Abstract

This paper presents an in-plane hydrodynamically reconfigurable optofluidic microlens, which is formed by the laminar flow of two streams of a low-refractive-index fluid and two streams of a high-refractive-index fluid in the two microchannels connecting to an expansion chamber where the microlens finally forms. In the expansion chamber, the stream of high-refractive-index fluid, acting as core, is sandwiched by the two streams of low-refractive-index fluid, acting as cladding. The interfaces between the streams can be flexibly manipulated by controlling the flow rate ratio between the two fluids in real time. Thus, the biconvex and biconcave microlens with different curvatures can be formed. By adjusting the microlens, the light beam can be continuously manipulated from focusing to collimation and then to divergence. In the experiment, a wide focus tuning range from 2.75 (focusing) to –1.21 mm (diverging) via collimation is achieved.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Biconcave micro-optofluidic lens with low-refractive-index liquids

Chaolong Song, Nam-Trung Nguyen, Anand Krishna Asundi, and Cassandra Lee-Ngo Low
Opt. Lett. 34(23) 3622-3624 (2009)

In situ fabrication of a tunable microlens

Lei Zhang, Zhiyuan Wang, Yichuan Wang, Rui Qiu, Wei Fang, and Limin Tong
Opt. Lett. 40(16) 3850-3853 (2015)

Spectral tuning of lasing emission from optofluidic droplet microlasers using optical stretching

Mehdi Aas, Alexandr Jonáš, Alper Kiraz, Oto Brzobohatý, Jan Ježek, Zdeněk Pilát, and Pavel Zemánek
Opt. Express 21(18) 21380-21394 (2013)

References

  • View by:
  • |
  • |
  • |

  1. Z. Chen, Z. Yong, C. W. Leung, X. Zhang, Y. Chen, H. L. Chan, and Y. Wang, “Time-variant 1D photonic crystals using flowing microdroplets,” Opt. Express 20(22), 24330–24341 (2012).
    [Crossref] [PubMed]
  2. S. K. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9(19), 2767–2771 (2009).
    [Crossref] [PubMed]
  3. L. K. Chin, A. Q. Liu, Y. C. Soh, C. S. Lim, and C. L. Lin, “A reconfigurable optofluidic Michelson interferometer using tunable droplet grating,” Lab Chip 10(8), 1072–1078 (2010).
    [Crossref] [PubMed]
  4. J. Q. Yu, Y. Yang, A. Q. Liu, L. K. Chin, and X. M. Zhang, “Microfluidic droplet grating for reconfigurable optical diffraction,” Opt. Lett. 35(11), 1890–1892 (2010).
    [Crossref] [PubMed]
  5. Z. G. Li, Y. Yang, X. M. Zhang, A. Q. Liu, J. B. Zhang, L. Cheng, and Z. H. Li, “Tunable visual color filter using microfluidic grating,” Biomicrofluidics 4(4), 043013 (2010).
    [Crossref] [PubMed]
  6. G. Xiao, Q. Zhu, Y. Shen, K. Li, M. Liu, Q. Zhuang, and C. Jin, “A tunable submicro-optofluidic polymer filter based on guided-mode resonance,” Nanoscale 7(8), 3429–3434 (2015).
    [Crossref] [PubMed]
  7. H. Li, C. Song, T. D. Luong, N. T. Nguyen, and T. N. Wong, “An electrokinetically tunable optofluidic bi-concave lens,” Lab Chip 12(19), 3680–3687 (2012).
    [Crossref] [PubMed]
  8. Y. Yang, A. Q. Liu, L. K. Chin, X. M. Zhang, D. P. Tsai, C. L. Lin, C. Lu, G. P. Wang, and N. I. Zheludev, “Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation,” Nat. Commun. 3, 651 (2012).
    [Crossref] [PubMed]
  9. L. Dong and H. Jiang, “Selective formation and removal of liquid microlenses at predetermined locations within microfluidics through pneumatic control,” J. Microelectromech. Syst. 17(2), 381–392 (2008).
    [Crossref]
  10. X. Mao, J. R. Waldeisen, B. K. Juluri, and T. J. Huang, “Hydrodynamically tunable optofluidic cylindrical microlens,” Lab Chip 7(10), 1303–1308 (2007).
    [Crossref] [PubMed]
  11. H. Huang, X. Mao, S. C. S. Lin, B. Kiraly, Y. Huang, and T. J. Huang, “Tunable two-dimensional liquid gradient refractive index (L-GRIN) lens for variable light focusing,” Lab Chip 10(18), 2387–2393 (2010).
    [Crossref] [PubMed]
  12. C. Fang, B. Dai, R. Hong, C. Tao, Q. Wang, X. Wang, D. Zhang, and S. Zhuang, “Tunable optical limiting optofluidic device filled with graphene oxide dispersion in ethanol,” Sci. Rep. 5, 15362 (2015).
    [Crossref] [PubMed]
  13. M. I. Lapsley, S. C. S. Lin, X. Mao, and T. J. Huang, “An in-plane, variable optical attenuator using a fluid-based tunable reflective interface,” Appl. Phys. Lett. 95(8), 083507 (2009).
    [Crossref]
  14. J. Q. Yu, W. Huang, L. K. Chin, L. Lei, Z. P. Lin, W. Ser, H. Chen, T. C. Ayi, P. H. Yap, C. H. Chen, and A. Q. Liu, “Droplet optofluidic imaging for λ-bacteriophage detection via co-culture with host cell Escherichia coli,” Lab Chip 14(18), 3519–3524 (2014).
    [Crossref] [PubMed]
  15. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
    [Crossref] [PubMed]
  16. C. Song, T. D. Luong, T. F. Kong, N. T. Nguyen, and A. K. Asundi, “Disposable flow cytometer with high efficiency in particle counting and sizing using an optofluidic lens,” Opt. Lett. 36(5), 657–659 (2011).
    [Crossref] [PubMed]
  17. M. Rosenauer and M. J. Vellekoop, “Characterization of a microflow cytometer with an integrated three-dimensional optofluidic lens system,” Biomicrofluidics 4(4), 043005 (2010).
    [Crossref] [PubMed]
  18. X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, “Optofluidic microscopy--a method for implementing a high resolution optical microscope on a chip,” Lab Chip 6(10), 1274–1276 (2006).
    [Crossref] [PubMed]
  19. M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, “Microfluidic sorting of mammalian cells by optical force switching,” Nat. Biotechnol. 23(1), 83–87 (2005).
    [Crossref] [PubMed]
  20. Y. Zhao, Z. S. Stratton, F. Guo, M. I. Lapsley, C. Y. Chan, S. C. S. Lin, and T. J. Huang, “Optofluidic imaging: now and beyond,” Lab Chip 13(1), 17–24 (2013).
    [Crossref] [PubMed]
  21. X. Mao, S. C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. J. Huang, “Tunable Liquid Gradient Refractive Index (L-GRIN) lens with two degrees of freedom,” Lab Chip 9(14), 2050–2058 (2009).
    [Crossref] [PubMed]
  22. J. Shi, Z. Stratton, S. C. S. Lin, H. Huang, and T. J. Huang, “Tunable optofluidic microlens through active pressure control of an air–liquid interface,” Microfluid. Nanofluidics 9(2-3), 313–318 (2010).
    [Crossref]
  23. H. Li, T. N. Wong, N. T. Nguyen, and J. C. Chai, “Numerical modeling of tunable optofluidics lens based on combined effect of hydrodynamics and electroosmosis,” Int. J. Heat Mass Tran 55(9-10), 2647–2655 (2012).
    [Crossref]
  24. K. S. Chao, M. S. Lin, and R.-J. Yang, “An in-plane optofluidic microchip for focal point control,” Lab Chip 13(19), 3886–3892 (2013).
    [Crossref] [PubMed]
  25. M. Rosenauer and M. J. Vellekoop, “3D fluidic lens shaping--a multiconvex hydrodynamically adjustable optofluidic microlens,” Lab Chip 9(8), 1040–1042 (2009).
    [Crossref] [PubMed]
  26. X. Mao, J. R. Waldeisen, B. K. Juluri, and T. J. Huang, “Hydrodynamically tunable optofluidic cylindrical microlens,” Lab Chip 7(10), 1303–1308 (2007).
    [Crossref] [PubMed]
  27. Y. Seow, A. Liu, L. Chin, X. Li, H. Huang, T. Cheng, and X. Zhou, “Different curvatures of tunable liquid microlens via the control of laminar flow rate,” Appl. Phys. Lett. 93(8), 084101 (2008).
    [Crossref]
  28. L. K. Chin, A. Q. Liu, C. S. Lim, C. L. Lin, T. C. Ayi, and P. H. Yap, “An optofluidic volume refractometer using Fabry-Pérot resonator with tunable liquid microlenses,” Biomicrofluidics 4(2), 024107 (2010).
    [Crossref] [PubMed]
  29. S. K. Tang, C. A. Stan, and G. M. Whitesides, “Dynamically reconfigurable liquid-core liquid-cladding lens in a microfluidic channel,” Lab Chip 8(3), 395–401 (2008).
    [Crossref] [PubMed]
  30. C. Song, N.-T. Nguyen, S.-H. Tan, and A. K. Asundi, “Modelling and optimization of micro optofluidic lenses,” Lab Chip 9(9), 1178–1184 (2009).
    [Crossref] [PubMed]
  31. C. Song, N. T. Nguyen, S.-H. Tan, and A. K. Asundi, “A tuneable micro-optofluidic biconvex lens with mathematically predictable focal length,” Microfluid. Nanofluidics 9(4–5), 889–896 (2010).
    [Crossref]
  32. J. Koplik, S. Redner, and E. J. Hinch, “Tracer dispersion in planar multipole flows,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(6), 4650–4671 (1994).
    [Crossref] [PubMed]
  33. P. Kurowski, I. Ippolito, J. P. Hulin, J. Koplik, and E. J. Hinch, “J. Koplikand E. J. Hinch, “Anomalous dispersion in a dipole flow geometry,” Phys. Fluids 6(1), 108–117 (1994).
    [Crossref]
  34. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999).
  35. D. C. Duffy, J. C. McDonald, O. J. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in polydimethylsiloxane,” Anal. Chem. 70(23), 4974–4984 (1998).
    [Crossref] [PubMed]
  36. J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. Schueller, and G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21(1), 27–40 (2000).
    [Crossref] [PubMed]
  37. C. Fang, B. Dai, R. Zhuo, X. Yuan, X. Gao, J. Wen, B. Sheng, and D. Zhang, “Focal-length-tunable elastomer-based liquid-filled plano-convex mini lens,” Opt. Lett. 41(2), 404–407 (2016).
    [Crossref] [PubMed]

