Abstract

2D materials emerge as a viable platform for the control of light at the nanoscale. In this context the need has arisen for a fast and reliable tool capable of capturing their strictly 2D nature in 3D light scattering simulations. So far, 2D materials and their patterned structures (ribbons, discs, etc.) have been mostly treated as very thin films of subnanometer thickness with an effective dielectric function derived from their 2D optical conductivity. In this study an extension to the existing framework of the boundary element method (BEM) with 2D materials treated as a conductive interface between two media is presented. The testing of our enhanced method on problems with known analytical solutions reveals that for certain types of tasks the new modification is faster than the original BEM algorithm. Furthermore, the representation of 2D materials as an interface allows us to simulate problems in which their optical properties depend on spatial coordinates. Such spatial dependence can occur naturally or can be tailored artificially to attain new functional properties.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Boundary element method for surface nonlinear optics of nanoparticles

Jouni Mäkitalo, Saku Suuriniemi, and Martti Kauranen
Opt. Express 19(23) 23386-23399 (2011)

Plasmonic resonance of distorted graphene nano-ribbon analyzed by boundary element method

Zhiyuan Du, Bin Hu, Weiguang Liu, Jin Tao, Juan Liu, and Yongtian Wang
Opt. Express 26(20) 25962-25973 (2018)

Expansion of the difference-field boundary element method for numerical analyses of various local defects in periodic surface-relief structures

Jun-ichiro Sugisaka, Takashi Yasui, and Koichi Hirayama
J. Opt. Soc. Am. A 32(5) 751-763 (2015)

References

  • View by:
  • |
  • |
  • |

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
    [Crossref] [PubMed]
  2. T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8, 1086–1101 (2014).
    [Crossref] [PubMed]
  3. A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
    [Crossref] [PubMed]
  4. F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: A platform for strong light-matter interactions,” Nano Letters 11, 3370–3377 (2011).
    [Crossref] [PubMed]
  5. S. Thongrattanasiri and F. J. García de Abajo, “Optical field enhancement by strong plasmon interaction in graphene nanostructures,” Physical Review Letters 110, 187401 (2013).
    [Crossref] [PubMed]
  6. M. Freitag, T. Low, W. Zhu, H. Yan, F. Xia, and P. Avouris, “Photocurrent in graphene harnessed by tunable intrinsic plasmons,” Nature Communications 42951 (2013).
    [Crossref] [PubMed]
  7. D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
    [Crossref] [PubMed]
  8. T. Wu and L. Wei, “Tunable resonant graphene plasmons for mid-infrared biosensing,” Optics Express 24, 26241–26248 (2016).
    [Crossref] [PubMed]
  9. H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nature Communications 7, 12334 (2016).
    [Crossref] [PubMed]
  10. E. Carrasco, M. Tamagnone, J. R. Mosig, T. Low, and J. Perruisseau-Carrier, “Gate-controlled mid-infrared light bending with aperiodic graphene nanoribbons array,” Nanotechnology 26, 134002 (2015).
    [Crossref] [PubMed]
  11. F. J. García de Abajo, “Graphene plasmonics: Challenges and opportunities,” ACS Photonics 1, 135–152 (2014).
    [Crossref]
  12. J. Qi, H. Liu, and X. C. Xie, “Surface plasmon polaritons in topological insulators,” Physical Review B 89155420 (2014).
    [Crossref]
  13. T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Physical Review Letters 113106802 (2014).
    [Crossref]
  14. X. Wang and S. Lan, “Optical properties of black phosphorus,” Advances in Optics and Photonics 8, 618–655 (2016).
    [Crossref]
  15. J. Wang and Y. Jiang, “Infrared absorber based on sandwiched two-dimensional black phosphorus metamaterials,” Optics Express 25, 5206–5216 (2017).
    [Crossref] [PubMed]
  16. T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nature Materials 10384792 (2016).
    [Crossref]
  17. J. B. Khurgin, “Two-dimensional exciton-polariton-light guiding by transition metal dichalcogenide monolayers,” Optica 2, 740–742 (2015).
    [Crossref]
  18. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Computer Physics Communications 181, 687–702 (2010).
    [Crossref]
  19. J. Niegemann, M. Knig, K. Stannigel, and K. Busch, “Higher-order time-domain methods for the analysis of nano-photonic systems,” Photonics and Nanostructures - Fundamentals and Applications 7, 2–11 (2009).
    [Crossref]
  20. V. W. Brar, M. S. Jang, M. Sherrott, J. J. Lopez, and H. A. Atwater, “Highly confined tunable mid-infrared plasmonics in graphene nanoresonators,” Nano Letters 13, 2541–2547 (2013).
    [Crossref] [PubMed]
  21. J. Yang, J. Yang, W. Deng, F. Mao, and M. Huang, “Transmission properties and molecular sensing application of cgpw,” Optics Express 23, 32289–32299 (2015).
    [Crossref] [PubMed]
  22. V. Myroshnychenko, E. Carbó-Argibay, I. Pastoriza-Santos, J. Pérez-Juste, L. M. Liz-Marzán, and F. J. G. de Abajo, “Modeling the optical response of highly faceted metal nanoparticles with a fully 3D boundary element method,” Advanced Materials 20, 4288–4293 (2008).
    [Crossref]
  23. U. Hohenester and A. Trügler, “MNPBEM – a matlab toolbox for the simulation of plasmonic nanoparticles,” Computer Physics Communications 183, 370–381 (2012).
    [Crossref]
  24. U. Hohenester and J. Krenn, “Surface plasmon resonances of single and coupled metallic nanoparticles: A boundary integral method approach,” Physical Review B 72195429 (2005).
    [Crossref]
  25. J. Waxenegger, A. Trügler, and U. Hohenester, “Plasmonics simulations with the MNPBEM toolbox: Consideration of substrates and layer structures,” Computer Physics Communications 193, 138–150 (2015).
    [Crossref]
  26. V. Myroshnychenko, J. Rodriguez-Fernandez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzan, and F. J. Garcia de Abajo, “Modelling the optical response of gold nanoparticles,” Chemical Society Reviews 37, 1792–1805 (2008).
    [Crossref] [PubMed]
  27. B. Gallinet, J. Butet, and O. J. F. Martin, “Numerical methods for nanophotonics: standard problems and future challenges,” Laser & Photonics Reviews 9, 577–603 (2015).
    [Crossref]
  28. J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, and J. J. Baumberg, “Controlling subnanometer gaps in plasmonic dimers using graphene,” Nano Letters 13, 5033–5038 (2013).
    [Crossref] [PubMed]
  29. Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Letters 13, 1257–1264 (2013).
    [Crossref] [PubMed]
  30. Y. Yao, M. A. Kats, R. Shankar, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Wide wavelength tuning of optical antennas on graphene with nanosecond response time,” Nano Letters 14, 214–219 (2014).
    [Crossref]
  31. V. Nayyeri, M. Soleimani, and O. M. Ramahi, “Modeling graphene in the finite-difference time-domain method using a surface boundary condition,” IEEE Transactions on Antennas and Propagation 61, 4176–4182 (2013).
    [Crossref]
  32. P. Li, L. J. Jiang, and H. Bagci, “A resistive boundary condition enhanced DGTD scheme for the transient analysis of graphene,” IEEE Transactions on Antennas and Propagation 63, 3065–3076 (2015).
    [Crossref]
  33. Z. Li, K. Yao, F. Xia, S. Shen, J. Tian, and Y. Liu, “Graphene plasmonic metasurfaces to steer infrared light,” Scientific Reports 5, 12423 (2015).
    [Crossref] [PubMed]
  34. L. Ye, Y. Chen, G. Cai, N. Liu, J. Zhu, Z. Song, and Q. H. Liu, “Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range,” Optics Express 25, 11223–11232 (2017).
    [Crossref]
  35. S. Thongrattanasiri, I. Silveiro, and F. J. García de Abajo, “Plasmons in electrostatically doped graphene,” Applied Physics Letters 100, 201105 (2012).
    [Crossref]
  36. F. J. García de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Physical Review B 65, 115418 (2002).
    [Crossref]
  37. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
    [Crossref]
  38. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 1998).
    [Crossref]
  39. I. Silveiro and F. J. García de Abajo, “Plasmons in inhomogeneously doped neutral and charged graphene nanodisks,” Applied Physics Letters 104, 131103 (2014).
    [Crossref]
  40. Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Advanced Functional Materials 19, 3077–3083 (2009).
    [Crossref]
  41. T. Ando, “Theory of electronic states and transport in carbon nanotubes,” Journal of the Physical Society of Japan 74, 777–817 (2005).
    [Crossref]
  42. S. Thongrattanasiri, A. Manjavacas, and F. J. García de Abajo, “Quantum finite-size effects in graphene plasmons,” ACS Nano 6, 1766–1775 (2012).
    [Crossref] [PubMed]
  43. B. Wunsch, T. Stauber, F. Sols, and F. Guinea, “Dynamical polarization of graphene at finite doping,” New Journal of Physics 8, 318 (2006).
    [Crossref]
  44. E. H. Hwang and S. Das Sarma, “Dielectric function, screening, and plasmons in two-dimensional graphene,” Physical Review B 75, 205418 (2007).
    [Crossref]

