Abstract

In this study, we demonstrate a polarization imaging camera with a waveplate array of a silica glass fabricated by femtosecond (fs) laser direct writing. To use a waveplate array of silica glass for polarization imaging, non-uniformity of the transmittance and retardance in the waveplates must be considered. Therefore, we used a general method of polarization analysis with system matrices determined experimentally for all the units in the waveplate array. We found that a figure of merit based on the determinant of the system matrix could be applied to improve the accuracy of analysis and the robustness to the retardance dispersion for both the simulated and the fabricated waveplate array.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polarization selective computer-generated holograms realized in glass by femtosecond laser induced nanogratings

Wenjian Cai, Ariel R. Libertun, and Rafael Piestun
Opt. Express 14(9) 3785-3791 (2006)

Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method

Feng Chen, Hewei Liu, Qing Yang, Xianhua Wang, Cong Hou, Hao Bian, Weiwei Liang, Jinhai Si, and Xun Hou
Opt. Express 18(19) 20334-20343 (2010)

Femtosecond laser direct-write waveplates based on stress-induced birefringence

Ben McMillen, Christos Athanasiou, and Yves Bellouard
Opt. Express 24(24) 27239-27252 (2016)

References

  • View by:
  • |
  • |
  • |

  1. U. Singh and A. Kapoor, “Single layer homogeneous model for surface roughness by polarized light scattering,” Opt. Laser Technol. 40(2), 315–324 (2008).
    [Crossref]
  2. M. Sakakura, Y. Shimotsuma, N. Fukuda, and K. Miura, “Transient strain distributions during femtosecond laser-induced deformation inside LiF and MgO single crystals,” J. Appl. Phys. 118(2), 023106 (2015).
    [Crossref]
  3. C. Chou, H. Teng, C. Yu, and H. Huang, “Polarization modulation imaging ellipsometry for thin film thickness measurement,” Opt. Commun. 273(1), 74–83 (2007).
    [Crossref]
  4. J. L. Deuzé, F. M. Bréon, C. Devaux, P. Goloub, M. Herman, B. Lafrance, F. Maignan, A. Marchand, F. Nadal, G. Perry, and D. Tanré, “Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements,” J. Geophys. Res. 106(D5), 4913–4926 (2001).
    [Crossref]
  5. M. Anastasiadou, A. De Martino, D. Clement, F. Liège, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 5(5), 1423–1426 (2008).
    [Crossref]
  6. E. Salomatina-Motts, V. A. Neel, and A. N. Yaroslavskaya, “Multimodal polarization system for imaging skin cancer,” Opt. Spectrosc. 107(6), 884–890 (2009).
    [Crossref]
  7. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45(22), 5453–5469 (2006).
    [Crossref] [PubMed]
  8. D. H. Goldstein, Polarized Light, 3rd Ed. (CRC) (2011) Chapter 16.
  9. R. M. A. Azzam, I. M. Elminyawi, and A. M. El-Saba, “General analysis and optimization of the four-detector photopolarimeter,” J. Opt. Soc. Am. A 5(5), 681–689 (1988).
    [Crossref]
  10. C. S. L. Chun, D. L. Fleming, W. A. Harvey, and E. J. Torok, “Polarization-sensitive infrared sensor for target discrimination,” Proc. SPIE 3121, 55–62 (1997).
    [Crossref]
  11. V. Gruev, R. Perkins, and T. York, “CCD polarization imaging sensor with aluminum nanowire optical filters,” Opt. Express 18(18), 19087–19094 (2010).
    [Crossref] [PubMed]
  12. M. Gecevičius, M. Beresna, and P. G. Kazansky, “Polarization sensitive camera by femtosecond laser nanostructuring,” Opt. Lett. 38(20), 4096–4099 (2013).
    [Crossref] [PubMed]
  13. Y. Shimotsuma, K. Miura, and H. Kazuyuki, “Nanomodification of glass using fs laser,” Int. J. Appl. Glass Sci. 4(3), 182–191 (2013).
    [Crossref]
  14. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 2474051 (2003).
    [Crossref] [PubMed]
  15. Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
    [Crossref] [PubMed]
  16. T. Asai, Y. Shimotsuma, T. Kurita, A. Murata, S. Kubota, M. Sakakura, K. Miura, F. Brisset, B. Poumellec, and M. Lancry, “Systematic control of structural changes in GeO2 glass induced by femtosecond laser direct writing,” J. Am. Ceram. Soc. 98(5), 1471–1477 (2015).
    [Crossref]
  17. E. Bricchi, B. G. Klappauf, and P. G. Kazansky, “Form birefringence and negative index change created by femtosecond direct writing in transparent materials,” Opt. Lett. 29(1), 119–121 (2004).
    [Crossref] [PubMed]
  18. M. Lancry, R. Desmarchelier, K. Cook, B. Poumellec, and J. Canning, “Compact Birefringent Waveplates Photo-Induced in Silica by Femtosecond Laser,” Micromachines (Basel) 5(4), 825–838 (2014).
    [Crossref]
  19. V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Orientation instabilities of nanogratings recovered by femtosecond laser pulses in silica,” in Photonics and Fiber Technology 2016 (ACOFT, BGPP, NP) OSA Technical Digest (online) (Optical Society of America, 2016), paper BT3B.2.
  20. M. Beresna, M. Gecevičius, M. Lancry, B. Poumellec, and P. G. Kazansky, “Broadband anisotropy of femtosecond laser induced nanogratings in fused silica,” Appl. Phys. Lett. 103(13), 131903 (2013).
    [Crossref]
  21. C. Corbari, A. Champion, M. Gecevičius, M. Beresna, Y. Bellouard, and P. G. Kazansky, “Femtosecond versus picosecond laser machining of nano-gratings and micro-channels in silica glass,” Opt. Express 21(4), 3946–3958 (2013).
    [Crossref] [PubMed]
  22. Y. Dai, J. Ye, M. Gong, X. Ye, X. Yan, G. Ma, and J. Qiu, “Forced rotation of nanograting in glass by pulse-front tilted femtosecond laser direct writing,” Opt. Express 22(23), 28500–28505 (2014).
    [Crossref] [PubMed]
  23. J. S. Tyo, “Noise equalization in Stokes parameter images obtained by use of variable-retardance polarimeters,” Opt. Lett. 25(16), 1198–1200 (2000).
    [Crossref] [PubMed]
  24. S. Ambirajan and D. C. Look, “Optimum angles for a polarimeter: Part I,” Opt. Eng. 34(6), 1651–1655 (1995).
  25. D. S. Sabatke, M. R. Descour, E. L. Dereniak, W. C. Sweatt, S. A. Kemme, and G. S. Phipps, “Optimization of retardance for a complete Stokes polarimeter,” Opt. Lett. 25(11), 802–804 (2000).
    [Crossref] [PubMed]
  26. A. Yariv, Optical Electronics in Modern Communications, 5th Ed. (Oxford University, 1997) Chapter 1.
  27. T. Ohfuchi, Y. Yamada, M. Sakakura, N. Fukuda, T. Takiya, Y. Shimotsuma, and K. Miura, “The characteristic of birefringence and optical loss in femtosecond-laser-induced region in terms of nanogratings distribution,” Proc. LPM2016 #16–19 (2016).