2016 (1)

2015 (2)

G. Xiao, Q. Zhu, Y. Shen, K. Li, M. Liu, Q. Zhuang, and C. Jin, “A tunable submicro-optofluidic polymer filter based on guided-mode resonance,” Nanoscale 7(8), 3429–3434 (2015).
[Crossref] [PubMed]

C. Fang, B. Dai, R. Hong, C. Tao, Q. Wang, X. Wang, D. Zhang, and S. Zhuang, “Tunable optical limiting optofluidic device filled with graphene oxide dispersion in ethanol,” Sci. Rep. 5, 15362 (2015).
[Crossref] [PubMed]

2014 (1)

J. Q. Yu, W. Huang, L. K. Chin, L. Lei, Z. P. Lin, W. Ser, H. Chen, T. C. Ayi, P. H. Yap, C. H. Chen, and A. Q. Liu, “Droplet optofluidic imaging for λ-bacteriophage detection via co-culture with host cell Escherichia coli,” Lab Chip 14(18), 3519–3524 (2014).
[Crossref] [PubMed]

2013 (2)

Y. Zhao, Z. S. Stratton, F. Guo, M. I. Lapsley, C. Y. Chan, S. C. S. Lin, and T. J. Huang, “Optofluidic imaging: now and beyond,” Lab Chip 13(1), 17–24 (2013).
[Crossref] [PubMed]

K. S. Chao, M. S. Lin, and R.-J. Yang, “An in-plane optofluidic microchip for focal point control,” Lab Chip 13(19), 3886–3892 (2013).
[Crossref] [PubMed]

2012 (4)

H. Li, T. N. Wong, N. T. Nguyen, and J. C. Chai, “Numerical modeling of tunable optofluidics lens based on combined effect of hydrodynamics and electroosmosis,” Int. J. Heat Mass Tran 55(9-10), 2647–2655 (2012).
[Crossref]

Z. Chen, Z. Yong, C. W. Leung, X. Zhang, Y. Chen, H. L. Chan, and Y. Wang, “Time-variant 1D photonic crystals using flowing microdroplets,” Opt. Express 20(22), 24330–24341 (2012).
[Crossref] [PubMed]

H. Li, C. Song, T. D. Luong, N. T. Nguyen, and T. N. Wong, “An electrokinetically tunable optofluidic bi-concave lens,” Lab Chip 12(19), 3680–3687 (2012).
[Crossref] [PubMed]

Y. Yang, A. Q. Liu, L. K. Chin, X. M. Zhang, D. P. Tsai, C. L. Lin, C. Lu, G. P. Wang, and N. I. Zheludev, “Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation,” Nat. Commun. 3, 651 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (8)

L. K. Chin, A. Q. Liu, Y. C. Soh, C. S. Lim, and C. L. Lin, “A reconfigurable optofluidic Michelson interferometer using tunable droplet grating,” Lab Chip 10(8), 1072–1078 (2010).
[Crossref] [PubMed]

J. Q. Yu, Y. Yang, A. Q. Liu, L. K. Chin, and X. M. Zhang, “Microfluidic droplet grating for reconfigurable optical diffraction,” Opt. Lett. 35(11), 1890–1892 (2010).
[Crossref] [PubMed]

Z. G. Li, Y. Yang, X. M. Zhang, A. Q. Liu, J. B. Zhang, L. Cheng, and Z. H. Li, “Tunable visual color filter using microfluidic grating,” Biomicrofluidics 4(4), 043013 (2010).
[Crossref] [PubMed]

H. Huang, X. Mao, S. C. S. Lin, B. Kiraly, Y. Huang, and T. J. Huang, “Tunable two-dimensional liquid gradient refractive index (L-GRIN) lens for variable light focusing,” Lab Chip 10(18), 2387–2393 (2010).
[Crossref] [PubMed]

J. Shi, Z. Stratton, S. C. S. Lin, H. Huang, and T. J. Huang, “Tunable optofluidic microlens through active pressure control of an air–liquid interface,” Microfluid. Nanofluidics 9(2-3), 313–318 (2010).
[Crossref]

M. Rosenauer and M. J. Vellekoop, “Characterization of a microflow cytometer with an integrated three-dimensional optofluidic lens system,” Biomicrofluidics 4(4), 043005 (2010).
[Crossref] [PubMed]

L. K. Chin, A. Q. Liu, C. S. Lim, C. L. Lin, T. C. Ayi, and P. H. Yap, “An optofluidic volume refractometer using Fabry-Pérot resonator with tunable liquid microlenses,” Biomicrofluidics 4(2), 024107 (2010).
[Crossref] [PubMed]

C. Song, N. T. Nguyen, S.-H. Tan, and A. K. Asundi, “A tuneable micro-optofluidic biconvex lens with mathematically predictable focal length,” Microfluid. Nanofluidics 9(4–5), 889–896 (2010).
[Crossref]

2009 (5)

C. Song, N.-T. Nguyen, S.-H. Tan, and A. K. Asundi, “Modelling and optimization of micro optofluidic lenses,” Lab Chip 9(9), 1178–1184 (2009).
[Crossref] [PubMed]

X. Mao, S. C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. J. Huang, “Tunable Liquid Gradient Refractive Index (L-GRIN) lens with two degrees of freedom,” Lab Chip 9(14), 2050–2058 (2009).
[Crossref] [PubMed]

M. Rosenauer and M. J. Vellekoop, “3D fluidic lens shaping--a multiconvex hydrodynamically adjustable optofluidic microlens,” Lab Chip 9(8), 1040–1042 (2009).
[Crossref] [PubMed]

M. I. Lapsley, S. C. S. Lin, X. Mao, and T. J. Huang, “An in-plane, variable optical attenuator using a fluid-based tunable reflective interface,” Appl. Phys. Lett. 95(8), 083507 (2009).
[Crossref]

S. K. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9(19), 2767–2771 (2009).
[Crossref] [PubMed]

2008 (3)

L. Dong and H. Jiang, “Selective formation and removal of liquid microlenses at predetermined locations within microfluidics through pneumatic control,” J. Microelectromech. Syst. 17(2), 381–392 (2008).
[Crossref]

Y. Seow, A. Liu, L. Chin, X. Li, H. Huang, T. Cheng, and X. Zhou, “Different curvatures of tunable liquid microlens via the control of laminar flow rate,” Appl. Phys. Lett. 93(8), 084101 (2008).
[Crossref]

S. K. Tang, C. A. Stan, and G. M. Whitesides, “Dynamically reconfigurable liquid-core liquid-cladding lens in a microfluidic channel,” Lab Chip 8(3), 395–401 (2008).
[Crossref] [PubMed]

2007 (2)

X. Mao, J. R. Waldeisen, B. K. Juluri, and T. J. Huang, “Hydrodynamically tunable optofluidic cylindrical microlens,” Lab Chip 7(10), 1303–1308 (2007).
[Crossref] [PubMed]

X. Mao, J. R. Waldeisen, B. K. Juluri, and T. J. Huang, “Hydrodynamically tunable optofluidic cylindrical microlens,” Lab Chip 7(10), 1303–1308 (2007).
[Crossref] [PubMed]

2006 (2)

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, “Optofluidic microscopy--a method for implementing a high resolution optical microscope on a chip,” Lab Chip 6(10), 1274–1276 (2006).
[Crossref] [PubMed]

2005 (1)

M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, “Microfluidic sorting of mammalian cells by optical force switching,” Nat. Biotechnol. 23(1), 83–87 (2005).
[Crossref] [PubMed]

2000 (1)

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. Schueller, and G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21(1), 27–40 (2000).
[Crossref] [PubMed]

1998 (1)

D. C. Duffy, J. C. McDonald, O. J. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in polydimethylsiloxane,” Anal. Chem. 70(23), 4974–4984 (1998).
[Crossref] [PubMed]

1994 (2)

J. Koplik, S. Redner, and E. J. Hinch, “Tracer dispersion in planar multipole flows,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(6), 4650–4671 (1994).
[Crossref] [PubMed]

P. Kurowski, I. Ippolito, J. P. Hulin, J. Koplik, and E. J. Hinch, “J. Koplikand E. J. Hinch, “Anomalous dispersion in a dipole flow geometry,” Phys. Fluids 6(1), 108–117 (1994).
[Crossref]

Abate, A. R.

S. K. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9(19), 2767–2771 (2009).
[Crossref] [PubMed]

Agresti, J. J.

S. K. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9(19), 2767–2771 (2009).
[Crossref] [PubMed]

Anderson, J. R.

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. Schueller, and G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21(1), 27–40 (2000).
[Crossref] [PubMed]

Asundi, A. K.

C. Song, T. D. Luong, T. F. Kong, N. T. Nguyen, and A. K. Asundi, “Disposable flow cytometer with high efficiency in particle counting and sizing using an optofluidic lens,” Opt. Lett. 36(5), 657–659 (2011).
[Crossref] [PubMed]

C. Song, N. T. Nguyen, S.-H. Tan, and A. K. Asundi, “A tuneable micro-optofluidic biconvex lens with mathematically predictable focal length,” Microfluid. Nanofluidics 9(4–5), 889–896 (2010).
[Crossref]

C. Song, N.-T. Nguyen, S.-H. Tan, and A. K. Asundi, “Modelling and optimization of micro optofluidic lenses,” Lab Chip 9(9), 1178–1184 (2009).
[Crossref] [PubMed]

Ayi, T. C.

