Abstract

The quality of fluorescence microscopy images is often impaired by the presence of sample induced optical aberrations. Adaptive optical elements such as deformable mirrors or spatial light modulators can be used to correct aberrations. However, previously reported techniques either require special sample preparation, or time consuming optimization procedures for the correction of static aberrations. This paper reports a technique for optical sectioning fluorescence microscopy capable of correcting dynamic aberrations in any fluorescent sample during the acquisition. This is achieved by implementing adaptive optics in a non conventional confocal microscopy setup, with multiple programmable confocal apertures, in which out of focus light can be separately detected, and used to optimize the correction performance with a sampling frequency an order of magnitude faster than the imaging rate of the system. The paper reports results comparing the correction performances to traditional image optimization algorithms, and demonstrates how the system can compensate for dynamic changes in the aberrations, such as those introduced during a focal stack acquisition though a thick sample.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Semidefinite programming for model-based sensorless adaptive optics

Jacopo Antonello, Michel Verhaegen, Rufus Fraanje, Tim van Werkhoven, Hans C. Gerritsen, and Christoph U. Keller
J. Opt. Soc. Am. A 29(11) 2428-2438 (2012)

Adaptive optics via self-interference digital holography for non-scanning three-dimensional imaging in biological samples

Tianlong Man, Yuhong Wan, Wujuan Yan, Xiu-Hong Wang, Erwin J. G. Peterman, and Dayong Wang
Biomed. Opt. Express 9(6) 2614-2626 (2018)

References

  • View by:
  • |
  • |
  • |

  1. W. T. Welford, Aberrations of Optical Systems, (CRC Press, 1986).
  2. M. Vorontsov and V. Shmalgauzen, “The principles of adaptive optics,” Moscow Izdatel Nauka 1, 336 (1985).
  3. M. J. Booth, “Adaptive optics in microscopy,” Phil. Trans. Roy. Soc. London A 365, 2829–2843 (2007).
    [Crossref]
  4. J. W. Cha, J. Ballesta, and P. T. So, “Shack-hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy,” J. Biomed. Opt. 15(4), 046022 (2010).
    [Crossref] [PubMed]
  5. M. J. Booth, M. A. Neil, R. Juškaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. U. S. A. 99(9), 5788–5792 (2002).
    [Crossref]
  6. X. Tao, B. Fernandez, O. Azucena, M. Fu, D. Garcia, Y. Zuo, D. C. Chen, and J. Kubby, “Adaptive optics confocal microscopy using direct wavefront sensing,” Opt. Lett. 36(7), 1062–1064 (2011).
    [Crossref] [PubMed]
  7. X. Tao, O. Azucena, M. Fu, Y. Zuo, D. C. Chen, and J. Kubby, “Adaptive optics microscopy with direct wavefront sensing using fluorescent protein guide stars,” Opt. Lett. 36(17), 3389–3391 (2011).
    [Crossref] [PubMed]
  8. M. Pedrazzani, V. Loriette, P. Tchenio, S. Benrezzak, D. Nutarelli, and A. Fragola, “Sensorless adaptive optics implementation in widefield optical sectioning microscopy inside in vivo drosophila brain,” J. Biomed. Opt. 21(3), 036006 (2016).
    [Crossref]
  9. L. J. Hornbeck, Bistable DMD Addressing Circuit and Method (Google Patents, 1992).
  10. P. Verveer, Q. Hanley, P. Verbeek, L. V. Vliet, and W. Jovin, “Theory of confocal fluorescence imaging in the programmable array microscope (pam),” J. Microsc. 189(3), 192–198 (1998).
    [Crossref]
  11. Q. Hanley, P. Verveer, M. Gemkow, D. Arndt-Jovin, and T. Jovin, “An optical sectioning programmable array microscope implemented with a digital micromirror device,” J. Microsc. 196, 317–331 (1999).
    [Crossref] [PubMed]
  12. A. Nakano, “Spinning-disk confocal microscopy a cutting-edge tool for imaging of membrane traffic,” Cell Struct. Funct. 27(5), 349–355 (2002).
    [Crossref] [PubMed]
  13. H. Yang, O. Soloviev, and M. Verhaegen, “Model-based wavefront sensorless adaptive optics system for large aberrations and extended objects,” Opt. Express 23(19), 24587–24601 (2015).
    [Crossref] [PubMed]
  14. H. w. Jeong, H. j. Kim, J. Eun, S. Heo, M. Lim, Y. h. Cho, and B. m. Kim, “High-speed dual-beam, crossed line-scanning fluorescence microscope with a point confocal resolution,” Appl. Opt. 54(12), 3811–3816 (2015).
    [Crossref]
  15. Y. S. Sabharwal, A. R. Rouse, L. Donaldson, M. F. Hopkins, and A. F. Gmitro, “Slit-scanning confocal microendoscope for high-resolution in vivo imaging,” Appl. Opt. 38(34), 7133–7144 (1999).
    [Crossref]
  16. H. R. G. W. Verstraete, S. Wahls, J. Kalkman, and M. Verhaegen, “Model-based sensor-less wavefront aberration correction in optical coherence tomography,” Opt. Lett. 40(24), 5722–5725 (2015).
    [Crossref] [PubMed]
  17. J. W. Bowron and R. P. Jonas, “Off-axis illumination design for dmd systems,” in Optical Science and Technology, SPIE’s 48th Annual Meeting (International Society for Optics and Photonics) pp. 72–82 (2003).
  18. D. Débarre, E. J. Botcherby, M. J. Booth, and T. Wilson, “Adaptive optics for structured illumination microscopy,” Opt. Express 16(13), 9290–9305 (2008).
    [Crossref] [PubMed]
  19. P. Pozzi, D. Gandolfi, M. Tognolina, G. Chirico, J. Mapelli, and E. D’Angelo, “High-throughput spatial light modulation two-photon microscopy for fast functional imaging,” Neurophotonics 2(1), 015005 (2015).
    [Crossref] [PubMed]
  20. G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods. 9(2), 201–208 (2012).
    [Crossref] [PubMed]
  21. A. M. Packer, D. S. Peterka, J. J. Hirtz, R. Prakash, K. Deisseroth, and R. Yuste, “Two-photon optogenetics of dendritic spines and neural circuits,” Nat. Methods 9(12), 1202–1205 (2012).
    [Crossref]
  22. P. Pozzi, L. Sironi, L. D’Alfonso, M. Bouzin, M. Collini, G. Chirico, P. Pallavicini, F. Cotelli, and E. A. Foglia, “Electron multiplying charge-coupled device-based fluorescence cross-correlation spectroscopy for blood velocimetry on zebrafish embryos,” J. Biomed. Opt. 19(7), 067007 (2014).
    [Crossref] [PubMed]
  23. R. D. Leonardo, J. Leach, H. Mushfique, J. Cooper, G. Ruocco, and M. Padgett, “Multipoint holographic optical velocimetry in microfluidic systems,” Phys. Rev. Lett. 96(13), 2 (2006).
    [Crossref]

