Abstract

Chip based particle sensing using 3D capillary fill microfluidics integrated with monolithically integrated lasers and photodetectors is used to demonstrate the feasibility of true chip scale photonic measurements of fluids. The approach is scalable and manufactured using industry standard compound semiconductor fabrication tools. The need for fluid speed regulation via external pumps is removed by measuring local particle velocity at the point of interrogation and particle position within the fluid flow is derived from multiple time resolved forward scattered light signals. Particle size discrimination of 10 and 15 μm polystyrene microbeads is used as an example.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
A method for detecting forward scattering signals on-chip with a photonic-microfluidic integrated device

Benjamin R. Watts, Zhiyi Zhang, Chang-Qing Xu, Xudong Cao, and Min Lin
Biomed. Opt. Express 4(7) 1051-1060 (2013)

Mass-manufacturable polymer microfluidic device for dual fiber optical trapping

Diane De Coster, Heidi Ottevaere, Michael Vervaeke, Jürgen Van Erps, Manly Callewaert, Pieter Wuytens, Stephen H. Simpson, Simon Hanna, Wim De Malsche, and Hugo Thienpont
Opt. Express 23(24) 30991-31009 (2015)

Monolithic integration of microfluidic channels and semiconductor lasers

Simon J. Cran-McGreehin, Kishan Dholakia, and Thomas F. Krauss
Opt. Express 14(17) 7723-7729 (2006)

References

  • View by:
  • |
  • |
  • |

  1. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
    [Crossref] [PubMed]
  2. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
    [Crossref]
  3. H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photonics 5(10), 598–604 (2011).
    [Crossref]
  4. X. Fan and I. M. White, “Optofluidic Microsystems for Chemical and Biological Analysis,” Nat. Photonics 5(10), 591–597 (2011).
    [Crossref] [PubMed]
  5. M. Boyd-Moss, S. Baratchi, M. Di Venere, and K. Khoshmanesh, “Self-contained microfluidic systems: a review,” Lab Chip 16(17), 3177–3192 (2016).
    [Crossref] [PubMed]
  6. J. C. T. Eijkel and A. van den Berg, “Young 4ever-the use of capillarity for passive flow handling in lab on a chip devices,” Lab Chip 6(11), 1405–1408 (2006).
    [Crossref] [PubMed]
  7. B. Helbo, A. Kristensen, and A. A. Menon, “A micro-cavity fluidic dye laser,” J. Micromech. Microeng. 13(2), 307–311 (2003).
    [Crossref]
  8. S. Balslev and A. Kristensen, “Microfluidic single-mode laser using high-order Bragg grating and antiguiding segments,” Opt. Express 13(1), 344–351 (2005).
    [Crossref] [PubMed]
  9. M. C. Gather and S. H. Yun, “Single-cell biological lasers,” Nat. Photonics 5(7), 406–410 (2011).
    [Crossref]
  10. M. Schubert, K. Volckaert, M. Karl, A. Morton, P. Liehm, G. B. Miles, S. J. Powis, and M. C. Gather, “Lasing in Live Mitotic and Non-Phagocytic Cells by Efficient Delivery of Microresonators,” Sci. Rep. 7, 40877 (2017).
    [Crossref] [PubMed]
  11. S. W. Kettlitz, S. Valouch, W. Sittel, and U. Lemmer, “Flexible planar microfluidic chip employing a light emitting diode and a PIN-photodiode for portable flow cytometers,” Lab Chip 12(1), 197–203 (2012).
    [Crossref] [PubMed]
  12. X. J. Liang, A. Q. Liu, C. S. Lim, T. C. Ayi, and P. H. Yap, “Determining refractive index of single living cell using an integrated microchip,” Sens. Actuat. A 133(2), 349–354 (2007).
    [Crossref]
  13. R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, S. Corzine, A. Dentai, S. Murthy, M. Missey, R. Muthiah, R. A. Salvatore, C. Joyner, R. Schneider, M. Ziari, F. Kish, and D. Welch, “InP Photonic Integrated Circuits,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1113–1125 (2010).
    [Crossref]
  14. S. Cran-McGreehin, T. F. Krauss, and K. Dholakia, “Integrated monolithic optical manipulation,” Lab Chip 6(9), 1122–1124 (2006).
    [Crossref] [PubMed]
  15. S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
    [Crossref]
  16. K. V. Nemani, K. L. Moodie, J. B. Brennick, A. Su, and B. Gimi, “In vitro and in vivo evaluation of SU-8 biocompatibility,” Mater. Sci. Eng. C 33(7), 4453–4459 (2013).
    [Crossref] [PubMed]
  17. M. Hochberg, N. C. Harris, R. Ding, Y. Zhang, A. Novack, Z. Xuan, and T. Baehr-Jones, “Silicon photonics: the next fabless semiconductor industry,” IEEE Solid-State Circuits Magazine 5(1), 48–58 (2013).
    [Crossref]
  18. F. J. Blanco, M. Agirregabiria, J. Garcia, J. Berganzo, M. Tijero, M. T. Arroyo, J. M. Ruano, I. Aramburu, and K. Mayora, “Novel three-dimensional embedded SU-8 microchannels fabricated using a low temperature full wafer adhesive bonding,” J. Micromech. Microeng. 14(7), 1047–1056 (2014).
    [Crossref]
  19. R. Meier, V. Badilita, U. Wallrabe, and J. G. Korvink, “Processing of 3D multilevel SU-8 fluidic network assisted by PerMX dry-photoresist lamination,” NEMS 2012, 5–8 (2012).
  20. Y. Chuang, F. Tseng, J. Cheng, and W. Lin, “A novel fabrication method of embedded micro-channels by using SU-8 thick-film photoresists,” Sens. Actuators A Phys. 103(1-2), 64–69 (2003).
    [Crossref]
  21. A. Rammohan, P. K. Dwivedi, R. Martinez-Duarte, H. Katepalli, M. J. Madou, and A. Sharma, “One-step maskless grayscale lithography for the fabrication of 3-dimensional structures in SU-8,” Sens. Actuators B Chem. 153(1), 125–134 (2011).
    [Crossref]
  22. J. M. Dykes, D. K. Poon, J. Wang, D. Sameoto, J. T. K. Tsui, C. Choo, G. H. Chapman, A. M. Parameswaren, and B. L. Gray, “Creation of embedded structures in SU-8,” Proc. SPIE 6465, 1–11 (2007).
    [Crossref]
  23. G. M. Lewis, P. M. Smowton, P. Blood, and W. W. Chow, “Effect of tensile strain/well-width combination on the measured gain-radiative current characteristics of 635 nm laser diodes,” Appl. Phys. Lett. 82(10), 1524–1526 (2003).
    [Crossref]
  24. I. Karomi, P. M. Smowton, S. Shutts, A. B. Krysa, and R. Beanland, “InAsP quantum dot lasers grown by MOVPE,” Opt. Express 23(21), 27282–27291 (2015).
    [Crossref] [PubMed]
  25. A. Sobiesierski, R. Thomas, P. Buckle, D. Barrow, and P. M. Smowton, “A two-stage surface treatment for the long-term stability of hydrophilic SU-8,” Surf. Interface Anal. 47(13), 1174–1179 (2015).
    [Crossref]
  26. L. Wang, L. A. Flanagan, N. L. Jeon, E. Monuki, and A. P. Lee, “Dielectrophoresis switching with vertical sidewall electrodes for microfluidic flow cytometry,” Lab Chip 7(9), 1114–1120 (2007).
    [Crossref] [PubMed]

