Abstract

We propose the design of switchable plasmonic nanoantennas (SPNs) that can be employed for optical switching in the near-infrared regime. The proposed SPNs consist of nanoantenna structures made up of a plasmonic metal (gold) such that these nanoantennas are filled with a switchable material (vanadium dioxide). We compare the results of these SPNs with inverted SPN structures that consist of gold nanoantenna structures surrounded by a layer of vanadium dioxide (VO2) on their outer surface. These nanoantennas demonstrate switching of electric-field intensity enhancement (EFIE) between two states (On and Off states), which can be induced thermally, optically or electrically. The On and Off states of the nanoantennas correspond to the metallic and semiconductor states, respectively of the VO2 film inside or around the nanoantennas, as the VO2 film exhibits phase transition from its semiconductor state to the metallic state upon application of thermal, optical, or electrical energy. We employ finite-difference time-domain (FDTD) simulations to demonstrate switching in the EFIE for four different SPN geometries — nanorod-dipole, bowtie, planar trapezoidal toothed log-periodic, and rod-disk — and compare their near-field distributions for the On and Off states of the SPNs. We also demonstrate that the resonance wavelength of the EFIE spectra gets substantially modified when these SPNs switch between the two states.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Au nanowire-VO2 spacer-Au film based optical switches

Arun Thomas, Priten Savaliya, Kamal Kumar, Akanksha Ninawe, and Anuj Dhawan
J. Opt. Soc. Am. B 35(7) 1687-1697 (2018)

VO2 based waveguide-mode plasmonic nano-gratings for optical switching

Yashna Sharma, Veeranjaneya A. Tiruveedhula, John F. Muth, and Anuj Dhawan
Opt. Express 23(5) 5822-5849 (2015)

Tunable optical antennas enabled by the phase transition in vanadium dioxide

Stuart K. Earl, Timothy D. James, Timothy J. Davis, Jeffrey C. McCallum, Robert E. Marvel, Richard F. Haglund, and Ann Roberts
Opt. Express 21(22) 27503-27508 (2013)

References

  • View by:
  • |
  • |
  • |

  1. M. Agio and A. Alu, Optical Antennas (Cambridge University, 2013).
  2. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. Opt. Photonics 1(3), 438–483 (2009).
    [Crossref]
  3. P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
    [Crossref] [PubMed]
  4. T. H. Taminiau, D. F. Stefani, F. B. Segerink, and N. F. V. Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2(4), 234–237 (2008).
    [Crossref]
  5. K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
    [Crossref]
  6. L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a nearinfrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
    [Crossref]
  7. M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with Active Optical Antennas,” Science 332(6030), 702–704 (2011).
    [Crossref] [PubMed]
  8. Y. Yu, V. E. Ferry, A. P. Alivisatos, and L. Cao, “Dielectric Core-Shell Optical Antennas for Strong Solar Absorption Enhancement,” Nano Lett. 12(7), 3674–3681 (2012).
    [Crossref] [PubMed]
  9. L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor Nanowire Optical Antenna Solar Absorbers,” Nano Lett. 10(2), 439–445 (2010).
    [Crossref] [PubMed]
  10. T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic Plasmonic Polarizers for Active Visible Color Filtering and Polarimetry,” Nano Lett. 12(2), 1026–1031 (2012).
    [Crossref] [PubMed]
  11. G. V. Maltzahn, J. H. Park, A. Agrawal, N. K. Bandaru, S. K. Das, M. J. Sailor, and S. N. Bhatia, “Computationally Guided Photothermal Tumor Therapy Using Long-Circulating Gold Nanorod Antennas,” Cancer Res. 69(9), 3892–3900 (2009).
    [Crossref] [PubMed]
  12. R. Nadejda and Z. Jinzhong, “Photothermal ablation therapy for cancer based on metal nanostructures,” Sci. China Ser. Biol. Chem. 52(10), 1559–1575 (2009).
  13. D. Wang, W. Zhu, Y. Chu, and K. B. Crozier, “High Directivity Optical Antenna Substrates for Surface Enhanced Raman Scattering,” Adv. Mater. 24(32), 4376–4380 (2012).
    [Crossref] [PubMed]
  14. R. M. Bakker, V. P. Drachev, Z. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys. 10(12), 125022 (2008).
    [Crossref]
  15. A. Benedetti, M. Centini, M. Bertolotti, and C. Sibilia, “Second harmonic generation from 3D nanoantennas: on the surface and bulk contributions by far-field pattern analysis,” Opt. Express 19(27), 26752–26767 (2011).
    [Crossref] [PubMed]
  16. M. Danckwerts and L. Novotny, “Optical Frequency Mixing at Coupled Gold Nanoparticles,” Phys. Rev. Lett. 98(2), 026104 (2007).
    [Crossref] [PubMed]
  17. R. E. Noskov, A. E. Krasnok, and Y. S. Kivshar, “Nonlinear metal–dielectric nanoantennas for light switching and routing,” New J. Phys. 14(9), 93005–93915 (2012).
    [Crossref]
  18. N. Large, M. Abb, J. Aizpurua, and O. L. Muskens, “Photoconductively Loaded Plasmonic Nanoantenna as Building Block for Ultracompact Optical Switches,” Nano Lett. 10(5), 1741–1746 (2010).
    [Crossref] [PubMed]
  19. M. Abb, P. Albella, J. Aizpurua, and O. L. Muskens, “All-Optical Control of a Single Plasmonic Nanoantenna-ITO Hybrid,” Nano Lett. 11(6), 2457–2463 (2011).
    [Crossref] [PubMed]
  20. P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson, A. V. Zayats, and R. J. Pollard, “Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal,” Appl. Phys. Lett. 91(4), 043101 (2007).
    [Crossref]
  21. M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active Terahertz Nanoantennas Based on VO2 Phase Transition,” Nano Lett. 10(6), 2064–2068 (2010).
    [Crossref] [PubMed]
  22. K. Appavoo and R. F. Haglund., “Polarization selective phase-change nanomodulator,” Sci. Rep. 4(1), 6771–6776 (2014).
    [Crossref] [PubMed]
  23. W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano Switch,” Nano Lett. 12(9), 4977–4982 (2012).
    [Crossref] [PubMed]
  24. N. K. Emani, T. F. Chung, X. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, “Electrically Tunable Damping of Plasmonic Resonances with Graphene,” Nano Lett. 12(10), 5202–5206 (2012).
    [Crossref] [PubMed]
  25. Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad Electrical Tuning of Graphene-Loaded Plasmonic Antennas,” Nano Lett. 13(3), 1257–1264 (2013).
    [Crossref] [PubMed]
  26. I. S. Maksymov, A. E. Miroshnichenko, and Y. S. Kivshar, “Actively tunable bistable optical Yagi-Uda nanoantenna,” Opt. Express 20(8), 8929–8938 (2012).
    [Crossref] [PubMed]
  27. J. Suh, E. U. Donev, D. W. Ferrara, K. A. Tetz, L. C. Feldman, and R. Haglund., “Modulation of the gold particle - plasmon resonance by the metal – semiconductor transition of vanadium dioxide,” J. Opt. A, Pure Appl. Opt. 10(5), 055202 (2008).
    [Crossref]
  28. F. Beteille and J. Livage, “Optical Switching in VO2 Thin Films,” J. sol-gel. Sci. Tech. (Paris) 13(1), 915–921 (1998).
  29. H. W. Verleur, A. S. Barker, and C. Berglund, “Optical Properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
    [Crossref]
  30. A. Cavalleri, C. Toth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond Structural Dynamics in VO2 during an Ultrafast Solid-Solid Phase Transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
    [Crossref] [PubMed]
  31. G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and Mott transition in VO2,” J. Phys. Condens. Matter 12(41), 8837–8845 (2000).
    [Crossref]
  32. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-Dependent Optical Coupling of Single “Bowtie” Nanoantennas Resonant in the Visible,” Nano Lett. 4(5), 957–961 (2004).
    [Crossref]
  33. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
    [Crossref]
  34. M. Navarro-Cia and S. A. Maier, “Broad-Band Near-Infrared Plasmonic Nanoantennas for Higher Harmonic Generation,” ACS Nano 6(4), 3537–3544 (2012).
    [Crossref] [PubMed]
  35. S. Link and M. A. El-Sayed, “Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
    [Crossref]
  36. S. Dodson, M. Haggui, R. Bachelot, J. Plain, S. Li, and Q. Xiong, “Optimizing Electromagnetic Hotspots in Plasmonic Bowtie Nanoantennae,” J. Phys. Chem. Lett. 4(3), 496–501 (2013).
    [Crossref] [PubMed]
  37. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).
  38. J. B. Park, I. M. Lee, S. Y. Lee, K. Kim, D. Choi, E. Y. Song, and B. Lee, “Tunable subwavelength hot spot of dipole nanostructure based on VO2 phase transition,” Opt. Express 21(13), 15205–15212 (2013).
    [Crossref] [PubMed]
  39. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. García de Abajo, “Optical Properties of Gold Nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
    [Crossref] [PubMed]
  40. L. Novotny, “Effective Wavelength Scaling for Optical Antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
    [Crossref] [PubMed]
  41. J. B. Jackson and N. J. Halas, “Silver Nanoshells: Variations in Morphologies and Optical Properties,” J. Phys. Chem. B 105(14), 2743–2746 (2001).
    [Crossref]
  42. M. A. Kats, R. Blanchard, P. Genevet, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material,” Opt. Lett. 38(3), 368–370 (2013).
    [Crossref] [PubMed]
  43. F. B. Dejene and R. O. Ocaya, “Electrical, optical and structural properties of pure and gold-coated VO2 thin films on quartz substrate,” Curr. Appl. Phys. 10(2), 508–512 (2010).
    [Crossref]
  44. H. Kakiuchida, P. Jin, and M. Tazawa, “Control of thermochromic spectrum in vanadium dioxide by amorphoussilicon suboxide layer,” Sol. Energy Mater. Sol. Cells 92(10), 1279–1284 (2008).
    [Crossref]
  45. T. Maruyama and Y. Ikuta, “Vanadium Dioxide thin films prepared by chemical vapour deposition from vanadium (III) acetylacetonate,” J. Mater. Sci. 28(18), 5073–5078 (1993).
    [Crossref]
  46. N. A. Abu Hatab, J. M. Oran, and M. J. Sepaniak, “Surface-Enhanced Raman Spectroscopy Substrates Created via Electron Beam Lithography and Nanotransfer Printing,” ACS Nano 2(2), 377–385 (2008).
    [Crossref] [PubMed]
  47. L. Muskens, L. Bergamini, Y. Wang, J. M. Gaskell, N. Zabala, C. H. de Groot, D. W. Sheel, and J. Aizpurua, “Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide,” Light Sci. Appl. 5(10), e16173 (2016).
    [Crossref]
  48. A. Dhawan, S. J. Norton, M. D. Gerhold, and T. Vo-Dinh, “Comparison of FDTD numerical computations and analytical multipole expansion method for plasmonics-active nanosphere dimers,” Opt. Express 17(12), 9688–9703 (2009).
    [Crossref] [PubMed]
  49. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  50. A. Dhawan, M. Canva, and T. Vo-Dinh, “Narrow groove Plasmonic Nano-gratings for Surface Plasmon Resonance Sensing,” Opt. Express 19(2), 787–813 (2011).
    [Crossref] [PubMed]
  51. S. K. Earl, T. D. James, T. J. Davis, J. C. McCallum, R. E. Marvel, R. F. Haglund, and A. Roberts, “Tunable optical antennas enabled by the phase transition in vanadium dioxide,” Opt. Express 21(22), 27503–27508 (2013).
    [Crossref] [PubMed]
  52. A. Dhawan, M. Gerhold, and T. Vo-Dinh, “Theoretical Simulation and Focused Ion Beam Fabrication of Gold Nanostructures For Surface-Enhanced Raman Scattering (SERS),” NanoBiotechnology 3(3-4), 164–171 (2007).
    [Crossref] [PubMed]
  53. M. D. Fischbein and M. Drndić, “Sub-10 nm device fabrication in a transmission electron microscope,” Nano Lett. 7(5), 1329–1337 (2007).
    [Crossref] [PubMed]
  54. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14(6), 4129–4133 (1996).
    [Crossref]
  55. G. Rampelberg, M. Schaekers, K. Martens, Q. Xie, D. Deduytsche, B. D. Schutter, N. Blasco, J. Kittl, and C. Detavernier, “Semiconductor-metal transition in thin VO2 films grown by ozone based atomic layer deposition,” Appl. Phys. Lett. 98(16), 162902 (2011).
    [Crossref]