2016 (1)

M. Pedrazzani, V. Loriette, P. Tchenio, S. Benrezzak, D. Nutarelli, and A. Fragola, “Sensorless adaptive optics implementation in widefield optical sectioning microscopy inside in vivo drosophila brain,” J. Biomed. Opt. 21(3), 036006 (2016).
[Crossref]

2015 (4)

2014 (1)

P. Pozzi, L. Sironi, L. D’Alfonso, M. Bouzin, M. Collini, G. Chirico, P. Pallavicini, F. Cotelli, and E. A. Foglia, “Electron multiplying charge-coupled device-based fluorescence cross-correlation spectroscopy for blood velocimetry on zebrafish embryos,” J. Biomed. Opt. 19(7), 067007 (2014).
[Crossref] [PubMed]

2012 (2)

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods. 9(2), 201–208 (2012).
[Crossref] [PubMed]

A. M. Packer, D. S. Peterka, J. J. Hirtz, R. Prakash, K. Deisseroth, and R. Yuste, “Two-photon optogenetics of dendritic spines and neural circuits,” Nat. Methods 9(12), 1202–1205 (2012).
[Crossref]

2011 (2)

2010 (1)

J. W. Cha, J. Ballesta, and P. T. So, “Shack-hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy,” J. Biomed. Opt. 15(4), 046022 (2010).
[Crossref] [PubMed]

2008 (1)

2007 (1)

M. J. Booth, “Adaptive optics in microscopy,” Phil. Trans. Roy. Soc. London A 365, 2829–2843 (2007).
[Crossref]

2006 (1)