J. Q. Yu, W. Huang, L. K. Chin, L. Lei, Z. P. Lin, W. Ser, H. Chen, T. C. Ayi, P. H. Yap, C. H. Chen, and A. Q. Liu, “Droplet optofluidic imaging for λ-bacteriophage detection via co-culture with host cell Escherichia coli,” Lab Chip 14(18), 3519–3524 (2014).
[Crossref] [PubMed]

L. K. Chin, A. Q. Liu, C. S. Lim, C. L. Lin, T. C. Ayi, and P. H. Yap, “An optofluidic volume refractometer using Fabry-Pérot resonator with tunable liquid microlenses,” Biomicrofluidics 4(2), 024107 (2010).
[Crossref] [PubMed]

Baugh, L. R.

X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, “Optofluidic microscopy--a method for implementing a high resolution optical microscope on a chip,” Lab Chip 6(10), 1274–1276 (2006).
[Crossref] [PubMed]

Butler, W. F.

M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, “Microfluidic sorting of mammalian cells by optical force switching,” Nat. Biotechnol. 23(1), 83–87 (2005).
[Crossref] [PubMed]

Chai, J. C.

H. Li, T. N. Wong, N. T. Nguyen, and J. C. Chai, “Numerical modeling of tunable optofluidics lens based on combined effect of hydrodynamics and electroosmosis,” Int. J. Heat Mass Tran 55(9-10), 2647–2655 (2012).
[Crossref]

Chan, C. Y.

Y. Zhao, Z. S. Stratton, F. Guo, M. I. Lapsley, C. Y. Chan, S. C. S. Lin, and T. J. Huang, “Optofluidic imaging: now and beyond,” Lab Chip 13(1), 17–24 (2013).
[Crossref] [PubMed]

Chan, H. L.

Chao, K. S.

K. S. Chao, M. S. Lin, and R.-J. Yang, “An in-plane optofluidic microchip for focal point control,” Lab Chip 13(19), 3886–3892 (2013).
[Crossref] [PubMed]

Chen, C. H.

J. Q. Yu, W. Huang, L. K. Chin, L. Lei, Z. P. Lin, W. Ser, H. Chen, T. C. Ayi, P. H. Yap, C. H. Chen, and A. Q. Liu, “Droplet optofluidic imaging for λ-bacteriophage detection via co-culture with host cell Escherichia coli,” Lab Chip 14(18), 3519–3524 (2014).
[Crossref] [PubMed]

Chen, H.

J. Q. Yu, W. Huang, L. K. Chin, L. Lei, Z. P. Lin, W. Ser, H. Chen, T. C. Ayi, P. H. Yap, C. H. Chen, and A. Q. Liu, “Droplet optofluidic imaging for λ-bacteriophage detection via co-culture with host cell Escherichia coli,” Lab Chip 14(18), 3519–3524 (2014).
[Crossref] [PubMed]

Chen, Y.

Chen, Z.

Cheng, L.

Z. G. Li, Y. Yang, X. M. Zhang, A. Q. Liu, J. B. Zhang, L. Cheng, and Z. H. Li, “Tunable visual color filter using microfluidic grating,” Biomicrofluidics 4(4), 043013 (2010).
[Crossref] [PubMed]

Cheng, T.

Y. Seow, A. Liu, L. Chin, X. Li, H. Huang, T. Cheng, and X. Zhou, “Different curvatures of tunable liquid microlens via the control of laminar flow rate,” Appl. Phys. Lett. 93(8), 084101 (2008).
[Crossref]

Chin, L.

Y. Seow, A. Liu, L. Chin, X. Li, H. Huang, T. Cheng, and X. Zhou, “Different curvatures of tunable liquid microlens via the control of laminar flow rate,” Appl. Phys. Lett. 93(8), 084101 (2008).
[Crossref]

Chin, L. K.

J. Q. Yu, W. Huang, L. K. Chin, L. Lei, Z. P. Lin, W. Ser, H. Chen, T. C. Ayi, P. H. Yap, C. H. Chen, and A. Q. Liu, “Droplet optofluidic imaging for λ-bacteriophage detection via co-culture with host cell Escherichia coli,” Lab Chip 14(18), 3519–3524 (2014).
[Crossref] [PubMed]

Y. Yang, A. Q. Liu, L. K. Chin, X. M. Zhang, D. P. Tsai, C. L. Lin, C. Lu, G. P. Wang, and N. I. Zheludev, “Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation,” Nat. Commun. 3, 651 (2012).
[Crossref] [PubMed]

L. K. Chin, A. Q. Liu, C. S. Lim, C. L. Lin, T. C. Ayi, and P. H. Yap, “An optofluidic volume refractometer using Fabry-Pérot resonator with tunable liquid microlenses,” Biomicrofluidics 4(2), 024107 (2010).
[Crossref] [PubMed]

J. Q. Yu, Y. Yang, A. Q. Liu, L. K. Chin, and X. M. Zhang, “Microfluidic droplet grating for reconfigurable optical diffraction,” Opt. Lett. 35(11), 1890–1892 (2010).
[Crossref] [PubMed]

L. K. Chin, A. Q. Liu, Y. C. Soh, C. S. Lim, and C. L. Lin, “A reconfigurable optofluidic Michelson interferometer using tunable droplet grating,” Lab Chip 10(8), 1072–1078 (2010).
[Crossref] [PubMed]

Chiu, D. T.

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. Schueller, and G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21(1), 27–40 (2000).
[Crossref] [PubMed]

Dai, B.

C. Fang, B. Dai, R. Zhuo, X. Yuan, X. Gao, J. Wen, B. Sheng, and D. Zhang, “Focal-length-tunable elastomer-based liquid-filled plano-convex mini lens,” Opt. Lett. 41(2), 404–407 (2016).
[Crossref] [PubMed]

C. Fang, B. Dai, R. Hong, C. Tao, Q. Wang, X. Wang, D. Zhang, and S. Zhuang, “Tunable optical limiting optofluidic device filled with graphene oxide dispersion in ethanol,” Sci. Rep. 5, 15362 (2015).
[Crossref] [PubMed]

Dees, B.

M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, “Microfluidic sorting of mammalian cells by optical force switching,” Nat. Biotechnol. 23(1), 83–87 (2005).
[Crossref] [PubMed]

Dong, L.

L. Dong and H. Jiang, “Selective formation and removal of liquid microlenses at predetermined locations within microfluidics through pneumatic control,” J. Microelectromech. Syst. 17(2), 381–392 (2008).
[Crossref]

Duffy, D. C.

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. Schueller, and G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21(1), 27–40 (2000).
[Crossref] [PubMed]

D. C. Duffy, J. C. McDonald, O. J. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in polydimethylsiloxane,” Anal. Chem. 70(23), 4974–4984 (1998).
[Crossref] [PubMed]

Erickson, D.

X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, “Optofluidic microscopy--a method for implementing a high resolution optical microscope on a chip,” Lab Chip 6(10), 1274–1276 (2006).
[Crossref] [PubMed]

Fang, C.

C. Fang, B. Dai, R. Zhuo, X. Yuan, X. Gao, J. Wen, B. Sheng, and D. Zhang, “Focal-length-tunable elastomer-based liquid-filled plano-convex mini lens,” Opt. Lett. 41(2), 404–407 (2016).
[Crossref] [PubMed]

C. Fang, B. Dai, R. Hong, C. Tao, Q. Wang, X. Wang, D. Zhang, and S. Zhuang, “Tunable optical limiting optofluidic device filled with graphene oxide dispersion in ethanol,” Sci. Rep. 5, 15362 (2015).
[Crossref] [PubMed]

Forster, A. H.

M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, “Microfluidic sorting of mammalian cells by optical force switching,” Nat. Biotechnol. 23(1), 83–87 (2005).
[Crossref] [PubMed]

Gao, X.

Guo, F.

Y. Zhao, Z. S. Stratton, F. Guo, M. I. Lapsley, C. Y. Chan, S. C. S. Lin, and T. J. Huang, “Optofluidic imaging: now and beyond,” Lab Chip 13(1), 17–24 (2013).
[Crossref] [PubMed]

Hagen, N.

M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, “Microfluidic sorting of mammalian cells by optical force switching,” Nat. Biotechnol. 23(1), 83–87 (2005).
[Crossref] [PubMed]

Heng, X.

X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, “Optofluidic microscopy--a method for implementing a high resolution optical microscope on a chip,” Lab Chip 6(10), 1274–1276 (2006).
[Crossref] [PubMed]

Hinch, E. J.

P. Kurowski, I. Ippolito, J. P. Hulin, J. Koplik, and E. J. Hinch, “J. Koplikand E. J. Hinch, “Anomalous dispersion in a dipole flow geometry,” Phys. Fluids 6(1), 108–117 (1994).
[Crossref]

J. Koplik, S. Redner, and E. J. Hinch, “Tracer dispersion in planar multipole flows,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(6), 4650–4671 (1994).
[Crossref] [PubMed]

Hong, R.

C. Fang, B. Dai, R. Hong, C. Tao, Q. Wang, X. Wang, D. Zhang, and S. Zhuang, “Tunable optical limiting optofluidic device filled with graphene oxide dispersion in ethanol,” Sci. Rep. 5, 15362 (2015).
[Crossref] [PubMed]

Huang, H.

H. Huang, X. Mao, S. C. S. Lin, B. Kiraly, Y. Huang, and T. J. Huang, “Tunable two-dimensional liquid gradient refractive index (L-GRIN) lens for variable light focusing,” Lab Chip 10(18), 2387–2393 (2010).
[Crossref] [PubMed]

J. Shi, Z. Stratton, S. C. S. Lin, H. Huang, and T. J. Huang, “Tunable optofluidic microlens through active pressure control of an air–liquid interface,” Microfluid. Nanofluidics 9(2-3), 313–318 (2010).
[Crossref]

Y. Seow, A. Liu, L. Chin, X. Li, H. Huang, T. Cheng, and X. Zhou, “Different curvatures of tunable liquid microlens via the control of laminar flow rate,” Appl. Phys. Lett. 93(8), 084101 (2008).
[Crossref]

Huang, T. J.