2016 (1)

L. Muskens, L. Bergamini, Y. Wang, J. M. Gaskell, N. Zabala, C. H. de Groot, D. W. Sheel, and J. Aizpurua, “Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide,” Light Sci. Appl. 5(10), e16173 (2016).
[Crossref]

2014 (1)

K. Appavoo and R. F. Haglund., “Polarization selective phase-change nanomodulator,” Sci. Rep. 4(1), 6771–6776 (2014).
[Crossref] [PubMed]

2013 (5)

2012 (9)

M. Navarro-Cia and S. A. Maier, “Broad-Band Near-Infrared Plasmonic Nanoantennas for Higher Harmonic Generation,” ACS Nano 6(4), 3537–3544 (2012).
[Crossref] [PubMed]

I. S. Maksymov, A. E. Miroshnichenko, and Y. S. Kivshar, “Actively tunable bistable optical Yagi-Uda nanoantenna,” Opt. Express 20(8), 8929–8938 (2012).
[Crossref] [PubMed]

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano Switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

N. K. Emani, T. F. Chung, X. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, “Electrically Tunable Damping of Plasmonic Resonances with Graphene,” Nano Lett. 12(10), 5202–5206 (2012).
[Crossref] [PubMed]

P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

Y. Yu, V. E. Ferry, A. P. Alivisatos, and L. Cao, “Dielectric Core-Shell Optical Antennas for Strong Solar Absorption Enhancement,” Nano Lett. 12(7), 3674–3681 (2012).
[Crossref] [PubMed]

T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic Plasmonic Polarizers for Active Visible Color Filtering and Polarimetry,” Nano Lett. 12(2), 1026–1031 (2012).
[Crossref] [PubMed]

D. Wang, W. Zhu, Y. Chu, and K. B. Crozier, “High Directivity Optical Antenna Substrates for Surface Enhanced Raman Scattering,” Adv. Mater. 24(32), 4376–4380 (2012).
[Crossref] [PubMed]

R. E. Noskov, A. E. Krasnok, and Y. S. Kivshar, “Nonlinear metal–dielectric nanoantennas for light switching and routing,” New J. Phys. 14(9), 93005–93915 (2012).
[Crossref]

2011 (5)

M. Abb, P. Albella, J. Aizpurua, and O. L. Muskens, “All-Optical Control of a Single Plasmonic Nanoantenna-ITO Hybrid,” Nano Lett. 11(6), 2457–2463 (2011).
[Crossref] [PubMed]

A. Benedetti, M. Centini, M. Bertolotti, and C. Sibilia, “Second harmonic generation from 3D nanoantennas: on the surface and bulk contributions by far-field pattern analysis,” Opt. Express 19(27), 26752–26767 (2011).
[Crossref] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with Active Optical Antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

A. Dhawan, M. Canva, and T. Vo-Dinh, “Narrow groove Plasmonic Nano-gratings for Surface Plasmon Resonance Sensing,” Opt. Express 19(2), 787–813 (2011).
[Crossref] [PubMed]

G. Rampelberg, M. Schaekers, K. Martens, Q. Xie, D. Deduytsche, B. D. Schutter, N. Blasco, J. Kittl, and C. Detavernier, “Semiconductor-metal transition in thin VO2 films grown by ozone based atomic layer deposition,” Appl. Phys. Lett. 98(16), 162902 (2011).
[Crossref]

2010 (4)

F. B. Dejene and R. O. Ocaya, “Electrical, optical and structural properties of pure and gold-coated VO2 thin films on quartz substrate,” Curr. Appl. Phys. 10(2), 508–512 (2010).
[Crossref]

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active Terahertz Nanoantennas Based on VO2 Phase Transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

N. Large, M. Abb, J. Aizpurua, and O. L. Muskens, “Photoconductively Loaded Plasmonic Nanoantenna as Building Block for Ultracompact Optical Switches,” Nano Lett. 10(5), 1741–1746 (2010).
[Crossref] [PubMed]

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor Nanowire Optical Antenna Solar Absorbers,” Nano Lett. 10(2), 439–445 (2010).
[Crossref] [PubMed]

2009 (5)

G. V. Maltzahn, J. H. Park, A. Agrawal, N. K. Bandaru, S. K. Das, M. J. Sailor, and S. N. Bhatia, “Computationally Guided Photothermal Tumor Therapy Using Long-Circulating Gold Nanorod Antennas,” Cancer Res. 69(9), 3892–3900 (2009).
[Crossref] [PubMed]

R. Nadejda and Z. Jinzhong, “Photothermal ablation therapy for cancer based on metal nanostructures,” Sci. China Ser. Biol. Chem. 52(10), 1559–1575 (2009).

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. Opt. Photonics 1(3), 438–483 (2009).
[Crossref]

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

A. Dhawan, S. J. Norton, M. D. Gerhold, and T. Vo-Dinh, “Comparison of FDTD numerical computations and analytical multipole expansion method for plasmonics-active nanosphere dimers,” Opt. Express 17(12), 9688–9703 (2009).
[Crossref] [PubMed]

2008 (6)

H. Kakiuchida, P. Jin, and M. Tazawa, “Control of thermochromic spectrum in vanadium dioxide by amorphoussilicon suboxide layer,” Sol. Energy Mater. Sol. Cells 92(10), 1279–1284 (2008).
[Crossref]

N. A. Abu Hatab, J. M. Oran, and M. J. Sepaniak, “Surface-Enhanced Raman Spectroscopy Substrates Created via Electron Beam Lithography and Nanotransfer Printing,” ACS Nano 2(2), 377–385 (2008).
[Crossref] [PubMed]

J. Suh, E. U. Donev, D. W. Ferrara, K. A. Tetz, L. C. Feldman, and R. Haglund., “Modulation of the gold particle - plasmon resonance by the metal – semiconductor transition of vanadium dioxide,” J. Opt. A, Pure Appl. Opt. 10(5), 055202 (2008).
[Crossref]

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a nearinfrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[Crossref]

T. H. Taminiau, D. F. Stefani, F. B. Segerink, and N. F. V. Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2(4), 234–237 (2008).
[Crossref]

R. M. Bakker, V. P. Drachev, Z. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys. 10(12), 125022 (2008).
[Crossref]

2007 (5)