2017 (2)

J. Wang and Y. Jiang, “Infrared absorber based on sandwiched two-dimensional black phosphorus metamaterials,” Optics Express 25, 5206–5216 (2017).
[Crossref] [PubMed]

L. Ye, Y. Chen, G. Cai, N. Liu, J. Zhu, Z. Song, and Q. H. Liu, “Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range,” Optics Express 25, 11223–11232 (2017).
[Crossref]

2016 (4)

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nature Materials 10384792 (2016).
[Crossref]

X. Wang and S. Lan, “Optical properties of black phosphorus,” Advances in Optics and Photonics 8, 618–655 (2016).
[Crossref]

T. Wu and L. Wei, “Tunable resonant graphene plasmons for mid-infrared biosensing,” Optics Express 24, 26241–26248 (2016).
[Crossref] [PubMed]

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nature Communications 7, 12334 (2016).
[Crossref] [PubMed]

2015 (9)

E. Carrasco, M. Tamagnone, J. R. Mosig, T. Low, and J. Perruisseau-Carrier, “Gate-controlled mid-infrared light bending with aperiodic graphene nanoribbons array,” Nanotechnology 26, 134002 (2015).
[Crossref] [PubMed]

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
[Crossref] [PubMed]

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
[Crossref] [PubMed]

J. B. Khurgin, “Two-dimensional exciton-polariton-light guiding by transition metal dichalcogenide monolayers,” Optica 2, 740–742 (2015).
[Crossref]

P. Li, L. J. Jiang, and H. Bagci, “A resistive boundary condition enhanced DGTD scheme for the transient analysis of graphene,” IEEE Transactions on Antennas and Propagation 63, 3065–3076 (2015).
[Crossref]

Z. Li, K. Yao, F. Xia, S. Shen, J. Tian, and Y. Liu, “Graphene plasmonic metasurfaces to steer infrared light,” Scientific Reports 5, 12423 (2015).
[Crossref] [PubMed]

J. Yang, J. Yang, W. Deng, F. Mao, and M. Huang, “Transmission properties and molecular sensing application of cgpw,” Optics Express 23, 32289–32299 (2015).
[Crossref] [PubMed]

J. Waxenegger, A. Trügler, and U. Hohenester, “Plasmonics simulations with the MNPBEM toolbox: Consideration of substrates and layer structures,” Computer Physics Communications 193, 138–150 (2015).
[Crossref]

B. Gallinet, J. Butet, and O. J. F. Martin, “Numerical methods for nanophotonics: standard problems and future challenges,” Laser & Photonics Reviews 9, 577–603 (2015).
[Crossref]

2014 (6)

Y. Yao, M. A. Kats, R. Shankar, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Wide wavelength tuning of optical antennas on graphene with nanosecond response time,” Nano Letters 14, 214–219 (2014).
[Crossref]

I. Silveiro and F. J. García de Abajo, “Plasmons in inhomogeneously doped neutral and charged graphene nanodisks,” Applied Physics Letters 104, 131103 (2014).
[Crossref]

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8, 1086–1101 (2014).
[Crossref] [PubMed]

F. J. García de Abajo, “Graphene plasmonics: Challenges and opportunities,” ACS Photonics 1, 135–152 (2014).
[Crossref]

J. Qi, H. Liu, and X. C. Xie, “Surface plasmon polaritons in topological insulators,” Physical Review B 89155420 (2014).
[Crossref]

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Physical Review Letters 113106802 (2014).
[Crossref]

2013 (6)

S. Thongrattanasiri and F. J. García de Abajo, “Optical field enhancement by strong plasmon interaction in graphene nanostructures,” Physical Review Letters 110, 187401 (2013).
[Crossref] [PubMed]

M. Freitag, T. Low, W. Zhu, H. Yan, F. Xia, and P. Avouris, “Photocurrent in graphene harnessed by tunable intrinsic plasmons,” Nature Communications 42951 (2013).
[Crossref] [PubMed]

V. Nayyeri, M. Soleimani, and O. M. Ramahi, “Modeling graphene in the finite-difference time-domain method using a surface boundary condition,” IEEE Transactions on Antennas and Propagation 61, 4176–4182 (2013).
[Crossref]

J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, and J. J. Baumberg, “Controlling subnanometer gaps in plasmonic dimers using graphene,” Nano Letters 13, 5033–5038 (2013).
[Crossref] [PubMed]

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Letters 13, 1257–1264 (2013).
[Crossref] [PubMed]

V. W. Brar, M. S. Jang, M. Sherrott, J. J. Lopez, and H. A. Atwater, “Highly confined tunable mid-infrared plasmonics in graphene nanoresonators,” Nano Letters 13, 2541–2547 (2013).
[Crossref] [PubMed]

2012 (3)

S. Thongrattanasiri, A. Manjavacas, and F. J. García de Abajo, “Quantum finite-size effects in graphene plasmons,” ACS Nano 6, 1766–1775 (2012).
[Crossref] [PubMed]

U. Hohenester and A. Trügler, “MNPBEM – a matlab toolbox for the simulation of plasmonic nanoparticles,” Computer Physics Communications 183, 370–381 (2012).
[Crossref]

S. Thongrattanasiri, I. Silveiro, and F. J. García de Abajo, “Plasmons in electrostatically doped graphene,” Applied Physics Letters 100, 201105 (2012).
[Crossref]

2011 (1)

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: A platform for strong light-matter interactions,” Nano Letters 11, 3370–3377 (2011).
[Crossref] [PubMed]

2010 (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Computer Physics Communications 181, 687–702 (2010).
[Crossref]

2009 (2)

J. Niegemann, M. Knig, K. Stannigel, and K. Busch, “Higher-order time-domain methods for the analysis of nano-photonic systems,” Photonics and Nanostructures - Fundamentals and Applications 7, 2–11 (2009).
[Crossref]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Advanced Functional Materials 19, 3077–3083 (2009).
[Crossref]

2008 (2)

V. Myroshnychenko, E. Carbó-Argibay, I. Pastoriza-Santos, J. Pérez-Juste, L. M. Liz-Marzán, and F. J. G. de Abajo, “Modeling the optical response of highly faceted metal nanoparticles with a fully 3D boundary element method,” Advanced Materials 20, 4288–4293 (2008).
[Crossref]

V. Myroshnychenko, J. Rodriguez-Fernandez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzan, and F. J. Garcia de Abajo, “Modelling the optical response of gold nanoparticles,” Chemical Society Reviews 37, 1792–1805 (2008).
[Crossref] [PubMed]

2007 (1)

E. H. Hwang and S. Das Sarma, “Dielectric function, screening, and plasmons in two-dimensional graphene,” Physical Review B 75, 205418 (2007).
[Crossref]

2006 (1)

B. Wunsch, T. Stauber, F. Sols, and F. Guinea, “Dynamical polarization of graphene at finite doping,” New Journal of Physics 8, 318 (2006).
[Crossref]

2005 (2)

U. Hohenester and J. Krenn, “Surface plasmon resonances of single and coupled metallic nanoparticles: A boundary integral method approach,” Physical Review B 72195429 (2005).
[Crossref]

T. Ando, “Theory of electronic states and transport in carbon nanotubes,” Journal of the Physical Society of Japan 74, 777–817 (2005).
[Crossref]

2004 (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref] [PubMed]

2002 (1)

F. J. García de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Physical Review B 65, 115418 (2002).
[Crossref]

Ahn, J.-H.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
[Crossref] [PubMed]

Aizpurua, J.

J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, and J. J. Baumberg, “Controlling subnanometer gaps in plasmonic dimers using graphene,” Nano Letters 13, 5033–5038 (2013).
[Crossref] [PubMed]

Altug, H.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
[Crossref] [PubMed]

Ando, T.

T. Ando, “Theory of electronic states and transport in carbon nanotubes,” Journal of the Physical Society of Japan 74, 777–817 (2005).
[Crossref]

Atwater, H. A.

V. W. Brar, M. S. Jang, M. Sherrott, J. J. Lopez, and H. A. Atwater, “Highly confined tunable mid-infrared plasmonics in graphene nanoresonators,” Nano Letters 13, 2541–2547 (2013).
[Crossref] [PubMed]

Avouris, P.

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nature Materials 10384792 (2016).
[Crossref]

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Physical Review Letters 113106802 (2014).
[Crossref]

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8, 1086–1101 (2014).
[Crossref] [PubMed]

M. Freitag, T. Low, W. Zhu, H. Yan, F. Xia, and P. Avouris, “Photocurrent in graphene harnessed by tunable intrinsic plasmons,” Nature Communications 42951 (2013).
[Crossref] [PubMed]

Bachtold, A.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
[Crossref] [PubMed]

Bagci, H.