Y. Zhao, Z. S. Stratton, F. Guo, M. I. Lapsley, C. Y. Chan, S. C. S. Lin, and T. J. Huang, “Optofluidic imaging: now and beyond,” Lab Chip 13(1), 17–24 (2013).
[Crossref] [PubMed]

J. Shi, Z. Stratton, S. C. S. Lin, H. Huang, and T. J. Huang, “Tunable optofluidic microlens through active pressure control of an air–liquid interface,” Microfluid. Nanofluidics 9(2-3), 313–318 (2010).
[Crossref]

H. Huang, X. Mao, S. C. S. Lin, B. Kiraly, Y. Huang, and T. J. Huang, “Tunable two-dimensional liquid gradient refractive index (L-GRIN) lens for variable light focusing,” Lab Chip 10(18), 2387–2393 (2010).
[Crossref] [PubMed]

M. I. Lapsley, S. C. S. Lin, X. Mao, and T. J. Huang, “An in-plane, variable optical attenuator using a fluid-based tunable reflective interface,” Appl. Phys. Lett. 95(8), 083507 (2009).
[Crossref]

X. Mao, S. C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. J. Huang, “Tunable Liquid Gradient Refractive Index (L-GRIN) lens with two degrees of freedom,” Lab Chip 9(14), 2050–2058 (2009).
[Crossref] [PubMed]

X. Mao, J. R. Waldeisen, B. K. Juluri, and T. J. Huang, “Hydrodynamically tunable optofluidic cylindrical microlens,” Lab Chip 7(10), 1303–1308 (2007).
[Crossref] [PubMed]

X. Mao, J. R. Waldeisen, B. K. Juluri, and T. J. Huang, “Hydrodynamically tunable optofluidic cylindrical microlens,” Lab Chip 7(10), 1303–1308 (2007).
[Crossref] [PubMed]

Huang, W.

J. Q. Yu, W. Huang, L. K. Chin, L. Lei, Z. P. Lin, W. Ser, H. Chen, T. C. Ayi, P. H. Yap, C. H. Chen, and A. Q. Liu, “Droplet optofluidic imaging for λ-bacteriophage detection via co-culture with host cell Escherichia coli,” Lab Chip 14(18), 3519–3524 (2014).
[Crossref] [PubMed]

Huang, Y.

H. Huang, X. Mao, S. C. S. Lin, B. Kiraly, Y. Huang, and T. J. Huang, “Tunable two-dimensional liquid gradient refractive index (L-GRIN) lens for variable light focusing,” Lab Chip 10(18), 2387–2393 (2010).
[Crossref] [PubMed]

Hulin, J. P.

P. Kurowski, I. Ippolito, J. P. Hulin, J. Koplik, and E. J. Hinch, “J. Koplikand E. J. Hinch, “Anomalous dispersion in a dipole flow geometry,” Phys. Fluids 6(1), 108–117 (1994).
[Crossref]

Ippolito, I.

P. Kurowski, I. Ippolito, J. P. Hulin, J. Koplik, and E. J. Hinch, “J. Koplikand E. J. Hinch, “Anomalous dispersion in a dipole flow geometry,” Phys. Fluids 6(1), 108–117 (1994).
[Crossref]

Jiang, H.

L. Dong and H. Jiang, “Selective formation and removal of liquid microlenses at predetermined locations within microfluidics through pneumatic control,” J. Microelectromech. Syst. 17(2), 381–392 (2008).
[Crossref]

Jin, C.

G. Xiao, Q. Zhu, Y. Shen, K. Li, M. Liu, Q. Zhuang, and C. Jin, “A tunable submicro-optofluidic polymer filter based on guided-mode resonance,” Nanoscale 7(8), 3429–3434 (2015).
[Crossref] [PubMed]

Juluri, B. K.

X. Mao, S. C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. J. Huang, “Tunable Liquid Gradient Refractive Index (L-GRIN) lens with two degrees of freedom,” Lab Chip 9(14), 2050–2058 (2009).
[Crossref] [PubMed]

X. Mao, J. R. Waldeisen, B. K. Juluri, and T. J. Huang, “Hydrodynamically tunable optofluidic cylindrical microlens,” Lab Chip 7(10), 1303–1308 (2007).
[Crossref] [PubMed]

X. Mao, J. R. Waldeisen, B. K. Juluri, and T. J. Huang, “Hydrodynamically tunable optofluidic cylindrical microlens,” Lab Chip 7(10), 1303–1308 (2007).
[Crossref] [PubMed]

Kariv, I.

M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, “Microfluidic sorting of mammalian cells by optical force switching,” Nat. Biotechnol. 23(1), 83–87 (2005).
[Crossref] [PubMed]

Kiraly, B.

H. Huang, X. Mao, S. C. S. Lin, B. Kiraly, Y. Huang, and T. J. Huang, “Tunable two-dimensional liquid gradient refractive index (L-GRIN) lens for variable light focusing,” Lab Chip 10(18), 2387–2393 (2010).
[Crossref] [PubMed]

Kong, T. F.

Koplik, J.

P. Kurowski, I. Ippolito, J. P. Hulin, J. Koplik, and E. J. Hinch, “J. Koplikand E. J. Hinch, “Anomalous dispersion in a dipole flow geometry,” Phys. Fluids 6(1), 108–117 (1994).
[Crossref]

J. Koplik, S. Redner, and E. J. Hinch, “Tracer dispersion in planar multipole flows,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(6), 4650–4671 (1994).
[Crossref] [PubMed]

Kurowski, P.

P. Kurowski, I. Ippolito, J. P. Hulin, J. Koplik, and E. J. Hinch, “J. Koplikand E. J. Hinch, “Anomalous dispersion in a dipole flow geometry,” Phys. Fluids 6(1), 108–117 (1994).
[Crossref]

Lapsley, M. I.

Y. Zhao, Z. S. Stratton, F. Guo, M. I. Lapsley, C. Y. Chan, S. C. S. Lin, and T. J. Huang, “Optofluidic imaging: now and beyond,” Lab Chip 13(1), 17–24 (2013).
[Crossref] [PubMed]

X. Mao, S. C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. J. Huang, “Tunable Liquid Gradient Refractive Index (L-GRIN) lens with two degrees of freedom,” Lab Chip 9(14), 2050–2058 (2009).
[Crossref] [PubMed]

M. I. Lapsley, S. C. S. Lin, X. Mao, and T. J. Huang, “An in-plane, variable optical attenuator using a fluid-based tunable reflective interface,” Appl. Phys. Lett. 95(8), 083507 (2009).
[Crossref]

Lei, L.

J. Q. Yu, W. Huang, L. K. Chin, L. Lei, Z. P. Lin, W. Ser, H. Chen, T. C. Ayi, P. H. Yap, C. H. Chen, and A. Q. Liu, “Droplet optofluidic imaging for λ-bacteriophage detection via co-culture with host cell Escherichia coli,” Lab Chip 14(18), 3519–3524 (2014).
[Crossref] [PubMed]

Leung, C. W.

Li, H.

H. Li, C. Song, T. D. Luong, N. T. Nguyen, and T. N. Wong, “An electrokinetically tunable optofluidic bi-concave lens,” Lab Chip 12(19), 3680–3687 (2012).
[Crossref] [PubMed]

H. Li, T. N. Wong, N. T. Nguyen, and J. C. Chai, “Numerical modeling of tunable optofluidics lens based on combined effect of hydrodynamics and electroosmosis,” Int. J. Heat Mass Tran 55(9-10), 2647–2655 (2012).
[Crossref]

Li, K.

G. Xiao, Q. Zhu, Y. Shen, K. Li, M. Liu, Q. Zhuang, and C. Jin, “A tunable submicro-optofluidic polymer filter based on guided-mode resonance,” Nanoscale 7(8), 3429–3434 (2015).
[Crossref] [PubMed]

Li, X.

Y. Seow, A. Liu, L. Chin, X. Li, H. Huang, T. Cheng, and X. Zhou, “Different curvatures of tunable liquid microlens via the control of laminar flow rate,” Appl. Phys. Lett. 93(8), 084101 (2008).
[Crossref]

Li, Z.

S. K. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9(19), 2767–2771 (2009).
[Crossref] [PubMed]

Li, Z. G.

Z. G. Li, Y. Yang, X. M. Zhang, A. Q. Liu, J. B. Zhang, L. Cheng, and Z. H. Li, “Tunable visual color filter using microfluidic grating,” Biomicrofluidics 4(4), 043013 (2010).
[Crossref] [PubMed]

Li, Z. H.

Z. G. Li, Y. Yang, X. M. Zhang, A. Q. Liu, J. B. Zhang, L. Cheng, and Z. H. Li, “Tunable visual color filter using microfluidic grating,” Biomicrofluidics 4(4), 043013 (2010).
[Crossref] [PubMed]

Lim, C. S.

L. K. Chin, A. Q. Liu, C. S. Lim, C. L. Lin, T. C. Ayi, and P. H. Yap, “An optofluidic volume refractometer using Fabry-Pérot resonator with tunable liquid microlenses,” Biomicrofluidics 4(2), 024107 (2010).
[Crossref] [PubMed]

L. K. Chin, A. Q. Liu, Y. C. Soh, C. S. Lim, and C. L. Lin, “A reconfigurable optofluidic Michelson interferometer using tunable droplet grating,” Lab Chip 10(8), 1072–1078 (2010).
[Crossref] [PubMed]

Lin, C. L.

Y. Yang, A. Q. Liu, L. K. Chin, X. M. Zhang, D. P. Tsai, C. L. Lin, C. Lu, G. P. Wang, and N. I. Zheludev, “Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation,” Nat. Commun. 3, 651 (2012).
[Crossref] [PubMed]

L. K. Chin, A. Q. Liu, C. S. Lim, C. L. Lin, T. C. Ayi, and P. H. Yap, “An optofluidic volume refractometer using Fabry-Pérot resonator with tunable liquid microlenses,” Biomicrofluidics 4(2), 024107 (2010).
[Crossref] [PubMed]

L. K. Chin, A. Q. Liu, Y. C. Soh, C. S. Lim, and C. L. Lin, “A reconfigurable optofluidic Michelson interferometer using tunable droplet grating,” Lab Chip 10(8), 1072–1078 (2010).
[Crossref] [PubMed]

Lin, M. S.