R. D. Leonardo, J. Leach, H. Mushfique, J. Cooper, G. Ruocco, and M. Padgett, “Multipoint holographic optical velocimetry in microfluidic systems,” Phys. Rev. Lett. 96(13), 2 (2006).
[Crossref]

2002 (2)

M. J. Booth, M. A. Neil, R. Juškaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. U. S. A. 99(9), 5788–5792 (2002).
[Crossref]

A. Nakano, “Spinning-disk confocal microscopy a cutting-edge tool for imaging of membrane traffic,” Cell Struct. Funct. 27(5), 349–355 (2002).
[Crossref] [PubMed]

1999 (2)

Q. Hanley, P. Verveer, M. Gemkow, D. Arndt-Jovin, and T. Jovin, “An optical sectioning programmable array microscope implemented with a digital micromirror device,” J. Microsc. 196, 317–331 (1999).
[Crossref] [PubMed]

Y. S. Sabharwal, A. R. Rouse, L. Donaldson, M. F. Hopkins, and A. F. Gmitro, “Slit-scanning confocal microendoscope for high-resolution in vivo imaging,” Appl. Opt. 38(34), 7133–7144 (1999).
[Crossref]

1998 (1)

P. Verveer, Q. Hanley, P. Verbeek, L. V. Vliet, and W. Jovin, “Theory of confocal fluorescence imaging in the programmable array microscope (pam),” J. Microsc. 189(3), 192–198 (1998).
[Crossref]

1985 (1)

M. Vorontsov and V. Shmalgauzen, “The principles of adaptive optics,” Moscow Izdatel Nauka 1, 336 (1985).

Arndt-Jovin, D.

Q. Hanley, P. Verveer, M. Gemkow, D. Arndt-Jovin, and T. Jovin, “An optical sectioning programmable array microscope implemented with a digital micromirror device,” J. Microsc. 196, 317–331 (1999).
[Crossref] [PubMed]

Azucena, O.

Ballesta, J.

J. W. Cha, J. Ballesta, and P. T. So, “Shack-hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy,” J. Biomed. Opt. 15(4), 046022 (2010).
[Crossref] [PubMed]

Benrezzak, S.

M. Pedrazzani, V. Loriette, P. Tchenio, S. Benrezzak, D. Nutarelli, and A. Fragola, “Sensorless adaptive optics implementation in widefield optical sectioning microscopy inside in vivo drosophila brain,” J. Biomed. Opt. 21(3), 036006 (2016).
[Crossref]

Booth, M. J.

D. Débarre, E. J. Botcherby, M. J. Booth, and T. Wilson, “Adaptive optics for structured illumination microscopy,” Opt. Express 16(13), 9290–9305 (2008).
[Crossref] [PubMed]

M. J. Booth, “Adaptive optics in microscopy,” Phil. Trans. Roy. Soc. London A 365, 2829–2843 (2007).
[Crossref]

M. J. Booth, M. A. Neil, R. Juškaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. U. S. A. 99(9), 5788–5792 (2002).
[Crossref]

Botcherby, E. J.

Bouzin, M.

P. Pozzi, L. Sironi, L. D’Alfonso, M. Bouzin, M. Collini, G. Chirico, P. Pallavicini, F. Cotelli, and E. A. Foglia, “Electron multiplying charge-coupled device-based fluorescence cross-correlation spectroscopy for blood velocimetry on zebrafish embryos,” J. Biomed. Opt. 19(7), 067007 (2014).
[Crossref] [PubMed]

Bowron, J. W.

J. W. Bowron and R. P. Jonas, “Off-axis illumination design for dmd systems,” in Optical Science and Technology, SPIE’s 48th Annual Meeting (International Society for Optics and Photonics) pp. 72–82 (2003).

Cha, J. W.

J. W. Cha, J. Ballesta, and P. T. So, “Shack-hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy,” J. Biomed. Opt. 15(4), 046022 (2010).
[Crossref] [PubMed]

Chen, D. C.

Chiovini, B.

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods. 9(2), 201–208 (2012).
[Crossref] [PubMed]

Chirico, G.

P. Pozzi, D. Gandolfi, M. Tognolina, G. Chirico, J. Mapelli, and E. D’Angelo, “High-throughput spatial light modulation two-photon microscopy for fast functional imaging,” Neurophotonics 2(1), 015005 (2015).
[Crossref] [PubMed]

P. Pozzi, L. Sironi, L. D’Alfonso, M. Bouzin, M. Collini, G. Chirico, P. Pallavicini, F. Cotelli, and E. A. Foglia, “Electron multiplying charge-coupled device-based fluorescence cross-correlation spectroscopy for blood velocimetry on zebrafish embryos,” J. Biomed. Opt. 19(7), 067007 (2014).
[Crossref] [PubMed]

Cho, Y. h.