M. Danckwerts and L. Novotny, “Optical Frequency Mixing at Coupled Gold Nanoparticles,” Phys. Rev. Lett. 98(2), 026104 (2007).
[Crossref] [PubMed]

P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson, A. V. Zayats, and R. J. Pollard, “Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal,” Appl. Phys. Lett. 91(4), 043101 (2007).
[Crossref]

A. Dhawan, M. Gerhold, and T. Vo-Dinh, “Theoretical Simulation and Focused Ion Beam Fabrication of Gold Nanostructures For Surface-Enhanced Raman Scattering (SERS),” NanoBiotechnology 3(3-4), 164–171 (2007).
[Crossref] [PubMed]

M. D. Fischbein and M. Drndić, “Sub-10 nm device fabrication in a transmission electron microscope,” Nano Lett. 7(5), 1329–1337 (2007).
[Crossref] [PubMed]

L. Novotny, “Effective Wavelength Scaling for Optical Antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[Crossref] [PubMed]

2004 (1)

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-Dependent Optical Coupling of Single “Bowtie” Nanoantennas Resonant in the Visible,” Nano Lett. 4(5), 957–961 (2004).
[Crossref]

2003 (2)

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. García de Abajo, “Optical Properties of Gold Nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[Crossref] [PubMed]

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[Crossref]

2001 (2)

A. Cavalleri, C. Toth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond Structural Dynamics in VO2 during an Ultrafast Solid-Solid Phase Transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

J. B. Jackson and N. J. Halas, “Silver Nanoshells: Variations in Morphologies and Optical Properties,” J. Phys. Chem. B 105(14), 2743–2746 (2001).
[Crossref]

2000 (1)

G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and Mott transition in VO2,” J. Phys. Condens. Matter 12(41), 8837–8845 (2000).
[Crossref]

1999 (1)

S. Link and M. A. El-Sayed, “Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
[Crossref]

1998 (1)

F. Beteille and J. Livage, “Optical Switching in VO2 Thin Films,” J. sol-gel. Sci. Tech. (Paris) 13(1), 915–921 (1998).

1996 (1)

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14(6), 4129–4133 (1996).
[Crossref]

1993 (1)

T. Maruyama and Y. Ikuta, “Vanadium Dioxide thin films prepared by chemical vapour deposition from vanadium (III) acetylacetonate,” J. Mater. Sci. 28(18), 5073–5078 (1993).
[Crossref]

1968 (1)

H. W. Verleur, A. S. Barker, and C. Berglund, “Optical Properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
[Crossref]

Abb, M.

M. Abb, P. Albella, J. Aizpurua, and O. L. Muskens, “All-Optical Control of a Single Plasmonic Nanoantenna-ITO Hybrid,” Nano Lett. 11(6), 2457–2463 (2011).
[Crossref] [PubMed]

N. Large, M. Abb, J. Aizpurua, and O. L. Muskens, “Photoconductively Loaded Plasmonic Nanoantenna as Building Block for Ultracompact Optical Switches,” Nano Lett. 10(5), 1741–1746 (2010).
[Crossref] [PubMed]

Abu Hatab, N. A.

N. A. Abu Hatab, J. M. Oran, and M. J. Sepaniak, “Surface-Enhanced Raman Spectroscopy Substrates Created via Electron Beam Lithography and Nanotransfer Printing,” ACS Nano 2(2), 377–385 (2008).
[Crossref] [PubMed]

Agrawal, A.

G. V. Maltzahn, J. H. Park, A. Agrawal, N. K. Bandaru, S. K. Das, M. J. Sailor, and S. N. Bhatia, “Computationally Guided Photothermal Tumor Therapy Using Long-Circulating Gold Nanorod Antennas,” Cancer Res. 69(9), 3892–3900 (2009).
[Crossref] [PubMed]

Ahn, K.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active Terahertz Nanoantennas Based on VO2 Phase Transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Ahn, Y. H.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active Terahertz Nanoantennas Based on VO2 Phase Transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Aizpurua, J.

L. Muskens, L. Bergamini, Y. Wang, J. M. Gaskell, N. Zabala, C. H. de Groot, D. W. Sheel, and J. Aizpurua, “Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide,” Light Sci. Appl. 5(10), e16173 (2016).
[Crossref]

M. Abb, P. Albella, J. Aizpurua, and O. L. Muskens, “All-Optical Control of a Single Plasmonic Nanoantenna-ITO Hybrid,” Nano Lett. 11(6), 2457–2463 (2011).
[Crossref] [PubMed]

N. Large, M. Abb, J. Aizpurua, and O. L. Muskens, “Photoconductively Loaded Plasmonic Nanoantenna as Building Block for Ultracompact Optical Switches,” Nano Lett. 10(5), 1741–1746 (2010).
[Crossref] [PubMed]

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. García de Abajo, “Optical Properties of Gold Nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[Crossref] [PubMed]

Albella, P.

M. Abb, P. Albella, J. Aizpurua, and O. L. Muskens, “All-Optical Control of a Single Plasmonic Nanoantenna-ITO Hybrid,” Nano Lett. 11(6), 2457–2463 (2011).
[Crossref] [PubMed]

Alivisatos, A. P.

Y. Yu, V. E. Ferry, A. P. Alivisatos, and L. Cao, “Dielectric Core-Shell Optical Antennas for Strong Solar Absorption Enhancement,” Nano Lett. 12(7), 3674–3681 (2012).
[Crossref] [PubMed]

Appavoo, K.

K. Appavoo and R. F. Haglund., “Polarization selective phase-change nanomodulator,” Sci. Rep. 4(1), 6771–6776 (2014).
[Crossref] [PubMed]

Atkinson, R.

P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson, A. V. Zayats, and R. J. Pollard, “Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal,” Appl. Phys. Lett. 91(4), 043101 (2007).
[Crossref]

Avlasevich, Y.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Bachelot, R.

S. Dodson, M. Haggui, R. Bachelot, J. Plain, S. Li, and Q. Xiong, “Optimizing Electromagnetic Hotspots in Plasmonic Bowtie Nanoantennae,” J. Phys. Chem. Lett. 4(3), 496–501 (2013).
[Crossref] [PubMed]

Bakker, R. M.

R. M. Bakker, V. P. Drachev, Z. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys. 10(12), 125022 (2008).
[Crossref]

Bandaru, N. K.

G. V. Maltzahn, J. H. Park, A. Agrawal, N. K. Bandaru, S. K. Das, M. J. Sailor, and S. N. Bhatia, “Computationally Guided Photothermal Tumor Therapy Using Long-Circulating Gold Nanorod Antennas,” Cancer Res. 69(9), 3892–3900 (2009).
[Crossref] [PubMed]

Barker, A. S.

H. W. Verleur, A. S. Barker, and C. Berglund, “Optical Properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
[Crossref]

Basov, D. N.

Benedetti, A.

Bergamini, L.

L. Muskens, L. Bergamini, Y. Wang, J. M. Gaskell, N. Zabala, C. H. de Groot, D. W. Sheel, and J. Aizpurua, “Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide,” Light Sci. Appl. 5(10), e16173 (2016).
[Crossref]

Berglund, C.

H. W. Verleur, A. S. Barker, and C. Berglund, “Optical Properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
[Crossref]

Bernien, H.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active Terahertz Nanoantennas Based on VO2 Phase Transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Bertolotti, M.

Beteille, F.

F. Beteille and J. Livage, “Optical Switching in VO2 Thin Films,” J. sol-gel. Sci. Tech. (Paris) 13(1), 915–921 (1998).

Bharadwaj, P.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. Opt. Photonics 1(3), 438–483 (2009).
[Crossref]

Bhatia, S. N.

G. V. Maltzahn, J. H. Park, A. Agrawal, N. K. Bandaru, S. K. Das, M. J. Sailor, and S. N. Bhatia, “Computationally Guided Photothermal Tumor Therapy Using Long-Circulating Gold Nanorod Antennas,” Cancer Res. 69(9), 3892–3900 (2009).
[Crossref] [PubMed]

Biagioni, P.

P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

Blanchard, R.

Blasco, N.

G. Rampelberg, M. Schaekers, K. Martens, Q. Xie, D. Deduytsche, B. D. Schutter, N. Blasco, J. Kittl, and C. Detavernier, “Semiconductor-metal transition in thin VO2 films grown by ozone based atomic layer deposition,” Appl. Phys. Lett. 98(16), 162902 (2011).
[Crossref]

Boltasseva, A.

N. K. Emani, T. F. Chung, X. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, “Electrically Tunable Damping of Plasmonic Resonances with Graphene,” Nano Lett. 12(10), 5202–5206 (2012).
[Crossref] [PubMed]

R. M. Bakker, V. P. Drachev, Z. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys. 10(12), 125022 (2008).
[Crossref]

Brongersma, M. L.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor Nanowire Optical Antenna Solar Absorbers,” Nano Lett. 10(2), 439–445 (2010).
[Crossref] [PubMed]

Bryant, G. W.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. García de Abajo, “Optical Properties of Gold Nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[Crossref] [PubMed]

Cai, W.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor Nanowire Optical Antenna Solar Absorbers,” Nano Lett. 10(2), 439–445 (2010).
[Crossref] [PubMed]

Canva, M.

Cao, L.

Y. Yu, V. E. Ferry, A. P. Alivisatos, and L. Cao, “Dielectric Core-Shell Optical Antennas for Strong Solar Absorption Enhancement,” Nano Lett. 12(7), 3674–3681 (2012).
[Crossref] [PubMed]

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor Nanowire Optical Antenna Solar Absorbers,” Nano Lett. 10(2), 439–445 (2010).
[Crossref] [PubMed]

Capasso, F.