2015 (2)

M. Sakakura, Y. Shimotsuma, N. Fukuda, and K. Miura, “Transient strain distributions during femtosecond laser-induced deformation inside LiF and MgO single crystals,” J. Appl. Phys. 118(2), 023106 (2015).
[Crossref]

T. Asai, Y. Shimotsuma, T. Kurita, A. Murata, S. Kubota, M. Sakakura, K. Miura, F. Brisset, B. Poumellec, and M. Lancry, “Systematic control of structural changes in GeO2 glass induced by femtosecond laser direct writing,” J. Am. Ceram. Soc. 98(5), 1471–1477 (2015).
[Crossref]

2014 (2)

M. Lancry, R. Desmarchelier, K. Cook, B. Poumellec, and J. Canning, “Compact Birefringent Waveplates Photo-Induced in Silica by Femtosecond Laser,” Micromachines (Basel) 5(4), 825–838 (2014).
[Crossref]

Y. Dai, J. Ye, M. Gong, X. Ye, X. Yan, G. Ma, and J. Qiu, “Forced rotation of nanograting in glass by pulse-front tilted femtosecond laser direct writing,” Opt. Express 22(23), 28500–28505 (2014).
[Crossref] [PubMed]

2013 (4)

C. Corbari, A. Champion, M. Gecevičius, M. Beresna, Y. Bellouard, and P. G. Kazansky, “Femtosecond versus picosecond laser machining of nano-gratings and micro-channels in silica glass,” Opt. Express 21(4), 3946–3958 (2013).
[Crossref] [PubMed]

M. Gecevičius, M. Beresna, and P. G. Kazansky, “Polarization sensitive camera by femtosecond laser nanostructuring,” Opt. Lett. 38(20), 4096–4099 (2013).
[Crossref] [PubMed]

M. Beresna, M. Gecevičius, M. Lancry, B. Poumellec, and P. G. Kazansky, “Broadband anisotropy of femtosecond laser induced nanogratings in fused silica,” Appl. Phys. Lett. 103(13), 131903 (2013).
[Crossref]

Y. Shimotsuma, K. Miura, and H. Kazuyuki, “Nanomodification of glass using fs laser,” Int. J. Appl. Glass Sci. 4(3), 182–191 (2013).
[Crossref]

2010 (2)

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[Crossref] [PubMed]

V. Gruev, R. Perkins, and T. York, “CCD polarization imaging sensor with aluminum nanowire optical filters,” Opt. Express 18(18), 19087–19094 (2010).
[Crossref] [PubMed]

2009 (1)

E. Salomatina-Motts, V. A. Neel, and A. N. Yaroslavskaya, “Multimodal polarization system for imaging skin cancer,” Opt. Spectrosc. 107(6), 884–890 (2009).
[Crossref]

2008 (2)

U. Singh and A. Kapoor, “Single layer homogeneous model for surface roughness by polarized light scattering,” Opt. Laser Technol. 40(2), 315–324 (2008).
[Crossref]

M. Anastasiadou, A. De Martino, D. Clement, F. Liège, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 5(5), 1423–1426 (2008).
[Crossref]

2007 (1)

C. Chou, H. Teng, C. Yu, and H. Huang, “Polarization modulation imaging ellipsometry for thin film thickness measurement,” Opt. Commun. 273(1), 74–83 (2007).
[Crossref]

2006 (1)

2004 (1)

2003 (1)

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 2474051 (2003).
[Crossref] [PubMed]

2001 (1)

J. L. Deuzé, F. M. Bréon, C. Devaux, P. Goloub, M. Herman, B. Lafrance, F. Maignan, A. Marchand, F. Nadal, G. Perry, and D. Tanré, “Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements,” J. Geophys. Res. 106(D5), 4913–4926 (2001).
[Crossref]

2000 (2)

1997 (1)

C. S. L. Chun, D. L. Fleming, W. A. Harvey, and E. J. Torok, “Polarization-sensitive infrared sensor for target discrimination,” Proc. SPIE 3121, 55–62 (1997).
[Crossref]

1995 (1)

S. Ambirajan and D. C. Look, “Optimum angles for a polarimeter: Part I,” Opt. Eng. 34(6), 1651–1655 (1995).

1988 (1)

Ambirajan, S.