2017 (1)

M. Schubert, K. Volckaert, M. Karl, A. Morton, P. Liehm, G. B. Miles, S. J. Powis, and M. C. Gather, “Lasing in Live Mitotic and Non-Phagocytic Cells by Efficient Delivery of Microresonators,” Sci. Rep. 7, 40877 (2017).
[Crossref] [PubMed]

2016 (2)

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

M. Boyd-Moss, S. Baratchi, M. Di Venere, and K. Khoshmanesh, “Self-contained microfluidic systems: a review,” Lab Chip 16(17), 3177–3192 (2016).
[Crossref] [PubMed]

2015 (2)

A. Sobiesierski, R. Thomas, P. Buckle, D. Barrow, and P. M. Smowton, “A two-stage surface treatment for the long-term stability of hydrophilic SU-8,” Surf. Interface Anal. 47(13), 1174–1179 (2015).
[Crossref]

I. Karomi, P. M. Smowton, S. Shutts, A. B. Krysa, and R. Beanland, “InAsP quantum dot lasers grown by MOVPE,” Opt. Express 23(21), 27282–27291 (2015).
[Crossref] [PubMed]

2014 (1)

F. J. Blanco, M. Agirregabiria, J. Garcia, J. Berganzo, M. Tijero, M. T. Arroyo, J. M. Ruano, I. Aramburu, and K. Mayora, “Novel three-dimensional embedded SU-8 microchannels fabricated using a low temperature full wafer adhesive bonding,” J. Micromech. Microeng. 14(7), 1047–1056 (2014).
[Crossref]

2013 (2)

K. V. Nemani, K. L. Moodie, J. B. Brennick, A. Su, and B. Gimi, “In vitro and in vivo evaluation of SU-8 biocompatibility,” Mater. Sci. Eng. C 33(7), 4453–4459 (2013).
[Crossref] [PubMed]

M. Hochberg, N. C. Harris, R. Ding, Y. Zhang, A. Novack, Z. Xuan, and T. Baehr-Jones, “Silicon photonics: the next fabless semiconductor industry,” IEEE Solid-State Circuits Magazine 5(1), 48–58 (2013).
[Crossref]

2012 (2)

R. Meier, V. Badilita, U. Wallrabe, and J. G. Korvink, “Processing of 3D multilevel SU-8 fluidic network assisted by PerMX dry-photoresist lamination,” NEMS 2012, 5–8 (2012).

S. W. Kettlitz, S. Valouch, W. Sittel, and U. Lemmer, “Flexible planar microfluidic chip employing a light emitting diode and a PIN-photodiode for portable flow cytometers,” Lab Chip 12(1), 197–203 (2012).
[Crossref] [PubMed]

2011 (4)

H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photonics 5(10), 598–604 (2011).
[Crossref]

X. Fan and I. M. White, “Optofluidic Microsystems for Chemical and Biological Analysis,” Nat. Photonics 5(10), 591–597 (2011).
[Crossref] [PubMed]

A. Rammohan, P. K. Dwivedi, R. Martinez-Duarte, H. Katepalli, M. J. Madou, and A. Sharma, “One-step maskless grayscale lithography for the fabrication of 3-dimensional structures in SU-8,” Sens. Actuators B Chem. 153(1), 125–134 (2011).
[Crossref]

M. C. Gather and S. H. Yun, “Single-cell biological lasers,” Nat. Photonics 5(7), 406–410 (2011).
[Crossref]

2010 (1)

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, S. Corzine, A. Dentai, S. Murthy, M. Missey, R. Muthiah, R. A. Salvatore, C. Joyner, R. Schneider, M. Ziari, F. Kish, and D. Welch, “InP Photonic Integrated Circuits,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1113–1125 (2010).
[Crossref]

2007 (4)

X. J. Liang, A. Q. Liu, C. S. Lim, T. C. Ayi, and P. H. Yap, “Determining refractive index of single living cell using an integrated microchip,” Sens. Actuat. A 133(2), 349–354 (2007).
[Crossref]

J. M. Dykes, D. K. Poon, J. Wang, D. Sameoto, J. T. K. Tsui, C. Choo, G. H. Chapman, A. M. Parameswaren, and B. L. Gray, “Creation of embedded structures in SU-8,” Proc. SPIE 6465, 1–11 (2007).
[Crossref]

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[Crossref]

L. Wang, L. A. Flanagan, N. L. Jeon, E. Monuki, and A. P. Lee, “Dielectrophoresis switching with vertical sidewall electrodes for microfluidic flow cytometry,” Lab Chip 7(9), 1114–1120 (2007).
[Crossref] [PubMed]

2006 (3)

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

J. C. T. Eijkel and A. van den Berg, “Young 4ever-the use of capillarity for passive flow handling in lab on a chip devices,” Lab Chip 6(11), 1405–1408 (2006).
[Crossref] [PubMed]

S. Cran-McGreehin, T. F. Krauss, and K. Dholakia, “Integrated monolithic optical manipulation,” Lab Chip 6(9), 1122–1124 (2006).
[Crossref] [PubMed]

2005 (1)

2003 (3)

Y. Chuang, F. Tseng, J. Cheng, and W. Lin, “A novel fabrication method of embedded micro-channels by using SU-8 thick-film photoresists,” Sens. Actuators A Phys. 103(1-2), 64–69 (2003).
[Crossref]

B. Helbo, A. Kristensen, and A. A. Menon, “A micro-cavity fluidic dye laser,” J. Micromech. Microeng. 13(2), 307–311 (2003).
[Crossref]

G. M. Lewis, P. M. Smowton, P. Blood, and W. W. Chow, “Effect of tensile strain/well-width combination on the measured gain-radiative current characteristics of 635 nm laser diodes,” Appl. Phys. Lett. 82(10), 1524–1526 (2003).
[Crossref]

Agirregabiria, M.

F. J. Blanco, M. Agirregabiria, J. Garcia, J. Berganzo, M. Tijero, M. T. Arroyo, J. M. Ruano, I. Aramburu, and K. Mayora, “Novel three-dimensional embedded SU-8 microchannels fabricated using a low temperature full wafer adhesive bonding,” J. Micromech. Microeng. 14(7), 1047–1056 (2014).
[Crossref]

Aramburu, I.