K. S. Chao, M. S. Lin, and R.-J. Yang, “An in-plane optofluidic microchip for focal point control,” Lab Chip 13(19), 3886–3892 (2013).
[Crossref] [PubMed]

Lin, S. C. S.

Y. Zhao, Z. S. Stratton, F. Guo, M. I. Lapsley, C. Y. Chan, S. C. S. Lin, and T. J. Huang, “Optofluidic imaging: now and beyond,” Lab Chip 13(1), 17–24 (2013).
[Crossref] [PubMed]

J. Shi, Z. Stratton, S. C. S. Lin, H. Huang, and T. J. Huang, “Tunable optofluidic microlens through active pressure control of an air–liquid interface,” Microfluid. Nanofluidics 9(2-3), 313–318 (2010).
[Crossref]

H. Huang, X. Mao, S. C. S. Lin, B. Kiraly, Y. Huang, and T. J. Huang, “Tunable two-dimensional liquid gradient refractive index (L-GRIN) lens for variable light focusing,” Lab Chip 10(18), 2387–2393 (2010).
[Crossref] [PubMed]

M. I. Lapsley, S. C. S. Lin, X. Mao, and T. J. Huang, “An in-plane, variable optical attenuator using a fluid-based tunable reflective interface,” Appl. Phys. Lett. 95(8), 083507 (2009).
[Crossref]

X. Mao, S. C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. J. Huang, “Tunable Liquid Gradient Refractive Index (L-GRIN) lens with two degrees of freedom,” Lab Chip 9(14), 2050–2058 (2009).
[Crossref] [PubMed]

Lin, Z. P.

J. Q. Yu, W. Huang, L. K. Chin, L. Lei, Z. P. Lin, W. Ser, H. Chen, T. C. Ayi, P. H. Yap, C. H. Chen, and A. Q. Liu, “Droplet optofluidic imaging for λ-bacteriophage detection via co-culture with host cell Escherichia coli,” Lab Chip 14(18), 3519–3524 (2014).
[Crossref] [PubMed]

Liu, A.

Y. Seow, A. Liu, L. Chin, X. Li, H. Huang, T. Cheng, and X. Zhou, “Different curvatures of tunable liquid microlens via the control of laminar flow rate,” Appl. Phys. Lett. 93(8), 084101 (2008).
[Crossref]

Liu, A. Q.

J. Q. Yu, W. Huang, L. K. Chin, L. Lei, Z. P. Lin, W. Ser, H. Chen, T. C. Ayi, P. H. Yap, C. H. Chen, and A. Q. Liu, “Droplet optofluidic imaging for λ-bacteriophage detection via co-culture with host cell Escherichia coli,” Lab Chip 14(18), 3519–3524 (2014).
[Crossref] [PubMed]

Y. Yang, A. Q. Liu, L. K. Chin, X. M. Zhang, D. P. Tsai, C. L. Lin, C. Lu, G. P. Wang, and N. I. Zheludev, “Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation,” Nat. Commun. 3, 651 (2012).
[Crossref] [PubMed]

Z. G. Li, Y. Yang, X. M. Zhang, A. Q. Liu, J. B. Zhang, L. Cheng, and Z. H. Li, “Tunable visual color filter using microfluidic grating,” Biomicrofluidics 4(4), 043013 (2010).
[Crossref] [PubMed]

L. K. Chin, A. Q. Liu, C. S. Lim, C. L. Lin, T. C. Ayi, and P. H. Yap, “An optofluidic volume refractometer using Fabry-Pérot resonator with tunable liquid microlenses,” Biomicrofluidics 4(2), 024107 (2010).
[Crossref] [PubMed]

J. Q. Yu, Y. Yang, A. Q. Liu, L. K. Chin, and X. M. Zhang, “Microfluidic droplet grating for reconfigurable optical diffraction,” Opt. Lett. 35(11), 1890–1892 (2010).
[Crossref] [PubMed]

L. K. Chin, A. Q. Liu, Y. C. Soh, C. S. Lim, and C. L. Lin, “A reconfigurable optofluidic Michelson interferometer using tunable droplet grating,” Lab Chip 10(8), 1072–1078 (2010).
[Crossref] [PubMed]

Liu, M.

G. Xiao, Q. Zhu, Y. Shen, K. Li, M. Liu, Q. Zhuang, and C. Jin, “A tunable submicro-optofluidic polymer filter based on guided-mode resonance,” Nanoscale 7(8), 3429–3434 (2015).
[Crossref] [PubMed]

Lu, C.

Y. Yang, A. Q. Liu, L. K. Chin, X. M. Zhang, D. P. Tsai, C. L. Lin, C. Lu, G. P. Wang, and N. I. Zheludev, “Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation,” Nat. Commun. 3, 651 (2012).
[Crossref] [PubMed]

Luong, T. D.

Mao, X.

H. Huang, X. Mao, S. C. S. Lin, B. Kiraly, Y. Huang, and T. J. Huang, “Tunable two-dimensional liquid gradient refractive index (L-GRIN) lens for variable light focusing,” Lab Chip 10(18), 2387–2393 (2010).
[Crossref] [PubMed]

M. I. Lapsley, S. C. S. Lin, X. Mao, and T. J. Huang, “An in-plane, variable optical attenuator using a fluid-based tunable reflective interface,” Appl. Phys. Lett. 95(8), 083507 (2009).
[Crossref]

X. Mao, S. C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. J. Huang, “Tunable Liquid Gradient Refractive Index (L-GRIN) lens with two degrees of freedom,” Lab Chip 9(14), 2050–2058 (2009).
[Crossref] [PubMed]

X. Mao, J. R. Waldeisen, B. K. Juluri, and T. J. Huang, “Hydrodynamically tunable optofluidic cylindrical microlens,” Lab Chip 7(10), 1303–1308 (2007).
[Crossref] [PubMed]

X. Mao, J. R. Waldeisen, B. K. Juluri, and T. J. Huang, “Hydrodynamically tunable optofluidic cylindrical microlens,” Lab Chip 7(10), 1303–1308 (2007).
[Crossref] [PubMed]

Marchand, P. J.

M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, “Microfluidic sorting of mammalian cells by optical force switching,” Nat. Biotechnol. 23(1), 83–87 (2005).
[Crossref] [PubMed]

McDonald, J. C.

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. Schueller, and G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21(1), 27–40 (2000).
[Crossref] [PubMed]

D. C. Duffy, J. C. McDonald, O. J. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in polydimethylsiloxane,” Anal. Chem. 70(23), 4974–4984 (1998).
[Crossref] [PubMed]

Mercer, E. M.

M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, “Microfluidic sorting of mammalian cells by optical force switching,” Nat. Biotechnol. 23(1), 83–87 (2005).
[Crossref] [PubMed]

Nguyen, N. T.

H. Li, T. N. Wong, N. T. Nguyen, and J. C. Chai, “Numerical modeling of tunable optofluidics lens based on combined effect of hydrodynamics and electroosmosis,” Int. J. Heat Mass Tran 55(9-10), 2647–2655 (2012).
[Crossref]

H. Li, C. Song, T. D. Luong, N. T. Nguyen, and T. N. Wong, “An electrokinetically tunable optofluidic bi-concave lens,” Lab Chip 12(19), 3680–3687 (2012).
[Crossref] [PubMed]

C. Song, T. D. Luong, T. F. Kong, N. T. Nguyen, and A. K. Asundi, “Disposable flow cytometer with high efficiency in particle counting and sizing using an optofluidic lens,” Opt. Lett. 36(5), 657–659 (2011).
[Crossref] [PubMed]

C. Song, N. T. Nguyen, S.-H. Tan, and A. K. Asundi, “A tuneable micro-optofluidic biconvex lens with mathematically predictable focal length,” Microfluid. Nanofluidics 9(4–5), 889–896 (2010).
[Crossref]

Nguyen, N.-T.

C. Song, N.-T. Nguyen, S.-H. Tan, and A. K. Asundi, “Modelling and optimization of micro optofluidic lenses,” Lab Chip 9(9), 1178–1184 (2009).
[Crossref] [PubMed]

Psaltis, D.

S. K. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9(19), 2767–2771 (2009).
[Crossref] [PubMed]

X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, “Optofluidic microscopy--a method for implementing a high resolution optical microscope on a chip,” Lab Chip 6(10), 1274–1276 (2006).
[Crossref] [PubMed]

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Raymond, D. E.

M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, “Microfluidic sorting of mammalian cells by optical force switching,” Nat. Biotechnol. 23(1), 83–87 (2005).
[Crossref] [PubMed]

Redner, S.

J. Koplik, S. Redner, and E. J. Hinch, “Tracer dispersion in planar multipole flows,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(6), 4650–4671 (1994).
[Crossref] [PubMed]

Rosenauer, M.

M. Rosenauer and M. J. Vellekoop, “Characterization of a microflow cytometer with an integrated three-dimensional optofluidic lens system,” Biomicrofluidics 4(4), 043005 (2010).
[Crossref] [PubMed]

M. Rosenauer and M. J. Vellekoop, “3D fluidic lens shaping--a multiconvex hydrodynamically adjustable optofluidic microlens,” Lab Chip 9(8), 1040–1042 (2009).
[Crossref] [PubMed]

Schueller, O. J.

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. Schueller, and G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21(1), 27–40 (2000).
[Crossref] [PubMed]

D. C. Duffy, J. C. McDonald, O. J. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in polydimethylsiloxane,” Anal. Chem. 70(23), 4974–4984 (1998).
[Crossref] [PubMed]

Seow, Y.

Y. Seow, A. Liu, L. Chin, X. Li, H. Huang, T. Cheng, and X. Zhou, “Different curvatures of tunable liquid microlens via the control of laminar flow rate,” Appl. Phys. Lett. 93(8), 084101 (2008).
[Crossref]

Ser, W.

