavsky, “Weed detection in multi-spectral images of cotton fields,” Comput. Electron. Agric. 47(3), 243–260 (2005).
[Crossref]

Robert, C.

Romier, J.

J. Romier, J. Selves, and J. Gastellu-Etchegorry, “Imaging spectrometer based on acousto-optics tunable filter,” Rev. Sci. Instrum. 69(8), 2859–2867 (1998).
[Crossref]

Ryu, S. Y.

Saif, B.

Selves, J.

J. Romier, J. Selves, and J. Gastellu-Etchegorry, “Imaging spectrometer based on acousto-optics tunable filter,” Rev. Sci. Instrum. 69(8), 2859–2867 (1998).
[Crossref]

Sivanayagam, A.

Stedham, C.

C. Stedham, M. Draper, J. Ward, E. Wachman, and C. Pannell, “A novel acousto-optic tunable filter for use in hyperspectral imaging systems,” Proc. SPIE 6889, 68891C (2008).
[Crossref]

Suhre, D. R.

D. R. Suhre and N. Gupta, “Acousto-optic tunable filter sidelobe analysis and reduction with telecentric confocal optics,” Appl. Opt. 44(27), 5797–5801 (2005).
[Crossref] [PubMed]

D. R. Suhre, L. J. Denes, and N. Gupta, “Telecentric confocal optics for aberration correction of acousto-optic tunable filters,” Appl. Opt. 43(6), 1255–1260 (2004).
[Crossref] [PubMed]

D. R. Suhre and J. G. Theodore, “White-light imaging by use of a multiple passband acousto-optic tunable filter,” Appl. Opt. 35(22), 4494–4501 (1996).
[Crossref] [PubMed]

L. H. Taylor, D. R. Suhre, S. A. Wutzke, P. L. Ulerich, G. D. Baldwin, M. T. Meyers, and J. E. Odhner, “Infrared spectroradiometer design based on an acousto-optic tunable filter,” Proc. SPIE 2480, 334–345 (1995).
[Crossref]

D. R. Suhre, M. Gottlieb, L. H. Taylor, and N. T. Melamed, “Spatial resolution of imaging noncollinear acousto-optic tunable filters,” Opt. Eng. 31(10), 2118–2121 (1992).
[Crossref]

Tajahuerce-Romera, E.

J. Calpe-Maravilla, J. Vila-Frances, E. Ribes-Gomez, V. Duran-Bosch, J. Munoz-Mari, J. Amoros-Lopez, L. Gomez-Chova, and E. Tajahuerce-Romera, “400-to 1000-nm imaging spectrometer based on acousto-optic tunable filters,” J. Electron. Imaging 15(2), 023001 (2006).
[Crossref]

Taylor, L. H.

L. H. Taylor, D. R. Suhre, S. A. Wutzke, P. L. Ulerich, G. D. Baldwin, M. T. Meyers, and J. E. Odhner, “Infrared spectroradiometer design based on an acousto-optic tunable filter,” Proc. SPIE 2480, 334–345 (1995).
[Crossref]

D. R. Suhre, M. Gottlieb, L. H. Taylor, and N. T. Melamed, “Spatial resolution of imaging noncollinear acousto-optic tunable filters,” Opt. Eng. 31(10), 2118–2121 (1992).
[Crossref]

Theodore, J. G.

Ulerich, P. L.

L. H. Taylor, D. R. Suhre, S. A. Wutzke, P. L. Ulerich, G. D. Baldwin, M. T. Meyers, and J. E. Odhner, “Infrared spectroradiometer design based on an acousto-optic tunable filter,” Proc. SPIE 2480, 334–345 (1995).
[Crossref]

Van Opstal, B.

Vanhellemont, F.

Vila, J.

J. Vila, J. Calpe, F. Pla, L. Gómez, J. Connell, J. Marchant, J. Calleja, M. Mulqueen, J. Muñoz, and A. Klaren, “SmartSpectra: applying multispectral imaging to industrial environments,” Real-Time Imaging 11(2), 85–98 (2005).
[Crossref]

Vila-Frances, J.