F. J. Blanco, M. Agirregabiria, J. Garcia, J. Berganzo, M. Tijero, M. T. Arroyo, J. M. Ruano, I. Aramburu, and K. Mayora, “Novel three-dimensional embedded SU-8 microchannels fabricated using a low temperature full wafer adhesive bonding,” J. Micromech. Microeng. 14(7), 1047–1056 (2014).
[Crossref]

Arroyo, M. T.

F. J. Blanco, M. Agirregabiria, J. Garcia, J. Berganzo, M. Tijero, M. T. Arroyo, J. M. Ruano, I. Aramburu, and K. Mayora, “Novel three-dimensional embedded SU-8 microchannels fabricated using a low temperature full wafer adhesive bonding,” J. Micromech. Microeng. 14(7), 1047–1056 (2014).
[Crossref]

Ayi, T. C.

X. J. Liang, A. Q. Liu, C. S. Lim, T. C. Ayi, and P. H. Yap, “Determining refractive index of single living cell using an integrated microchip,” Sens. Actuat. A 133(2), 349–354 (2007).
[Crossref]

Badilita, V.

R. Meier, V. Badilita, U. Wallrabe, and J. G. Korvink, “Processing of 3D multilevel SU-8 fluidic network assisted by PerMX dry-photoresist lamination,” NEMS 2012, 5–8 (2012).

Baehr-Jones, T.

M. Hochberg, N. C. Harris, R. Ding, Y. Zhang, A. Novack, Z. Xuan, and T. Baehr-Jones, “Silicon photonics: the next fabless semiconductor industry,” IEEE Solid-State Circuits Magazine 5(1), 48–58 (2013).
[Crossref]

Balslev, S.

Baratchi, S.

M. Boyd-Moss, S. Baratchi, M. Di Venere, and K. Khoshmanesh, “Self-contained microfluidic systems: a review,” Lab Chip 16(17), 3177–3192 (2016).
[Crossref] [PubMed]

Barrow, D.

A. Sobiesierski, R. Thomas, P. Buckle, D. Barrow, and P. M. Smowton, “A two-stage surface treatment for the long-term stability of hydrophilic SU-8,” Surf. Interface Anal. 47(13), 1174–1179 (2015).
[Crossref]

Beanland, R.

Berganzo, J.

F. J. Blanco, M. Agirregabiria, J. Garcia, J. Berganzo, M. Tijero, M. T. Arroyo, J. M. Ruano, I. Aramburu, and K. Mayora, “Novel three-dimensional embedded SU-8 microchannels fabricated using a low temperature full wafer adhesive bonding,” J. Micromech. Microeng. 14(7), 1047–1056 (2014).
[Crossref]

Blanco, F. J.

F. J. Blanco, M. Agirregabiria, J. Garcia, J. Berganzo, M. Tijero, M. T. Arroyo, J. M. Ruano, I. Aramburu, and K. Mayora, “Novel three-dimensional embedded SU-8 microchannels fabricated using a low temperature full wafer adhesive bonding,” J. Micromech. Microeng. 14(7), 1047–1056 (2014).
[Crossref]

Blood, P.

G. M. Lewis, P. M. Smowton, P. Blood, and W. W. Chow, “Effect of tensile strain/well-width combination on the measured gain-radiative current characteristics of 635 nm laser diodes,” Appl. Phys. Lett. 82(10), 1524–1526 (2003).
[Crossref]

Boyd-Moss, M.

M. Boyd-Moss, S. Baratchi, M. Di Venere, and K. Khoshmanesh, “Self-contained microfluidic systems: a review,” Lab Chip 16(17), 3177–3192 (2016).
[Crossref] [PubMed]

Brennick, J. B.

K. V. Nemani, K. L. Moodie, J. B. Brennick, A. Su, and B. Gimi, “In vitro and in vivo evaluation of SU-8 biocompatibility,” Mater. Sci. Eng. C 33(7), 4453–4459 (2013).
[Crossref] [PubMed]

Buckle, P.

A. Sobiesierski, R. Thomas, P. Buckle, D. Barrow, and P. M. Smowton, “A two-stage surface treatment for the long-term stability of hydrophilic SU-8,” Surf. Interface Anal. 47(13), 1174–1179 (2015).
[Crossref]

Chapman, G. H.

J. M. Dykes, D. K. Poon, J. Wang, D. Sameoto, J. T. K. Tsui, C. Choo, G. H. Chapman, A. M. Parameswaren, and B. L. Gray, “Creation of embedded structures in SU-8,” Proc. SPIE 6465, 1–11 (2007).
[Crossref]

Chen, S.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Cheng, J.

Y. Chuang, F. Tseng, J. Cheng, and W. Lin, “A novel fabrication method of embedded micro-channels by using SU-8 thick-film photoresists,” Sens. Actuators A Phys. 103(1-2), 64–69 (2003).
[Crossref]

Choo, C.

J. M. Dykes, D. K. Poon, J. Wang, D. Sameoto, J. T. K. Tsui, C. Choo, G. H. Chapman, A. M. Parameswaren, and B. L. Gray, “Creation of embedded structures in SU-8,” Proc. SPIE 6465, 1–11 (2007).
[Crossref]

Chow, W. W.

G. M. Lewis, P. M. Smowton, P. Blood, and W. W. Chow, “Effect of tensile strain/well-width combination on the measured gain-radiative current characteristics of 635 nm laser diodes,” Appl. Phys. Lett. 82(10), 1524–1526 (2003).
[Crossref]

Chuang, Y.

Y. Chuang, F. Tseng, J. Cheng, and W. Lin, “A novel fabrication method of embedded micro-channels by using SU-8 thick-film photoresists,” Sens. Actuators A Phys. 103(1-2), 64–69 (2003).
[Crossref]

Corzine, S.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, S. Corzine, A. Dentai, S. Murthy, M. Missey, R. Muthiah, R. A. Salvatore, C. Joyner, R. Schneider, M. Ziari, F. Kish, and D. Welch, “InP Photonic Integrated Circuits,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1113–1125 (2010).
[Crossref]

Cran-McGreehin, S.

S. Cran-McGreehin, T. F. Krauss, and K. Dholakia, “Integrated monolithic optical manipulation,” Lab Chip 6(9), 1122–1124 (2006).
[Crossref] [PubMed]

Dentai, A.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, S. Corzine, A. Dentai, S. Murthy, M. Missey, R. Muthiah, R. A. Salvatore, C. Joyner, R. Schneider, M. Ziari, F. Kish, and D. Welch, “InP Photonic Integrated Circuits,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1113–1125 (2010).
[Crossref]

Dholakia, K.

S. Cran-McGreehin, T. F. Krauss, and K. Dholakia, “Integrated monolithic optical manipulation,” Lab Chip 6(9), 1122–1124 (2006).
[Crossref] [PubMed]

Di Venere, M.