Cavalleri, A.

A. Cavalleri, C. Toth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond Structural Dynamics in VO2 during an Ultrafast Solid-Solid Phase Transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

Centini, M.

Chang, W. S.

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano Switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

Chen, J.

R. M. Bakker, V. P. Drachev, Z. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys. 10(12), 125022 (2008).
[Crossref]

Chen, Y. P.

N. K. Emani, T. F. Chung, X. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, “Electrically Tunable Damping of Plasmonic Resonances with Graphene,” Nano Lett. 12(10), 5202–5206 (2012).
[Crossref] [PubMed]

Choe, J. H.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active Terahertz Nanoantennas Based on VO2 Phase Transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Choi, D.

Chou, S. Y.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14(6), 4129–4133 (1996).
[Crossref]

Chu, Y.

D. Wang, W. Zhu, Y. Chu, and K. B. Crozier, “High Directivity Optical Antenna Substrates for Surface Enhanced Raman Scattering,” Adv. Mater. 24(32), 4376–4380 (2012).
[Crossref] [PubMed]

Chung, T. F.

N. K. Emani, T. F. Chung, X. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, “Electrically Tunable Damping of Plasmonic Resonances with Graphene,” Nano Lett. 12(10), 5202–5206 (2012).
[Crossref] [PubMed]

Crozier, K. B.

D. Wang, W. Zhu, Y. Chu, and K. B. Crozier, “High Directivity Optical Antenna Substrates for Surface Enhanced Raman Scattering,” Adv. Mater. 24(32), 4376–4380 (2012).
[Crossref] [PubMed]

T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic Plasmonic Polarizers for Active Visible Color Filtering and Polarimetry,” Nano Lett. 12(2), 1026–1031 (2012).
[Crossref] [PubMed]

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[Crossref]

Danckwerts, M.

M. Danckwerts and L. Novotny, “Optical Frequency Mixing at Coupled Gold Nanoparticles,” Phys. Rev. Lett. 98(2), 026104 (2007).
[Crossref] [PubMed]

Das, S. K.

G. V. Maltzahn, J. H. Park, A. Agrawal, N. K. Bandaru, S. K. Das, M. J. Sailor, and S. N. Bhatia, “Computationally Guided Photothermal Tumor Therapy Using Long-Circulating Gold Nanorod Antennas,” Cancer Res. 69(9), 3892–3900 (2009).
[Crossref] [PubMed]

Davis, T. J.

de Groot, C. H.

L. Muskens, L. Bergamini, Y. Wang, J. M. Gaskell, N. Zabala, C. H. de Groot, D. W. Sheel, and J. Aizpurua, “Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide,” Light Sci. Appl. 5(10), e16173 (2016).
[Crossref]

Deduytsche, D.

G. Rampelberg, M. Schaekers, K. Martens, Q. Xie, D. Deduytsche, B. D. Schutter, N. Blasco, J. Kittl, and C. Detavernier, “Semiconductor-metal transition in thin VO2 films grown by ozone based atomic layer deposition,” Appl. Phys. Lett. 98(16), 162902 (2011).
[Crossref]

Dejene, F. B.

F. B. Dejene and R. O. Ocaya, “Electrical, optical and structural properties of pure and gold-coated VO2 thin films on quartz substrate,” Curr. Appl. Phys. 10(2), 508–512 (2010).
[Crossref]

Detavernier, C.

G. Rampelberg, M. Schaekers, K. Martens, Q. Xie, D. Deduytsche, B. D. Schutter, N. Blasco, J. Kittl, and C. Detavernier, “Semiconductor-metal transition in thin VO2 films grown by ozone based atomic layer deposition,” Appl. Phys. Lett. 98(16), 162902 (2011).
[Crossref]

Deutsch, B.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. Opt. Photonics 1(3), 438–483 (2009).
[Crossref]

Dhawan, A.

Dickson, W.

P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson, A. V. Zayats, and R. J. Pollard, “Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal,” Appl. Phys. Lett. 91(4), 043101 (2007).
[Crossref]

Dodson, S.

S. Dodson, M. Haggui, R. Bachelot, J. Plain, S. Li, and Q. Xiong, “Optimizing Electromagnetic Hotspots in Plasmonic Bowtie Nanoantennae,” J. Phys. Chem. Lett. 4(3), 496–501 (2013).
[Crossref] [PubMed]

Donev, E. U.

J. Suh, E. U. Donev, D. W. Ferrara, K. A. Tetz, L. C. Feldman, and R. Haglund., “Modulation of the gold particle - plasmon resonance by the metal – semiconductor transition of vanadium dioxide,” J. Opt. A, Pure Appl. Opt. 10(5), 055202 (2008).
[Crossref]

Drachev, V. P.

R. M. Bakker, V. P. Drachev, Z. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys. 10(12), 125022 (2008).
[Crossref]

Drndic, M.

M. D. Fischbein and M. Drndić, “Sub-10 nm device fabrication in a transmission electron microscope,” Nano Lett. 7(5), 1329–1337 (2007).
[Crossref] [PubMed]

Earl, S. K.

Ellenbogen, T.

T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic Plasmonic Polarizers for Active Visible Color Filtering and Polarimetry,” Nano Lett. 12(2), 1026–1031 (2012).
[Crossref] [PubMed]

El-Sayed, M. A.

S. Link and M. A. El-Sayed, “Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
[Crossref]

Emani, N. K.

N. K. Emani, T. F. Chung, X. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, “Electrically Tunable Damping of Plasmonic Resonances with Graphene,” Nano Lett. 12(10), 5202–5206 (2012).
[Crossref] [PubMed]

Evans, P. R.

P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson, A. V. Zayats, and R. J. Pollard, “Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal,” Appl. Phys. Lett. 91(4), 043101 (2007).
[Crossref]

Fan, P.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor Nanowire Optical Antenna Solar Absorbers,” Nano Lett. 10(2), 439–445 (2010).
[Crossref] [PubMed]

Fan, S.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor Nanowire Optical Antenna Solar Absorbers,” Nano Lett. 10(2), 439–445 (2010).
[Crossref] [PubMed]

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Feldman, L. C.

J. Suh, E. U. Donev, D. W. Ferrara, K. A. Tetz, L. C. Feldman, and R. Haglund., “Modulation of the gold particle - plasmon resonance by the metal – semiconductor transition of vanadium dioxide,” J. Opt. A, Pure Appl. Opt. 10(5), 055202 (2008).
[Crossref]

Ferrara, D. W.

J. Suh, E. U. Donev, D. W. Ferrara, K. A. Tetz, L. C. Feldman, and R. Haglund., “Modulation of the gold particle - plasmon resonance by the metal – semiconductor transition of vanadium dioxide,” J. Opt. A, Pure Appl. Opt. 10(5), 055202 (2008).
[Crossref]

Ferry, V. E.

Y. Yu, V. E. Ferry, A. P. Alivisatos, and L. Cao, “Dielectric Core-Shell Optical Antennas for Strong Solar Absorption Enhancement,” Nano Lett. 12(7), 3674–3681 (2012).
[Crossref] [PubMed]

Fischbein, M. D.

M. D. Fischbein and M. Drndić, “Sub-10 nm device fabrication in a transmission electron microscope,” Nano Lett. 7(5), 1329–1337 (2007).
[Crossref] [PubMed]

Forget, P.

A. Cavalleri, C. Toth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond Structural Dynamics in VO2 during an Ultrafast Solid-Solid Phase Transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

Fromm, D. P.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-Dependent Optical Coupling of Single “Bowtie” Nanoantennas Resonant in the Visible,” Nano Lett. 4(5), 957–961 (2004).
[Crossref]

García de Abajo, F. J.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. García de Abajo, “Optical Properties of Gold Nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[Crossref] [PubMed]

Gaskell, J. M.

L. Muskens, L. Bergamini, Y. Wang, J. M. Gaskell, N. Zabala, C. H. de Groot, D. W. Sheel, and J. Aizpurua, “Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide,” Light Sci. Appl. 5(10), e16173 (2016).
[Crossref]

Genevet, P.

Gerhold, M.

A. Dhawan, M. Gerhold, and T. Vo-Dinh, “Theoretical Simulation and Focused Ion Beam Fabrication of Gold Nanostructures For Surface-Enhanced Raman Scattering (SERS),” NanoBiotechnology 3(3-4), 164–171 (2007).
[Crossref] [PubMed]

Gerhold, M. D.

Haggui, M.

S. Dodson, M. Haggui, R. Bachelot, J. Plain, S. Li, and Q. Xiong, “Optimizing Electromagnetic Hotspots in Plasmonic Bowtie Nanoantennae,” J. Phys. Chem. Lett. 4(3), 496–501 (2013).
[Crossref] [PubMed]

Haglund, R.

J. Suh, E. U. Donev, D. W. Ferrara, K. A. Tetz, L. C. Feldman, and R. Haglund., “Modulation of the gold particle - plasmon resonance by the metal – semiconductor transition of vanadium dioxide,” J. Opt. A, Pure Appl. Opt. 10(5), 055202 (2008).
[Crossref]

Haglund, R. F.

Halas, N. J.

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano Switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with Active Optical Antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

J. B. Jackson and N. J. Halas, “Silver Nanoshells: Variations in Morphologies and Optical Properties,” J. Phys. Chem. B 105(14), 2743–2746 (2001).
[Crossref]

Hanarp, P.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. García de Abajo, “Optical Properties of Gold Nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[Crossref] [PubMed]

Hecht, B.