J. Calpe-Maravilla, J. Vila-Frances, E. Ribes-Gomez, V. Duran-Bosch, J. Munoz-Mari, J. Amoros-Lopez, L. Gomez-Chova, and E. Tajahuerce-Romera, “400-to 1000-nm imaging spectrometer based on acousto-optic tunable filters,” J. Electron. Imaging 15(2), 023001 (2006).
[Crossref]

Vila-Francés, J.

J. Vila-Francés, J. Calpe-Maravilla, L. Gómez-Chova, and J. Amorós-López, “Improving the performance of acousto-optic tunable filters in imaging applications,” J. Electron. Imaging 19(4), 043022 (2010).
[Crossref]

Voloshinov, V. B.

V. B. Voloshinov, K. B. Yushkov, and B. B. J. Linde, “Improvement in performance of a TeO2 acousto-optic imaging spectrometer,” J. Opt. A, Pure Appl. Opt. 9(4), 341–347 (2007).
[Crossref]

Wachman, E.

C. Stedham, M. Draper, J. Ward, E. Wachman, and C. Pannell, “A novel acousto-optic tunable filter for use in hyperspectral imaging systems,” Proc. SPIE 6889, 68891C (2008).
[Crossref]

Wachman, E. S.

E. S. Wachman, W. Niu, and D. L. Farkas, “AOTF microscope for imaging with increased speed and spectral versatility,” Biophys. J. 73(3), 1215–1222 (1997).
[Crossref] [PubMed]

E. S. Wachman, W. H. Niu, and D. L. Farkas, “Imaging acousto-optic tunable filter with 0.35-micrometer spatial resolution,” Appl. Opt. 35(25), 5220–5226 (1996).
[Crossref] [PubMed]

Ward, J.

C. Stedham, M. Draper, J. Ward, E. Wachman, and C. Pannell, “A novel acousto-optic tunable filter for use in hyperspectral imaging systems,” Proc. SPIE 6889, 68891C (2008).
[Crossref]

Watanabe, A.

Wutzke, S. A.

L. H. Taylor, D. R. Suhre, S. A. Wutzke, P. L. Ulerich, G. D. Baldwin, M. T. Meyers, and J. E. Odhner, “Infrared spectroradiometer design based on an acousto-optic tunable filter,” Proc. SPIE 2480, 334–345 (1995).
[Crossref]

Yano, T.

Yao, D. W.

L. Y. Chang, D. W. Yao, B. C. Zhao, and Y. H. Qiu, “Optical System Design of Polarization Imaging Spectrometer for Ground-based Astronomical Observation,” Proc. SPIE 8910, 89101Z (2013).
[Crossref]

Yaroslavsky, L.

V. Alchanatis, L. Ridel, A. Hetzroni, and L. Yaroslavsky, “Weed detection in multi-spectral images of cotton fields,” Comput. Electron. Agric. 47(3), 243–260 (2005).
[Crossref]

You, J. W.

Yushkov, K. B.

V. B. Voloshinov, K. B. Yushkov, and B. B. J. Linde, “Improvement in performance of a TeO2 acousto-optic imaging spectrometer,” J. Opt. A, Pure Appl. Opt. 9(4), 341–347 (2007).
[Crossref]

Zhang, Y.

H. Zhao, C. Li, and Y. Zhang, “Three-surface model for the ray tracing of an imaging acousto-optic tunable filter,” Appl. Opt. 53(32), 7684–7690 (2014).
[Crossref] [PubMed]

H. J. Zhao, P. W. Zhou, Y. Zhang, and C. C. Li, “Lateral chromatic aberrations correction for AOTF imaging spectrometer based on doublet prism,” Spectrosc. Spectral Anal. 33(10), 2869–2874 (2013).
[PubMed]

Zhao, B. C.

L. Y. Chang, D. W. Yao, B. C. Zhao, and Y. H. Qiu, “Optical System Design of Polarization Imaging Spectrometer for Ground-based Astronomical Observation,” Proc. SPIE 8910, 89101Z (2013).
[Crossref]

Zhao, H.

Zhao, H. J.