M. Boyd-Moss, S. Baratchi, M. Di Venere, and K. Khoshmanesh, “Self-contained microfluidic systems: a review,” Lab Chip 16(17), 3177–3192 (2016).
[Crossref] [PubMed]

Ding, R.

M. Hochberg, N. C. Harris, R. Ding, Y. Zhang, A. Novack, Z. Xuan, and T. Baehr-Jones, “Silicon photonics: the next fabless semiconductor industry,” IEEE Solid-State Circuits Magazine 5(1), 48–58 (2013).
[Crossref]

Domachuk, P.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[Crossref]

Dwivedi, P. K.

A. Rammohan, P. K. Dwivedi, R. Martinez-Duarte, H. Katepalli, M. J. Madou, and A. Sharma, “One-step maskless grayscale lithography for the fabrication of 3-dimensional structures in SU-8,” Sens. Actuators B Chem. 153(1), 125–134 (2011).
[Crossref]

Dykes, J. M.

J. M. Dykes, D. K. Poon, J. Wang, D. Sameoto, J. T. K. Tsui, C. Choo, G. H. Chapman, A. M. Parameswaren, and B. L. Gray, “Creation of embedded structures in SU-8,” Proc. SPIE 6465, 1–11 (2007).
[Crossref]

Eggleton, B. J.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[Crossref]

Eijkel, J. C. T.

J. C. T. Eijkel and A. van den Berg, “Young 4ever-the use of capillarity for passive flow handling in lab on a chip devices,” Lab Chip 6(11), 1405–1408 (2006).
[Crossref] [PubMed]

Elliott, S. N.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Evans, P.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, S. Corzine, A. Dentai, S. Murthy, M. Missey, R. Muthiah, R. A. Salvatore, C. Joyner, R. Schneider, M. Ziari, F. Kish, and D. Welch, “InP Photonic Integrated Circuits,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1113–1125 (2010).
[Crossref]

Fan, X.

X. Fan and I. M. White, “Optofluidic Microsystems for Chemical and Biological Analysis,” Nat. Photonics 5(10), 591–597 (2011).
[Crossref] [PubMed]

Flanagan, L. A.

L. Wang, L. A. Flanagan, N. L. Jeon, E. Monuki, and A. P. Lee, “Dielectrophoresis switching with vertical sidewall electrodes for microfluidic flow cytometry,” Lab Chip 7(9), 1114–1120 (2007).
[Crossref] [PubMed]

Garcia, J.

F. J. Blanco, M. Agirregabiria, J. Garcia, J. Berganzo, M. Tijero, M. T. Arroyo, J. M. Ruano, I. Aramburu, and K. Mayora, “Novel three-dimensional embedded SU-8 microchannels fabricated using a low temperature full wafer adhesive bonding,” J. Micromech. Microeng. 14(7), 1047–1056 (2014).
[Crossref]

Gather, M. C.

M. Schubert, K. Volckaert, M. Karl, A. Morton, P. Liehm, G. B. Miles, S. J. Powis, and M. C. Gather, “Lasing in Live Mitotic and Non-Phagocytic Cells by Efficient Delivery of Microresonators,” Sci. Rep. 7, 40877 (2017).
[Crossref] [PubMed]

M. C. Gather and S. H. Yun, “Single-cell biological lasers,” Nat. Photonics 5(7), 406–410 (2011).
[Crossref]

Gimi, B.

K. V. Nemani, K. L. Moodie, J. B. Brennick, A. Su, and B. Gimi, “In vitro and in vivo evaluation of SU-8 biocompatibility,” Mater. Sci. Eng. C 33(7), 4453–4459 (2013).
[Crossref] [PubMed]

Gray, B. L.

J. M. Dykes, D. K. Poon, J. Wang, D. Sameoto, J. T. K. Tsui, C. Choo, G. H. Chapman, A. M. Parameswaren, and B. L. Gray, “Creation of embedded structures in SU-8,” Proc. SPIE 6465, 1–11 (2007).
[Crossref]

Harris, N. C.

M. Hochberg, N. C. Harris, R. Ding, Y. Zhang, A. Novack, Z. Xuan, and T. Baehr-Jones, “Silicon photonics: the next fabless semiconductor industry,” IEEE Solid-State Circuits Magazine 5(1), 48–58 (2013).
[Crossref]

Hawkins, A. R.

H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photonics 5(10), 598–604 (2011).
[Crossref]

Helbo, B.

B. Helbo, A. Kristensen, and A. A. Menon, “A micro-cavity fluidic dye laser,” J. Micromech. Microeng. 13(2), 307–311 (2003).
[Crossref]

Hochberg, M.

M. Hochberg, N. C. Harris, R. Ding, Y. Zhang, A. Novack, Z. Xuan, and T. Baehr-Jones, “Silicon photonics: the next fabless semiconductor industry,” IEEE Solid-State Circuits Magazine 5(1), 48–58 (2013).
[Crossref]

Jeon, N. L.

L. Wang, L. A. Flanagan, N. L. Jeon, E. Monuki, and A. P. Lee, “Dielectrophoresis switching with vertical sidewall electrodes for microfluidic flow cytometry,” Lab Chip 7(9), 1114–1120 (2007).
[Crossref] [PubMed]

Jiang, Q.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Joyner, C.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, S. Corzine, A. Dentai, S. Murthy, M. Missey, R. Muthiah, R. A. Salvatore, C. Joyner, R. Schneider, M. Ziari, F. Kish, and D. Welch, “InP Photonic Integrated Circuits,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1113–1125 (2010).
[Crossref]

Karl, M.

M. Schubert, K. Volckaert, M. Karl, A. Morton, P. Liehm, G. B. Miles, S. J. Powis, and M. C. Gather, “Lasing in Live Mitotic and Non-Phagocytic Cells by Efficient Delivery of Microresonators,” Sci. Rep. 7, 40877 (2017).
[Crossref] [PubMed]

Karomi, I.

Katepalli, H.

A. Rammohan, P. K. Dwivedi, R. Martinez-Duarte, H. Katepalli, M. J. Madou, and A. Sharma, “One-step maskless grayscale lithography for the fabrication of 3-dimensional structures in SU-8,” Sens. Actuators B Chem. 153(1), 125–134 (2011).
[Crossref]

Kato, M.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, S. Corzine, A. Dentai, S. Murthy, M. Missey, R. Muthiah, R. A. Salvatore, C. Joyner, R. Schneider, M. Ziari, F. Kish, and D. Welch, “InP Photonic Integrated Circuits,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1113–1125 (2010).
[Crossref]

Kettlitz, S. W.

S. W. Kettlitz, S. Valouch, W. Sittel, and U. Lemmer, “Flexible planar microfluidic chip employing a light emitting diode and a PIN-photodiode for portable flow cytometers,” Lab Chip 12(1), 197–203 (2012).
[Crossref] [PubMed]

Khoshmanesh, K.