P. Li, L. J. Jiang, and H. Bagci, “A resistive boundary condition enhanced DGTD scheme for the transient analysis of graphene,” IEEE Transactions on Antennas and Propagation 63, 3065–3076 (2015).
[Crossref]

Ballerini, L.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
[Crossref] [PubMed]

Bao, Q.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Advanced Functional Materials 19, 3077–3083 (2009).
[Crossref]

Barbone, M.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
[Crossref] [PubMed]

Baumberg, J. J.

J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, and J. J. Baumberg, “Controlling subnanometer gaps in plasmonic dimers using graphene,” Nano Letters 13, 5033–5038 (2013).
[Crossref] [PubMed]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Computer Physics Communications 181, 687–702 (2010).
[Crossref]

Bianco, A.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
[Crossref] [PubMed]

Boggild, P.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
[Crossref] [PubMed]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 1998).
[Crossref]

Bonaccorso, F.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
[Crossref] [PubMed]

Borini, S.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
[Crossref] [PubMed]

Brar, V. W.

V. W. Brar, M. S. Jang, M. Sherrott, J. J. Lopez, and H. A. Atwater, “Highly confined tunable mid-infrared plasmonics in graphene nanoresonators,” Nano Letters 13, 2541–2547 (2013).
[Crossref] [PubMed]

Busch, K.

J. Niegemann, M. Knig, K. Stannigel, and K. Busch, “Higher-order time-domain methods for the analysis of nano-photonic systems,” Photonics and Nanostructures - Fundamentals and Applications 7, 2–11 (2009).
[Crossref]

Butet, J.

B. Gallinet, J. Butet, and O. J. F. Martin, “Numerical methods for nanophotonics: standard problems and future challenges,” Laser & Photonics Reviews 9, 577–603 (2015).
[Crossref]

Cai, G.

L. Ye, Y. Chen, G. Cai, N. Liu, J. Zhu, Z. Song, and Q. H. Liu, “Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range,” Optics Express 25, 11223–11232 (2017).
[Crossref]

Caldwell, J. D.

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nature Materials 10384792 (2016).
[Crossref]

Capasso, F.

Y. Yao, M. A. Kats, R. Shankar, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Wide wavelength tuning of optical antennas on graphene with nanosecond response time,” Nano Letters 14, 214–219 (2014).
[Crossref]

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Letters 13, 1257–1264 (2013).
[Crossref] [PubMed]

Carbó-Argibay, E.

V. Myroshnychenko, E. Carbó-Argibay, I. Pastoriza-Santos, J. Pérez-Juste, L. M. Liz-Marzán, and F. J. G. de Abajo, “Modeling the optical response of highly faceted metal nanoparticles with a fully 3D boundary element method,” Advanced Materials 20, 4288–4293 (2008).
[Crossref]

Carrasco, E.

E. Carrasco, M. Tamagnone, J. R. Mosig, T. Low, and J. Perruisseau-Carrier, “Gate-controlled mid-infrared light bending with aperiodic graphene nanoribbons array,” Nanotechnology 26, 134002 (2015).
[Crossref] [PubMed]

Chang, D. E.

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: A platform for strong light-matter interactions,” Nano Letters 11, 3370–3377 (2011).
[Crossref] [PubMed]

Chaves, A.

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nature Materials 10384792 (2016).
[Crossref]

Chen, Y.

L. Ye, Y. Chen, G. Cai, N. Liu, J. Zhu, Z. Song, and Q. H. Liu, “Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range,” Optics Express 25, 11223–11232 (2017).
[Crossref]

Coleman, J. N.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
[Crossref] [PubMed]

Colli, A.

J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, and J. J. Baumberg, “Controlling subnanometer gaps in plasmonic dimers using graphene,” Nano Letters 13, 5033–5038 (2013).
[Crossref] [PubMed]

Colombo, L.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
[Crossref] [PubMed]

Dai, Q.

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nature Communications 7, 12334 (2016).
[Crossref] [PubMed]

Das Sarma, S.

E. H. Hwang and S. Das Sarma, “Dielectric function, screening, and plasmons in two-dimensional graphene,” Physical Review B 75, 205418 (2007).
[Crossref]

Dekker, C.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
[Crossref] [PubMed]

Deng, W.

J. Yang, J. Yang, W. Deng, F. Mao, and M. Huang, “Transmission properties and molecular sensing application of cgpw,” Optics Express 23, 32289–32299 (2015).
[Crossref] [PubMed]

Di Matteo, A.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
[Crossref] [PubMed]

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref] [PubMed]

Eiden, A. L.

J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, and J. J. Baumberg, “Controlling subnanometer gaps in plasmonic dimers using graphene,” Nano Letters 13, 5033–5038 (2013).
[Crossref] [PubMed]

Etezadi, D.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
[Crossref] [PubMed]

Fal’ko, V.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
[Crossref] [PubMed]

Fang, N. X.

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nature Materials 10384792 (2016).
[Crossref]

Feng, X.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
[Crossref] [PubMed]

Ferrari, A. C.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
[Crossref] [PubMed]

J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, and J. J. Baumberg, “Controlling subnanometer gaps in plasmonic dimers using graphene,” Nano Letters 13, 5033–5038 (2013).
[Crossref] [PubMed]

Fert, A.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
[Crossref] [PubMed]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref] [PubMed]

Freitag, M.

M. Freitag, T. Low, W. Zhu, H. Yan, F. Xia, and P. Avouris, “Photocurrent in graphene harnessed by tunable intrinsic plasmons,” Nature Communications 42951 (2013).
[Crossref] [PubMed]

Funston, A. M.

V. Myroshnychenko, J. Rodriguez-Fernandez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzan, and F. J. Garcia de Abajo, “Modelling the optical response of gold nanoparticles,” Chemical Society Reviews 37, 1792–1805 (2008).
[Crossref] [PubMed]

G. de Abajo, F. J.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
[Crossref] [PubMed]

V. Myroshnychenko, E. Carbó-Argibay, I. Pastoriza-Santos, J. Pérez-Juste, L. M. Liz-Marzán, and F. J. G. de Abajo, “Modeling the optical response of highly faceted metal nanoparticles with a fully 3D boundary element method,” Advanced Materials 20, 4288–4293 (2008).
[Crossref]

Galiotis, C.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
[Crossref] [PubMed]

Gallinet, B.

B. Gallinet, J. Butet, and O. J. F. Martin, “Numerical methods for nanophotonics: standard problems and future challenges,” Laser & Photonics Reviews 9, 577–603 (2015).
[Crossref]

Garcia de Abajo, F. J.

V. Myroshnychenko, J. Rodriguez-Fernandez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzan, and F. J. Garcia de Abajo, “Modelling the optical response of gold nanoparticles,” Chemical Society Reviews 37, 1792–1805 (2008).
[Crossref] [PubMed]

García de Abajo, F. J.

I. Silveiro and F. J. García de Abajo, “Plasmons in inhomogeneously doped neutral and charged graphene nanodisks,” Applied Physics Letters 104, 131103 (2014).
[Crossref]

F. J. García de Abajo, “Graphene plasmonics: Challenges and opportunities,” ACS Photonics 1, 135–152 (2014).
[Crossref]

S. Thongrattanasiri and F. J. García de Abajo, “Optical field enhancement by strong plasmon interaction in graphene nanostructures,” Physical Review Letters 110, 187401 (2013).
[Crossref] [PubMed]

S. Thongrattanasiri, A. Manjavacas, and F. J. García de Abajo, “Quantum finite-size effects in graphene plasmons,” ACS Nano 6, 1766–1775 (2012).
[Crossref] [PubMed]

S. Thongrattanasiri, I. Silveiro, and F. J. García de Abajo, “Plasmons in electrostatically doped graphene,” Applied Physics Letters 100, 201105 (2012).
[Crossref]

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: A platform for strong light-matter interactions,” Nano Letters 11, 3370–3377 (2011).
[Crossref] [PubMed]

F. J. García de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Physical Review B 65, 115418 (2002).
[Crossref]

Garcia-Hernandez, M.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
[Crossref] [PubMed]

Garrido, J. A.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
[Crossref] [PubMed]

Geim, A. K.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref] [PubMed]

Genevet, P.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Letters 13, 1257–1264 (2013).
[Crossref] [PubMed]

Grigorenko, A. N.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
[Crossref] [PubMed]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref] [PubMed]

Guinea, F.

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nature Materials 10384792 (2016).
[Crossref]

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
[Crossref] [PubMed]

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Physical Review Letters 113106802 (2014).
[Crossref]

B. Wunsch, T. Stauber, F. Sols, and F. Guinea, “Dynamical polarization of graphene at finite doping,” New Journal of Physics 8, 318 (2006).
[Crossref]

Hakonen, P.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
[Crossref] [PubMed]

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
[Crossref]

Hee Hong, B.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
[Crossref] [PubMed]

Heinz, T. F.

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nature Materials 10384792 (2016).
[Crossref]

Hohenester, U.