H. J. Zhao, P. W. Zhou, Y. Zhang, and C. C. Li, “Lateral chromatic aberrations correction for AOTF imaging spectrometer based on doublet prism,” Spectrosc. Spectral Anal. 33(10), 2869–2874 (2013).
[PubMed]

Zhou, P. W.

H. J. Zhao, P. W. Zhou, Y. Zhang, and C. C. Li, “Lateral chromatic aberrations correction for AOTF imaging spectrometer based on doublet prism,” Spectrosc. Spectral Anal. 33(10), 2869–2874 (2013).
[PubMed]

Acta Astronaut. (1)

D. A. Glenar, D. L. Blaney, and J. J. Hillman, “AIMS: acousto-optic imaging spectrometer for spectral mapping of solid surfaces,” Acta Astronaut. 52(2-6), 389–396 (2003).
[Crossref]

Appl. Opt. (10)

E. Dekemper, N. Loodts, B. Van Opstal, J. Maes, F. Vanhellemont, N. Mateshvili, G. Franssens, D. Pieroux, C. Bingen, C. Robert, L. De Vos, L. Aballea, and D. Fussen, “Tunable acousto-optic spectral imager for atmospheric composition measurements in the visible spectral domain,” Appl. Opt. 51(25), 6259–6267 (2012).
[Crossref] [PubMed]

D. A. Glenar, J. J. Hillman, B. Saif, and J. Bergstralh, “Acousto-optic imaging spectropolarimetry for remote sensing,” Appl. Opt. 33(31), 7412–7424 (1994).
[Crossref] [PubMed]

D. A. Glenar, J. J. Hillman, B. Saif, and J. Bergstralh, “Acousto-optic imaging spectropolarimetry for remote sensing,” Appl. Opt. 33(31), 7412–7424 (1994).
[Crossref] [PubMed]

E. S. Wachman, W. H. Niu, and D. L. Farkas, “Imaging acousto-optic tunable filter with 0.35-micrometer spatial resolution,” Appl. Opt. 35(25), 5220–5226 (1996).
[Crossref] [PubMed]

T. Yano and A. Watanabe, “Acoustooptic TeO2 tunable filter using far-off-axis anisotropic Bragg diffraction,” Appl. Opt. 15(9), 2250–2258 (1976).
[Crossref] [PubMed]

D. R. Suhre and J. G. Theodore, “White-light imaging by use of a multiple passband acousto-optic tunable filter,” Appl. Opt. 35(22), 4494–4501 (1996).
[Crossref] [PubMed]

D. R. Suhre, L. J. Denes, and N. Gupta, “Telecentric confocal optics for aberration correction of acousto-optic tunable filters,” Appl. Opt. 43(6), 1255–1260 (2004).
[Crossref] [PubMed]

A. Sivanayagam and D. Findlay, “High resolution noncollinear acoustooptic filters with variable passband characteristics: design,” Appl. Opt. 23(24), 4601–4608 (1984).
[Crossref] [PubMed]

D. R. Suhre and N. Gupta, “Acousto-optic tunable filter sidelobe analysis and reduction with telecentric confocal optics,” Appl. Opt. 44(27), 5797–5801 (2005).
[Crossref] [PubMed]

H. Zhao, C. Li, and Y. Zhang, “Three-surface model for the ray tracing of an imaging acousto-optic tunable filter,” Appl. Opt. 53(32), 7684–7690 (2014).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

I. C. Chang, “Non-collinear acousto-optic filter with large angular aperture,” Appl. Phys. Lett. 25(7), 370–372 (1974).
[Crossref]

Biophys. J. (1)

E. S. Wachman, W. Niu, and D. L. Farkas, “AOTF microscope for imaging with increased speed and spectral versatility,” Biophys. J. 73(3), 1215–1222 (1997).
[Crossref] [PubMed]

Comput. Electron. Agric. (1)

V. Alchanatis, L. Ridel, A. Hetzroni, and L. Yaroslavsky, “Weed detection in multi-spectral images of cotton fields,” Comput. Electron. Agric. 47(3), 243–260 (2005).
[Crossref]

IEEE Trans. Son. Ultrason. (1)