M. Boyd-Moss, S. Baratchi, M. Di Venere, and K. Khoshmanesh, “Self-contained microfluidic systems: a review,” Lab Chip 16(17), 3177–3192 (2016).
[Crossref] [PubMed]

Kish, F.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, S. Corzine, A. Dentai, S. Murthy, M. Missey, R. Muthiah, R. A. Salvatore, C. Joyner, R. Schneider, M. Ziari, F. Kish, and D. Welch, “InP Photonic Integrated Circuits,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1113–1125 (2010).
[Crossref]

Korvink, J. G.

R. Meier, V. Badilita, U. Wallrabe, and J. G. Korvink, “Processing of 3D multilevel SU-8 fluidic network assisted by PerMX dry-photoresist lamination,” NEMS 2012, 5–8 (2012).

Krauss, T. F.

S. Cran-McGreehin, T. F. Krauss, and K. Dholakia, “Integrated monolithic optical manipulation,” Lab Chip 6(9), 1122–1124 (2006).
[Crossref] [PubMed]

Kristensen, A.

S. Balslev and A. Kristensen, “Microfluidic single-mode laser using high-order Bragg grating and antiguiding segments,” Opt. Express 13(1), 344–351 (2005).
[Crossref] [PubMed]

B. Helbo, A. Kristensen, and A. A. Menon, “A micro-cavity fluidic dye laser,” J. Micromech. Microeng. 13(2), 307–311 (2003).
[Crossref]

Krysa, A. B.

Lee, A. P.

L. Wang, L. A. Flanagan, N. L. Jeon, E. Monuki, and A. P. Lee, “Dielectrophoresis switching with vertical sidewall electrodes for microfluidic flow cytometry,” Lab Chip 7(9), 1114–1120 (2007).
[Crossref] [PubMed]

Lemmer, U.

S. W. Kettlitz, S. Valouch, W. Sittel, and U. Lemmer, “Flexible planar microfluidic chip employing a light emitting diode and a PIN-photodiode for portable flow cytometers,” Lab Chip 12(1), 197–203 (2012).
[Crossref] [PubMed]

Lewis, G. M.

G. M. Lewis, P. M. Smowton, P. Blood, and W. W. Chow, “Effect of tensile strain/well-width combination on the measured gain-radiative current characteristics of 635 nm laser diodes,” Appl. Phys. Lett. 82(10), 1524–1526 (2003).
[Crossref]

Li, W.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Liang, X. J.

X. J. Liang, A. Q. Liu, C. S. Lim, T. C. Ayi, and P. H. Yap, “Determining refractive index of single living cell using an integrated microchip,” Sens. Actuat. A 133(2), 349–354 (2007).
[Crossref]

Liehm, P.

M. Schubert, K. Volckaert, M. Karl, A. Morton, P. Liehm, G. B. Miles, S. J. Powis, and M. C. Gather, “Lasing in Live Mitotic and Non-Phagocytic Cells by Efficient Delivery of Microresonators,” Sci. Rep. 7, 40877 (2017).
[Crossref] [PubMed]

Lim, C. S.

X. J. Liang, A. Q. Liu, C. S. Lim, T. C. Ayi, and P. H. Yap, “Determining refractive index of single living cell using an integrated microchip,” Sens. Actuat. A 133(2), 349–354 (2007).
[Crossref]

Lin, W.

Y. Chuang, F. Tseng, J. Cheng, and W. Lin, “A novel fabrication method of embedded micro-channels by using SU-8 thick-film photoresists,” Sens. Actuators A Phys. 103(1-2), 64–69 (2003).
[Crossref]

Liu, A. Q.

X. J. Liang, A. Q. Liu, C. S. Lim, T. C. Ayi, and P. H. Yap, “Determining refractive index of single living cell using an integrated microchip,” Sens. Actuat. A 133(2), 349–354 (2007).
[Crossref]

Liu, H.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Madou, M. J.

A. Rammohan, P. K. Dwivedi, R. Martinez-Duarte, H. Katepalli, M. J. Madou, and A. Sharma, “One-step maskless grayscale lithography for the fabrication of 3-dimensional structures in SU-8,” Sens. Actuators B Chem. 153(1), 125–134 (2011).
[Crossref]

Martinez-Duarte, R.

A. Rammohan, P. K. Dwivedi, R. Martinez-Duarte, H. Katepalli, M. J. Madou, and A. Sharma, “One-step maskless grayscale lithography for the fabrication of 3-dimensional structures in SU-8,” Sens. Actuators B Chem. 153(1), 125–134 (2011).
[Crossref]

Mayora, K.

F. J. Blanco, M. Agirregabiria, J. Garcia, J. Berganzo, M. Tijero, M. T. Arroyo, J. M. Ruano, I. Aramburu, and K. Mayora, “Novel three-dimensional embedded SU-8 microchannels fabricated using a low temperature full wafer adhesive bonding,” J. Micromech. Microeng. 14(7), 1047–1056 (2014).
[Crossref]

Meier, R.

R. Meier, V. Badilita, U. Wallrabe, and J. G. Korvink, “Processing of 3D multilevel SU-8 fluidic network assisted by PerMX dry-photoresist lamination,” NEMS 2012, 5–8 (2012).

Menon, A. A.

B. Helbo, A. Kristensen, and A. A. Menon, “A micro-cavity fluidic dye laser,” J. Micromech. Microeng. 13(2), 307–311 (2003).
[Crossref]

Miles, G. B.

M. Schubert, K. Volckaert, M. Karl, A. Morton, P. Liehm, G. B. Miles, S. J. Powis, and M. C. Gather, “Lasing in Live Mitotic and Non-Phagocytic Cells by Efficient Delivery of Microresonators,” Sci. Rep. 7, 40877 (2017).
[Crossref] [PubMed]

Missey, M.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, S. Corzine, A. Dentai, S. Murthy, M. Missey, R. Muthiah, R. A. Salvatore, C. Joyner, R. Schneider, M. Ziari, F. Kish, and D. Welch, “InP Photonic Integrated Circuits,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1113–1125 (2010).
[Crossref]

Monat, C.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[Crossref]

Monuki, E.

L. Wang, L. A. Flanagan, N. L. Jeon, E. Monuki, and A. P. Lee, “Dielectrophoresis switching with vertical sidewall electrodes for microfluidic flow cytometry,” Lab Chip 7(9), 1114–1120 (2007).
[Crossref] [PubMed]

Moodie, K. L.

K. V. Nemani, K. L. Moodie, J. B. Brennick, A. Su, and B. Gimi, “In vitro and in vivo evaluation of SU-8 biocompatibility,” Mater. Sci. Eng. C 33(7), 4453–4459 (2013).
[Crossref] [PubMed]

Morton, A.