Collini, M.

P. Pozzi, L. Sironi, L. D’Alfonso, M. Bouzin, M. Collini, G. Chirico, P. Pallavicini, F. Cotelli, and E. A. Foglia, “Electron multiplying charge-coupled device-based fluorescence cross-correlation spectroscopy for blood velocimetry on zebrafish embryos,” J. Biomed. Opt. 19(7), 067007 (2014).
[Crossref] [PubMed]

Cooper, J.

R. D. Leonardo, J. Leach, H. Mushfique, J. Cooper, G. Ruocco, and M. Padgett, “Multipoint holographic optical velocimetry in microfluidic systems,” Phys. Rev. Lett. 96(13), 2 (2006).
[Crossref]

Cotelli, F.

P. Pozzi, L. Sironi, L. D’Alfonso, M. Bouzin, M. Collini, G. Chirico, P. Pallavicini, F. Cotelli, and E. A. Foglia, “Electron multiplying charge-coupled device-based fluorescence cross-correlation spectroscopy for blood velocimetry on zebrafish embryos,” J. Biomed. Opt. 19(7), 067007 (2014).
[Crossref] [PubMed]

D’Alfonso, L.

P. Pozzi, L. Sironi, L. D’Alfonso, M. Bouzin, M. Collini, G. Chirico, P. Pallavicini, F. Cotelli, and E. A. Foglia, “Electron multiplying charge-coupled device-based fluorescence cross-correlation spectroscopy for blood velocimetry on zebrafish embryos,” J. Biomed. Opt. 19(7), 067007 (2014).
[Crossref] [PubMed]

D’Angelo, E.

P. Pozzi, D. Gandolfi, M. Tognolina, G. Chirico, J. Mapelli, and E. D’Angelo, “High-throughput spatial light modulation two-photon microscopy for fast functional imaging,” Neurophotonics 2(1), 015005 (2015).
[Crossref] [PubMed]

Débarre, D.

Deisseroth, K.

A. M. Packer, D. S. Peterka, J. J. Hirtz, R. Prakash, K. Deisseroth, and R. Yuste, “Two-photon optogenetics of dendritic spines and neural circuits,” Nat. Methods 9(12), 1202–1205 (2012).
[Crossref]

Donaldson, L.

Eun, J.

Fernandez, B.

Foglia, E. A.

P. Pozzi, L. Sironi, L. D’Alfonso, M. Bouzin, M. Collini, G. Chirico, P. Pallavicini, F. Cotelli, and E. A. Foglia, “Electron multiplying charge-coupled device-based fluorescence cross-correlation spectroscopy for blood velocimetry on zebrafish embryos,” J. Biomed. Opt. 19(7), 067007 (2014).
[Crossref] [PubMed]

Fragola, A.

M. Pedrazzani, V. Loriette, P. Tchenio, S. Benrezzak, D. Nutarelli, and A. Fragola, “Sensorless adaptive optics implementation in widefield optical sectioning microscopy inside in vivo drosophila brain,” J. Biomed. Opt. 21(3), 036006 (2016).
[Crossref]

Fu, M.

Gandolfi, D.

P. Pozzi, D. Gandolfi, M. Tognolina, G. Chirico, J. Mapelli, and E. D’Angelo, “High-throughput spatial light modulation two-photon microscopy for fast functional imaging,” Neurophotonics 2(1), 015005 (2015).
[Crossref] [PubMed]

Garcia, D.

Gemkow, M.

Q. Hanley, P. Verveer, M. Gemkow, D. Arndt-Jovin, and T. Jovin, “An optical sectioning programmable array microscope implemented with a digital micromirror device,” J. Microsc. 196, 317–331 (1999).
[Crossref] [PubMed]

Gmitro, A. F.

Hanley, Q.

Q. Hanley, P. Verveer, M. Gemkow, D. Arndt-Jovin, and T. Jovin, “An optical sectioning programmable array microscope implemented with a digital micromirror device,” J. Microsc. 196, 317–331 (1999).
[Crossref] [PubMed]

P. Verveer, Q. Hanley, P. Verbeek, L. V. Vliet, and W. Jovin, “Theory of confocal fluorescence imaging in the programmable array microscope (pam),” J. Microsc. 189(3), 192–198 (1998).
[Crossref]

Heo, S.