S. Ambirajan and D. C. Look, “Optimum angles for a polarimeter: Part I,” Opt. Eng. 34(6), 1651–1655 (1995).

Anastasiadou, M.

M. Anastasiadou, A. De Martino, D. Clement, F. Liège, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 5(5), 1423–1426 (2008).
[Crossref]

Asai, T.

T. Asai, Y. Shimotsuma, T. Kurita, A. Murata, S. Kubota, M. Sakakura, K. Miura, F. Brisset, B. Poumellec, and M. Lancry, “Systematic control of structural changes in GeO2 glass induced by femtosecond laser direct writing,” J. Am. Ceram. Soc. 98(5), 1471–1477 (2015).
[Crossref]

Azzam, R. M. A.

Bellouard, Y.

Beresna, M.

C. Corbari, A. Champion, M. Gecevičius, M. Beresna, Y. Bellouard, and P. G. Kazansky, “Femtosecond versus picosecond laser machining of nano-gratings and micro-channels in silica glass,” Opt. Express 21(4), 3946–3958 (2013).
[Crossref] [PubMed]

M. Gecevičius, M. Beresna, and P. G. Kazansky, “Polarization sensitive camera by femtosecond laser nanostructuring,” Opt. Lett. 38(20), 4096–4099 (2013).
[Crossref] [PubMed]

M. Beresna, M. Gecevičius, M. Lancry, B. Poumellec, and P. G. Kazansky, “Broadband anisotropy of femtosecond laser induced nanogratings in fused silica,” Appl. Phys. Lett. 103(13), 131903 (2013).
[Crossref]

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[Crossref] [PubMed]

Bréon, F. M.

J. L. Deuzé, F. M. Bréon, C. Devaux, P. Goloub, M. Herman, B. Lafrance, F. Maignan, A. Marchand, F. Nadal, G. Perry, and D. Tanré, “Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements,” J. Geophys. Res. 106(D5), 4913–4926 (2001).
[Crossref]

Bricchi, E.

Brisset, F.

T. Asai, Y. Shimotsuma, T. Kurita, A. Murata, S. Kubota, M. Sakakura, K. Miura, F. Brisset, B. Poumellec, and M. Lancry, “Systematic control of structural changes in GeO2 glass induced by femtosecond laser direct writing,” J. Am. Ceram. Soc. 98(5), 1471–1477 (2015).
[Crossref]

Canning, J.

M. Lancry, R. Desmarchelier, K. Cook, B. Poumellec, and J. Canning, “Compact Birefringent Waveplates Photo-Induced in Silica by Femtosecond Laser,” Micromachines (Basel) 5(4), 825–838 (2014).
[Crossref]

Champion, A.

Chenault, D. B.

Chou, C.

C. Chou, H. Teng, C. Yu, and H. Huang, “Polarization modulation imaging ellipsometry for thin film thickness measurement,” Opt. Commun. 273(1), 74–83 (2007).
[Crossref]

Chun, C. S. L.

C. S. L. Chun, D. L. Fleming, W. A. Harvey, and E. J. Torok, “Polarization-sensitive infrared sensor for target discrimination,” Proc. SPIE 3121, 55–62 (1997).
[Crossref]

Clement, D.

M. Anastasiadou, A. De Martino, D. Clement, F. Liège, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 5(5), 1423–1426 (2008).
[Crossref]

Cohen, H.

M. Anastasiadou, A. De Martino, D. Clement, F. Liège, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 5(5), 1423–1426 (2008).
[Crossref]

Cook, K.

M. Lancry, R. Desmarchelier, K. Cook, B. Poumellec, and J. Canning, “Compact Birefringent Waveplates Photo-Induced in Silica by Femtosecond Laser,” Micromachines (Basel) 5(4), 825–838 (2014).
[Crossref]

Corbari, C.

Dai, Y.

De Martino, A.

M. Anastasiadou, A. De Martino, D. Clement, F. Liège, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 5(5), 1423–1426 (2008).
[Crossref]

Dereniak, E. L.

Descour, M. R.

Desmarchelier, R.

M. Lancry, R. Desmarchelier, K. Cook, B. Poumellec, and J. Canning, “Compact Birefringent Waveplates Photo-Induced in Silica by Femtosecond Laser,” Micromachines (Basel) 5(4), 825–838 (2014).
[Crossref]

Deuzé, J. L.

J. L. Deuzé, F. M. Bréon, C. Devaux, P. Goloub, M. Herman, B. Lafrance, F. Maignan, A. Marchand, F. Nadal, G. Perry, and D. Tanré, “Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements,” J. Geophys. Res. 106(D5), 4913–4926 (2001).
[Crossref]

Devaux, C.

J. L. Deuzé, F. M. Bréon, C. Devaux, P. Goloub, M. Herman, B. Lafrance, F. Maignan, A. Marchand, F. Nadal, G. Perry, and D. Tanré, “Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements,” J. Geophys. Res. 106(D5), 4913–4926 (2001).
[Crossref]

Dreyfuss, J.

M. Anastasiadou, A. De Martino, D. Clement, F. Liège, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 5(5), 1423–1426 (2008).
[Crossref]

Elminyawi, I. M.

El-Saba, A. M.

Fleming, D. L.

C. S. L. Chun, D. L. Fleming, W. A. Harvey, and E. J. Torok, “Polarization-sensitive infrared sensor for target discrimination,” Proc. SPIE 3121, 55–62 (1997).
[Crossref]

Fukuda, N.

M. Sakakura, Y. Shimotsuma, N. Fukuda, and K. Miura, “Transient strain distributions during femtosecond laser-induced deformation inside LiF and MgO single crystals,” J. Appl. Phys. 118(2), 023106 (2015).
[Crossref]

T. Ohfuchi, Y. Yamada, M. Sakakura, N. Fukuda, T. Takiya, Y. Shimotsuma, and K. Miura, “The characteristic of birefringence and optical loss in femtosecond-laser-induced region in terms of nanogratings distribution,” Proc. LPM2016 #16–19 (2016).

