Abstract

An electro-optic (EO) polymer waveguide using an ultra-thin silicon hybrid has been designed and fabricated. The silicon core has the thickness of 50 nm and a width of 5 μm. The waveguide was completed after covering the cladding with the high temperature stable EO polymer. We have demonstrated a low half-wavelength voltage of 0.9 V at the wavelength of 1.55 μm by using a Mach-Zehnder interference modulator with TM mode operation. The measured modulation corresponded to an effective in-device EO coefficient of 165 pm/V. By utilizing the traveling-wave electrode on the modulator the high-frequency response was tested up to 40 GHz. The 3 dB modulation bandwidth was measured to be 23 GHz. In addition, the high frequency sideband spectral measurement revealed that a linear response of the modulation index against the RF power was confirmed up to 40 GHz signal.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High thermal stability 40 GHz electro-optic polymer modulators

Hiroki Miura, Feng Qiu, Andrew M. Spring, Tsubasa Kashino, Takamasa Kikuchi, Masaaki Ozawa, Hideyuki Nawata, Keisuke Odoi, and Shiyoshi Yokoyama
Opt. Express 25(23) 28643-28649 (2017)

Plate-slot polymer waveguide modulator on silicon-on-insulator

Feng Qiu, Andrew. M. Spring, Jianxun Hong, and Shiyoshi Yokoyama
Opt. Express 26(9) 11213-11221 (2018)

Alignment-free fabrication of a hybrid electro-optic polymer/ion-exchange glass coplanar modulator

Ismail Emre Araci, Roland Himmelhuber, Chris T. DeRose, J. D. Luo, A. K.-Y. Jen, R. A. Norwood, and N. Peyghambarian
Opt. Express 18(20) 21038-21046 (2010)

References

  • View by:
  • |
  • |
  • |

  1. J. D. Luo, S. Huang, Z. W. Shi, B. M. Polishak, X. H. Zhou, and A. K. Y. Jen, “Tailored organic electro-optic materials and their hybrid systems for device applications,” Chem. Mater. 23(3), 544–553 (2011).
    [Crossref]
  2. J. Luo and A. K. Y. Jen, “Highly efficient organic electrooptic materials and their hybrid systems for advanced photonic devices,” IEEE J. Sel. Top. Quantum Electron. 19(6), 42 (2013).
    [Crossref]
  3. X. Zhang, B. Lee, C. Lin, A. X. Wang, A. Hosseini, and R. T. Chen, “Highly linear broadband optical modulator based on electro-optic polymer,” IEEE Photonics J. 4(6), 2214–2228 (2012).
    [Crossref]
  4. H. Huang, S. R. Nuccio, Y. Yue, J.-Y. Yang, Y. Ren, C. Wei, G. Yu, R. Dinu, D. Parekh, C. J. Chang-Hasnain, and A. E. Willner, “Broadband modulation performance of 100-GHz EO polymer MZMs,” J. Lightwave Technol. 30(23), 3647–3652 (2012).
    [Crossref]
  5. H. Chen, B. Chen, D. Huang, D. Jin, J. D. Luo, A. K.-Y. Jen, and R. Dinu, “Broadband electro-optic polymer modulators with high electro-optic activity and low poling induced optical loss,” Appl. Phys. Lett. 93(4), 043507 (2008).
    [Crossref]
  6. H. Tanobe, Y. Kurata, Y. Nakanishi, H. Fukuyama, M. Itoh, and E. Yoshida, “Compact 100Gb/s DP-QPSK integrated receiver module employing three-dimensional assembly technology,” Opt. Express 22(5), 6108–6113 (2014).
    [Crossref] [PubMed]
  7. E. Lach and W. Idler, “Modulation formats for 100G and beyond,” Opt. Fiber Technol. 17(5), 377–386 (2011).
    [Crossref]
  8. M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298(5597), 1401–1403 (2002).
    [Crossref] [PubMed]
  9. D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70(25), 3335–3337 (1997).
    [Crossref]
  10. R. Dangel, J. Hofrichter, F. Horst, D. Jubin, A. La Porta, N. Meier, I. M. Soganci, J. Weiss, and B. J. Offrein, “Polymer waveguides for electro-optical integration in data centers and high-performance computers,” Opt. Express 23(4), 4736–4750 (2015).
    [Crossref] [PubMed]
  11. L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev. 110(1), 25–55 (2010).
    [Crossref] [PubMed]
  12. L. R. Dalton, S. J. Benight, L. E. Johnson, D. B. Knorr, I. Kosilkin, B. E. Eichinger, B. H. Robinson, A. K. Jen, and R. M. Overney, “Systematic nanoengineering of soft mater organic electro-optic materials,” Chem. Mater. 23(3), 430–445 (2011).
    [Crossref]
  13. T. Kim, J. Luo, Y. Cheng, Z. Shi, S. Hau, S. Jang, X. Zhou, Y. Tian, B. Polishak, S. Huang, H. Ma, L. R. Dalton, and A. K. Jen, “Binary chromophore systems in nonlinear optical dendrimers and polymers for large electrooptic activities,” J. Phys. Chem. C 112(21), 8091–8098 (2008).
    [Crossref]
  14. L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19(12), 11841–11851 (2011).
    [Crossref] [PubMed]
  15. X. Zhang, A. Hosseini, S. Chakravarty, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Wide optical spectrum range, subvolt, compact modulator based on an electro-optic polymer refilled silicon slot photonic crystal waveguide,” Opt. Lett. 38(22), 4931–4934 (2013).
    [Crossref] [PubMed]
  16. R. Palmer, S. Koeber, D. L. Elder, M. Woessner, W. Heni, D. Korn, M. Lauermann, W. Bogaerts, L. Dalton, W. Freude, J. Leuthold, and C. Koos, “High-speed, low drive-voltage silicon-organic hybrid modulator based on a binary-chromophore electro-optic material,” J. Lightwave Technol. 32(16), 2726–2734 (2014).
    [Crossref]
  17. X. Piao, Z. Zhang, Y. Mori, M. Koishi, A. Nakaya, S. Inoue, I. Aoki, A. Otomo, and S. Yokoyama, “Nonlinear optical side-chain polymers postfunctionalized with high-β chromophores exhibiting large electro-optic property,” J. Polym. Sci. A 49(1), 47–54 (2011).
    [Crossref]
  18. F. Qiu, H. Miura, A. M. Spring, J. Hong, D. Maeda, M. Ozawa, K. Odoi, and S. Yokoyama, “An electro-optic polymer-cladded TiO2 waveguide modulator,” Appl. Phys. Lett. 109(17), 173301 (2016).
    [Crossref]
  19. M. Oubaha, M. Smaihi, P. Etienne, P. Coudray, and Y. Moreau, “Spectroscopic characterization of intrinsic losses in an organic-inorganic hybrid waveguide synthesized by the sol-gel process,” J. Non-Cryst. Solids 318, 305–313 (2003).
  20. F. Qiu, A. M. Spring, F. Yu, A. I. Aoki, A. Otomo, and S. Yokoyama, “Electro-optic polymer / titanium dioxide hybrid core ring resonator modulators,” Laser Photonics Rev. 7(6), L84–L88 (2013).
    [Crossref]
  21. R. Song, H. Song, W. H. Steier, and C. H. Cox, “Analysis and demonstration of Mach-Zehnder polymer modulators using in-plane coplanar waveguide structure,” IEEE J. Quantum Electron. 43(8), 633–640 (2007).
    [Crossref]
  22. X. Zhang, A. Hosseini, X. Lin, H. Subbaraman, and R. T. Chen, “Polymer-based hybrid-integrated photonic devices for silicon on-chip modulation and board-level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19(6), 196 (2013).
    [Crossref]
  23. C. C. Teng, “Traveling-wave polymeric optical intensity modulator with more than 40 GHz of 3-dB electric bandwidth,” Appl. Phys. Lett. 60(13), 1538–1540 (1992).
    [Crossref]
  24. B. Li, J. Vemagiri, and R. Dinu, “Design and modeling of traveling-wave electro-optic polymer modulator for ultrahigh speed applications,” J. Lightwave Technol. 27(5), 606–611 (2009).
    [Crossref]
  25. X. Zhang, C. Chung, A. Hosseini, H. Subbaraman, J. Luo, A. K. Jen, R. L. Nelson, C. Y.-C. Lee, and R. T. Chen, “High performance optical modulator based on electro-optic polymer filled silicon slot photonic crystal waveguide,” J. Lightwave Technol. 34(12), 2941–2951 (2016).
    [Crossref]