J. Q. Yu, W. Huang, L. K. Chin, L. Lei, Z. P. Lin, W. Ser, H. Chen, T. C. Ayi, P. H. Yap, C. H. Chen, and A. Q. Liu, “Droplet optofluidic imaging for λ-bacteriophage detection via co-culture with host cell Escherichia coli,” Lab Chip 14(18), 3519–3524 (2014).
[Crossref] [PubMed]

Shen, Y.

G. Xiao, Q. Zhu, Y. Shen, K. Li, M. Liu, Q. Zhuang, and C. Jin, “A tunable submicro-optofluidic polymer filter based on guided-mode resonance,” Nanoscale 7(8), 3429–3434 (2015).
[Crossref] [PubMed]

Sheng, B.

Shi, J.

J. Shi, Z. Stratton, S. C. S. Lin, H. Huang, and T. J. Huang, “Tunable optofluidic microlens through active pressure control of an air–liquid interface,” Microfluid. Nanofluidics 9(2-3), 313–318 (2010).
[Crossref]

X. Mao, S. C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. J. Huang, “Tunable Liquid Gradient Refractive Index (L-GRIN) lens with two degrees of freedom,” Lab Chip 9(14), 2050–2058 (2009).
[Crossref] [PubMed]

Soh, Y. C.

L. K. Chin, A. Q. Liu, Y. C. Soh, C. S. Lim, and C. L. Lin, “A reconfigurable optofluidic Michelson interferometer using tunable droplet grating,” Lab Chip 10(8), 1072–1078 (2010).
[Crossref] [PubMed]

Song, C.

H. Li, C. Song, T. D. Luong, N. T. Nguyen, and T. N. Wong, “An electrokinetically tunable optofluidic bi-concave lens,” Lab Chip 12(19), 3680–3687 (2012).
[Crossref] [PubMed]

C. Song, T. D. Luong, T. F. Kong, N. T. Nguyen, and A. K. Asundi, “Disposable flow cytometer with high efficiency in particle counting and sizing using an optofluidic lens,” Opt. Lett. 36(5), 657–659 (2011).
[Crossref] [PubMed]

C. Song, N. T. Nguyen, S.-H. Tan, and A. K. Asundi, “A tuneable micro-optofluidic biconvex lens with mathematically predictable focal length,” Microfluid. Nanofluidics 9(4–5), 889–896 (2010).
[Crossref]

C. Song, N.-T. Nguyen, S.-H. Tan, and A. K. Asundi, “Modelling and optimization of micro optofluidic lenses,” Lab Chip 9(9), 1178–1184 (2009).
[Crossref] [PubMed]

Stan, C. A.

S. K. Tang, C. A. Stan, and G. M. Whitesides, “Dynamically reconfigurable liquid-core liquid-cladding lens in a microfluidic channel,” Lab Chip 8(3), 395–401 (2008).
[Crossref] [PubMed]

Sternberg, P. W.

X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, “Optofluidic microscopy--a method for implementing a high resolution optical microscope on a chip,” Lab Chip 6(10), 1274–1276 (2006).
[Crossref] [PubMed]

Stratton, Z.

J. Shi, Z. Stratton, S. C. S. Lin, H. Huang, and T. J. Huang, “Tunable optofluidic microlens through active pressure control of an air–liquid interface,” Microfluid. Nanofluidics 9(2-3), 313–318 (2010).
[Crossref]

Stratton, Z. S.

Y. Zhao, Z. S. Stratton, F. Guo, M. I. Lapsley, C. Y. Chan, S. C. S. Lin, and T. J. Huang, “Optofluidic imaging: now and beyond,” Lab Chip 13(1), 17–24 (2013).
[Crossref] [PubMed]

Tan, S.-H.

C. Song, N. T. Nguyen, S.-H. Tan, and A. K. Asundi, “A tuneable micro-optofluidic biconvex lens with mathematically predictable focal length,” Microfluid. Nanofluidics 9(4–5), 889–896 (2010).
[Crossref]

C. Song, N.-T. Nguyen, S.-H. Tan, and A. K. Asundi, “Modelling and optimization of micro optofluidic lenses,” Lab Chip 9(9), 1178–1184 (2009).
[Crossref] [PubMed]

Tang, S. K.

S. K. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9(19), 2767–2771 (2009).
[Crossref] [PubMed]

S. K. Tang, C. A. Stan, and G. M. Whitesides, “Dynamically reconfigurable liquid-core liquid-cladding lens in a microfluidic channel,” Lab Chip 8(3), 395–401 (2008).
[Crossref] [PubMed]

Tao, C.

C. Fang, B. Dai, R. Hong, C. Tao, Q. Wang, X. Wang, D. Zhang, and S. Zhuang, “Tunable optical limiting optofluidic device filled with graphene oxide dispersion in ethanol,” Sci. Rep. 5, 15362 (2015).
[Crossref] [PubMed]

Tsai, D. P.

Y. Yang, A. Q. Liu, L. K. Chin, X. M. Zhang, D. P. Tsai, C. L. Lin, C. Lu, G. P. Wang, and N. I. Zheludev, “Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation,” Nat. Commun. 3, 651 (2012).
[Crossref] [PubMed]

Tu, E.

M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, “Microfluidic sorting of mammalian cells by optical force switching,” Nat. Biotechnol. 23(1), 83–87 (2005).
[Crossref] [PubMed]

Vellekoop, M. J.

M. Rosenauer and M. J. Vellekoop, “Characterization of a microflow cytometer with an integrated three-dimensional optofluidic lens system,” Biomicrofluidics 4(4), 043005 (2010).
[Crossref] [PubMed]

M. Rosenauer and M. J. Vellekoop, “3D fluidic lens shaping--a multiconvex hydrodynamically adjustable optofluidic microlens,” Lab Chip 9(8), 1040–1042 (2009).
[Crossref] [PubMed]

Waldeisen, J. R.

X. Mao, J. R. Waldeisen, B. K. Juluri, and T. J. Huang, “Hydrodynamically tunable optofluidic cylindrical microlens,” Lab Chip 7(10), 1303–1308 (2007).
[Crossref] [PubMed]

X. Mao, J. R. Waldeisen, B. K. Juluri, and T. J. Huang, “Hydrodynamically tunable optofluidic cylindrical microlens,” Lab Chip 7(10), 1303–1308 (2007).
[Crossref] [PubMed]

Wang, G. P.

Y. Yang, A. Q. Liu, L. K. Chin, X. M. Zhang, D. P. Tsai, C. L. Lin, C. Lu, G. P. Wang, and N. I. Zheludev, “Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation,” Nat. Commun. 3, 651 (2012).
[Crossref] [PubMed]

Wang, M. M.

M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, “Microfluidic sorting of mammalian cells by optical force switching,” Nat. Biotechnol. 23(1), 83–87 (2005).
[Crossref] [PubMed]

Wang, Q.

C. Fang, B. Dai, R. Hong, C. Tao, Q. Wang, X. Wang, D. Zhang, and S. Zhuang, “Tunable optical limiting optofluidic device filled with graphene oxide dispersion in ethanol,” Sci. Rep. 5, 15362 (2015).
[Crossref] [PubMed]

Wang, X.

C. Fang, B. Dai, R. Hong, C. Tao, Q. Wang, X. Wang, D. Zhang, and S. Zhuang, “Tunable optical limiting optofluidic device filled with graphene oxide dispersion in ethanol,” Sci. Rep. 5, 15362 (2015).
[Crossref] [PubMed]

Wang, Y.

Weitz, D. A.

S. K. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9(19), 2767–2771 (2009).
[Crossref] [PubMed]

Wen, J.

Whitesides, G. M.

S. K. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9(19), 2767–2771 (2009).
[Crossref] [PubMed]

S. K. Tang, C. A. Stan, and G. M. Whitesides, “Dynamically reconfigurable liquid-core liquid-cladding lens in a microfluidic channel,” Lab Chip 8(3), 395–401 (2008).
[Crossref] [PubMed]

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. Schueller, and G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21(1), 27–40 (2000).
[Crossref] [PubMed]

D. C. Duffy, J. C. McDonald, O. J. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in polydimethylsiloxane,” Anal. Chem. 70(23), 4974–4984 (1998).
[Crossref] [PubMed]

Wong, T. N.

H. Li, T. N. Wong, N. T. Nguyen, and J. C. Chai, “Numerical modeling of tunable optofluidics lens based on combined effect of hydrodynamics and electroosmosis,” Int. J. Heat Mass Tran 55(9-10), 2647–2655 (2012).
[Crossref]

H. Li, C. Song, T. D. Luong, N. T. Nguyen, and T. N. Wong, “An electrokinetically tunable optofluidic bi-concave lens,” Lab Chip 12(19), 3680–3687 (2012).
[Crossref] [PubMed]

Wu, H.

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. Schueller, and G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21(1), 27–40 (2000).
[Crossref] [PubMed]

Xiao, G.

G. Xiao, Q. Zhu, Y. Shen, K. Li, M. Liu, Q. Zhuang, and C. Jin, “A tunable submicro-optofluidic polymer filter based on guided-mode resonance,” Nanoscale 7(8), 3429–3434 (2015).
[Crossref] [PubMed]

Yang, C.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, “Optofluidic microscopy--a method for implementing a high resolution optical microscope on a chip,” Lab Chip 6(10), 1274–1276 (2006).
[Crossref] [PubMed]

Yang, J. M.

M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, “Microfluidic sorting of mammalian cells by optical force switching,” Nat. Biotechnol. 23(1), 83–87 (2005).
[Crossref] [PubMed]

Yang, R.-J.

K. S. Chao, M. S. Lin, and R.-J. Yang, “An in-plane optofluidic microchip for focal point control,” Lab Chip 13(19), 3886–3892 (2013).
[Crossref] [PubMed]

Yang, Y.