Gecevicius, M.

Goldstein, D. L.

Goloub, P.

J. L. Deuzé, F. M. Bréon, C. Devaux, P. Goloub, M. Herman, B. Lafrance, F. Maignan, A. Marchand, F. Nadal, G. Perry, and D. Tanré, “Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements,” J. Geophys. Res. 106(D5), 4913–4926 (2001).
[Crossref]

Gong, M.

Gruev, V.

Harvey, W. A.

C. S. L. Chun, D. L. Fleming, W. A. Harvey, and E. J. Torok, “Polarization-sensitive infrared sensor for target discrimination,” Proc. SPIE 3121, 55–62 (1997).
[Crossref]

Herman, M.

J. L. Deuzé, F. M. Bréon, C. Devaux, P. Goloub, M. Herman, B. Lafrance, F. Maignan, A. Marchand, F. Nadal, G. Perry, and D. Tanré, “Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements,” J. Geophys. Res. 106(D5), 4913–4926 (2001).
[Crossref]

Hirao, K.

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[Crossref] [PubMed]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 2474051 (2003).
[Crossref] [PubMed]

Huang, H.

C. Chou, H. Teng, C. Yu, and H. Huang, “Polarization modulation imaging ellipsometry for thin film thickness measurement,” Opt. Commun. 273(1), 74–83 (2007).
[Crossref]

Huynh, B.

M. Anastasiadou, A. De Martino, D. Clement, F. Liège, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 5(5), 1423–1426 (2008).
[Crossref]

Kapoor, A.

U. Singh and A. Kapoor, “Single layer homogeneous model for surface roughness by polarized light scattering,” Opt. Laser Technol. 40(2), 315–324 (2008).
[Crossref]

Kazansky, P. G.

M. Beresna, M. Gecevičius, M. Lancry, B. Poumellec, and P. G. Kazansky, “Broadband anisotropy of femtosecond laser induced nanogratings in fused silica,” Appl. Phys. Lett. 103(13), 131903 (2013).
[Crossref]

M. Gecevičius, M. Beresna, and P. G. Kazansky, “Polarization sensitive camera by femtosecond laser nanostructuring,” Opt. Lett. 38(20), 4096–4099 (2013).
[Crossref] [PubMed]

C. Corbari, A. Champion, M. Gecevičius, M. Beresna, Y. Bellouard, and P. G. Kazansky, “Femtosecond versus picosecond laser machining of nano-gratings and micro-channels in silica glass,” Opt. Express 21(4), 3946–3958 (2013).
[Crossref] [PubMed]

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[Crossref] [PubMed]

E. Bricchi, B. G. Klappauf, and P. G. Kazansky, “Form birefringence and negative index change created by femtosecond direct writing in transparent materials,” Opt. Lett. 29(1), 119–121 (2004).
[Crossref] [PubMed]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 2474051 (2003).
[Crossref] [PubMed]

Kazuyuki, H.

Y. Shimotsuma, K. Miura, and H. Kazuyuki, “Nanomodification of glass using fs laser,” Int. J. Appl. Glass Sci. 4(3), 182–191 (2013).
[Crossref]

Kemme, S. A.

Klappauf, B. G.

Kubota, S.

T. Asai, Y. Shimotsuma, T. Kurita, A. Murata, S. Kubota, M. Sakakura, K. Miura, F. Brisset, B. Poumellec, and M. Lancry, “Systematic control of structural changes in GeO2 glass induced by femtosecond laser direct writing,” J. Am. Ceram. Soc. 98(5), 1471–1477 (2015).
[Crossref]

Kurita, T.

T. Asai, Y. Shimotsuma, T. Kurita, A. Murata, S. Kubota, M. Sakakura, K. Miura, F. Brisset, B. Poumellec, and M. Lancry, “Systematic control of structural changes in GeO2 glass induced by femtosecond laser direct writing,” J. Am. Ceram. Soc. 98(5), 1471–1477 (2015).
[Crossref]

Lafrance, B.

J. L. Deuzé, F. M. Bréon, C. Devaux, P. Goloub, M. Herman, B. Lafrance, F. Maignan, A. Marchand, F. Nadal, G. Perry, and D. Tanré, “Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements,” J. Geophys. Res. 106(D5), 4913–4926 (2001).
[Crossref]

Lancry, M.

T. Asai, Y. Shimotsuma, T. Kurita, A. Murata, S. Kubota, M. Sakakura, K. Miura, F. Brisset, B. Poumellec, and M. Lancry, “Systematic control of structural changes in GeO2 glass induced by femtosecond laser direct writing,” J. Am. Ceram. Soc. 98(5), 1471–1477 (2015).
[Crossref]

M. Lancry, R. Desmarchelier, K. Cook, B. Poumellec, and J. Canning, “Compact Birefringent Waveplates Photo-Induced in Silica by Femtosecond Laser,” Micromachines (Basel) 5(4), 825–838 (2014).
[Crossref]

M. Beresna, M. Gecevičius, M. Lancry, B. Poumellec, and P. G. Kazansky, “Broadband anisotropy of femtosecond laser induced nanogratings in fused silica,” Appl. Phys. Lett. 103(13), 131903 (2013).
[Crossref]

Laude-Boulesteix, B.

M. Anastasiadou, A. De Martino, D. Clement, F. Liège, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 5(5), 1423–1426 (2008).
[Crossref]

Liège, F.

M. Anastasiadou, A. De Martino, D. Clement, F. Liège, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 5(5), 1423–1426 (2008).
[Crossref]

Look, D. C.

S. Ambirajan and D. C. Look, “Optimum angles for a polarimeter: Part I,” Opt. Eng. 34(6), 1651–1655 (1995).

Ma, G.