Hillier, D.

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods. 9(2), 201–208 (2012).
[Crossref] [PubMed]

Hirtz, J. J.

A. M. Packer, D. S. Peterka, J. J. Hirtz, R. Prakash, K. Deisseroth, and R. Yuste, “Two-photon optogenetics of dendritic spines and neural circuits,” Nat. Methods 9(12), 1202–1205 (2012).
[Crossref]

Hopkins, M. F.

Hornbeck, L. J.

L. J. Hornbeck, Bistable DMD Addressing Circuit and Method (Google Patents, 1992).

Jeong, H. w.

Jonas, R. P.

J. W. Bowron and R. P. Jonas, “Off-axis illumination design for dmd systems,” in Optical Science and Technology, SPIE’s 48th Annual Meeting (International Society for Optics and Photonics) pp. 72–82 (2003).

Jovin, T.

Q. Hanley, P. Verveer, M. Gemkow, D. Arndt-Jovin, and T. Jovin, “An optical sectioning programmable array microscope implemented with a digital micromirror device,” J. Microsc. 196, 317–331 (1999).
[Crossref] [PubMed]

Jovin, W.

P. Verveer, Q. Hanley, P. Verbeek, L. V. Vliet, and W. Jovin, “Theory of confocal fluorescence imaging in the programmable array microscope (pam),” J. Microsc. 189(3), 192–198 (1998).
[Crossref]

Juškaitis, R.

M. J. Booth, M. A. Neil, R. Juškaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. U. S. A. 99(9), 5788–5792 (2002).
[Crossref]

Kalkman, J.

Kaszás, A.

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods. 9(2), 201–208 (2012).
[Crossref] [PubMed]

Katona, G.

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods. 9(2), 201–208 (2012).
[Crossref] [PubMed]

Kim, B. m.

Kim, H. j.

Kubby, J.

Leach, J.

R. D. Leonardo, J. Leach, H. Mushfique, J. Cooper, G. Ruocco, and M. Padgett, “Multipoint holographic optical velocimetry in microfluidic systems,” Phys. Rev. Lett. 96(13), 2 (2006).
[Crossref]

Leonardo, R. D.

R. D. Leonardo, J. Leach, H. Mushfique, J. Cooper, G. Ruocco, and M. Padgett, “Multipoint holographic optical velocimetry in microfluidic systems,” Phys. Rev. Lett. 96(13), 2 (2006).
[Crossref]

Lim, M.

Loriette, V.

M. Pedrazzani, V. Loriette, P. Tchenio, S. Benrezzak, D. Nutarelli, and A. Fragola, “Sensorless adaptive optics implementation in widefield optical sectioning microscopy inside in vivo drosophila brain,” J. Biomed. Opt. 21(3), 036006 (2016).
[Crossref]

Maák, P.

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods. 9(2), 201–208 (2012).
[Crossref] [PubMed]

Mapelli, J.

P. Pozzi, D. Gandolfi, M. Tognolina, G. Chirico, J. Mapelli, and E. D’Angelo, “High-throughput spatial light modulation two-photon microscopy for fast functional imaging,” Neurophotonics 2(1), 015005 (2015).
[Crossref] [PubMed]

Mushfique, H.

R. D. Leonardo, J. Leach, H. Mushfique, J. Cooper, G. Ruocco, and M. Padgett, “Multipoint holographic optical velocimetry in microfluidic systems,” Phys. Rev. Lett. 96(13), 2 (2006).
[Crossref]

Nakano, A.

A. Nakano, “Spinning-disk confocal microscopy a cutting-edge tool for imaging of membrane traffic,” Cell Struct. Funct. 27(5), 349–355 (2002).
[Crossref] [PubMed]

Neil, M. A.

M. J. Booth, M. A. Neil, R. Juškaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. U. S. A. 99(9), 5788–5792 (2002).
[Crossref]

Nutarelli, D.

M. Pedrazzani, V. Loriette, P. Tchenio, S. Benrezzak, D. Nutarelli, and A. Fragola, “Sensorless adaptive optics implementation in widefield optical sectioning microscopy inside in vivo drosophila brain,” J. Biomed. Opt. 21(3), 036006 (2016).
[Crossref]

Packer, A. M.