P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

Hendren, W. R.

P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson, A. V. Zayats, and R. J. Pollard, “Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal,” Appl. Phys. Lett. 91(4), 043101 (2007).
[Crossref]

Huang, J. S.

P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

Hulst, N. F. V.

T. H. Taminiau, D. F. Stefani, F. B. Segerink, and N. F. V. Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2(4), 234–237 (2008).
[Crossref]

Ikuta, Y.

T. Maruyama and Y. Ikuta, “Vanadium Dioxide thin films prepared by chemical vapour deposition from vanadium (III) acetylacetonate,” J. Mater. Sci. 28(18), 5073–5078 (1993).
[Crossref]

Irudayaraj, J.

R. M. Bakker, V. P. Drachev, Z. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys. 10(12), 125022 (2008).
[Crossref]

Jackson, J. B.

J. B. Jackson and N. J. Halas, “Silver Nanoshells: Variations in Morphologies and Optical Properties,” J. Phys. Chem. B 105(14), 2743–2746 (2001).
[Crossref]

James, T. D.

Jin, P.

H. Kakiuchida, P. Jin, and M. Tazawa, “Control of thermochromic spectrum in vanadium dioxide by amorphoussilicon suboxide layer,” Sol. Energy Mater. Sol. Cells 92(10), 1279–1284 (2008).
[Crossref]

Jinzhong, Z.

R. Nadejda and Z. Jinzhong, “Photothermal ablation therapy for cancer based on metal nanostructures,” Sci. China Ser. Biol. Chem. 52(10), 1559–1575 (2009).

Kakiuchida, H.

H. Kakiuchida, P. Jin, and M. Tazawa, “Control of thermochromic spectrum in vanadium dioxide by amorphoussilicon suboxide layer,” Sol. Energy Mater. Sol. Cells 92(10), 1279–1284 (2008).
[Crossref]

Kall, M.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. García de Abajo, “Optical Properties of Gold Nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[Crossref] [PubMed]

Kats, M. A.

Khatua, S.

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano Switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

Kieffer, J. C.

A. Cavalleri, C. Toth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond Structural Dynamics in VO2 during an Ultrafast Solid-Solid Phase Transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

Kildishev, A. V.

N. K. Emani, T. F. Chung, X. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, “Electrically Tunable Damping of Plasmonic Resonances with Graphene,” Nano Lett. 12(10), 5202–5206 (2012).
[Crossref] [PubMed]

R. M. Bakker, V. P. Drachev, Z. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys. 10(12), 125022 (2008).
[Crossref]

Kim, B. J.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active Terahertz Nanoantennas Based on VO2 Phase Transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Kim, D. S.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active Terahertz Nanoantennas Based on VO2 Phase Transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Kim, H. S.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active Terahertz Nanoantennas Based on VO2 Phase Transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Kim, H. T.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active Terahertz Nanoantennas Based on VO2 Phase Transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Kim, K.

Kinkhabwala, A.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Kino, G.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-Dependent Optical Coupling of Single “Bowtie” Nanoantennas Resonant in the Visible,” Nano Lett. 4(5), 957–961 (2004).
[Crossref]

Kino, G. S.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[Crossref]

Kittl, J.

G. Rampelberg, M. Schaekers, K. Martens, Q. Xie, D. Deduytsche, B. D. Schutter, N. Blasco, J. Kittl, and C. Detavernier, “Semiconductor-metal transition in thin VO2 films grown by ozone based atomic layer deposition,” Appl. Phys. Lett. 98(16), 162902 (2011).
[Crossref]

Kivshar, Y. S.

I. S. Maksymov, A. E. Miroshnichenko, and Y. S. Kivshar, “Actively tunable bistable optical Yagi-Uda nanoantenna,” Opt. Express 20(8), 8929–8938 (2012).
[Crossref] [PubMed]

R. E. Noskov, A. E. Krasnok, and Y. S. Kivshar, “Nonlinear metal–dielectric nanoantennas for light switching and routing,” New J. Phys. 14(9), 93005–93915 (2012).
[Crossref]

Knight, M. W.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with Active Optical Antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Kocabas, S. E.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a nearinfrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[Crossref]

Kong, J.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad Electrical Tuning of Graphene-Loaded Plasmonic Antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

Koo, S.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active Terahertz Nanoantennas Based on VO2 Phase Transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Krasnok, A. E.

R. E. Noskov, A. E. Krasnok, and Y. S. Kivshar, “Nonlinear metal–dielectric nanoantennas for light switching and routing,” New J. Phys. 14(9), 93005–93915 (2012).
[Crossref]

Krauss, P. R.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14(6), 4129–4133 (1996).
[Crossref]

Kyoung, J.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active Terahertz Nanoantennas Based on VO2 Phase Transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Large, N.

N. Large, M. Abb, J. Aizpurua, and O. L. Muskens, “Photoconductively Loaded Plasmonic Nanoantenna as Building Block for Ultracompact Optical Switches,” Nano Lett. 10(5), 1741–1746 (2010).
[Crossref] [PubMed]

Lassiter, J. B.

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano Switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

Latif, S.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a nearinfrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[Crossref]

Lee, B.

Lee, I. M.

Lee, S. Y.

Li, S.

S. Dodson, M. Haggui, R. Bachelot, J. Plain, S. Li, and Q. Xiong, “Optimizing Electromagnetic Hotspots in Plasmonic Bowtie Nanoantennae,” J. Phys. Chem. Lett. 4(3), 496–501 (2013).
[Crossref] [PubMed]

Link, S.

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano Switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

S. Link and M. A. El-Sayed, “Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
[Crossref]

Liu, Z.

R. M. Bakker, V. P. Drachev, Z. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys. 10(12), 125022 (2008).
[Crossref]

Livage, J.

F. Beteille and J. Livage, “Optical Switching in VO2 Thin Films,” J. sol-gel. Sci. Tech. (Paris) 13(1), 915–921 (1998).

Ly-Gagnon, D. S.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a nearinfrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[Crossref]

Maier, S. A.

M. Navarro-Cia and S. A. Maier, “Broad-Band Near-Infrared Plasmonic Nanoantennas for Higher Harmonic Generation,” ACS Nano 6(4), 3537–3544 (2012).
[Crossref] [PubMed]

Maksymov, I. S.

Maltzahn, G. V.

G. V. Maltzahn, J. H. Park, A. Agrawal, N. K. Bandaru, S. K. Das, M. J. Sailor, and S. N. Bhatia, “Computationally Guided Photothermal Tumor Therapy Using Long-Circulating Gold Nanorod Antennas,” Cancer Res. 69(9), 3892–3900 (2009).
[Crossref] [PubMed]

Martens, K.

G. Rampelberg, M. Schaekers, K. Martens, Q. Xie, D. Deduytsche, B. D. Schutter, N. Blasco, J. Kittl, and C. Detavernier, “Semiconductor-metal transition in thin VO2 films grown by ozone based atomic layer deposition,” Appl. Phys. Lett. 98(16), 162902 (2011).
[Crossref]

Maruyama, T.

T. Maruyama and Y. Ikuta, “Vanadium Dioxide thin films prepared by chemical vapour deposition from vanadium (III) acetylacetonate,” J. Mater. Sci. 28(18), 5073–5078 (1993).
[Crossref]

Marvel, R. E.

McCallum, J. C.

Miller, D. A. B.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a nearinfrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[Crossref]

Miroshnichenko, A. E.

Moerner, W. E.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-Dependent Optical Coupling of Single “Bowtie” Nanoantennas Resonant in the Visible,” Nano Lett. 4(5), 957–961 (2004).
[Crossref]

Müllen, K.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Muskens, L.

L. Muskens, L. Bergamini, Y. Wang, J. M. Gaskell, N. Zabala, C. H. de Groot, D. W. Sheel, and J. Aizpurua, “Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide,” Light Sci. Appl. 5(10), e16173 (2016).
[Crossref]

Muskens, O. L.

M. Abb, P. Albella, J. Aizpurua, and O. L. Muskens, “All-Optical Control of a Single Plasmonic Nanoantenna-ITO Hybrid,” Nano Lett. 11(6), 2457–2463 (2011).
[Crossref] [PubMed]

N. Large, M. Abb, J. Aizpurua, and O. L. Muskens, “Photoconductively Loaded Plasmonic Nanoantenna as Building Block for Ultracompact Optical Switches,” Nano Lett. 10(5), 1741–1746 (2010).
[Crossref] [PubMed]

Nadejda, R.

R. Nadejda and Z. Jinzhong, “Photothermal ablation therapy for cancer based on metal nanostructures,” Sci. China Ser. Biol. Chem. 52(10), 1559–1575 (2009).

Navarro-Cia, M.

M. Navarro-Cia and S. A. Maier, “Broad-Band Near-Infrared Plasmonic Nanoantennas for Higher Harmonic Generation,” ACS Nano 6(4), 3537–3544 (2012).
[Crossref] [PubMed]

Ni, X.

N. K. Emani, T. F. Chung, X. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, “Electrically Tunable Damping of Plasmonic Resonances with Graphene,” Nano Lett. 12(10), 5202–5206 (2012).
[Crossref] [PubMed]

Nordlander, P.

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano Switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with Active Optical Antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Norton, S. J.

Noskov, R. E.