Maignan, F.

J. L. Deuzé, F. M. Bréon, C. Devaux, P. Goloub, M. Herman, B. Lafrance, F. Maignan, A. Marchand, F. Nadal, G. Perry, and D. Tanré, “Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements,” J. Geophys. Res. 106(D5), 4913–4926 (2001).
[Crossref]

Marchand, A.

J. L. Deuzé, F. M. Bréon, C. Devaux, P. Goloub, M. Herman, B. Lafrance, F. Maignan, A. Marchand, F. Nadal, G. Perry, and D. Tanré, “Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements,” J. Geophys. Res. 106(D5), 4913–4926 (2001).
[Crossref]

Miura, K.

M. Sakakura, Y. Shimotsuma, N. Fukuda, and K. Miura, “Transient strain distributions during femtosecond laser-induced deformation inside LiF and MgO single crystals,” J. Appl. Phys. 118(2), 023106 (2015).
[Crossref]

T. Asai, Y. Shimotsuma, T. Kurita, A. Murata, S. Kubota, M. Sakakura, K. Miura, F. Brisset, B. Poumellec, and M. Lancry, “Systematic control of structural changes in GeO2 glass induced by femtosecond laser direct writing,” J. Am. Ceram. Soc. 98(5), 1471–1477 (2015).
[Crossref]

Y. Shimotsuma, K. Miura, and H. Kazuyuki, “Nanomodification of glass using fs laser,” Int. J. Appl. Glass Sci. 4(3), 182–191 (2013).
[Crossref]

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[Crossref] [PubMed]

T. Ohfuchi, Y. Yamada, M. Sakakura, N. Fukuda, T. Takiya, Y. Shimotsuma, and K. Miura, “The characteristic of birefringence and optical loss in femtosecond-laser-induced region in terms of nanogratings distribution,” Proc. LPM2016 #16–19 (2016).

Murata, A.

T. Asai, Y. Shimotsuma, T. Kurita, A. Murata, S. Kubota, M. Sakakura, K. Miura, F. Brisset, B. Poumellec, and M. Lancry, “Systematic control of structural changes in GeO2 glass induced by femtosecond laser direct writing,” J. Am. Ceram. Soc. 98(5), 1471–1477 (2015).
[Crossref]

Nadal, F.

J. L. Deuzé, F. M. Bréon, C. Devaux, P. Goloub, M. Herman, B. Lafrance, F. Maignan, A. Marchand, F. Nadal, G. Perry, and D. Tanré, “Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements,” J. Geophys. Res. 106(D5), 4913–4926 (2001).
[Crossref]

Nazac, A.

M. Anastasiadou, A. De Martino, D. Clement, F. Liège, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 5(5), 1423–1426 (2008).
[Crossref]

Neel, V. A.

E. Salomatina-Motts, V. A. Neel, and A. N. Yaroslavskaya, “Multimodal polarization system for imaging skin cancer,” Opt. Spectrosc. 107(6), 884–890 (2009).
[Crossref]

Ohfuchi, T.

T. Ohfuchi, Y. Yamada, M. Sakakura, N. Fukuda, T. Takiya, Y. Shimotsuma, and K. Miura, “The characteristic of birefringence and optical loss in femtosecond-laser-induced region in terms of nanogratings distribution,” Proc. LPM2016 #16–19 (2016).

Perkins, R.

Perry, G.

J. L. Deuzé, F. M. Bréon, C. Devaux, P. Goloub, M. Herman, B. Lafrance, F. Maignan, A. Marchand, F. Nadal, G. Perry, and D. Tanré, “Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements,” J. Geophys. Res. 106(D5), 4913–4926 (2001).
[Crossref]

Phipps, G. S.

Poumellec, B.

T. Asai, Y. Shimotsuma, T. Kurita, A. Murata, S. Kubota, M. Sakakura, K. Miura, F. Brisset, B. Poumellec, and M. Lancry, “Systematic control of structural changes in GeO2 glass induced by femtosecond laser direct writing,” J. Am. Ceram. Soc. 98(5), 1471–1477 (2015).
[Crossref]

M. Lancry, R. Desmarchelier, K. Cook, B. Poumellec, and J. Canning, “Compact Birefringent Waveplates Photo-Induced in Silica by Femtosecond Laser,” Micromachines (Basel) 5(4), 825–838 (2014).
[Crossref]

M. Beresna, M. Gecevičius, M. Lancry, B. Poumellec, and P. G. Kazansky, “Broadband anisotropy of femtosecond laser induced nanogratings in fused silica,” Appl. Phys. Lett. 103(13), 131903 (2013).
[Crossref]

Qiu, J.

Y. Dai, J. Ye, M. Gong, X. Ye, X. Yan, G. Ma, and J. Qiu, “Forced rotation of nanograting in glass by pulse-front tilted femtosecond laser direct writing,” Opt. Express 22(23), 28500–28505 (2014).
[Crossref] [PubMed]

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[Crossref] [PubMed]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 2474051 (2003).
[Crossref] [PubMed]

Quang, N.

M. Anastasiadou, A. De Martino, D. Clement, F. Liège, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 5(5), 1423–1426 (2008).
[Crossref]

Sabatke, D. S.

Sakakura, M.

M. Sakakura, Y. Shimotsuma, N. Fukuda, and K. Miura, “Transient strain distributions during femtosecond laser-induced deformation inside LiF and MgO single crystals,” J. Appl. Phys. 118(2), 023106 (2015).
[Crossref]

T. Asai, Y. Shimotsuma, T. Kurita, A. Murata, S. Kubota, M. Sakakura, K. Miura, F. Brisset, B. Poumellec, and M. Lancry, “Systematic control of structural changes in GeO2 glass induced by femtosecond laser direct writing,” J. Am. Ceram. Soc. 98(5), 1471–1477 (2015).
[Crossref]

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[Crossref] [PubMed]

T. Ohfuchi, Y. Yamada, M. Sakakura, N. Fukuda, T. Takiya, Y. Shimotsuma, and K. Miura, “The characteristic of birefringence and optical loss in femtosecond-laser-induced region in terms of nanogratings distribution,” Proc. LPM2016 #16–19 (2016).