A. M. Packer, D. S. Peterka, J. J. Hirtz, R. Prakash, K. Deisseroth, and R. Yuste, “Two-photon optogenetics of dendritic spines and neural circuits,” Nat. Methods 9(12), 1202–1205 (2012).
[Crossref]

Padgett, M.

R. D. Leonardo, J. Leach, H. Mushfique, J. Cooper, G. Ruocco, and M. Padgett, “Multipoint holographic optical velocimetry in microfluidic systems,” Phys. Rev. Lett. 96(13), 2 (2006).
[Crossref]

Pallavicini, P.

P. Pozzi, L. Sironi, L. D’Alfonso, M. Bouzin, M. Collini, G. Chirico, P. Pallavicini, F. Cotelli, and E. A. Foglia, “Electron multiplying charge-coupled device-based fluorescence cross-correlation spectroscopy for blood velocimetry on zebrafish embryos,” J. Biomed. Opt. 19(7), 067007 (2014).
[Crossref] [PubMed]

Pedrazzani, M.

M. Pedrazzani, V. Loriette, P. Tchenio, S. Benrezzak, D. Nutarelli, and A. Fragola, “Sensorless adaptive optics implementation in widefield optical sectioning microscopy inside in vivo drosophila brain,” J. Biomed. Opt. 21(3), 036006 (2016).
[Crossref]

Peterka, D. S.

A. M. Packer, D. S. Peterka, J. J. Hirtz, R. Prakash, K. Deisseroth, and R. Yuste, “Two-photon optogenetics of dendritic spines and neural circuits,” Nat. Methods 9(12), 1202–1205 (2012).
[Crossref]

Pozzi, P.

P. Pozzi, D. Gandolfi, M. Tognolina, G. Chirico, J. Mapelli, and E. D’Angelo, “High-throughput spatial light modulation two-photon microscopy for fast functional imaging,” Neurophotonics 2(1), 015005 (2015).
[Crossref] [PubMed]

P. Pozzi, L. Sironi, L. D’Alfonso, M. Bouzin, M. Collini, G. Chirico, P. Pallavicini, F. Cotelli, and E. A. Foglia, “Electron multiplying charge-coupled device-based fluorescence cross-correlation spectroscopy for blood velocimetry on zebrafish embryos,” J. Biomed. Opt. 19(7), 067007 (2014).
[Crossref] [PubMed]

Prakash, R.

A. M. Packer, D. S. Peterka, J. J. Hirtz, R. Prakash, K. Deisseroth, and R. Yuste, “Two-photon optogenetics of dendritic spines and neural circuits,” Nat. Methods 9(12), 1202–1205 (2012).
[Crossref]

Roska, B.

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods. 9(2), 201–208 (2012).
[Crossref] [PubMed]

Rouse, A. R.

Rózsa, B.

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods. 9(2), 201–208 (2012).
[Crossref] [PubMed]

Ruocco, G.

R. D. Leonardo, J. Leach, H. Mushfique, J. Cooper, G. Ruocco, and M. Padgett, “Multipoint holographic optical velocimetry in microfluidic systems,” Phys. Rev. Lett. 96(13), 2 (2006).
[Crossref]

Sabharwal, Y. S.

Shmalgauzen, V.

M. Vorontsov and V. Shmalgauzen, “The principles of adaptive optics,” Moscow Izdatel Nauka 1, 336 (1985).

Sironi, L.

P. Pozzi, L. Sironi, L. D’Alfonso, M. Bouzin, M. Collini, G. Chirico, P. Pallavicini, F. Cotelli, and E. A. Foglia, “Electron multiplying charge-coupled device-based fluorescence cross-correlation spectroscopy for blood velocimetry on zebrafish embryos,” J. Biomed. Opt. 19(7), 067007 (2014).
[Crossref] [PubMed]

So, P. T.

J. W. Cha, J. Ballesta, and P. T. So, “Shack-hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy,” J. Biomed. Opt. 15(4), 046022 (2010).
[Crossref] [PubMed]

Soloviev, O.

Szalay, G.

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods. 9(2), 201–208 (2012).
[Crossref] [PubMed]

Tao, X.

Tchenio, P.

M. Pedrazzani, V. Loriette, P. Tchenio, S. Benrezzak, D. Nutarelli, and A. Fragola, “Sensorless adaptive optics implementation in widefield optical sectioning microscopy inside in vivo drosophila brain,” J. Biomed. Opt. 21(3), 036006 (2016).
[Crossref]

Tognolina, M.