I. C. Chang, “Acoustooptic devices and applications,” IEEE Trans. Son. Ultrason. 23(1), 2–21 (1976).
[Crossref]

J. Biomed. Opt. (1)

N. Gupta, “Acousto-optic-tunable-filter-based spectropolarimetric imagers for medical diagnostic applications--instrument design point of view,” J. Biomed. Opt. 10(5), 051802 (2005).
[Crossref] [PubMed]

J. Electron. Imaging (2)

J. Calpe-Maravilla, J. Vila-Frances, E. Ribes-Gomez, V. Duran-Bosch, J. Munoz-Mari, J. Amoros-Lopez, L. Gomez-Chova, and E. Tajahuerce-Romera, “400-to 1000-nm imaging spectrometer based on acousto-optic tunable filters,” J. Electron. Imaging 15(2), 023001 (2006).
[Crossref]

J. Vila-Francés, J. Calpe-Maravilla, L. Gómez-Chova, and J. Amorós-López, “Improving the performance of acousto-optic tunable filters in imaging applications,” J. Electron. Imaging 19(4), 043022 (2010).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

V. B. Voloshinov, K. B. Yushkov, and B. B. J. Linde, “Improvement in performance of a TeO2 acousto-optic imaging spectrometer,” J. Opt. A, Pure Appl. Opt. 9(4), 341–347 (2007).
[Crossref]

Opt. Eng. (3)

D. R. Suhre, M. Gottlieb, L. H. Taylor, and N. T. Melamed, “Spatial resolution of imaging noncollinear acousto-optic tunable filters,” Opt. Eng. 31(10), 2118–2121 (1992).
[Crossref]

I. C. Chang, “Acoustooptic tunable filters,” Opt. Eng. 20(6), 206824 (1981).
[Crossref]

L. J. Denes, M. S. Gottlieb, and B. Kaminsky, “Acousto-optic tunable filters in imaging applications,” Opt. Eng. 37(4), 1262–1267 (1998).
[Crossref]

Opt. Express (1)

Proc. SPIE (5)

C. Stedham, M. Draper, J. Ward, E. Wachman, and C. Pannell, “A novel acousto-optic tunable filter for use in hyperspectral imaging systems,” Proc. SPIE 6889, 68891C (2008).
[Crossref]

A. Deslis, C. G. Kurzweil, C. C. LaBaw, A. E. Lowman, and J. C. Mahoney, “Optical design of an imaging spectrometer utilizing an acousto-optic tunable filter as a disperser,” Proc. SPIE 3482, 170–178 (1998).
[Crossref]

L. Y. Chang, D. W. Yao, B. C. Zhao, and Y. H. Qiu, “Optical System Design of Polarization Imaging Spectrometer for Ground-based Astronomical Observation,” Proc. SPIE 8910, 89101Z (2013).
[Crossref]

L. H. Taylor, D. R. Suhre, S. A. Wutzke, P. L. Ulerich, G. D. Baldwin, M. T. Meyers, and J. E. Odhner, “Infrared spectroradiometer design based on an acousto-optic tunable filter,” Proc. SPIE 2480, 334–345 (1995).
[Crossref]

I. C. Chang, “Tunable Acousto-Optic Filters: An Overview,” Proc. SPIE 16(5), 165455 (1976).

Real-Time Imaging (1)

J. Vila, J. Calpe, F. Pla, L. Gómez, J. Connell, J. Marchant, J. Calleja, M. Mulqueen, J. Muñoz, and A. Klaren, “SmartSpectra: applying multispectral imaging to industrial environments,” Real-Time Imaging 11(2), 85–98 (2005).
[Crossref]

Rev. Sci. Instrum. (1)

J. Romier, J. Selves, and J. Gastellu-Etchegorry, “Imaging spectrometer based on acousto-optics tunable filter,” Rev. Sci. Instrum. 69(8), 2859–2867 (1998).
[Crossref]

Spectrosc. Spectral Anal. (1)

H. J. Zhao, P. W. Zhou, Y. Zhang, and C. C. Li, “Lateral chromatic aberrations correction for AOTF imaging spectrometer based on doublet prism,” Spectrosc. Spectral Anal. 33(10), 2869–2874 (2013).
[PubMed]

Other (2)

N. Gupta, R. Dahmani, K. Bennett, S. Simizu, D. R. Suhre, and N. B. Singh, “Progress in AOTF Hyperspectral Imagers,” in Automated Geo-Spatial Image and Data Exploitation, W. E. Roper, M. K. Hamilton, eds., Proc. SPIE 4054, 30–38 (2000).