M. Schubert, K. Volckaert, M. Karl, A. Morton, P. Liehm, G. B. Miles, S. J. Powis, and M. C. Gather, “Lasing in Live Mitotic and Non-Phagocytic Cells by Efficient Delivery of Microresonators,” Sci. Rep. 7, 40877 (2017).
[Crossref] [PubMed]

Murthy, S.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, S. Corzine, A. Dentai, S. Murthy, M. Missey, R. Muthiah, R. A. Salvatore, C. Joyner, R. Schneider, M. Ziari, F. Kish, and D. Welch, “InP Photonic Integrated Circuits,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1113–1125 (2010).
[Crossref]

Muthiah, R.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, S. Corzine, A. Dentai, S. Murthy, M. Missey, R. Muthiah, R. A. Salvatore, C. Joyner, R. Schneider, M. Ziari, F. Kish, and D. Welch, “InP Photonic Integrated Circuits,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1113–1125 (2010).
[Crossref]

Nagarajan, R.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, S. Corzine, A. Dentai, S. Murthy, M. Missey, R. Muthiah, R. A. Salvatore, C. Joyner, R. Schneider, M. Ziari, F. Kish, and D. Welch, “InP Photonic Integrated Circuits,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1113–1125 (2010).
[Crossref]

Nemani, K. V.

K. V. Nemani, K. L. Moodie, J. B. Brennick, A. Su, and B. Gimi, “In vitro and in vivo evaluation of SU-8 biocompatibility,” Mater. Sci. Eng. C 33(7), 4453–4459 (2013).
[Crossref] [PubMed]

Novack, A.

M. Hochberg, N. C. Harris, R. Ding, Y. Zhang, A. Novack, Z. Xuan, and T. Baehr-Jones, “Silicon photonics: the next fabless semiconductor industry,” IEEE Solid-State Circuits Magazine 5(1), 48–58 (2013).
[Crossref]

Parameswaren, A. M.

J. M. Dykes, D. K. Poon, J. Wang, D. Sameoto, J. T. K. Tsui, C. Choo, G. H. Chapman, A. M. Parameswaren, and B. L. Gray, “Creation of embedded structures in SU-8,” Proc. SPIE 6465, 1–11 (2007).
[Crossref]

Pleumeekers, J.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, S. Corzine, A. Dentai, S. Murthy, M. Missey, R. Muthiah, R. A. Salvatore, C. Joyner, R. Schneider, M. Ziari, F. Kish, and D. Welch, “InP Photonic Integrated Circuits,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1113–1125 (2010).
[Crossref]

Poon, D. K.

J. M. Dykes, D. K. Poon, J. Wang, D. Sameoto, J. T. K. Tsui, C. Choo, G. H. Chapman, A. M. Parameswaren, and B. L. Gray, “Creation of embedded structures in SU-8,” Proc. SPIE 6465, 1–11 (2007).
[Crossref]

Powis, S. J.

M. Schubert, K. Volckaert, M. Karl, A. Morton, P. Liehm, G. B. Miles, S. J. Powis, and M. C. Gather, “Lasing in Live Mitotic and Non-Phagocytic Cells by Efficient Delivery of Microresonators,” Sci. Rep. 7, 40877 (2017).
[Crossref] [PubMed]

Psaltis, D.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Rammohan, A.

A. Rammohan, P. K. Dwivedi, R. Martinez-Duarte, H. Katepalli, M. J. Madou, and A. Sharma, “One-step maskless grayscale lithography for the fabrication of 3-dimensional structures in SU-8,” Sens. Actuators B Chem. 153(1), 125–134 (2011).
[Crossref]

Ross, I.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Ruano, J. M.

F. J. Blanco, M. Agirregabiria, J. Garcia, J. Berganzo, M. Tijero, M. T. Arroyo, J. M. Ruano, I. Aramburu, and K. Mayora, “Novel three-dimensional embedded SU-8 microchannels fabricated using a low temperature full wafer adhesive bonding,” J. Micromech. Microeng. 14(7), 1047–1056 (2014).
[Crossref]

Salvatore, R. A.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, S. Corzine, A. Dentai, S. Murthy, M. Missey, R. Muthiah, R. A. Salvatore, C. Joyner, R. Schneider, M. Ziari, F. Kish, and D. Welch, “InP Photonic Integrated Circuits,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1113–1125 (2010).
[Crossref]

Sameoto, D.

J. M. Dykes, D. K. Poon, J. Wang, D. Sameoto, J. T. K. Tsui, C. Choo, G. H. Chapman, A. M. Parameswaren, and B. L. Gray, “Creation of embedded structures in SU-8,” Proc. SPIE 6465, 1–11 (2007).
[Crossref]

Schmidt, H.

H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photonics 5(10), 598–604 (2011).
[Crossref]

Schneider, R.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, S. Corzine, A. Dentai, S. Murthy, M. Missey, R. Muthiah, R. A. Salvatore, C. Joyner, R. Schneider, M. Ziari, F. Kish, and D. Welch, “InP Photonic Integrated Circuits,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1113–1125 (2010).
[Crossref]

Schubert, M.

M. Schubert, K. Volckaert, M. Karl, A. Morton, P. Liehm, G. B. Miles, S. J. Powis, and M. C. Gather, “Lasing in Live Mitotic and Non-Phagocytic Cells by Efficient Delivery of Microresonators,” Sci. Rep. 7, 40877 (2017).
[Crossref] [PubMed]

Seeds, A. J.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Sharma, A.

A. Rammohan, P. K. Dwivedi, R. Martinez-Duarte, H. Katepalli, M. J. Madou, and A. Sharma, “One-step maskless grayscale lithography for the fabrication of 3-dimensional structures in SU-8,” Sens. Actuators B Chem. 153(1), 125–134 (2011).
[Crossref]

Shutts, S.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

I. Karomi, P. M. Smowton, S. Shutts, A. B. Krysa, and R. Beanland, “InAsP quantum dot lasers grown by MOVPE,” Opt. Express 23(21), 27282–27291 (2015).
[Crossref] [PubMed]

Sittel, W.

S. W. Kettlitz, S. Valouch, W. Sittel, and U. Lemmer, “Flexible planar microfluidic chip employing a light emitting diode and a PIN-photodiode for portable flow cytometers,” Lab Chip 12(1), 197–203 (2012).
[Crossref] [PubMed]

Smowton, P. M.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

I. Karomi, P. M. Smowton, S. Shutts, A. B. Krysa, and R. Beanland, “InAsP quantum dot lasers grown by MOVPE,” Opt. Express 23(21), 27282–27291 (2015).
[Crossref] [PubMed]

A. Sobiesierski, R. Thomas, P. Buckle, D. Barrow, and P. M. Smowton, “A two-stage surface treatment for the long-term stability of hydrophilic SU-8,” Surf. Interface Anal. 47(13), 1174–1179 (2015).
[Crossref]

G. M. Lewis, P. M. Smowton, P. Blood, and W. W. Chow, “Effect of tensile strain/well-width combination on the measured gain-radiative current characteristics of 635 nm laser diodes,” Appl. Phys. Lett. 82(10), 1524–1526 (2003).
[Crossref]

Sobiesierski, A.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

A. Sobiesierski, R. Thomas, P. Buckle, D. Barrow, and P. M. Smowton, “A two-stage surface treatment for the long-term stability of hydrophilic SU-8,” Surf. Interface Anal. 47(13), 1174–1179 (2015).
[Crossref]

Su, A.