P. Pozzi, D. Gandolfi, M. Tognolina, G. Chirico, J. Mapelli, and E. D’Angelo, “High-throughput spatial light modulation two-photon microscopy for fast functional imaging,” Neurophotonics 2(1), 015005 (2015).
[Crossref] [PubMed]

Verbeek, P.

P. Verveer, Q. Hanley, P. Verbeek, L. V. Vliet, and W. Jovin, “Theory of confocal fluorescence imaging in the programmable array microscope (pam),” J. Microsc. 189(3), 192–198 (1998).
[Crossref]

Veress, M.

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods. 9(2), 201–208 (2012).
[Crossref] [PubMed]

Verhaegen, M.

Verstraete, H. R. G. W.

Verveer, P.

Q. Hanley, P. Verveer, M. Gemkow, D. Arndt-Jovin, and T. Jovin, “An optical sectioning programmable array microscope implemented with a digital micromirror device,” J. Microsc. 196, 317–331 (1999).
[Crossref] [PubMed]

P. Verveer, Q. Hanley, P. Verbeek, L. V. Vliet, and W. Jovin, “Theory of confocal fluorescence imaging in the programmable array microscope (pam),” J. Microsc. 189(3), 192–198 (1998).
[Crossref]

Vizi, E. S.

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods. 9(2), 201–208 (2012).
[Crossref] [PubMed]

Vliet, L. V.

P. Verveer, Q. Hanley, P. Verbeek, L. V. Vliet, and W. Jovin, “Theory of confocal fluorescence imaging in the programmable array microscope (pam),” J. Microsc. 189(3), 192–198 (1998).
[Crossref]

Vorontsov, M.

M. Vorontsov and V. Shmalgauzen, “The principles of adaptive optics,” Moscow Izdatel Nauka 1, 336 (1985).

Wahls, S.

Welford, W. T.

W. T. Welford, Aberrations of Optical Systems, (CRC Press, 1986).

Wilson, T.

D. Débarre, E. J. Botcherby, M. J. Booth, and T. Wilson, “Adaptive optics for structured illumination microscopy,” Opt. Express 16(13), 9290–9305 (2008).
[Crossref] [PubMed]

M. J. Booth, M. A. Neil, R. Juškaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. U. S. A. 99(9), 5788–5792 (2002).
[Crossref]

Yang, H.

Yuste, R.

A. M. Packer, D. S. Peterka, J. J. Hirtz, R. Prakash, K. Deisseroth, and R. Yuste, “Two-photon optogenetics of dendritic spines and neural circuits,” Nat. Methods 9(12), 1202–1205 (2012).
[Crossref]

Zuo, Y.

Appl. Opt. (2)

Cell Struct. Funct. (1)

A. Nakano, “Spinning-disk confocal microscopy a cutting-edge tool for imaging of membrane traffic,” Cell Struct. Funct. 27(5), 349–355 (2002).
[Crossref] [PubMed]

J. Biomed. Opt. (3)

J. W. Cha, J. Ballesta, and P. T. So, “Shack-hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy,” J. Biomed. Opt. 15(4), 046022 (2010).
[Crossref] [PubMed]

M. Pedrazzani, V. Loriette, P. Tchenio, S. Benrezzak, D. Nutarelli, and A. Fragola, “Sensorless adaptive optics implementation in widefield optical sectioning microscopy inside in vivo drosophila brain,” J. Biomed. Opt. 21(3), 036006 (2016).
[Crossref]

P. Pozzi, L. Sironi, L. D’Alfonso, M. Bouzin, M. Collini, G. Chirico, P. Pallavicini, F. Cotelli, and E. A. Foglia, “Electron multiplying charge-coupled device-based fluorescence cross-correlation spectroscopy for blood velocimetry on zebrafish embryos,” J. Biomed. Opt. 19(7), 067007 (2014).
[Crossref] [PubMed]

J. Microsc. (2)

P. Verveer, Q. Hanley, P. Verbeek, L. V. Vliet, and W. Jovin, “Theory of confocal fluorescence imaging in the programmable array microscope (pam),” J. Microsc. 189(3), 192–198 (1998).
[Crossref]