Salomatina-Motts, E.

E. Salomatina-Motts, V. A. Neel, and A. N. Yaroslavskaya, “Multimodal polarization system for imaging skin cancer,” Opt. Spectrosc. 107(6), 884–890 (2009).
[Crossref]

Schwartz, L.

M. Anastasiadou, A. De Martino, D. Clement, F. Liège, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 5(5), 1423–1426 (2008).
[Crossref]

Shaw, J. A.

Shimotsuma, Y.

M. Sakakura, Y. Shimotsuma, N. Fukuda, and K. Miura, “Transient strain distributions during femtosecond laser-induced deformation inside LiF and MgO single crystals,” J. Appl. Phys. 118(2), 023106 (2015).
[Crossref]

T. Asai, Y. Shimotsuma, T. Kurita, A. Murata, S. Kubota, M. Sakakura, K. Miura, F. Brisset, B. Poumellec, and M. Lancry, “Systematic control of structural changes in GeO2 glass induced by femtosecond laser direct writing,” J. Am. Ceram. Soc. 98(5), 1471–1477 (2015).
[Crossref]

Y. Shimotsuma, K. Miura, and H. Kazuyuki, “Nanomodification of glass using fs laser,” Int. J. Appl. Glass Sci. 4(3), 182–191 (2013).
[Crossref]

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[Crossref] [PubMed]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 2474051 (2003).
[Crossref] [PubMed]

T. Ohfuchi, Y. Yamada, M. Sakakura, N. Fukuda, T. Takiya, Y. Shimotsuma, and K. Miura, “The characteristic of birefringence and optical loss in femtosecond-laser-induced region in terms of nanogratings distribution,” Proc. LPM2016 #16–19 (2016).

Singh, U.

U. Singh and A. Kapoor, “Single layer homogeneous model for surface roughness by polarized light scattering,” Opt. Laser Technol. 40(2), 315–324 (2008).
[Crossref]

Sweatt, W. C.

Takiya, T.

T. Ohfuchi, Y. Yamada, M. Sakakura, N. Fukuda, T. Takiya, Y. Shimotsuma, and K. Miura, “The characteristic of birefringence and optical loss in femtosecond-laser-induced region in terms of nanogratings distribution,” Proc. LPM2016 #16–19 (2016).

Tanré, D.

J. L. Deuzé, F. M. Bréon, C. Devaux, P. Goloub, M. Herman, B. Lafrance, F. Maignan, A. Marchand, F. Nadal, G. Perry, and D. Tanré, “Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements,” J. Geophys. Res. 106(D5), 4913–4926 (2001).
[Crossref]

Teng, H.

C. Chou, H. Teng, C. Yu, and H. Huang, “Polarization modulation imaging ellipsometry for thin film thickness measurement,” Opt. Commun. 273(1), 74–83 (2007).
[Crossref]

Torok, E. J.

C. S. L. Chun, D. L. Fleming, W. A. Harvey, and E. J. Torok, “Polarization-sensitive infrared sensor for target discrimination,” Proc. SPIE 3121, 55–62 (1997).
[Crossref]

Tyo, J. S.

Yamada, Y.

T. Ohfuchi, Y. Yamada, M. Sakakura, N. Fukuda, T. Takiya, Y. Shimotsuma, and K. Miura, “The characteristic of birefringence and optical loss in femtosecond-laser-induced region in terms of nanogratings distribution,” Proc. LPM2016 #16–19 (2016).

Yan, X.

Yaroslavskaya, A. N.

E. Salomatina-Motts, V. A. Neel, and A. N. Yaroslavskaya, “Multimodal polarization system for imaging skin cancer,” Opt. Spectrosc. 107(6), 884–890 (2009).
[Crossref]

Ye, J.

Ye, X.

York, T.

Yu, C.

C. Chou, H. Teng, C. Yu, and H. Huang, “Polarization modulation imaging ellipsometry for thin film thickness measurement,” Opt. Commun. 273(1), 74–83 (2007).
[Crossref]

Adv. Mater. (1)

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. Beresna, M. Gecevičius, M. Lancry, B. Poumellec, and P. G. Kazansky, “Broadband anisotropy of femtosecond laser induced nanogratings in fused silica,” Appl. Phys. Lett. 103(13), 131903 (2013).
[Crossref]

Int. J. Appl. Glass Sci. (1)

Y. Shimotsuma, K. Miura, and H. Kazuyuki, “Nanomodification of glass using fs laser,” Int. J. Appl. Glass Sci. 4(3), 182–191 (2013).
[Crossref]

J. Am. Ceram. Soc. (1)

T. Asai, Y. Shimotsuma, T. Kurita, A. Murata, S. Kubota, M. Sakakura, K. Miura, F. Brisset, B. Poumellec, and M. Lancry, “Systematic control of structural changes in GeO2 glass induced by femtosecond laser direct writing,” J. Am. Ceram. Soc. 98(5), 1471–1477 (2015).
[Crossref]

J. Appl. Phys. (1)

M. Sakakura, Y. Shimotsuma, N. Fukuda, and K. Miura, “Transient strain distributions during femtosecond laser-induced deformation inside LiF and MgO single crystals,” J. Appl. Phys. 118(2), 023106 (2015).
[Crossref]