R. E. Noskov, A. E. Krasnok, and Y. S. Kivshar, “Nonlinear metal–dielectric nanoantennas for light switching and routing,” New J. Phys. 14(9), 93005–93915 (2012).
[Crossref]

Novotny, L.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. Opt. Photonics 1(3), 438–483 (2009).
[Crossref]

M. Danckwerts and L. Novotny, “Optical Frequency Mixing at Coupled Gold Nanoparticles,” Phys. Rev. Lett. 98(2), 026104 (2007).
[Crossref] [PubMed]

L. Novotny, “Effective Wavelength Scaling for Optical Antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[Crossref] [PubMed]

Ocaya, R. O.

F. B. Dejene and R. O. Ocaya, “Electrical, optical and structural properties of pure and gold-coated VO2 thin films on quartz substrate,” Curr. Appl. Phys. 10(2), 508–512 (2010).
[Crossref]

Okyay, A. K.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a nearinfrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[Crossref]

Oran, J. M.

N. A. Abu Hatab, J. M. Oran, and M. J. Sepaniak, “Surface-Enhanced Raman Spectroscopy Substrates Created via Electron Beam Lithography and Nanotransfer Printing,” ACS Nano 2(2), 377–385 (2008).
[Crossref] [PubMed]

Park, H.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active Terahertz Nanoantennas Based on VO2 Phase Transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Park, J. B.

Park, J. H.

G. V. Maltzahn, J. H. Park, A. Agrawal, N. K. Bandaru, S. K. Das, M. J. Sailor, and S. N. Bhatia, “Computationally Guided Photothermal Tumor Therapy Using Long-Circulating Gold Nanorod Antennas,” Cancer Res. 69(9), 3892–3900 (2009).
[Crossref] [PubMed]

Park, N.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active Terahertz Nanoantennas Based on VO2 Phase Transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Park, Q. H.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active Terahertz Nanoantennas Based on VO2 Phase Transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Pedersen, R. H.

R. M. Bakker, V. P. Drachev, Z. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys. 10(12), 125022 (2008).
[Crossref]

Pergament, A.

G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and Mott transition in VO2,” J. Phys. Condens. Matter 12(41), 8837–8845 (2000).
[Crossref]

Plain, J.

S. Dodson, M. Haggui, R. Bachelot, J. Plain, S. Li, and Q. Xiong, “Optimizing Electromagnetic Hotspots in Plasmonic Bowtie Nanoantennae,” J. Phys. Chem. Lett. 4(3), 496–501 (2013).
[Crossref] [PubMed]

Pollard, R. J.

P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson, A. V. Zayats, and R. J. Pollard, “Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal,” Appl. Phys. Lett. 91(4), 043101 (2007).
[Crossref]

Qazilbash, M. M.

Quate, C. F.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[Crossref]

Ráksi, F.

A. Cavalleri, C. Toth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond Structural Dynamics in VO2 during an Ultrafast Solid-Solid Phase Transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

Ramanathan, S.

Rampelberg, G.

G. Rampelberg, M. Schaekers, K. Martens, Q. Xie, D. Deduytsche, B. D. Schutter, N. Blasco, J. Kittl, and C. Detavernier, “Semiconductor-metal transition in thin VO2 films grown by ozone based atomic layer deposition,” Appl. Phys. Lett. 98(16), 162902 (2011).
[Crossref]

Renstrom, P. J.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14(6), 4129–4133 (1996).
[Crossref]

Roberts, A.

Sailor, M. J.

G. V. Maltzahn, J. H. Park, A. Agrawal, N. K. Bandaru, S. K. Das, M. J. Sailor, and S. N. Bhatia, “Computationally Guided Photothermal Tumor Therapy Using Long-Circulating Gold Nanorod Antennas,” Cancer Res. 69(9), 3892–3900 (2009).
[Crossref] [PubMed]

Saraswat, K. C.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a nearinfrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[Crossref]

Schaekers, M.

G. Rampelberg, M. Schaekers, K. Martens, Q. Xie, D. Deduytsche, B. D. Schutter, N. Blasco, J. Kittl, and C. Detavernier, “Semiconductor-metal transition in thin VO2 films grown by ozone based atomic layer deposition,” Appl. Phys. Lett. 98(16), 162902 (2011).
[Crossref]

Schuck, P. J.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-Dependent Optical Coupling of Single “Bowtie” Nanoantennas Resonant in the Visible,” Nano Lett. 4(5), 957–961 (2004).
[Crossref]

Schuller, J. A.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor Nanowire Optical Antenna Solar Absorbers,” Nano Lett. 10(2), 439–445 (2010).
[Crossref] [PubMed]

Schutter, B. D.

G. Rampelberg, M. Schaekers, K. Martens, Q. Xie, D. Deduytsche, B. D. Schutter, N. Blasco, J. Kittl, and C. Detavernier, “Semiconductor-metal transition in thin VO2 films grown by ozone based atomic layer deposition,” Appl. Phys. Lett. 98(16), 162902 (2011).
[Crossref]

Segerink, F. B.

T. H. Taminiau, D. F. Stefani, F. B. Segerink, and N. F. V. Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2(4), 234–237 (2008).
[Crossref]

Seo, K.

T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic Plasmonic Polarizers for Active Visible Color Filtering and Polarimetry,” Nano Lett. 12(2), 1026–1031 (2012).
[Crossref] [PubMed]

Seo, M.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active Terahertz Nanoantennas Based on VO2 Phase Transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Sepaniak, M. J.

N. A. Abu Hatab, J. M. Oran, and M. J. Sepaniak, “Surface-Enhanced Raman Spectroscopy Substrates Created via Electron Beam Lithography and Nanotransfer Printing,” ACS Nano 2(2), 377–385 (2008).
[Crossref] [PubMed]

Shalaev, V. M.

R. M. Bakker, V. P. Drachev, Z. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys. 10(12), 125022 (2008).
[Crossref]

Sheel, D. W.

L. Muskens, L. Bergamini, Y. Wang, J. M. Gaskell, N. Zabala, C. H. de Groot, D. W. Sheel, and J. Aizpurua, “Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide,” Light Sci. Appl. 5(10), e16173 (2016).
[Crossref]

Sibilia, C.

Siders, C. W.

A. Cavalleri, C. Toth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond Structural Dynamics in VO2 during an Ultrafast Solid-Solid Phase Transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

Sobhani, H.

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano Switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with Active Optical Antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Song, E. Y.

Song, Y.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad Electrical Tuning of Graphene-Loaded Plasmonic Antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

Squier, J. A.

A. Cavalleri, C. Toth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond Structural Dynamics in VO2 during an Ultrafast Solid-Solid Phase Transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

Stefani, D. F.

T. H. Taminiau, D. F. Stefani, F. B. Segerink, and N. F. V. Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2(4), 234–237 (2008).
[Crossref]

Stefanovich, D.

G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and Mott transition in VO2,” J. Phys. Condens. Matter 12(41), 8837–8845 (2000).
[Crossref]

Stefanovich, G.

G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and Mott transition in VO2,” J. Phys. Condens. Matter 12(41), 8837–8845 (2000).
[Crossref]

Suh, J.

J. Suh, E. U. Donev, D. W. Ferrara, K. A. Tetz, L. C. Feldman, and R. Haglund., “Modulation of the gold particle - plasmon resonance by the metal – semiconductor transition of vanadium dioxide,” J. Opt. A, Pure Appl. Opt. 10(5), 055202 (2008).
[Crossref]

Sundaramurthy, A.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-Dependent Optical Coupling of Single “Bowtie” Nanoantennas Resonant in the Visible,” Nano Lett. 4(5), 957–961 (2004).
[Crossref]

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[Crossref]

Sutherland, D. S.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. García de Abajo, “Optical Properties of Gold Nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[Crossref] [PubMed]

Swanglap, P.

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano Switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

Taminiau, T. H.

T. H. Taminiau, D. F. Stefani, F. B. Segerink, and N. F. V. Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2(4), 234–237 (2008).
[Crossref]

Tang, L.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a nearinfrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[Crossref]

Tazawa, M.

H. Kakiuchida, P. Jin, and M. Tazawa, “Control of thermochromic spectrum in vanadium dioxide by amorphoussilicon suboxide layer,” Sol. Energy Mater. Sol. Cells 92(10), 1279–1284 (2008).
[Crossref]

Tetz, K. A.

J. Suh, E. U. Donev, D. W. Ferrara, K. A. Tetz, L. C. Feldman, and R. Haglund., “Modulation of the gold particle - plasmon resonance by the metal – semiconductor transition of vanadium dioxide,” J. Opt. A, Pure Appl. Opt. 10(5), 055202 (2008).
[Crossref]

Toth, C.

A. Cavalleri, C. Toth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond Structural Dynamics in VO2 during an Ultrafast Solid-Solid Phase Transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

Vasudev, A. P.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor Nanowire Optical Antenna Solar Absorbers,” Nano Lett. 10(2), 439–445 (2010).
[Crossref] [PubMed]

Verleur, H. W.

H. W. Verleur, A. S. Barker, and C. Berglund, “Optical Properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
[Crossref]

Vo-Dinh, T.

Wang, D.

D. Wang, W. Zhu, Y. Chu, and K. B. Crozier, “High Directivity Optical Antenna Substrates for Surface Enhanced Raman Scattering,” Adv. Mater. 24(32), 4376–4380 (2012).
[Crossref] [PubMed]

Wang, Y.