Q. Hanley, P. Verveer, M. Gemkow, D. Arndt-Jovin, and T. Jovin, “An optical sectioning programmable array microscope implemented with a digital micromirror device,” J. Microsc. 196, 317–331 (1999).
[Crossref] [PubMed]

Moscow Izdatel Nauka (1)

M. Vorontsov and V. Shmalgauzen, “The principles of adaptive optics,” Moscow Izdatel Nauka 1, 336 (1985).

Nat. Methods (1)

A. M. Packer, D. S. Peterka, J. J. Hirtz, R. Prakash, K. Deisseroth, and R. Yuste, “Two-photon optogenetics of dendritic spines and neural circuits,” Nat. Methods 9(12), 1202–1205 (2012).
[Crossref]

Nat. Methods. (1)

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods. 9(2), 201–208 (2012).
[Crossref] [PubMed]

Neurophotonics (1)

P. Pozzi, D. Gandolfi, M. Tognolina, G. Chirico, J. Mapelli, and E. D’Angelo, “High-throughput spatial light modulation two-photon microscopy for fast functional imaging,” Neurophotonics 2(1), 015005 (2015).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (3)

Phil. Trans. Roy. Soc. London A (1)

M. J. Booth, “Adaptive optics in microscopy,” Phil. Trans. Roy. Soc. London A 365, 2829–2843 (2007).
[Crossref]

Phys. Rev. Lett. (1)

R. D. Leonardo, J. Leach, H. Mushfique, J. Cooper, G. Ruocco, and M. Padgett, “Multipoint holographic optical velocimetry in microfluidic systems,” Phys. Rev. Lett. 96(13), 2 (2006).
[Crossref]

Proc. Natl. Acad. Sci. U. S. A. (1)

M. J. Booth, M. A. Neil, R. Juškaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. U. S. A. 99(9), 5788–5792 (2002).
[Crossref]

Other (3)

L. J. Hornbeck, Bistable DMD Addressing Circuit and Method (Google Patents, 1992).

J. W. Bowron and R. P. Jonas, “Off-axis illumination design for dmd systems,” in Optical Science and Technology, SPIE’s 48th Annual Meeting (International Society for Optics and Photonics) pp. 72–82 (2003).

W. T. Welford, Aberrations of Optical Systems, (CRC Press, 1986).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Illustration of the timing and synchronization of the DMD, the two cameras, and the optimization algorithms.
Fig. 2
Fig. 2 Optical setup. Left image is a simplified scheme missing a 4f system between the adaptive element and the objective. Right image is the full three dimensional structure of the setup. Blue lines are the excitation light optical path, green lines are the fluorescence light optical path, orange lines are the optical path shared by excitation and fluorescence light. LED:light source, DC:Dichroic cube, DMD:Micromirror device, DM:Deformable mirror, O:Objective, IC:Imaging camera, OC:Optimization camera.
Fig. 3
Fig. 3 Example of aberration correction: 1: Sample image. a) without aberration correction. b) after optimization with DONE algorithm. 2: Metric value as a function of time. Vertical dashed lines mark exposure times of the imaging camera. The empirical value for optimal correction is reported as dashed horizontal line. Optimal correction is achieved within 1 second. 3: Detail of the image a) without aberration correction. b) after 5s optimization. 4: Sample image from the optimization camera a) without aberration correction. b) after 5s optimization.
Fig. 4
Fig. 4 a) Sharpness metric convergence speed for an artificially induced wide amplitude aberration. Dashed line is the result of a traditional hill climbing procedure, optimizing for sharpness, performed on sharpness data of the imaging camera, at 3Hz acquisition frequency. Solid line is the recorded values of the sharpness metric during S-PAM optimization at 135 Hz. b) Convergence speed of the S-PAM second moment metric for the same optimization procedure reported in a. c) Image detail for uncorrected image. d) Image detail for hill climbing image optimization. e) Image detail for S-PAM optimization. Scale bar is 10 μm.
Fig. 5
Fig. 5 Example of dynamic aberration correction: a) Last image in a 16 μm thick three dimensional focal stack of images, with active correction. b) Detail of the area indicated by a red square in (a) for uncorrected image. c) same detail for static aberration correction, optimized at the center of the axial range for 10 s. d) same detail for dynamic correction of the aberration during the stack acquisition. e) Value of the sharpness metric as a function of depth for no correction, static correction, and dynamic correction.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

f k ( x ) = m = 1 M A m , k C m ( x )
S = I 2 ( n ) d n

Metrics