J. Waxenegger, A. Trügler, and U. Hohenester, “Plasmonics simulations with the MNPBEM toolbox: Consideration of substrates and layer structures,” Computer Physics Communications 193, 138–150 (2015).
[Crossref]

U. Hohenester and A. Trügler, “MNPBEM – a matlab toolbox for the simulation of plasmonic nanoparticles,” Computer Physics Communications 183, 370–381 (2012).
[Crossref]

U. Hohenester and J. Krenn, “Surface plasmon resonances of single and coupled metallic nanoparticles: A boundary integral method approach,” Physical Review B 72195429 (2005).
[Crossref]

Howie, A.

F. J. García de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Physical Review B 65, 115418 (2002).
[Crossref]

Hu, D.

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nature Communications 7, 12334 (2016).
[Crossref] [PubMed]

Hu, H.

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nature Communications 7, 12334 (2016).
[Crossref] [PubMed]

Huang, F.

J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, and J. J. Baumberg, “Controlling subnanometer gaps in plasmonic dimers using graphene,” Nano Letters 13, 5033–5038 (2013).
[Crossref] [PubMed]

Huang, M.

J. Yang, J. Yang, W. Deng, F. Mao, and M. Huang, “Transmission properties and molecular sensing application of cgpw,” Optics Express 23, 32289–32299 (2015).
[Crossref] [PubMed]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 1998).
[Crossref]

Hwang, E. H.

E. H. Hwang and S. Das Sarma, “Dielectric function, screening, and plasmons in two-dimensional graphene,” Physical Review B 75, 205418 (2007).
[Crossref]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Computer Physics Communications 181, 687–702 (2010).
[Crossref]

Jang, M. S.

V. W. Brar, M. S. Jang, M. Sherrott, J. J. Lopez, and H. A. Atwater, “Highly confined tunable mid-infrared plasmonics in graphene nanoresonators,” Nano Letters 13, 2541–2547 (2013).
[Crossref] [PubMed]

Janner, D.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
[Crossref] [PubMed]

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref] [PubMed]

Jiang, L. J.

P. Li, L. J. Jiang, and H. Bagci, “A resistive boundary condition enhanced DGTD scheme for the transient analysis of graphene,” IEEE Transactions on Antennas and Propagation 63, 3065–3076 (2015).
[Crossref]

Jiang, Y.

J. Wang and Y. Jiang, “Infrared absorber based on sandwiched two-dimensional black phosphorus metamaterials,” Optics Express 25, 5206–5216 (2017).
[Crossref] [PubMed]

Joannopoulos, J.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Computer Physics Communications 181, 687–702 (2010).
[Crossref]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Computer Physics Communications 181, 687–702 (2010).
[Crossref]

Kats, M. A.

Y. Yao, M. A. Kats, R. Shankar, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Wide wavelength tuning of optical antennas on graphene with nanosecond response time,” Nano Letters 14, 214–219 (2014).
[Crossref]

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Letters 13, 1257–1264 (2013).
[Crossref] [PubMed]

Katsnelson, M.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
[Crossref] [PubMed]

Khurgin, J. B.

Kinaret, J.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
[Crossref] [PubMed]

Kinloch, I. A.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
[Crossref] [PubMed]

Kis, A.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
[Crossref] [PubMed]

Kivioja, J.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
[Crossref] [PubMed]

Knig, M.

J. Niegemann, M. Knig, K. Stannigel, and K. Busch, “Higher-order time-domain methods for the analysis of nano-photonic systems,” Photonics and Nanostructures - Fundamentals and Applications 7, 2–11 (2009).
[Crossref]

Kong, J.

Y. Yao, M. A. Kats, R. Shankar, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Wide wavelength tuning of optical antennas on graphene with nanosecond response time,” Nano Letters 14, 214–219 (2014).
[Crossref]

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Letters 13, 1257–1264 (2013).
[Crossref] [PubMed]

Konstantatos, G.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
[Crossref] [PubMed]

Koppens, F.

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nature Materials 10384792 (2016).
[Crossref]

Koppens, F. H. L.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
[Crossref] [PubMed]

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: A platform for strong light-matter interactions,” Nano Letters 11, 3370–3377 (2011).
[Crossref] [PubMed]

Krenn, J.

U. Hohenester and J. Krenn, “Surface plasmon resonances of single and coupled metallic nanoparticles: A boundary integral method approach,” Physical Review B 72195429 (2005).
[Crossref]

Kumar, A.

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nature Materials 10384792 (2016).
[Crossref]

Lan, S.

X. Wang and S. Lan, “Optical properties of black phosphorus,” Advances in Optics and Photonics 8, 618–655 (2016).
[Crossref]

Li, P.

P. Li, L. J. Jiang, and H. Bagci, “A resistive boundary condition enhanced DGTD scheme for the transient analysis of graphene,” IEEE Transactions on Antennas and Propagation 63, 3065–3076 (2015).
[Crossref]

Li, Z.

Z. Li, K. Yao, F. Xia, S. Shen, J. Tian, and Y. Liu, “Graphene plasmonic metasurfaces to steer infrared light,” Scientific Reports 5, 12423 (2015).
[Crossref] [PubMed]

Lidorikis, E.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
[Crossref] [PubMed]

Limaj, O.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
[Crossref] [PubMed]

Liu, H.

J. Qi, H. Liu, and X. C. Xie, “Surface plasmon polaritons in topological insulators,” Physical Review B 89155420 (2014).
[Crossref]

Liu, K.

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nature Communications 7, 12334 (2016).
[Crossref] [PubMed]

Liu, N.

L. Ye, Y. Chen, G. Cai, N. Liu, J. Zhu, Z. Song, and Q. H. Liu, “Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range,” Optics Express 25, 11223–11232 (2017).
[Crossref]

Liu, Q. H.

L. Ye, Y. Chen, G. Cai, N. Liu, J. Zhu, Z. Song, and Q. H. Liu, “Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range,” Optics Express 25, 11223–11232 (2017).
[Crossref]

Liu, R.

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nature Communications 7, 12334 (2016).
[Crossref] [PubMed]

Liu, Y.

Z. Li, K. Yao, F. Xia, S. Shen, J. Tian, and Y. Liu, “Graphene plasmonic metasurfaces to steer infrared light,” Scientific Reports 5, 12423 (2015).
[Crossref] [PubMed]

Liz-Marzan, L. M.

V. Myroshnychenko, J. Rodriguez-Fernandez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzan, and F. J. Garcia de Abajo, “Modelling the optical response of gold nanoparticles,” Chemical Society Reviews 37, 1792–1805 (2008).
[Crossref] [PubMed]

Liz-Marzán, L. M.

V. Myroshnychenko, E. Carbó-Argibay, I. Pastoriza-Santos, J. Pérez-Juste, L. M. Liz-Marzán, and F. J. G. de Abajo, “Modeling the optical response of highly faceted metal nanoparticles with a fully 3D boundary element method,” Advanced Materials 20, 4288–4293 (2008).
[Crossref]

Lofwander, T.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
[Crossref] [PubMed]

Loh, K. P.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Advanced Functional Materials 19, 3077–3083 (2009).
[Crossref]

Loiseau, A.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
[Crossref] [PubMed]

Lombardo, A.

J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, and J. J. Baumberg, “Controlling subnanometer gaps in plasmonic dimers using graphene,” Nano Letters 13, 5033–5038 (2013).
[Crossref] [PubMed]

Loncar, M.

Y. Yao, M. A. Kats, R. Shankar, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Wide wavelength tuning of optical antennas on graphene with nanosecond response time,” Nano Letters 14, 214–219 (2014).
[Crossref]

Lopez, J. J.

V. W. Brar, M. S. Jang, M. Sherrott, J. J. Lopez, and H. A. Atwater, “Highly confined tunable mid-infrared plasmonics in graphene nanoresonators,” Nano Letters 13, 2541–2547 (2013).
[Crossref] [PubMed]

Low, T.

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nature Materials 10384792 (2016).
[Crossref]

E. Carrasco, M. Tamagnone, J. R. Mosig, T. Low, and J. Perruisseau-Carrier, “Gate-controlled mid-infrared light bending with aperiodic graphene nanoribbons array,” Nanotechnology 26, 134002 (2015).
[Crossref] [PubMed]

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Physical Review Letters 113106802 (2014).
[Crossref]

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8, 1086–1101 (2014).
[Crossref] [PubMed]

M. Freitag, T. Low, W. Zhu, H. Yan, F. Xia, and P. Avouris, “Photocurrent in graphene harnessed by tunable intrinsic plasmons,” Nature Communications 42951 (2013).
[Crossref] [PubMed]

Manjavacas, A.

S. Thongrattanasiri, A. Manjavacas, and F. J. García de Abajo, “Quantum finite-size effects in graphene plasmons,” ACS Nano 6, 1766–1775 (2012).
[Crossref] [PubMed]

Mao, F.

J. Yang, J. Yang, W. Deng, F. Mao, and M. Huang, “Transmission properties and molecular sensing application of cgpw,” Optics Express 23, 32289–32299 (2015).
[Crossref] [PubMed]

Marinelli, C.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
[Crossref] [PubMed]

Martin, O. J. F.

B. Gallinet, J. Butet, and O. J. F. Martin, “Numerical methods for nanophotonics: standard problems and future challenges,” Laser & Photonics Reviews 9, 577–603 (2015).
[Crossref]

Martin-Moreno, L.