J. Geophys. Res. (1)

J. L. Deuzé, F. M. Bréon, C. Devaux, P. Goloub, M. Herman, B. Lafrance, F. Maignan, A. Marchand, F. Nadal, G. Perry, and D. Tanré, “Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements,” J. Geophys. Res. 106(D5), 4913–4926 (2001).
[Crossref]

J. Opt. Soc. Am. A (1)

Micromachines (Basel) (1)

M. Lancry, R. Desmarchelier, K. Cook, B. Poumellec, and J. Canning, “Compact Birefringent Waveplates Photo-Induced in Silica by Femtosecond Laser,” Micromachines (Basel) 5(4), 825–838 (2014).
[Crossref]

Opt. Commun. (1)

C. Chou, H. Teng, C. Yu, and H. Huang, “Polarization modulation imaging ellipsometry for thin film thickness measurement,” Opt. Commun. 273(1), 74–83 (2007).
[Crossref]

Opt. Eng. (1)

S. Ambirajan and D. C. Look, “Optimum angles for a polarimeter: Part I,” Opt. Eng. 34(6), 1651–1655 (1995).

Opt. Express (3)

Opt. Laser Technol. (1)

U. Singh and A. Kapoor, “Single layer homogeneous model for surface roughness by polarized light scattering,” Opt. Laser Technol. 40(2), 315–324 (2008).
[Crossref]

Opt. Lett. (4)

Opt. Spectrosc. (1)

E. Salomatina-Motts, V. A. Neel, and A. N. Yaroslavskaya, “Multimodal polarization system for imaging skin cancer,” Opt. Spectrosc. 107(6), 884–890 (2009).
[Crossref]

Phys. Rev. Lett. (1)

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 2474051 (2003).
[Crossref] [PubMed]

Phys. Status Solidi., C Curr. Top. Solid State Phys. (1)

M. Anastasiadou, A. De Martino, D. Clement, F. Liège, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 5(5), 1423–1426 (2008).
[Crossref]

Proc. SPIE (1)

C. S. L. Chun, D. L. Fleming, W. A. Harvey, and E. J. Torok, “Polarization-sensitive infrared sensor for target discrimination,” Proc. SPIE 3121, 55–62 (1997).
[Crossref]

Other (4)

D. H. Goldstein, Polarized Light, 3rd Ed. (CRC) (2011) Chapter 16.

A. Yariv, Optical Electronics in Modern Communications, 5th Ed. (Oxford University, 1997) Chapter 1.

T. Ohfuchi, Y. Yamada, M. Sakakura, N. Fukuda, T. Takiya, Y. Shimotsuma, and K. Miura, “The characteristic of birefringence and optical loss in femtosecond-laser-induced region in terms of nanogratings distribution,” Proc. LPM2016 #16–19 (2016).

V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Orientation instabilities of nanogratings recovered by femtosecond laser pulses in silica,” in Photonics and Fiber Technology 2016 (ACOFT, BGPP, NP) OSA Technical Digest (online) (Optical Society of America, 2016), paper BT3B.2.

Supplementary Material (1)

NameDescription
» Visualization 1       Polarization imaging: three polarization films with different directions were placed on the large polarization film and imaged on the polarization imaging camera.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Detection of polarized light by an image sensor (a) Configuration of the polarization imaging camera with a waveplate array. (b) Detection of polarized light in a single unit.

Fig. 2
Fig. 2

The optical system for determination of the coefficients for the polarization analysis (calibration of a polarization camera).

Fig. 3
Fig. 3

Experimental setup for fabrication of a waveplate array of silica glass by fs laser direct writing with an SLM. M1, M2: mirrors; L1: a lens of f = 150 mm; L2: a lens of f = 90 mm; DM: a dichroic mirror which reflects light of 750-850 nm; OL: an objective lens.

Fig. 4
Fig. 4

Configuration of a polarization imaging camera.

Fig. 5
Fig. 5

The analysis for a polarization imaging camera. (a) The structure of a waveplate array. (b) Single unit in the waveplate array. (c) The flow of calibration, calculation of the system matrices and polarization analysis for a polarization imaging camera.

Fig. 6
Fig. 6

Simulation of polarization imaging and analysis. (a) Input polarization distribution. The color and brightness indicate the slow axis and ellipticity angle of the polarization state, respectively. CW and CCW mean clockwise and counter-clockwise ellipsoidal polarizations, respectively. (b) Simulated intensity distributions detected by a polarization imaging camera. In this case, the combination of orientation and retardance is (Δ22deg, Δ45deg, Δ67deg) = (0.8π, 0.8π, 0.8π). (c)–(e) Calculated polarization distributions with three different waveplate arrays.

Fig. 7
Fig. 7

Mean analytical errors <εpol> of 1000 different waveplate arrays. (a) <εpol> plotted against the sum of retardances, Δ22deg + Δ45deg + Δ67deg. (b) <εpol> plotted against |det(A)|−1. (A) is the system matrix of a waveplate array given by Eq. (6).

Fig. 8
Fig. 8

Mean analytical errors plotted against |det(A)|−1. (a) For the Ranges 1, 2, 4 and 8, and (b) for the Ranges 3, 5, 6 and 7. The mean analytical errors were calculated under an image noise of 1%.

Fig. 9
Fig. 9

Retardance distribution images. (a)Retardance distributions of Sample 1-4, which were captured by a polarization microscope. (b) Histogram of the retardance in a single cell.

Fig. 10
Fig. 10

Examples of fitting for obtaining the coefficients (αk, βk, χk, ξk) at four cells in a single unit of Sample 1. Red open circles are intensities measured without a calibration waveplate, blue squares and green crosses are those measured with a calibration waveplate of orthogonal orientations (//x and ⊥x). The solid lines are the fitting curves by Eq. (10)-(12).