N. Gupta, “Development of agile wide spectral range hyperspectral/polarization imagers,” in Technical Digest for CLEO/QELS/PhAST Conference, PThA3 (2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (22)

Fig. 1
Fig. 1 Schematic diagram of noncollinear AOTF.
Fig. 2
Fig. 2 Wave vector diagram for the noncollinear AOTF.
Fig. 3
Fig. 3 Schematic diagram of AOTF with two transducers.
Fig. 4
Fig. 4 Diagrammatic sketch of longitudinal chromatic aberration caused by AOTF.
Fig. 5
Fig. 5 Comparison of chromatic focal shift.
Fig. 6
Fig. 6 Diagrammatic sketch of lateral chromatic aberration caused by AOTF.
Fig. 7
Fig. 7 Diffractive light diagram of AOTF.
Fig. 8
Fig. 8 Lateral chromatic correction by wedge with different value of θ a .
Fig. 9
Fig. 9 Lateral chromatic correction by wedge with different value of ( θ a1 θ a2 ) .
Fig. 10
Fig. 10 Two optical structures of AOTF system: (a) Collimated optics; (b) Confocal optics.
Fig. 11
Fig. 11 Longitudinal chromatic aberration of AOTF in two optical structures: (a) Collimated optics; (b) Confocal optics.
Fig. 12
Fig. 12 Lateral chromatic aberration of AOTF in two optical structures: (a) Collimated optics; (b) Confocal optics.
Fig. 13
Fig. 13 Optical design of lateral chromatic aberration correction part: (a) Layout; (b) actual components.
Fig. 14
Fig. 14 Correction result of lateral chromatic aberration: (a) Single doublet prism method; (b) Dual-path correction method.
Fig. 15
Fig. 15 Optical system design of spectrometer: (a) Prototype; (b) Layout.
Fig. 16
Fig. 16 Analysis results of AOTF spectrometer optical design: (a) Chromatic focal shift; (b) Spot diagram.
Fig. 17
Fig. 17 Lateral chromatic aberration test.
Fig. 18
Fig. 18 Test result of lateral chromatic aberration correction: (a) Image of knife edge target; (b) Edge of target; (c) Scene shift curve.
Fig. 19
Fig. 19 Spectral images of 1951 USAF resolution test chart: (a) 450nm; (b) 650nm; (c) 900nm.
Fig. 20
Fig. 20 Spectrum detection experiment of leaves: (a) Prototype; (b) ASD.
Fig. 21
Fig. 21 Spectrum test results: (a) The spectral image at 696nm detected by prototype; (b) Spectral reflectivity of leaves on region of interest obtained by ASD and prototype.
Fig. 22
Fig. 22 The relative error of prototype data.

Tables (3)

Tables Icon

Table 1 Parameters of AOTF and camera.

Tables Icon

Table 2 Correction effect of lateral chromatic aberration by different methods

Tables Icon

Table 3 Comparison of resolution in different bands.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

k i ± k a = k d ,
k i = 2π n i λ 0 , k d = 2π n d λ 0 , k a = 2π Λ ,
l B = h A l A tan( arcsin 2sin i 1 n o + n e ) tan i 1 .
Δ l B = l A tan i 1 [ tan( arcsin 2sin i 1 n o ( λ R )+ n e ( λ R ) )tan( arcsin 2sin i 1 n o ( λ )+ n e ( λ ) ) ] ,
Δ l B =2 l A [ 1 n o ( λ R )+ n e ( λ R ) 1 n o ( λ )+ n e ( λ ) ] .
θ d =arctan y B z B .
n d = ( cos 2 θ d n o 2 + sin 2 θ d n e 2 ) 0.5 .
β d =arcsin[ n d sin( θ w θ d + θ i ) ] θ w .
error= R Prototype ( λ ) R ASD ( λ ) R ASD ( λ ) ×100% ,

Metrics