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nature Materials 10384792 (2016).
[Crossref]

Mertens, J.

J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, and J. J. Baumberg, “Controlling subnanometer gaps in plasmonic dimers using graphene,” Nano Letters 13, 5033–5038 (2013).
[Crossref] [PubMed]

Milana, S.

J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, and J. J. Baumberg, “Controlling subnanometer gaps in plasmonic dimers using graphene,” Nano Letters 13, 5033–5038 (2013).
[Crossref] [PubMed]

Min Kim, J.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
[Crossref] [PubMed]

Morandi, V.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
[Crossref] [PubMed]

Moreno, L. M.

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Physical Review Letters 113106802 (2014).
[Crossref]

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref] [PubMed]

Morpurgo, A.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
[Crossref] [PubMed]

Mosig, J. R.

E. Carrasco, M. Tamagnone, J. R. Mosig, T. Low, and J. Perruisseau-Carrier, “Gate-controlled mid-infrared light bending with aperiodic graphene nanoribbons array,” Nanotechnology 26, 134002 (2015).
[Crossref] [PubMed]

Mulvaney, P.

V. Myroshnychenko, J. Rodriguez-Fernandez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzan, and F. J. Garcia de Abajo, “Modelling the optical response of gold nanoparticles,” Chemical Society Reviews 37, 1792–1805 (2008).
[Crossref] [PubMed]

Myroshnychenko, V.

V. Myroshnychenko, J. Rodriguez-Fernandez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzan, and F. J. Garcia de Abajo, “Modelling the optical response of gold nanoparticles,” Chemical Society Reviews 37, 1792–1805 (2008).
[Crossref] [PubMed]

V. Myroshnychenko, E. Carbó-Argibay, I. Pastoriza-Santos, J. Pérez-Juste, L. M. Liz-Marzán, and F. J. G. de Abajo, “Modeling the optical response of highly faceted metal nanoparticles with a fully 3D boundary element method,” Advanced Materials 20, 4288–4293 (2008).
[Crossref]

Nayyeri, V.

V. Nayyeri, M. Soleimani, and O. M. Ramahi, “Modeling graphene in the finite-difference time-domain method using a surface boundary condition,” IEEE Transactions on Antennas and Propagation 61, 4176–4182 (2013).
[Crossref]

Neil, S. R. T.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
[Crossref] [PubMed]

Neumaier, D.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
[Crossref] [PubMed]

Ni, Z.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Advanced Functional Materials 19, 3077–3083 (2009).
[Crossref]

Nicolosi, V.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
[Crossref] [PubMed]

Niegemann, J.

J. Niegemann, M. Knig, K. Stannigel, and K. Busch, “Higher-order time-domain methods for the analysis of nano-photonic systems,” Photonics and Nanostructures - Fundamentals and Applications 7, 2–11 (2009).
[Crossref]

Novo, C.

V. Myroshnychenko, J. Rodriguez-Fernandez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzan, and F. J. Garcia de Abajo, “Modelling the optical response of gold nanoparticles,” Chemical Society Reviews 37, 1792–1805 (2008).
[Crossref] [PubMed]

Novoselov, K. S.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref] [PubMed]

Novotny, L.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
[Crossref]

Occhipinti, L.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
[Crossref] [PubMed]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Computer Physics Communications 181, 687–702 (2010).
[Crossref]

Palermo, V.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
[Crossref] [PubMed]

Pastoriza-Santos, I.

V. Myroshnychenko, J. Rodriguez-Fernandez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzan, and F. J. Garcia de Abajo, “Modelling the optical response of gold nanoparticles,” Chemical Society Reviews 37, 1792–1805 (2008).
[Crossref] [PubMed]

V. Myroshnychenko, E. Carbó-Argibay, I. Pastoriza-Santos, J. Pérez-Juste, L. M. Liz-Marzán, and F. J. G. de Abajo, “Modeling the optical response of highly faceted metal nanoparticles with a fully 3D boundary element method,” Advanced Materials 20, 4288–4293 (2008).
[Crossref]

Pellegrini, V.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
[Crossref] [PubMed]

Pérez-Juste, J.

V. Myroshnychenko, E. Carbó-Argibay, I. Pastoriza-Santos, J. Pérez-Juste, L. M. Liz-Marzán, and F. J. G. de Abajo, “Modeling the optical response of highly faceted metal nanoparticles with a fully 3D boundary element method,” Advanced Materials 20, 4288–4293 (2008).
[Crossref]

Perruisseau-Carrier, J.

E. Carrasco, M. Tamagnone, J. R. Mosig, T. Low, and J. Perruisseau-Carrier, “Gate-controlled mid-infrared light bending with aperiodic graphene nanoribbons array,” Nanotechnology 26, 134002 (2015).
[Crossref] [PubMed]

Polini, M.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
[Crossref] [PubMed]

Prato, M.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
[Crossref] [PubMed]

Pruneri, V.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
[Crossref] [PubMed]

Pugno, N.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
[Crossref] [PubMed]

Qi, J.

J. Qi, H. Liu, and X. C. Xie, “Surface plasmon polaritons in topological insulators,” Physical Review B 89155420 (2014).
[Crossref]

Quesnel, E.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
[Crossref] [PubMed]

Ramahi, O. M.

V. Nayyeri, M. Soleimani, and O. M. Ramahi, “Modeling graphene in the finite-difference time-domain method using a surface boundary condition,” IEEE Transactions on Antennas and Propagation 61, 4176–4182 (2013).
[Crossref]

Roche, S.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
[Crossref] [PubMed]

Rodrigo, D.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
[Crossref] [PubMed]

Rodriguez-Fernandez, J.

V. Myroshnychenko, J. Rodriguez-Fernandez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzan, and F. J. Garcia de Abajo, “Modelling the optical response of gold nanoparticles,” Chemical Society Reviews 37, 1792–1805 (2008).
[Crossref] [PubMed]

Roldán, R.

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Physical Review Letters 113106802 (2014).
[Crossref]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Computer Physics Communications 181, 687–702 (2010).
[Crossref]

Rupesinghe, N.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
[Crossref] [PubMed]

Ryhanen, T.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
[Crossref] [PubMed]

Schneider, G. F.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
[Crossref] [PubMed]

Seyller, T.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
[Crossref] [PubMed]

Shankar, R.

Y. Yao, M. A. Kats, R. Shankar, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Wide wavelength tuning of optical antennas on graphene with nanosecond response time,” Nano Letters 14, 214–219 (2014).
[Crossref]

Shen, S.

Z. Li, K. Yao, F. Xia, S. Shen, J. Tian, and Y. Liu, “Graphene plasmonic metasurfaces to steer infrared light,” Scientific Reports 5, 12423 (2015).
[Crossref] [PubMed]

Shen, Z. X.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Advanced Functional Materials 19, 3077–3083 (2009).
[Crossref]

Sherrott, M.

V. W. Brar, M. S. Jang, M. Sherrott, J. J. Lopez, and H. A. Atwater, “Highly confined tunable mid-infrared plasmonics in graphene nanoresonators,” Nano Letters 13, 2541–2547 (2013).
[Crossref] [PubMed]

Sigle, D. O.

J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, and J. J. Baumberg, “Controlling subnanometer gaps in plasmonic dimers using graphene,” Nano Letters 13, 5033–5038 (2013).
[Crossref] [PubMed]

Silveiro, I.

I. Silveiro and F. J. García de Abajo, “Plasmons in inhomogeneously doped neutral and charged graphene nanodisks,” Applied Physics Letters 104, 131103 (2014).
[Crossref]

S. Thongrattanasiri, I. Silveiro, and F. J. García de Abajo, “Plasmons in electrostatically doped graphene,” Applied Physics Letters 100, 201105 (2012).
[Crossref]

Soleimani, M.

V. Nayyeri, M. Soleimani, and O. M. Ramahi, “Modeling graphene in the finite-difference time-domain method using a surface boundary condition,” IEEE Transactions on Antennas and Propagation 61, 4176–4182 (2013).
[Crossref]

Sols, F.

B. Wunsch, T. Stauber, F. Sols, and F. Guinea, “Dynamical polarization of graphene at finite doping,” New Journal of Physics 8, 318 (2006).
[Crossref]

Song, Y.

Y. Yao, M. A. Kats, R. Shankar, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Wide wavelength tuning of optical antennas on graphene with nanosecond response time,” Nano Letters 14, 214–219 (2014).
[Crossref]

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Letters 13, 1257–1264 (2013).
[Crossref] [PubMed]

Song, Z.

L. Ye, Y. Chen, G. Cai, N. Liu, J. Zhu, Z. Song, and Q. H. Liu, “Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range,” Optics Express 25, 11223–11232 (2017).
[Crossref]

Sordan, R.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
[Crossref] [PubMed]

Stannigel, K.

J. Niegemann, M. Knig, K. Stannigel, and K. Busch, “Higher-order time-domain methods for the analysis of nano-photonic systems,” Photonics and Nanostructures - Fundamentals and Applications 7, 2–11 (2009).
[Crossref]

Stauber, T.