Y. Yang, A. Q. Liu, L. K. Chin, X. M. Zhang, D. P. Tsai, C. L. Lin, C. Lu, G. P. Wang, and N. I. Zheludev, “Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation,” Nat. Commun. 3, 651 (2012).
[Crossref] [PubMed]

Z. G. Li, Y. Yang, X. M. Zhang, A. Q. Liu, J. B. Zhang, L. Cheng, and Z. H. Li, “Tunable visual color filter using microfluidic grating,” Biomicrofluidics 4(4), 043013 (2010).
[Crossref] [PubMed]

J. Q. Yu, Y. Yang, A. Q. Liu, L. K. Chin, and X. M. Zhang, “Microfluidic droplet grating for reconfigurable optical diffraction,” Opt. Lett. 35(11), 1890–1892 (2010).
[Crossref] [PubMed]

Yap, P. H.

J. Q. Yu, W. Huang, L. K. Chin, L. Lei, Z. P. Lin, W. Ser, H. Chen, T. C. Ayi, P. H. Yap, C. H. Chen, and A. Q. Liu, “Droplet optofluidic imaging for λ-bacteriophage detection via co-culture with host cell Escherichia coli,” Lab Chip 14(18), 3519–3524 (2014).
[Crossref] [PubMed]

L. K. Chin, A. Q. Liu, C. S. Lim, C. L. Lin, T. C. Ayi, and P. H. Yap, “An optofluidic volume refractometer using Fabry-Pérot resonator with tunable liquid microlenses,” Biomicrofluidics 4(2), 024107 (2010).
[Crossref] [PubMed]

Yaqoob, Z.

X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, “Optofluidic microscopy--a method for implementing a high resolution optical microscope on a chip,” Lab Chip 6(10), 1274–1276 (2006).
[Crossref] [PubMed]

Yong, Z.

Yu, J. Q.

J. Q. Yu, W. Huang, L. K. Chin, L. Lei, Z. P. Lin, W. Ser, H. Chen, T. C. Ayi, P. H. Yap, C. H. Chen, and A. Q. Liu, “Droplet optofluidic imaging for λ-bacteriophage detection via co-culture with host cell Escherichia coli,” Lab Chip 14(18), 3519–3524 (2014).
[Crossref] [PubMed]

J. Q. Yu, Y. Yang, A. Q. Liu, L. K. Chin, and X. M. Zhang, “Microfluidic droplet grating for reconfigurable optical diffraction,” Opt. Lett. 35(11), 1890–1892 (2010).
[Crossref] [PubMed]

Yuan, X.

Zhang, D.

C. Fang, B. Dai, R. Zhuo, X. Yuan, X. Gao, J. Wen, B. Sheng, and D. Zhang, “Focal-length-tunable elastomer-based liquid-filled plano-convex mini lens,” Opt. Lett. 41(2), 404–407 (2016).
[Crossref] [PubMed]

C. Fang, B. Dai, R. Hong, C. Tao, Q. Wang, X. Wang, D. Zhang, and S. Zhuang, “Tunable optical limiting optofluidic device filled with graphene oxide dispersion in ethanol,” Sci. Rep. 5, 15362 (2015).
[Crossref] [PubMed]

Zhang, H.

M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, “Microfluidic sorting of mammalian cells by optical force switching,” Nat. Biotechnol. 23(1), 83–87 (2005).
[Crossref] [PubMed]

Zhang, J. B.

Z. G. Li, Y. Yang, X. M. Zhang, A. Q. Liu, J. B. Zhang, L. Cheng, and Z. H. Li, “Tunable visual color filter using microfluidic grating,” Biomicrofluidics 4(4), 043013 (2010).
[Crossref] [PubMed]

Zhang, X.

Zhang, X. M.

Y. Yang, A. Q. Liu, L. K. Chin, X. M. Zhang, D. P. Tsai, C. L. Lin, C. Lu, G. P. Wang, and N. I. Zheludev, “Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation,” Nat. Commun. 3, 651 (2012).
[Crossref] [PubMed]

Z. G. Li, Y. Yang, X. M. Zhang, A. Q. Liu, J. B. Zhang, L. Cheng, and Z. H. Li, “Tunable visual color filter using microfluidic grating,” Biomicrofluidics 4(4), 043013 (2010).
[Crossref] [PubMed]

J. Q. Yu, Y. Yang, A. Q. Liu, L. K. Chin, and X. M. Zhang, “Microfluidic droplet grating for reconfigurable optical diffraction,” Opt. Lett. 35(11), 1890–1892 (2010).
[Crossref] [PubMed]

Zhao, Y.

Y. Zhao, Z. S. Stratton, F. Guo, M. I. Lapsley, C. Y. Chan, S. C. S. Lin, and T. J. Huang, “Optofluidic imaging: now and beyond,” Lab Chip 13(1), 17–24 (2013).
[Crossref] [PubMed]

Zheludev, N. I.

Y. Yang, A. Q. Liu, L. K. Chin, X. M. Zhang, D. P. Tsai, C. L. Lin, C. Lu, G. P. Wang, and N. I. Zheludev, “Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation,” Nat. Commun. 3, 651 (2012).
[Crossref] [PubMed]

Zhou, X.

Y. Seow, A. Liu, L. Chin, X. Li, H. Huang, T. Cheng, and X. Zhou, “Different curvatures of tunable liquid microlens via the control of laminar flow rate,” Appl. Phys. Lett. 93(8), 084101 (2008).
[Crossref]

Zhu, Q.

G. Xiao, Q. Zhu, Y. Shen, K. Li, M. Liu, Q. Zhuang, and C. Jin, “A tunable submicro-optofluidic polymer filter based on guided-mode resonance,” Nanoscale 7(8), 3429–3434 (2015).
[Crossref] [PubMed]

Zhuang, Q.

G. Xiao, Q. Zhu, Y. Shen, K. Li, M. Liu, Q. Zhuang, and C. Jin, “A tunable submicro-optofluidic polymer filter based on guided-mode resonance,” Nanoscale 7(8), 3429–3434 (2015).
[Crossref] [PubMed]

Zhuang, S.

C. Fang, B. Dai, R. Hong, C. Tao, Q. Wang, X. Wang, D. Zhang, and S. Zhuang, “Tunable optical limiting optofluidic device filled with graphene oxide dispersion in ethanol,” Sci. Rep. 5, 15362 (2015).
[Crossref] [PubMed]

Zhuo, R.

Anal. Chem. (1)

D. C. Duffy, J. C. McDonald, O. J. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in polydimethylsiloxane,” Anal. Chem. 70(23), 4974–4984 (1998).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

Y. Seow, A. Liu, L. Chin, X. Li, H. Huang, T. Cheng, and X. Zhou, “Different curvatures of tunable liquid microlens via the control of laminar flow rate,” Appl. Phys. Lett. 93(8), 084101 (2008).
[Crossref]

M. I. Lapsley, S. C. S. Lin, X. Mao, and T. J. Huang, “An in-plane, variable optical attenuator using a fluid-based tunable reflective interface,” Appl. Phys. Lett. 95(8), 083507 (2009).
[Crossref]

Biomicrofluidics (3)

Z. G. Li, Y. Yang, X. M. Zhang, A. Q. Liu, J. B. Zhang, L. Cheng, and Z. H. Li, “Tunable visual color filter using microfluidic grating,” Biomicrofluidics 4(4), 043013 (2010).
[Crossref] [PubMed]

L. K. Chin, A. Q. Liu, C. S. Lim, C. L. Lin, T. C. Ayi, and P. H. Yap, “An optofluidic volume refractometer using Fabry-Pérot resonator with tunable liquid microlenses,” Biomicrofluidics 4(2), 024107 (2010).
[Crossref] [PubMed]

M. Rosenauer and M. J. Vellekoop, “Characterization of a microflow cytometer with an integrated three-dimensional optofluidic lens system,” Biomicrofluidics 4(4), 043005 (2010).
[Crossref] [PubMed]

Electrophoresis (1)

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. Schueller, and G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21(1), 27–40 (2000).
[Crossref] [PubMed]

Int. J. Heat Mass Tran (1)

H. Li, T. N. Wong, N. T. Nguyen, and J. C. Chai, “Numerical modeling of tunable optofluidics lens based on combined effect of hydrodynamics and electroosmosis,” Int. J. Heat Mass Tran 55(9-10), 2647–2655 (2012).
[Crossref]

J. Microelectromech. Syst. (1)

L. Dong and H. Jiang, “Selective formation and removal of liquid microlenses at predetermined locations within microfluidics through pneumatic control,” J. Microelectromech. Syst. 17(2), 381–392 (2008).
[Crossref]

Lab Chip (14)

X. Mao, J. R. Waldeisen, B. K. Juluri, and T. J. Huang, “Hydrodynamically tunable optofluidic cylindrical microlens,” Lab Chip 7(10), 1303–1308 (2007).
[Crossref] [PubMed]

H. Huang, X. Mao, S. C. S. Lin, B. Kiraly, Y. Huang, and T. J. Huang, “Tunable two-dimensional liquid gradient refractive index (L-GRIN) lens for variable light focusing,” Lab Chip 10(18), 2387–2393 (2010).
[Crossref] [PubMed]

H. Li, C. Song, T. D. Luong, N. T. Nguyen, and T. N. Wong, “An electrokinetically tunable optofluidic bi-concave lens,” Lab Chip 12(19), 3680–3687 (2012).
[Crossref] [PubMed]

J. Q. Yu, W. Huang, L. K. Chin, L. Lei, Z. P. Lin, W. Ser, H. Chen, T. C. Ayi, P. H. Yap, C. H. Chen, and A. Q. Liu, “Droplet optofluidic imaging for λ-bacteriophage detection via co-culture with host cell Escherichia coli,” Lab Chip 14(18), 3519–3524 (2014).
[Crossref] [PubMed]

S. K. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9(19), 2767–2771 (2009).
[Crossref] [PubMed]

L. K. Chin, A. Q. Liu, Y. C. Soh, C. S. Lim, and C. L. Lin, “A reconfigurable optofluidic Michelson interferometer using tunable droplet grating,” Lab Chip 10(8), 1072–1078 (2010).
[Crossref] [PubMed]