K. V. Nemani, K. L. Moodie, J. B. Brennick, A. Su, and B. Gimi, “In vitro and in vivo evaluation of SU-8 biocompatibility,” Mater. Sci. Eng. C 33(7), 4453–4459 (2013).
[Crossref] [PubMed]

Tang, M.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Thomas, R.

A. Sobiesierski, R. Thomas, P. Buckle, D. Barrow, and P. M. Smowton, “A two-stage surface treatment for the long-term stability of hydrophilic SU-8,” Surf. Interface Anal. 47(13), 1174–1179 (2015).
[Crossref]

Tijero, M.

F. J. Blanco, M. Agirregabiria, J. Garcia, J. Berganzo, M. Tijero, M. T. Arroyo, J. M. Ruano, I. Aramburu, and K. Mayora, “Novel three-dimensional embedded SU-8 microchannels fabricated using a low temperature full wafer adhesive bonding,” J. Micromech. Microeng. 14(7), 1047–1056 (2014).
[Crossref]

Tseng, F.

Y. Chuang, F. Tseng, J. Cheng, and W. Lin, “A novel fabrication method of embedded micro-channels by using SU-8 thick-film photoresists,” Sens. Actuators A Phys. 103(1-2), 64–69 (2003).
[Crossref]

Tsui, J. T. K.

J. M. Dykes, D. K. Poon, J. Wang, D. Sameoto, J. T. K. Tsui, C. Choo, G. H. Chapman, A. M. Parameswaren, and B. L. Gray, “Creation of embedded structures in SU-8,” Proc. SPIE 6465, 1–11 (2007).
[Crossref]

Valouch, S.

S. W. Kettlitz, S. Valouch, W. Sittel, and U. Lemmer, “Flexible planar microfluidic chip employing a light emitting diode and a PIN-photodiode for portable flow cytometers,” Lab Chip 12(1), 197–203 (2012).
[Crossref] [PubMed]

van den Berg, A.

J. C. T. Eijkel and A. van den Berg, “Young 4ever-the use of capillarity for passive flow handling in lab on a chip devices,” Lab Chip 6(11), 1405–1408 (2006).
[Crossref] [PubMed]

Volckaert, K.

M. Schubert, K. Volckaert, M. Karl, A. Morton, P. Liehm, G. B. Miles, S. J. Powis, and M. C. Gather, “Lasing in Live Mitotic and Non-Phagocytic Cells by Efficient Delivery of Microresonators,” Sci. Rep. 7, 40877 (2017).
[Crossref] [PubMed]

Wallrabe, U.

R. Meier, V. Badilita, U. Wallrabe, and J. G. Korvink, “Processing of 3D multilevel SU-8 fluidic network assisted by PerMX dry-photoresist lamination,” NEMS 2012, 5–8 (2012).

Wang, J.

J. M. Dykes, D. K. Poon, J. Wang, D. Sameoto, J. T. K. Tsui, C. Choo, G. H. Chapman, A. M. Parameswaren, and B. L. Gray, “Creation of embedded structures in SU-8,” Proc. SPIE 6465, 1–11 (2007).
[Crossref]

Wang, L.

L. Wang, L. A. Flanagan, N. L. Jeon, E. Monuki, and A. P. Lee, “Dielectrophoresis switching with vertical sidewall electrodes for microfluidic flow cytometry,” Lab Chip 7(9), 1114–1120 (2007).
[Crossref] [PubMed]

Welch, D.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, S. Corzine, A. Dentai, S. Murthy, M. Missey, R. Muthiah, R. A. Salvatore, C. Joyner, R. Schneider, M. Ziari, F. Kish, and D. Welch, “InP Photonic Integrated Circuits,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1113–1125 (2010).
[Crossref]

White, I. M.

X. Fan and I. M. White, “Optofluidic Microsystems for Chemical and Biological Analysis,” Nat. Photonics 5(10), 591–597 (2011).
[Crossref] [PubMed]

Wu, J.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Xuan, Z.

M. Hochberg, N. C. Harris, R. Ding, Y. Zhang, A. Novack, Z. Xuan, and T. Baehr-Jones, “Silicon photonics: the next fabless semiconductor industry,” IEEE Solid-State Circuits Magazine 5(1), 48–58 (2013).
[Crossref]

Yang, C.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Yap, P. H.

X. J. Liang, A. Q. Liu, C. S. Lim, T. C. Ayi, and P. H. Yap, “Determining refractive index of single living cell using an integrated microchip,” Sens. Actuat. A 133(2), 349–354 (2007).
[Crossref]

Yun, S. H.

M. C. Gather and S. H. Yun, “Single-cell biological lasers,” Nat. Photonics 5(7), 406–410 (2011).
[Crossref]

Zhang, Y.

M. Hochberg, N. C. Harris, R. Ding, Y. Zhang, A. Novack, Z. Xuan, and T. Baehr-Jones, “Silicon photonics: the next fabless semiconductor industry,” IEEE Solid-State Circuits Magazine 5(1), 48–58 (2013).
[Crossref]

Ziari, M.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, S. Corzine, A. Dentai, S. Murthy, M. Missey, R. Muthiah, R. A. Salvatore, C. Joyner, R. Schneider, M. Ziari, F. Kish, and D. Welch, “InP Photonic Integrated Circuits,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1113–1125 (2010).
[Crossref]

Appl. Phys. Lett. (1)

G. M. Lewis, P. M. Smowton, P. Blood, and W. W. Chow, “Effect of tensile strain/well-width combination on the measured gain-radiative current characteristics of 635 nm laser diodes,” Appl. Phys. Lett. 82(10), 1524–1526 (2003).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, S. Corzine, A. Dentai, S. Murthy, M. Missey, R. Muthiah, R. A. Salvatore, C. Joyner, R. Schneider, M. Ziari, F. Kish, and D. Welch, “InP Photonic Integrated Circuits,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1113–1125 (2010).
[Crossref]

IEEE Solid-State Circuits Magazine (1)

M. Hochberg, N. C. Harris, R. Ding, Y. Zhang, A. Novack, Z. Xuan, and T. Baehr-Jones, “Silicon photonics: the next fabless semiconductor industry,” IEEE Solid-State Circuits Magazine 5(1), 48–58 (2013).
[Crossref]

J. Micromech. Microeng. (2)

F. J. Blanco, M. Agirregabiria, J. Garcia, J. Berganzo, M. Tijero, M. T. Arroyo, J. M. Ruano, I. Aramburu, and K. Mayora, “Novel three-dimensional embedded SU-8 microchannels fabricated using a low temperature full wafer adhesive bonding,” J. Micromech. Microeng. 14(7), 1047–1056 (2014).
[Crossref]