B. Wunsch, T. Stauber, F. Sols, and F. Guinea, “Dynamical polarization of graphene at finite doping,” New Journal of Physics 8, 318 (2006).
[Crossref]

Sun, Z.

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nature Communications 7, 12334 (2016).
[Crossref] [PubMed]

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
[Crossref] [PubMed]

J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, and J. J. Baumberg, “Controlling subnanometer gaps in plasmonic dimers using graphene,” Nano Letters 13, 5033–5038 (2013).
[Crossref] [PubMed]

Sundaram, R. S.

J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, and J. J. Baumberg, “Controlling subnanometer gaps in plasmonic dimers using graphene,” Nano Letters 13, 5033–5038 (2013).
[Crossref] [PubMed]

Tamagnone, M.

E. Carrasco, M. Tamagnone, J. R. Mosig, T. Low, and J. Perruisseau-Carrier, “Gate-controlled mid-infrared light bending with aperiodic graphene nanoribbons array,” Nanotechnology 26, 134002 (2015).
[Crossref] [PubMed]

Tang, D. Y.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Advanced Functional Materials 19, 3077–3083 (2009).
[Crossref]

Tannock, Q.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
[Crossref] [PubMed]

Teo, K.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
[Crossref] [PubMed]

Thongrattanasiri, S.

S. Thongrattanasiri and F. J. García de Abajo, “Optical field enhancement by strong plasmon interaction in graphene nanostructures,” Physical Review Letters 110, 187401 (2013).
[Crossref] [PubMed]

S. Thongrattanasiri, A. Manjavacas, and F. J. García de Abajo, “Quantum finite-size effects in graphene plasmons,” ACS Nano 6, 1766–1775 (2012).
[Crossref] [PubMed]

S. Thongrattanasiri, I. Silveiro, and F. J. García de Abajo, “Plasmons in electrostatically doped graphene,” Applied Physics Letters 100, 201105 (2012).
[Crossref]

Tian, J.

Z. Li, K. Yao, F. Xia, S. Shen, J. Tian, and Y. Liu, “Graphene plasmonic metasurfaces to steer infrared light,” Scientific Reports 5, 12423 (2015).
[Crossref] [PubMed]

Tredicucci, A.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
[Crossref] [PubMed]

Treossi, E.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
[Crossref] [PubMed]

Trügler, A.

J. Waxenegger, A. Trügler, and U. Hohenester, “Plasmonics simulations with the MNPBEM toolbox: Consideration of substrates and layer structures,” Computer Physics Communications 193, 138–150 (2015).
[Crossref]

U. Hohenester and A. Trügler, “MNPBEM – a matlab toolbox for the simulation of plasmonic nanoparticles,” Computer Physics Communications 183, 370–381 (2012).
[Crossref]

Tserkezis, C.

J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, and J. J. Baumberg, “Controlling subnanometer gaps in plasmonic dimers using graphene,” Nano Letters 13, 5033–5038 (2013).
[Crossref] [PubMed]

van der Zant, H.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
[Crossref] [PubMed]

van Wees, B. J.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
[Crossref] [PubMed]

Vandersypen, L.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
[Crossref] [PubMed]

Wang, H.

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Physical Review Letters 113106802 (2014).
[Crossref]

Wang, J.

J. Wang and Y. Jiang, “Infrared absorber based on sandwiched two-dimensional black phosphorus metamaterials,” Optics Express 25, 5206–5216 (2017).
[Crossref] [PubMed]

Wang, X.

X. Wang and S. Lan, “Optical properties of black phosphorus,” Advances in Optics and Photonics 8, 618–655 (2016).
[Crossref]

Wang, Y.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Advanced Functional Materials 19, 3077–3083 (2009).
[Crossref]

Waxenegger, J.

J. Waxenegger, A. Trügler, and U. Hohenester, “Plasmonics simulations with the MNPBEM toolbox: Consideration of substrates and layer structures,” Computer Physics Communications 193, 138–150 (2015).
[Crossref]

Wei, L.

T. Wu and L. Wei, “Tunable resonant graphene plasmons for mid-infrared biosensing,” Optics Express 24, 26241–26248 (2016).
[Crossref] [PubMed]

Williams, G. M.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
[Crossref] [PubMed]

Wu, T.

T. Wu and L. Wei, “Tunable resonant graphene plasmons for mid-infrared biosensing,” Optics Express 24, 26241–26248 (2016).
[Crossref] [PubMed]

Wunsch, B.

B. Wunsch, T. Stauber, F. Sols, and F. Guinea, “Dynamical polarization of graphene at finite doping,” New Journal of Physics 8, 318 (2006).
[Crossref]

Xia, F.

Z. Li, K. Yao, F. Xia, S. Shen, J. Tian, and Y. Liu, “Graphene plasmonic metasurfaces to steer infrared light,” Scientific Reports 5, 12423 (2015).
[Crossref] [PubMed]

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Physical Review Letters 113106802 (2014).
[Crossref]

M. Freitag, T. Low, W. Zhu, H. Yan, F. Xia, and P. Avouris, “Photocurrent in graphene harnessed by tunable intrinsic plasmons,” Nature Communications 42951 (2013).
[Crossref] [PubMed]

Xie, X. C.

J. Qi, H. Liu, and X. C. Xie, “Surface plasmon polaritons in topological insulators,” Physical Review B 89155420 (2014).
[Crossref]

Yan, H.

M. Freitag, T. Low, W. Zhu, H. Yan, F. Xia, and P. Avouris, “Photocurrent in graphene harnessed by tunable intrinsic plasmons,” Nature Communications 42951 (2013).
[Crossref] [PubMed]

Yan, Y.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Advanced Functional Materials 19, 3077–3083 (2009).
[Crossref]

Yang, J.

J. Yang, J. Yang, W. Deng, F. Mao, and M. Huang, “Transmission properties and molecular sensing application of cgpw,” Optics Express 23, 32289–32299 (2015).
[Crossref] [PubMed]

J. Yang, J. Yang, W. Deng, F. Mao, and M. Huang, “Transmission properties and molecular sensing application of cgpw,” Optics Express 23, 32289–32299 (2015).
[Crossref] [PubMed]

Yang, X.

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nature Communications 7, 12334 (2016).
[Crossref] [PubMed]

Yao, K.

Z. Li, K. Yao, F. Xia, S. Shen, J. Tian, and Y. Liu, “Graphene plasmonic metasurfaces to steer infrared light,” Scientific Reports 5, 12423 (2015).
[Crossref] [PubMed]

Yao, Y.

Y. Yao, M. A. Kats, R. Shankar, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Wide wavelength tuning of optical antennas on graphene with nanosecond response time,” Nano Letters 14, 214–219 (2014).
[Crossref]

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Letters 13, 1257–1264 (2013).
[Crossref] [PubMed]

Ye, L.

L. Ye, Y. Chen, G. Cai, N. Liu, J. Zhu, Z. Song, and Q. H. Liu, “Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range,” Optics Express 25, 11223–11232 (2017).
[Crossref]

Yu, N.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Letters 13, 1257–1264 (2013).
[Crossref] [PubMed]

Zhai, F.

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nature Communications 7, 12334 (2016).
[Crossref] [PubMed]

Zhang, H.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Advanced Functional Materials 19, 3077–3083 (2009).
[Crossref]

Zhang, Y.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref] [PubMed]

Zhu, J.

L. Ye, Y. Chen, G. Cai, N. Liu, J. Zhu, Z. Song, and Q. H. Liu, “Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range,” Optics Express 25, 11223–11232 (2017).
[Crossref]

Zhu, W.

M. Freitag, T. Low, W. Zhu, H. Yan, F. Xia, and P. Avouris, “Photocurrent in graphene harnessed by tunable intrinsic plasmons,” Nature Communications 42951 (2013).
[Crossref] [PubMed]

Zirath, H.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
[Crossref] [PubMed]

ACS Nano (2)

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8, 1086–1101 (2014).
[Crossref] [PubMed]

S. Thongrattanasiri, A. Manjavacas, and F. J. García de Abajo, “Quantum finite-size effects in graphene plasmons,” ACS Nano 6, 1766–1775 (2012).
[Crossref] [PubMed]

ACS Photonics (1)

F. J. García de Abajo, “Graphene plasmonics: Challenges and opportunities,” ACS Photonics 1, 135–152 (2014).
[Crossref]

Advanced Functional Materials (1)

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Advanced Functional Materials 19, 3077–3083 (2009).
[Crossref]

Advanced Materials (1)

V. Myroshnychenko, E. Carbó-Argibay, I. Pastoriza-Santos, J. Pérez-Juste, L. M. Liz-Marzán, and F. J. G. de Abajo, “Modeling the optical response of highly faceted metal nanoparticles with a fully 3D boundary element method,” Advanced Materials 20, 4288–4293 (2008).
[Crossref]

Advances in Optics and Photonics (1)

X. Wang and S. Lan, “Optical properties of black phosphorus,” Advances in Optics and Photonics 8, 618–655 (2016).
[Crossref]

Applied Physics Letters (2)