L. Muskens, L. Bergamini, Y. Wang, J. M. Gaskell, N. Zabala, C. H. de Groot, D. W. Sheel, and J. Aizpurua, “Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide,” Light Sci. Appl. 5(10), e16173 (2016).
[Crossref]

White, J. S.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor Nanowire Optical Antenna Solar Absorbers,” Nano Lett. 10(2), 439–445 (2010).
[Crossref] [PubMed]

Wurtz, G. A.

P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson, A. V. Zayats, and R. J. Pollard, “Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal,” Appl. Phys. Lett. 91(4), 043101 (2007).
[Crossref]

Xie, Q.

G. Rampelberg, M. Schaekers, K. Martens, Q. Xie, D. Deduytsche, B. D. Schutter, N. Blasco, J. Kittl, and C. Detavernier, “Semiconductor-metal transition in thin VO2 films grown by ozone based atomic layer deposition,” Appl. Phys. Lett. 98(16), 162902 (2011).
[Crossref]

Xiong, Q.

S. Dodson, M. Haggui, R. Bachelot, J. Plain, S. Li, and Q. Xiong, “Optimizing Electromagnetic Hotspots in Plasmonic Bowtie Nanoantennae,” J. Phys. Chem. Lett. 4(3), 496–501 (2013).
[Crossref] [PubMed]

Yang, Z.

Yao, Y.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad Electrical Tuning of Graphene-Loaded Plasmonic Antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

Yu, N.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad Electrical Tuning of Graphene-Loaded Plasmonic Antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

Yu, Y.

Y. Yu, V. E. Ferry, A. P. Alivisatos, and L. Cao, “Dielectric Core-Shell Optical Antennas for Strong Solar Absorption Enhancement,” Nano Lett. 12(7), 3674–3681 (2012).
[Crossref] [PubMed]

Yu, Z.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor Nanowire Optical Antenna Solar Absorbers,” Nano Lett. 10(2), 439–445 (2010).
[Crossref] [PubMed]

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Yuan, H. K.

R. M. Bakker, V. P. Drachev, Z. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys. 10(12), 125022 (2008).
[Crossref]

Zabala, N.

L. Muskens, L. Bergamini, Y. Wang, J. M. Gaskell, N. Zabala, C. H. de Groot, D. W. Sheel, and J. Aizpurua, “Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide,” Light Sci. Appl. 5(10), e16173 (2016).
[Crossref]

Zayats, A. V.

P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson, A. V. Zayats, and R. J. Pollard, “Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal,” Appl. Phys. Lett. 91(4), 043101 (2007).
[Crossref]

Zhu, W.

D. Wang, W. Zhu, Y. Chu, and K. B. Crozier, “High Directivity Optical Antenna Substrates for Surface Enhanced Raman Scattering,” Adv. Mater. 24(32), 4376–4380 (2012).
[Crossref] [PubMed]

ACS Nano (2)

M. Navarro-Cia and S. A. Maier, “Broad-Band Near-Infrared Plasmonic Nanoantennas for Higher Harmonic Generation,” ACS Nano 6(4), 3537–3544 (2012).
[Crossref] [PubMed]

N. A. Abu Hatab, J. M. Oran, and M. J. Sepaniak, “Surface-Enhanced Raman Spectroscopy Substrates Created via Electron Beam Lithography and Nanotransfer Printing,” ACS Nano 2(2), 377–385 (2008).
[Crossref] [PubMed]

Adv. Mater. (1)

D. Wang, W. Zhu, Y. Chu, and K. B. Crozier, “High Directivity Optical Antenna Substrates for Surface Enhanced Raman Scattering,” Adv. Mater. 24(32), 4376–4380 (2012).
[Crossref] [PubMed]

Adv. Opt. Photonics (1)

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. Opt. Photonics 1(3), 438–483 (2009).
[Crossref]

Appl. Phys. Lett. (2)

P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson, A. V. Zayats, and R. J. Pollard, “Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal,” Appl. Phys. Lett. 91(4), 043101 (2007).
[Crossref]

G. Rampelberg, M. Schaekers, K. Martens, Q. Xie, D. Deduytsche, B. D. Schutter, N. Blasco, J. Kittl, and C. Detavernier, “Semiconductor-metal transition in thin VO2 films grown by ozone based atomic layer deposition,” Appl. Phys. Lett. 98(16), 162902 (2011).
[Crossref]

Cancer Res. (1)

G. V. Maltzahn, J. H. Park, A. Agrawal, N. K. Bandaru, S. K. Das, M. J. Sailor, and S. N. Bhatia, “Computationally Guided Photothermal Tumor Therapy Using Long-Circulating Gold Nanorod Antennas,” Cancer Res. 69(9), 3892–3900 (2009).
[Crossref] [PubMed]

Curr. Appl. Phys. (1)

F. B. Dejene and R. O. Ocaya, “Electrical, optical and structural properties of pure and gold-coated VO2 thin films on quartz substrate,” Curr. Appl. Phys. 10(2), 508–512 (2010).
[Crossref]

J. Appl. Phys. (1)

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[Crossref]

J. Mater. Sci. (1)

T. Maruyama and Y. Ikuta, “Vanadium Dioxide thin films prepared by chemical vapour deposition from vanadium (III) acetylacetonate,” J. Mater. Sci. 28(18), 5073–5078 (1993).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

J. Suh, E. U. Donev, D. W. Ferrara, K. A. Tetz, L. C. Feldman, and R. Haglund., “Modulation of the gold particle - plasmon resonance by the metal – semiconductor transition of vanadium dioxide,” J. Opt. A, Pure Appl. Opt. 10(5), 055202 (2008).
[Crossref]

J. Phys. Chem. B (2)

S. Link and M. A. El-Sayed, “Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
[Crossref]

J. B. Jackson and N. J. Halas, “Silver Nanoshells: Variations in Morphologies and Optical Properties,” J. Phys. Chem. B 105(14), 2743–2746 (2001).
[Crossref]

J. Phys. Chem. Lett. (1)

S. Dodson, M. Haggui, R. Bachelot, J. Plain, S. Li, and Q. Xiong, “Optimizing Electromagnetic Hotspots in Plasmonic Bowtie Nanoantennae,” J. Phys. Chem. Lett. 4(3), 496–501 (2013).
[Crossref] [PubMed]

J. Phys. Condens. Matter (1)

G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and Mott transition in VO2,” J. Phys. Condens. Matter 12(41), 8837–8845 (2000).
[Crossref]

J. sol-gel. Sci. Tech. (Paris) (1)

F. Beteille and J. Livage, “Optical Switching in VO2 Thin Films,” J. sol-gel. Sci. Tech. (Paris) 13(1), 915–921 (1998).

J. Vac. Sci. Technol. B (1)

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14(6), 4129–4133 (1996).
[Crossref]

Light Sci. Appl. (1)

L. Muskens, L. Bergamini, Y. Wang, J. M. Gaskell, N. Zabala, C. H. de Groot, D. W. Sheel, and J. Aizpurua, “Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide,” Light Sci. Appl. 5(10), e16173 (2016).
[Crossref]

Nano Lett. (11)

M. D. Fischbein and M. Drndić, “Sub-10 nm device fabrication in a transmission electron microscope,” Nano Lett. 7(5), 1329–1337 (2007).
[Crossref] [PubMed]

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano Switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

N. K. Emani, T. F. Chung, X. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, “Electrically Tunable Damping of Plasmonic Resonances with Graphene,” Nano Lett. 12(10), 5202–5206 (2012).
[Crossref] [PubMed]

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad Electrical Tuning of Graphene-Loaded Plasmonic Antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-Dependent Optical Coupling of Single “Bowtie” Nanoantennas Resonant in the Visible,” Nano Lett. 4(5), 957–961 (2004).
[Crossref]

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active Terahertz Nanoantennas Based on VO2 Phase Transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Y. Yu, V. E. Ferry, A. P. Alivisatos, and L. Cao, “Dielectric Core-Shell Optical Antennas for Strong Solar Absorption Enhancement,” Nano Lett. 12(7), 3674–3681 (2012).
[Crossref] [PubMed]

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor Nanowire Optical Antenna Solar Absorbers,” Nano Lett. 10(2), 439–445 (2010).
[Crossref] [PubMed]

T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic Plasmonic Polarizers for Active Visible Color Filtering and Polarimetry,” Nano Lett. 12(2), 1026–1031 (2012).
[Crossref] [PubMed]

N. Large, M. Abb, J. Aizpurua, and O. L. Muskens, “Photoconductively Loaded Plasmonic Nanoantenna as Building Block for Ultracompact Optical Switches,” Nano Lett. 10(5), 1741–1746 (2010).
[Crossref] [PubMed]

M. Abb, P. Albella, J. Aizpurua, and O. L. Muskens, “All-Optical Control of a Single Plasmonic Nanoantenna-ITO Hybrid,” Nano Lett. 11(6), 2457–2463 (2011).
[Crossref] [PubMed]

NanoBiotechnology (1)

A. Dhawan, M. Gerhold, and T. Vo-Dinh, “Theoretical Simulation and Focused Ion Beam Fabrication of Gold Nanostructures For Surface-Enhanced Raman Scattering (SERS),” NanoBiotechnology 3(3-4), 164–171 (2007).
[Crossref] [PubMed]

Nat. Photonics (3)

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a nearinfrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[Crossref]

T. H. Taminiau, D. F. Stefani, F. B. Segerink, and N. F. V. Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2(4), 234–237 (2008).
[Crossref]

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

New J. Phys. (2)

R. M. Bakker, V. P. Drachev, Z. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys. 10(12), 125022 (2008).
[Crossref]

R. E. Noskov, A. E. Krasnok, and Y. S. Kivshar, “Nonlinear metal–dielectric nanoantennas for light switching and routing,” New J. Phys. 14(9), 93005–93915 (2012).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Phys. Rev. (1)

H. W. Verleur, A. S. Barker, and C. Berglund, “Optical Properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
[Crossref]

Phys. Rev. Lett. (4)

A. Cavalleri, C. Toth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond Structural Dynamics in VO2 during an Ultrafast Solid-Solid Phase Transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

M. Danckwerts and L. Novotny, “Optical Frequency Mixing at Coupled Gold Nanoparticles,” Phys. Rev. Lett. 98(2), 026104 (2007).
[Crossref] [PubMed]

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. García de Abajo, “Optical Properties of Gold Nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[Crossref] [PubMed]

L. Novotny, “Effective Wavelength Scaling for Optical Antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

Sci. China Ser. Biol. Chem. (1)

R. Nadejda and Z. Jinzhong, “Photothermal ablation therapy for cancer based on metal nanostructures,” Sci. China Ser. Biol. Chem. 52(10), 1559–1575 (2009).