K. S. Chao, M. S. Lin, and R.-J. Yang, “An in-plane optofluidic microchip for focal point control,” Lab Chip 13(19), 3886–3892 (2013).
[Crossref] [PubMed]

M. Rosenauer and M. J. Vellekoop, “3D fluidic lens shaping--a multiconvex hydrodynamically adjustable optofluidic microlens,” Lab Chip 9(8), 1040–1042 (2009).
[Crossref] [PubMed]

X. Mao, J. R. Waldeisen, B. K. Juluri, and T. J. Huang, “Hydrodynamically tunable optofluidic cylindrical microlens,” Lab Chip 7(10), 1303–1308 (2007).
[Crossref] [PubMed]

X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, “Optofluidic microscopy--a method for implementing a high resolution optical microscope on a chip,” Lab Chip 6(10), 1274–1276 (2006).
[Crossref] [PubMed]

Y. Zhao, Z. S. Stratton, F. Guo, M. I. Lapsley, C. Y. Chan, S. C. S. Lin, and T. J. Huang, “Optofluidic imaging: now and beyond,” Lab Chip 13(1), 17–24 (2013).
[Crossref] [PubMed]

X. Mao, S. C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. J. Huang, “Tunable Liquid Gradient Refractive Index (L-GRIN) lens with two degrees of freedom,” Lab Chip 9(14), 2050–2058 (2009).
[Crossref] [PubMed]

S. K. Tang, C. A. Stan, and G. M. Whitesides, “Dynamically reconfigurable liquid-core liquid-cladding lens in a microfluidic channel,” Lab Chip 8(3), 395–401 (2008).
[Crossref] [PubMed]

C. Song, N.-T. Nguyen, S.-H. Tan, and A. K. Asundi, “Modelling and optimization of micro optofluidic lenses,” Lab Chip 9(9), 1178–1184 (2009).
[Crossref] [PubMed]

Microfluid. Nanofluidics (2)

C. Song, N. T. Nguyen, S.-H. Tan, and A. K. Asundi, “A tuneable micro-optofluidic biconvex lens with mathematically predictable focal length,” Microfluid. Nanofluidics 9(4–5), 889–896 (2010).
[Crossref]

J. Shi, Z. Stratton, S. C. S. Lin, H. Huang, and T. J. Huang, “Tunable optofluidic microlens through active pressure control of an air–liquid interface,” Microfluid. Nanofluidics 9(2-3), 313–318 (2010).
[Crossref]

Nanoscale (1)

G. Xiao, Q. Zhu, Y. Shen, K. Li, M. Liu, Q. Zhuang, and C. Jin, “A tunable submicro-optofluidic polymer filter based on guided-mode resonance,” Nanoscale 7(8), 3429–3434 (2015).
[Crossref] [PubMed]

Nat. Biotechnol. (1)

M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, “Microfluidic sorting of mammalian cells by optical force switching,” Nat. Biotechnol. 23(1), 83–87 (2005).
[Crossref] [PubMed]

Nat. Commun. (1)

Y. Yang, A. Q. Liu, L. K. Chin, X. M. Zhang, D. P. Tsai, C. L. Lin, C. Lu, G. P. Wang, and N. I. Zheludev, “Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation,” Nat. Commun. 3, 651 (2012).
[Crossref] [PubMed]

Nature (1)

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (3)

Phys. Fluids (1)

P. Kurowski, I. Ippolito, J. P. Hulin, J. Koplik, and E. J. Hinch, “J. Koplikand E. J. Hinch, “Anomalous dispersion in a dipole flow geometry,” Phys. Fluids 6(1), 108–117 (1994).
[Crossref]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

J. Koplik, S. Redner, and E. J. Hinch, “Tracer dispersion in planar multipole flows,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(6), 4650–4671 (1994).
[Crossref] [PubMed]

Sci. Rep. (1)

C. Fang, B. Dai, R. Hong, C. Tao, Q. Wang, X. Wang, D. Zhang, and S. Zhuang, “Tunable optical limiting optofluidic device filled with graphene oxide dispersion in ethanol,” Sci. Rep. 5, 15362 (2015).
[Crossref] [PubMed]

Other (1)

M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The operation principle of the proposed microlens. It is assumed that the input light is divergent. (a) The high RI fluid forms a biconvex microlens, and the curvature of the interface between high RI and low RI fluids is positive. The output light is focused. (b) The high RI fluid forms a biconvex microlens, and the curvature of the interface between high RI and low RI fluids is small. The output light is collimated. (c) The curvature of the interface between high RI and low RI fluids becomes negative. The output light is divergent. (d) The high RI fluids form a biconcave microlens. The output light severely diverges.

Fig. 2
Fig. 2

The coordinate of microlens model.

Fig. 3
Fig. 3

The streamlines for two-dimensional quadrupolar flow. Two sources are located at (–a, –b) and (–a, b) and two sinks are located at (a, –b) and (a, b). S+: source. S: sink.

Fig. 4
Fig. 4

(a) Photograph of the fully assembled optofluidic chip. (b) Magnified image of optical fiber, aperture, microchannels, and expansion chamber components of the optofluidic chip. (c) Schematic illustration showing the structure of the optofluidic chip.

Fig. 5
Fig. 5

Variation of microlenses. The interfaces of the microlenses are adjusted with the change of the flow rate ratio of calcium chloride solution and silicone oil. (a) and (b) Biconvex microlenses are formed when the flow rate ratios are 3:10 and 1:3, respectively. (b) Plano microlens is formed when the flow rate ratio is 9:20. (d) and (e) Biconcave microlenses are formed when the flow rate ratios are 1:2 and 7:13, respectively.

Fig. 6
Fig. 6

Experimental results for the focal distance of the microlens versus the flow rate ratio between calcium chloride solution and silicone oil. Re: Reynolds number; Pe: Peclet number.

Fig. 7
Fig. 7

Experimental results for the focal distance of the microlens versus the flow rate ratio between calcium chloride solution and silicone oil.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

W(z)= Q 2π [ ln(z+a+ib)+ln(z+aib)ln(za+ib)ln(zaib) +ln(z+ R 2 a+ib )+ln(z+ R 2 aib )ln(z R 2 a+ib )ln(z R 2 aib ) ],
{ x 2 + y 2 2by+ b 2 a 2 =0 axa, yb x 2 + y 2 +2by+ b 2 a 2 =0 axa, yb ,
φ= Q 2π { tan 1 ( y+b x+a )+ tan 1 ( yb x+a ) tan 1 ( yb xa ) tan 1 ( y+b xa )+ tan 1 ( ( a 2 + b 2 )yb R 2 ( a 2 + b 2 )x+a R 2 ) + tan 1 ( ( a 2 + b 2 )y+b R 2 ( a 2 + b 2 )x+a R 2 ) tan 1 ( ( a 2 + b 2 )yb R 2 ( a 2 + b 2 )xa R 2 ) tan 1 ( ( a 2 + b 2 )y+b R 2 ( a 2 + b 2 )xa R 2 )+c },
u= φ x = y+b (x+a) 2 + (y+b) 2 + yb (x+a) 2 + (yb) 2 yb (xa) 2 + (yb) 2 y+b (xa) 2 + (y+b) 2 + ( a 2 + b 2 )[( a 2 + b 2 )yb R 2 ] [( a 2 + b 2 )x+a R 2 ] 2 + [( a 2 + b 2 )yb R 2 ] 2 + ( a 2 + b 2 )[( a 2 + b 2 )y+b R 2 ] [( a 2 + b 2 )x+a R 2 ] 2 + [( a 2 + b 2 )y+b R 2 ] 2 ( a 2 + b 2 )[( a 2 + b 2 )xa R 2 ] [( a 2 + b 2 )xa R 2 ] 2 + [( a 2 + b 2 )yb R 2 ] 2 + ( a 2 + b 2 )[( a 2 + b 2 )xa R 2 ] [( a 2 + b 2 )xa R 2 ] 2 + [( a 2 + b 2 )y+b R 2 ] 2 u= φ y = x+a (x+a) 2 + (y+b) 2 + x+a (x+a) 2 + (yb) 2 xa (xa) 2 + (yb) 2 xa (xa) 2 + (y+b) 2 + ( a 2 + b 2 )[( a 2 + b 2 )x+a R 2 ] [( a 2 + b 2 )x+a R 2 ] 2 + [( a 2 + b 2 )yb R 2 ] 2 + (a+b) 2 [( a 2 + b 2 )x+a R 2 ] [( a 2 + b 2 )x+a R 2 ] 2 + [( a 2 + b 2 )y+b R 2 ] 2 ( a 2 + b 2 )[( a 2 + b 2 )xa R 2 ] [( a 2 + b 2 )xa R 2 ] 2 + [( a 2 + b 2 )yb R 2 ] 2 + (a+b) 2 [( a 2 + b 2 )xa R 2 ] [( a 2 + b 2 )xa R 2 ] 2 + [( a 2 + b 2 )y+b R 2 ] 2 ,
u= 2a a 2 + (y+b) 2 + 2a a 2 + (yb) 2 + 2a R 2 ( a 2 + b 2 ) a 2 R 4 + [( a 2 + b 2 )yb R 2 ] 2 + 2a R 2 ( a 2 + b 2 ) a 2 R 4 + [( a 2 + b 2 )y+b R 2 ] 2 , v=0
ϕ Cladding ϕ Core = tan 1 ( a+2b a )+ tan 1 ( a 2 b 2 ( a+b ) 2 )+ tan 1 ( a 3 +2 b 3 +2 a 2 b+3a b 2 a ( a+b ) 2 )+ π 4 2[ tan 1 ( s+2b a )+ tan 1 ( s a )+ tan 1 ( ( a 2 + b 2 )s+ a 3 b 3 a 2 ba b 2 a (a+b) 2 )+ tan 1 ( ( a 2 + b 2 )s+ a 3 + b 3 + a 2 b+a b 2 a (a+b) 2 ) ] 1 2 .
f= n 1 r 2 2( n 1 n 0 )[ ( n 1 n 0 )( s+b ) n 1 r ] .

Metrics