S. Thongrattanasiri, I. Silveiro, and F. J. García de Abajo, “Plasmons in electrostatically doped graphene,” Applied Physics Letters 100, 201105 (2012).
[Crossref]

I. Silveiro and F. J. García de Abajo, “Plasmons in inhomogeneously doped neutral and charged graphene nanodisks,” Applied Physics Letters 104, 131103 (2014).
[Crossref]

Chemical Society Reviews (1)

V. Myroshnychenko, J. Rodriguez-Fernandez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzan, and F. J. Garcia de Abajo, “Modelling the optical response of gold nanoparticles,” Chemical Society Reviews 37, 1792–1805 (2008).
[Crossref] [PubMed]

Computer Physics Communications (3)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Computer Physics Communications 181, 687–702 (2010).
[Crossref]

U. Hohenester and A. Trügler, “MNPBEM – a matlab toolbox for the simulation of plasmonic nanoparticles,” Computer Physics Communications 183, 370–381 (2012).
[Crossref]

J. Waxenegger, A. Trügler, and U. Hohenester, “Plasmonics simulations with the MNPBEM toolbox: Consideration of substrates and layer structures,” Computer Physics Communications 193, 138–150 (2015).
[Crossref]

IEEE Transactions on Antennas and Propagation (2)

V. Nayyeri, M. Soleimani, and O. M. Ramahi, “Modeling graphene in the finite-difference time-domain method using a surface boundary condition,” IEEE Transactions on Antennas and Propagation 61, 4176–4182 (2013).
[Crossref]

P. Li, L. J. Jiang, and H. Bagci, “A resistive boundary condition enhanced DGTD scheme for the transient analysis of graphene,” IEEE Transactions on Antennas and Propagation 63, 3065–3076 (2015).
[Crossref]

Journal of the Physical Society of Japan (1)

T. Ando, “Theory of electronic states and transport in carbon nanotubes,” Journal of the Physical Society of Japan 74, 777–817 (2005).
[Crossref]

Laser & Photonics Reviews (1)

B. Gallinet, J. Butet, and O. J. F. Martin, “Numerical methods for nanophotonics: standard problems and future challenges,” Laser & Photonics Reviews 9, 577–603 (2015).
[Crossref]

Nano Letters (5)

J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, and J. J. Baumberg, “Controlling subnanometer gaps in plasmonic dimers using graphene,” Nano Letters 13, 5033–5038 (2013).
[Crossref] [PubMed]

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Letters 13, 1257–1264 (2013).
[Crossref] [PubMed]

Y. Yao, M. A. Kats, R. Shankar, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Wide wavelength tuning of optical antennas on graphene with nanosecond response time,” Nano Letters 14, 214–219 (2014).
[Crossref]

V. W. Brar, M. S. Jang, M. Sherrott, J. J. Lopez, and H. A. Atwater, “Highly confined tunable mid-infrared plasmonics in graphene nanoresonators,” Nano Letters 13, 2541–2547 (2013).
[Crossref] [PubMed]

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: A platform for strong light-matter interactions,” Nano Letters 11, 3370–3377 (2011).
[Crossref] [PubMed]

Nanoscale (1)

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7, 4598–4810 (2015).
[Crossref] [PubMed]

Nanotechnology (1)

E. Carrasco, M. Tamagnone, J. R. Mosig, T. Low, and J. Perruisseau-Carrier, “Gate-controlled mid-infrared light bending with aperiodic graphene nanoribbons array,” Nanotechnology 26, 134002 (2015).
[Crossref] [PubMed]

Nature Communications (2)

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nature Communications 7, 12334 (2016).
[Crossref] [PubMed]

M. Freitag, T. Low, W. Zhu, H. Yan, F. Xia, and P. Avouris, “Photocurrent in graphene harnessed by tunable intrinsic plasmons,” Nature Communications 42951 (2013).
[Crossref] [PubMed]

Nature Materials (1)

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nature Materials 10384792 (2016).
[Crossref]

New Journal of Physics (1)

B. Wunsch, T. Stauber, F. Sols, and F. Guinea, “Dynamical polarization of graphene at finite doping,” New Journal of Physics 8, 318 (2006).
[Crossref]

Optica (1)

Optics Express (4)

J. Wang and Y. Jiang, “Infrared absorber based on sandwiched two-dimensional black phosphorus metamaterials,” Optics Express 25, 5206–5216 (2017).
[Crossref] [PubMed]

T. Wu and L. Wei, “Tunable resonant graphene plasmons for mid-infrared biosensing,” Optics Express 24, 26241–26248 (2016).
[Crossref] [PubMed]

J. Yang, J. Yang, W. Deng, F. Mao, and M. Huang, “Transmission properties and molecular sensing application of cgpw,” Optics Express 23, 32289–32299 (2015).
[Crossref] [PubMed]

L. Ye, Y. Chen, G. Cai, N. Liu, J. Zhu, Z. Song, and Q. H. Liu, “Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range,” Optics Express 25, 11223–11232 (2017).
[Crossref]

Photonics and Nanostructures - Fundamentals and Applications (1)

J. Niegemann, M. Knig, K. Stannigel, and K. Busch, “Higher-order time-domain methods for the analysis of nano-photonic systems,” Photonics and Nanostructures - Fundamentals and Applications 7, 2–11 (2009).
[Crossref]

Physical Review B (4)

U. Hohenester and J. Krenn, “Surface plasmon resonances of single and coupled metallic nanoparticles: A boundary integral method approach,” Physical Review B 72195429 (2005).
[Crossref]

F. J. García de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Physical Review B 65, 115418 (2002).
[Crossref]

J. Qi, H. Liu, and X. C. Xie, “Surface plasmon polaritons in topological insulators,” Physical Review B 89155420 (2014).
[Crossref]

E. H. Hwang and S. Das Sarma, “Dielectric function, screening, and plasmons in two-dimensional graphene,” Physical Review B 75, 205418 (2007).
[Crossref]

Physical Review Letters (2)

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Physical Review Letters 113106802 (2014).
[Crossref]

S. Thongrattanasiri and F. J. García de Abajo, “Optical field enhancement by strong plasmon interaction in graphene nanostructures,” Physical Review Letters 110, 187401 (2013).
[Crossref] [PubMed]

Science (2)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref] [PubMed]

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
[Crossref] [PubMed]

Scientific Reports (1)

Z. Li, K. Yao, F. Xia, S. Shen, J. Tian, and Y. Liu, “Graphene plasmonic metasurfaces to steer infrared light,” Scientific Reports 5, 12423 (2015).
[Crossref] [PubMed]

Other (2)

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
[Crossref]

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 1998).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Comparison between extinction cross-section spectra of a self-standing graphene ribbon calculated by the ordinary BEM (red), η-BEM (green) and semi-analytical Fourier expansion method (blue). The ribbon has an infinite length, a width of 100 nm and in case of BEM a thickness of 1 nm (infinitesimal thickness is assumed for η-BEM). The doping level within the ribbon was set to EF = 0.2 eV. The inset shows the shifts in the spectral position of the observed plasmonic peak as we increase the number of boundary elements. The 2D conductivity of graphene was modelled using Eq. 51 from Appendix A.
Fig. 2
Fig. 2 (a) Comparison between extinction cross-section spectra of a gold-coated dielectric rod and sphere calculated by the ordinary BEM (blue), BC-BEM (green), η-BEM (red) and analytical Mie theory (black solid line for the thin gold film, black dashed line for the 2D conductive interface). The diameter of the dielectric core (ε = 2) was set to Din = 72 nm and the thickness of the gold shell to t = 4 nm. The insets shows the spectral position of the dipolar plasmonic peak as a function of the number of discretization elements for the coated sphere (b) and cylinder (c). Note that the absence of data points for smaller N in the case of ordinary BEM in (b) is due to its failure to produce the dipolar plasmonic peak inside the simulated frequency range. This further underlines the poor convergence of the original BEM for this type of problems.
Fig. 3
Fig. 3 (a) Extinction cross-section spectra of a side-gated self-standing ribbon for three intensities of the static electric field ESG. The solid and dashed lines discriminate between two different models for dynamical conductivity, with the dashed one corresponding to a model with enabled interband transitions. Based on the maps of local electric field and distribution of induced charge density npl we identified the two marked peaks as “single antenna” and “dimer antenna” plasmonic resonances. (b) Schematical drawing of the simulated structure - a single self-standing graphene ribbon in a parallelly oriented static electric field illuminated from the top by infrared radiation. The ribbon is infinite in the direction perpendicular to the figure plane. (c) The spatial distribution of the absolute value of the Fermi level over the graphene ribbon for the three intensities of the static electric field ESG. Note that in the region 0 < x < 50 nm, there is depletion of electrons and the Fermi level is therefore negative.
Fig. 4
Fig. 4 The spatial profile of the lowest four plasmon modes observed in Fig. 3 for ESG = 30 MV · m−1. The imaginary part of the plasmon charge density npl corresponds to the mode in resonance, while the real part represents the off-resonant contributions from the rest of the modes. The type of the line reflects the conductivity model used in the calculation.
Fig. 5
Fig. 5 Maps of the local electric field intensity for the two plasmon modes with the lowest energy from Fig. 4. The calculations with interband transitions turned off (on) are on the left (right). The hot spot associated with the build-up of the charge in the “gap” separating the two optically conductive regions completely vanishes when the decay via interband transitions is enabled.