Sci. Rep. (1)

K. Appavoo and R. F. Haglund., “Polarization selective phase-change nanomodulator,” Sci. Rep. 4(1), 6771–6776 (2014).
[Crossref] [PubMed]

Science (1)

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with Active Optical Antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

H. Kakiuchida, P. Jin, and M. Tazawa, “Control of thermochromic spectrum in vanadium dioxide by amorphoussilicon suboxide layer,” Sol. Energy Mater. Sol. Cells 92(10), 1279–1284 (2008).
[Crossref]

Other (3)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

M. Agio and A. Alu, Optical Antennas (Cambridge University, 2013).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a)-(c) Schematics showing different switchable plasmonic nanoantennas (SPNs): (a) Non-inverted Dipole SPN, (b) Non-inverted Bow-tie SPN, (c) Non-inverted Rod-disk SPN, (d) Inverted Dipole SPN, (e) Inverted Bow-tie SPN, (f) Inverted Rod-disk SPN, and (g) Trapezoidal toothed log-periodic SPN. The non-inverted SPNs consist of nanoantenna structures made up of a plasmonic metal (gold) such that these nanoantennas are filled with a switchable material (thin film of vanadium dioxide). The inverted SPNs consist of gold nanoantenna structures surrounded by vanadium dioxide (VO2) on their outer surface. Here, ‘L’ is the nanoantenna arm length, 'H' is the nanoantenna height, ‘W’ is the thickness of the plasmonic ring, and 'G' is the nanoantenna gap.
Fig. 2
Fig. 2 Plots showing switching of electric-field intensity enhancement between the two states of the switchable plasmonic nanoantennas (SPNs) — i.e. the semiconductor state and the metallic state for: (a) A non-inverted dipole SPN, (b) A non-inverted bow-tie SPN, (c) A non-inverted rod-disk SPN and (d) A planar trapezoidal toothed log-periodic SPN. The On and Off states of the nanoantennas correspond to the metallic and semiconductor states, respectively of the VO2 film inside the nanoantennas. The plasmon resonance wavelengths associated with the E-field intensity enhancement (EFIE) spectra of the SPNs are termed as λm (for the metallic state of the SPNs) and λs (for the semiconductor state of the SPNs). As the SPNs change their state from the metallic state to the semiconductor state, there is a shift (Δλ = λs - λm) in the EFIE plasmon resonance wavelength. A comparison of the intensity switching ratio (ION/IOFF) for the two different types of nanoantennas: (i) non-inverted SPNs and (j) inverted SPNs. The nanoantenna arm length 'L', height 'H', and gap 'G' were taken to be 100 nm, 25 nm, and 10 nm, respectively, for all the SPNs. Gold ring thickness ‘W’ was taken as 5 nm in (a)-(c) and (e). The thickness of the VO2 surrounding layer was taken as 5 nm in (f). Design constants τ and ρ were taken as 0.5 and 2, respectively, in (d).
Fig. 3
Fig. 3 Electric field intensity enhancement spectra of rod-disk switchable plasmonic nanoantennas (SPNs) having: (a) Disk ratio = 1 and a Funnel Ratio = 1, (b) Disk Ratio = 2 and a Funnel Ratio = 1 and (c) Disk Ratio = 2 and a Funnel Ratio = 2. (d) A schematic illustrating the definitions of the Disc Ratio and the Funnel Ratio. (e) Effect of increasing the Disk Ratio (D2/D1) on the intensity switching ratio (ION/IOFF) and the plasmon resonance wavelength shift (Δλ), when the Funnel Ratio (D3/D1) = 1, and (f) Effect of increasing the Funnel Ratio on the intensity switching ratio and the plasmon resonance wavelength shift, when the Disk Ratio = 2. Here, ‘L’ is the nanoantenna arm length, 'H' is the nanoantenna height, and 'G' is the nanoantenna gap.
Fig. 4
Fig. 4 Effect of varying the nanoantenna arm length ‘L’ on the intensity switching ratio (ION/IOFF) as a function of wavelength for: (a) A dipole switchable plasmonic nanoantenna (SPN) shown in (c), (b) A bow-tie SPN shown in (d), (e) A rod-disk SPN shown in (g), (f) a planar trapezoidal toothed log-periodic SPN shown in (h). In all these SPNs, G = 10nm, H = 50nm. ‘L’ is the nanoantenna arm length, 'H' is the nanoantenna height, and 'G' is the nanoantenna gap. Gold ring thickness ‘W’ was taken as 5 nm in (a), (b), and (e). Design constants τ and ρ were taken as 0.5 and 2, respectively, in (f).
Fig. 5
Fig. 5 Schematics showing geometrical parameters in different switchable plasmonic nanoantennas (SPNs): (a) a dipole SPN, (b) a bow-tie SPN, (c) a rod-disk SPN, and (d) a planar trapezoidal toothed log-periodic SPN. Effect of varying the thickness ‘W’ — of the gold ring forming the switchable plasmonic nanoantennas — on the intensity switching ratio (ION/IOFF) as a function of wavelength for: (e) A dipole switchable plasmonic nanoantenna (SPN), (f) A bow-tie SPN, and (g) A rod-disk SPN. The intensity switching ratios are plotted as a function of wavelength for L = 100 nm, D = D1 = 25 nm, D2 = 50 nm, B = 80 nm. (h) Effect of design constant τ of a planar trapezoidal toothed log-periodic nanoantenna on the Intensity Switching ratio. The planar trapezoidal toothed log-periodic nanoantenna have the following dimensional parameters: Rn = 100 nm, ρ = 2, Dn = 40 nm. Here, ‘L’ is the nanoantenna arm length, 'H' is the nanoantenna height, and 'G' is the nanoantenna gap.
Fig. 6
Fig. 6 The variation of real and imaginary parts of the dielectric constant (ε) with wavelength are shown for: (a) VO2 in semiconductor state, (b) VO2 in metallic state, and (c) Gold.
Fig. 7
Fig. 7 Figures showing changes in the near-field distributions of E-field enhancement as the VO2 thin film layer present in the different switchable plasmonic nanoantennas (SPNs) undergoes a phase transition from the semiconductor phase to the metallic phase. These near-field distributions were calculated at wavelengths for which maximum intensity switching ratio (ION/IOFF) occur for different SPNs: (a) Dipole SPN, (b) Rod-disk SPN, (c) Bow-tie SPN, and (d) Planar trapezoidal toothed log-periodic SPN. All SPNs had the following structural parameters: Length (L) = 100 nm, Height (H) = 25 nm, and Gap between the nanoantenna arms (G) = 10 nm. Gold ring thickness ‘W’ was taken as 5 nm in (a), (b), and (c). Design constants τ and ρ were taken as 0.5 and 2, respectively, in (d).
Fig. 8
Fig. 8 Plots showing the switching of electric-field intensity enhancement between the two states of the non-inverted switchable plasmonic nanoantennas (SPNs) — i.e. the semiconductor state and the metallic state, associated with the semiconductor and metallic states of the VO2 film layer for different nanoantennas: A dipole nanoantenna having arm length 'L' for: (a) 'L' = 120 nm, (b) 'L' = 100 nm, and (c) 'L' = 90 nm. A bow-tie nanoantenna having: (d) 'L' = 120 nm, (e) 'L' = 100 nm, and (f) 'L' = 90 nm. A rod-disk nanoantenna having: (g) 'L' = 120 nm, (h) 'L' = 100 nm, (i) 'L' = 90 nm. A planar trapezoidal toothed log-periodic nanoantenna having (j) 'L' = 120 nm, (k) 'L' = 100 nm, (l) 'L' = 90 nm. For all the SPNs, the gap between the nanoantenna arms 'G' = 10 nm, Height of the nanoantennas 'H' = 25 nm, and thickness of the ring 'W' = 5 nm.
Fig. 9
Fig. 9 Schematic showing the different processing steps involved in the fabrication of the switchable plasmonic nanoantennas (SPNs) being proposed in this paper.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ε(ω)=1+ k=1 6 Δ ε k a k ω 2 i b k ω+ c k
ε(ω)= ε + Δ ε 1 a 1 ω 2 i b 1 ω + k=2 6 Δ ε k a k ω 2 i b k ω+ c k
ε(ω)= ε + k=1 6 Δ ε k a k ω 2 i b k ω+ c k

Metrics