Fig. 11
Fig. 11

Polarization analysis for Sample 1-4. (a) Polarizations obtained by four different waveplate arrays. Ellipsoids of different colors represent the calculated polarizations at individual units. (b), (c) Plot of analytical errors (errors in calculated polarization angle) against |det(A)|−1. (b) For all the samples. (c) Magnified graph for Sample 1.

Fig. 12
Fig. 12

Demonstration of polarization imaging. (a) The light distributions captured by the polarization imaging camera. (b) and (c) The magnified images in the areas of the polarization films. (d) Calculated distribution of the polarization direction from (a).

Tables (4)

Tables Icon

Table 1 Ranges of Δ22deg, Δ45deg and Δ67deg for evaluation of analytical errors.

Tables Icon

Table 2 Laser processing conditions for fabricating Sample 1-4. Δ22deg, Δ45deg, and Δ67deg correspond to the cells of k = 1, 2 and 3, respectively.

Tables Icon

Table 3 The retardance of Δ22deg, Δ45deg and Δ67deg at 500 nm wavelength in each sample. The retardances were calculated by the retardance images shown in Fig. 9 under the assumption that the birefringence were the same at the wavelength in a polarization imaging (500) nm and that in polarization microscope (546 nm).

Tables Icon

Table 4 The coefficients of four cells of Sample 1.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

E in =| E in |( cosθ e iδ sinθ ),
E in =( 1 0 0 0 ) t k ( cos χ k sin χ k sin χ k cos χ k )( 1 0 0 e i Δ k )( cos χ k sin χ k sin χ k cos χ k )| E in |( cosθ e iδ sinθ ),
I k = 1 2 I in t k 2 [ 1+( cos 2 2 χ k +cos Δ k sin 2 2 χ k )cos2θ , +{ cos2 χ k (1cos Δ k )cosδ+sin Δ k sinδ } sin2 χ k sin2θ ]
α k = t k 2 β k = cos 2 2 χ k +cos Δ k sin 2 2 χ k . γ k =cos2 χ k sin2 χ k (1cos Δ k ) ξ k =sin Δ k sin2 χ k
I k = 1 2 I in α k [ 1+ β k cos2θ+ γ k cosδsin2θ+ ξ k sinδsin2θ ].
( I 0 I 1 I 2 I 3 )= 1 2 I in ( α 0 α 0 β 0 α 0 γ 0 α 0 ξ 0 α 1 α 1 β 1 α 1 γ 1 α 1 ξ 1 α 2 α 2 β 2 α 2 γ 2 α 2 ξ 2 α 3 α 3 β 3 α 3 γ 3 α 3 ξ 3 )( 1 cos2θ cosδsin2θ sinδsin2θ )= 1 2 A( S 0 (θ,δ) S 1 (θ,δ) S 2 (θ,δ) S 3 (θ,δ) ),
B= A 1 =[ B k',k ]= ( α 0 α 0 β 0 α 0 γ 0 α 0 ξ 0 α 1 α 1 β 1 α 1 γ 1 α 1 ξ 1 α 2 α 2 β 2 α 2 γ 2 α 2 ξ 2 α 3 α 3 β 3 α 3 γ 3 α 3 ξ 3 ) 1 k',k=0..3 ,
S 0 = I in =2 k=0 3 B 0,k I k S 1 = I in cos(2θ)=2 k=0 3 B 1,k I k , S 2 = I in cos(δ)sin(2θ)=2 k=0 3 B 2,k I k S 3 = I in sin(δ)sin(2θ)=2 k=0 3 B 3,k I k
α k = S k t k 2 (x,y) dxdy β k = S k { cos 2 [2 χ k (x,y)]+cos[ Δ k (x,y)] sin 2 [2 χ k (x,y)] } dxdy γ k = S k { cos[2 χ k (x,y)]sin[2 χ k (x,y)](1cos[ Δ k (x,y)]) }dxdy , ξ k = S k { sin[ Δ k (x,y)]sin[2 χ k (x,y)] } dxdy
I k ( θ p )= 1 2 I in α k [ 1+ β k cos2 θ p + γ k sin2 θ p ] .
I k ( θ p , δ 0 )= 1 2 I in α k [ 1+ β k cos2 θ p + ( γ k cos δ 0 + ξ k sin δ 0 )sin2 θ p ] .
I k ( θ p , δ 0 )= 1 2 I in α k [ 1+ β k cos2 θ p + ( γ k cos δ 0 ξ k sin δ 0 )sin2 θ p ] .
ε( θ in , δ in )=| S( θ in , δ in )S( θ calc , δ calc ) |,
< ε pol >= i=0 N1 j=0 N1 | ε(iπ/N,jπ/N) |/ N 2 ,
A (l,m) =( α l,m α l,m β l,m α l,m γ l,m α l,m ξ l,m α l+1,m α l+1,m β l+1,m α l+1,m γ l+1,m α l+1,m ξ l+1,m α l,m+1 α l,m+1 β l,m+1 α l,m+1 γ l,m+1 α l,m+1 ξ l,m+1 α l+1,m+1 α l+1,m+1 β l+1,m+1 α l+1,m+1 γ l+1,m+1 α l+1,m+1 ξ l+1,m+1 ).
S 0 (l,m) = I in =2 k=0 3 B 0,k (l,m) I (l,m) k S 1 (l,m) = I in cos(2 θ l,m )=2 k=0 3 B 1,k (l,m) I (l,m) k S 2 (l,m) = I in cos( δ l,m )sin(2 θ l,m )=2 k=0 3 B 2,k (l,m) I (l,m) k . S 3 (l,m) = I in sin( δ l,m )sin(2 θ l,m )=2 k=0 3 B 3,k (l,m) I (l,m) k
ψ= 1 2 tan 1 [ S 2 ( θ,δ )/ S 1 ( θ,δ ) ]
X= 1 2 sin 1 [ S 3 ( θ,δ )/ S 0 ( θ,δ ) ].

Metrics