Tables (1)

Tables Icon

Table 1 Comparison of the three different approaches for modelling of 2D materials. Based on our implementation of BEM.

Equations (54)

Equations on this page are rendered with MathJax. Learn more.

( ε E ) = ρ ε 0 × B = μ 0 j i ω c 2 ε E , B = 0 , × E = i ω B ,
E = Φ + i k A ,
B = 1 c × A ,
i k ε Φ = A ,
Φ j ( r , ω ) = Φ j ext ( r , ω ) + Ω j d s G j ( r , s , ω ) σ j ( s , ω ) ,
A j ( r , ω ) = A j ext ( r , ω ) + Ω j d s G j ( r , s , ω ) h j ( s , ω ) ,
( 2 + k j 2 ) G j ( r , r , ω ) = δ ( r r ) ,
Φ 2 Φ 1 = 0 ,
A 2 A 1 = 0 ,
n s ( ε 2 E 2 ε 1 E 1 ) = 0 ,
n s × ( B 2 B 1 ) = 0 ,
[ n s ( A 2 A 1 ) ] = ( n s ) ( A 2 A 1 ) + + c n s × ( B 2 B 1 ) .
n s [ n s ( A 2 A 1 ) ] = n s ( n s ) ( A 2 A 1 ) ,
t s ν [ n s ( A 2 A 1 ) ] = t s ν ( n s ) ( A 2 A 1 ) + + c t s ν [ n s × ( B 2 B 1 ) ] .
n s ( n s ) ( A 2 A 1 ) i k ( ε 2 Φ 2 ε 1 Φ 1 ) = 0 ,
t s ν [ n s ( A 2 A 1 ) ] t s ν ( n s ) ( A 2 A 1 ) = 0 .
η = μ 0 c σ 2 D E ,
η = μ 0 c σ 2 D [ E ext + E ( σ , h ) + i k S G d s G ( r , s ) , η ( s ) ] .
η = 1 2 μ 0 c σ 2 D [ E 1 ext + E 2 ext ( G 1 σ 1 + G 2 σ 2 ) + + i k ( G 1 h 1 + G 2 h 2 ) + i k ( G 1 + G 2 ) η ] ,
Φ j = Φ j ext + G j σ j + 1 i k ε j G j η ,
A j = A j ext + G j h j + G j η ,
n s × ( B 2 B 1 ) = 1 c η .
( 1 i k ε 1 G 1 1 i k ε 2 G 2 ) η + G 1 σ 1 G 2 σ 2 = Φ 2 ext Φ 1 ext ,
G 1 h 1 G 2 h 2 + ( G 1 G 2 ) η = A 2 ext A 1 ext ,
H 2 ε 2 σ 2 H 1 ε 1 σ 1 + i k n s ( G 1 ε 1 h 1 G 2 ε 2 h 2 ) + + i k n s [ ( G 1 ε 1 G 2 ε 2 ) η ] = D 2 ext D 1 ext ,
n s ( H 1 h 1 H 2 h 2 ) + i k ( G 2 ε 2 σ 2 G 1 ε 1 σ 1 ) + + [ n s ( H 1 H 2 ) + G 2 G 1 ] η = α 2 α 1 ,
( n s T 1 ν t s ν H 1 ) h 1 ( n s T 2 ν t s ν H 2 ) h 2 + + [ n s ( T 1 ν T 2 ν ) t s ν ( H 1 H 2 𝕀 ) ] η = β 2 ν β 1 ν ,
𝕀 = identity matrix ,
H j = n s G j ,
T j ν = t s ν G j ,
D j ext = ε j n s ( Φ j ext + i k A j ext ) ,
α j = n s ( n s ) A j ext i k ε j Φ j ext ,
β j ν = t s ν ( n s A j ext ) t s ν ( n s ) A j ext .
d s { G j 1 ( s ) ε j 1 ( s ) [ σ 1 δ j 1 ( s ) j 1 ( s ) + σ 2 δ j 1 ( s ) j 2 ( s ) ] G j 2 ( s ) ε j 2 ( s ) [ σ 1 δ j 2 ( s ) j 1 ( s ) + σ 2 δ j 2 ( s ) j 2 ( s ) ] } = = d s { G j 1 ( s ) ε j 1 ( s ) [ δ j 1 ( s ) j 1 ( s ) δ j 2 ( s ) j 1 ( s ) ] σ 1 G j 2 ( s ) ε j 2 ( s ) [ δ j 2 ( s ) j 2 ( s ) δ j 1 ( s ) j 2 ( s ) ] σ 2 } ,
d s { G j 1 ( s ) [ δ j 1 ( s ) j 1 ( s ) + δ j 2 ( s ) j 1 ( s ) ] σ 1 + + G j 2 ( s ) [ δ j 2 ( s ) j 2 ( s ) + δ j 1 ( s ) j 2 ( s ) ] σ 2 } .
G 1 G ± 1 = G j 1 ( s ) [ δ j 1 ( s ) j 1 ( s ) ± δ j 2 ( s ) j 1 ( s ) ] G 2 G ± 2 = G j 2 ( s ) [ δ j 2 ( s ) j 2 ( s ) ± δ j 1 ( s ) j 2 ( s ) ] .
η = 1 2 μ 0 c σ 2 D [ E 1 ext + E 2 ext ( G + 1 σ 1 + G + 2 σ 2 ) + + i k ( G + 1 h 1 + G + 2 h 2 ) + i k ( G + 1 + G + 2 ) η ] ,
( 1 i k ε 1 G 1 1 i k ε 2 G 2 ) η + G 1 σ 1 G 2 σ 2 = Φ 2 ext Φ 1 ext ,
G 1 h 1 G 2 h 2 + ( G 1 G 2 ) η = A 2 ext A 1 ext ,
H 2 ε 2 σ 2 H 1 ε 1 σ 1 + i k n s ( G 1 ε 1 h 1 G 2 ε 2 h 2 ) + + i k n s [ ( G 1 ε 1 G 2 ε 2 ) η ] = D 2 ext D 1 ext ,
n s ( H 1 h 1 H 2 h 2 ) + i k ( G 2 ε 2 σ 2 G 1 ε 1 σ 1 ) + + [ n s ( H 1 H 2 ) + G 2 G 1 ] η = α 2 α 1 ,
( n s T 1 ν t s ν H 1 ) h 1 ( n s T 2 ν t s ν H 2 ) h 2 + + [ n s ( T 1 ν T 2 ν ) t s ν ( H 1 H 2 𝕀 ) ] η = β 2 ν β 1 ν .
n s × ( B 2 B 1 ) = μ 0 σ 2 D E ,
n s ( ε 2 E 2 ε 1 E 1 ) = i ω ε 0 ( σ 2 D E ) .
i ω ε 0 ( σ 2 D E ) = i ω ε 0 σ 2 D [ E n s ( n s E ) ] i σ 2 D ω ε 0 [ E n s ( n s E ) ] .
G 1 σ 1 G 2 σ 2 = Φ 2 ext Φ 1 ext ,
G 1 h 1 G 2 h 2 = A 2 ext A 1 ext ,
H 2 ε 2 σ 2 H 1 ε 1 σ 1 + i k n s ( G 1 ε 1 h 1 G 2 ε 2 h 2 ) 1 2 i σ 2 D ω ε 0 [ δ ( s s ) ( σ 1 + σ 2 ) + ( n s ) 2 ( G + 1 σ 1 + G 2 σ 2 ) ] 1 2 σ 2 D c ε 0 n s ( H + 1 h 1 + H + 2 h 2 ) = D 2 ext D 1 ext + 1 2 i σ 2 D ω ε 0 ( E 1 ext + E 2 ext ) ,
n s ( H 1 h 1 H 2 h 2 ) + i k ( G 2 ε 2 σ 2 G 1 ε 1 σ 1 ) = α 2 α 1 ,
( n s T 1 ν t s ν H 1 ) h 1 ( n s T 2 ν t s ν H 2 ) h 2 1 2 μ 0 c σ 2 D ( T 1 ν + σ 1 + T 2 ν + σ 2 ) + + 1 2 i ω μ 0 σ 2 D t s ν ( G + 1 h 1 + G + 2 h 2 ) = β 2 ν β 1 ν 1 2 μ 0 c σ 2 D t s ν ( E 1 ext + E 2 ext ) .
G ± j , m n = S n d s G ± j ( s m , s ) ,
ε 3 D = 1 + i σ 2 D ε 0 ω t ,
σ 2 D = i ε 0 ω t ( 1 ε 3 D ) .
σ ( ω ) = e 2 | E F | π 2 i ( ω + i τ 1 ) + e 2 4 [ θ ( ω 2 | E F | ) + i π ln | ω 2 | E F | ω + 2 | E F | | ] ,

Metrics