B. Helbo, A. Kristensen, and A. A. Menon, “A micro-cavity fluidic dye laser,” J. Micromech. Microeng. 13(2), 307–311 (2003).
[Crossref]

Lab Chip (5)

M. Boyd-Moss, S. Baratchi, M. Di Venere, and K. Khoshmanesh, “Self-contained microfluidic systems: a review,” Lab Chip 16(17), 3177–3192 (2016).
[Crossref] [PubMed]

J. C. T. Eijkel and A. van den Berg, “Young 4ever-the use of capillarity for passive flow handling in lab on a chip devices,” Lab Chip 6(11), 1405–1408 (2006).
[Crossref] [PubMed]

L. Wang, L. A. Flanagan, N. L. Jeon, E. Monuki, and A. P. Lee, “Dielectrophoresis switching with vertical sidewall electrodes for microfluidic flow cytometry,” Lab Chip 7(9), 1114–1120 (2007).
[Crossref] [PubMed]

S. W. Kettlitz, S. Valouch, W. Sittel, and U. Lemmer, “Flexible planar microfluidic chip employing a light emitting diode and a PIN-photodiode for portable flow cytometers,” Lab Chip 12(1), 197–203 (2012).
[Crossref] [PubMed]

S. Cran-McGreehin, T. F. Krauss, and K. Dholakia, “Integrated monolithic optical manipulation,” Lab Chip 6(9), 1122–1124 (2006).
[Crossref] [PubMed]

Mater. Sci. Eng. C (1)

K. V. Nemani, K. L. Moodie, J. B. Brennick, A. Su, and B. Gimi, “In vitro and in vivo evaluation of SU-8 biocompatibility,” Mater. Sci. Eng. C 33(7), 4453–4459 (2013).
[Crossref] [PubMed]

Nat. Photonics (5)

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[Crossref]

H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photonics 5(10), 598–604 (2011).
[Crossref]

X. Fan and I. M. White, “Optofluidic Microsystems for Chemical and Biological Analysis,” Nat. Photonics 5(10), 591–597 (2011).
[Crossref] [PubMed]

M. C. Gather and S. H. Yun, “Single-cell biological lasers,” Nat. Photonics 5(7), 406–410 (2011).
[Crossref]

Nature (1)

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

NEMS (1)

R. Meier, V. Badilita, U. Wallrabe, and J. G. Korvink, “Processing of 3D multilevel SU-8 fluidic network assisted by PerMX dry-photoresist lamination,” NEMS 2012, 5–8 (2012).

Opt. Express (2)

Proc. SPIE (1)

J. M. Dykes, D. K. Poon, J. Wang, D. Sameoto, J. T. K. Tsui, C. Choo, G. H. Chapman, A. M. Parameswaren, and B. L. Gray, “Creation of embedded structures in SU-8,” Proc. SPIE 6465, 1–11 (2007).
[Crossref]

Sci. Rep. (1)

M. Schubert, K. Volckaert, M. Karl, A. Morton, P. Liehm, G. B. Miles, S. J. Powis, and M. C. Gather, “Lasing in Live Mitotic and Non-Phagocytic Cells by Efficient Delivery of Microresonators,” Sci. Rep. 7, 40877 (2017).
[Crossref] [PubMed]

Sens. Actuat. A (1)

X. J. Liang, A. Q. Liu, C. S. Lim, T. C. Ayi, and P. H. Yap, “Determining refractive index of single living cell using an integrated microchip,” Sens. Actuat. A 133(2), 349–354 (2007).
[Crossref]

Sens. Actuators A Phys. (1)

Y. Chuang, F. Tseng, J. Cheng, and W. Lin, “A novel fabrication method of embedded micro-channels by using SU-8 thick-film photoresists,” Sens. Actuators A Phys. 103(1-2), 64–69 (2003).
[Crossref]

Sens. Actuators B Chem. (1)

A. Rammohan, P. K. Dwivedi, R. Martinez-Duarte, H. Katepalli, M. J. Madou, and A. Sharma, “One-step maskless grayscale lithography for the fabrication of 3-dimensional structures in SU-8,” Sens. Actuators B Chem. 153(1), 125–134 (2011).
[Crossref]

Surf. Interface Anal. (1)

A. Sobiesierski, R. Thomas, P. Buckle, D. Barrow, and P. M. Smowton, “A two-stage surface treatment for the long-term stability of hydrophilic SU-8,” Surf. Interface Anal. 47(13), 1174–1179 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Plan view of an integrated chip with a ridge laser/detector and the key components of the SU-8 capillary fill microfluidics indicated. The red box indicates the region of interest shown in cross section in Figs. 2 and 3.
Fig. 2
Fig. 2 Cross-section view at the position indicated in Fig. 1 of the interrogation region of the chip. The red line indicates the position of the common optical axis of the laser and photo-detector relative to the fluid channel.
Fig. 3
Fig. 3 High speed camera image of a micro-bead passing through the fluid channel between the first integrated laser-detector pair as indicated in Fig. 1. Note the scattered red laser light from the side walls of the micro-channel and at the front edge of the detector, which simply reduces the intensity available for measurement.
Fig. 4
Fig. 4 A schematic diagram of the experimental set up used to measure bead detection events. The time resolved transit of a particle is recorded on two adjacent laser/detector pairs producing four inter-leaved time traces (coloured lines).
Fig. 5
Fig. 5 Normalised photo-voltage signals from two adjacent laser/detector pairs for a mixed sample of 10 and 15 μm beads. The spikes in the data correlate to individual bead transit events.
Fig. 6
Fig. 6 A single bead transit as captured in the four detector photo-voltage signals with vertical black lines indicating the times that are taken to be the start and end of the laser beam-microbead interaction. Note, every tenth data point is shown on the detector traces.
Fig. 7
Fig. 7 Bead velocity measured as a function of experiment duration for 10 and 15 um diameter beads.
Fig. 8
Fig. 8 A colour map of the elliptical farfield distribution of the lasers with a single line of white pixels indicating the central optical axis and representing the area subtended by the detector. The dashed black lines indicate the extent of the system response function that is used to determine the best fit to the bead size histogram data later on.
Fig. 9
Fig. 9 Three different event durations generated by simulating 10 μm beads passing through the beam at the three different vertical heights (indicated by the three blue spheres with coloured arrows in Fig. 8).
Fig. 10
Fig. 10 Histogram of bead diameter measured for the mixed bead sample (blue bars) assuming w is equal to the laser/detector ridge width, 10 μm and a best fit line (purple triangles) to this data obtained by convolution of a beam width function and two separate Gaussian distributions for the 10 μm and 15 μm beads (red and black lines respectively.)

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

d=v.Δ t w w=( p× Δ t w Δ t p )w
R( z )={ 1 n×Δz ( z z 0 )if z 0 <z<( z 0 +Δz ) 0otherwise }

Metrics