2016 (2)

2015 (1)

2014 (2)

2013 (4)

J. Luo and A. K. Y. Jen, “Highly efficient organic electrooptic materials and their hybrid systems for advanced photonic devices,” IEEE J. Sel. Top. Quantum Electron. 19(6), 42 (2013).
[Crossref]

F. Qiu, A. M. Spring, F. Yu, A. I. Aoki, A. Otomo, and S. Yokoyama, “Electro-optic polymer / titanium dioxide hybrid core ring resonator modulators,” Laser Photonics Rev. 7(6), L84–L88 (2013).
[Crossref]

X. Zhang, A. Hosseini, X. Lin, H. Subbaraman, and R. T. Chen, “Polymer-based hybrid-integrated photonic devices for silicon on-chip modulation and board-level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19(6), 196 (2013).
[Crossref]

X. Zhang, A. Hosseini, S. Chakravarty, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Wide optical spectrum range, subvolt, compact modulator based on an electro-optic polymer refilled silicon slot photonic crystal waveguide,” Opt. Lett. 38(22), 4931–4934 (2013).
[Crossref] [PubMed]

2012 (2)

X. Zhang, B. Lee, C. Lin, A. X. Wang, A. Hosseini, and R. T. Chen, “Highly linear broadband optical modulator based on electro-optic polymer,” IEEE Photonics J. 4(6), 2214–2228 (2012).
[Crossref]

H. Huang, S. R. Nuccio, Y. Yue, J.-Y. Yang, Y. Ren, C. Wei, G. Yu, R. Dinu, D. Parekh, C. J. Chang-Hasnain, and A. E. Willner, “Broadband modulation performance of 100-GHz EO polymer MZMs,” J. Lightwave Technol. 30(23), 3647–3652 (2012).
[Crossref]

2011 (5)

E. Lach and W. Idler, “Modulation formats for 100G and beyond,” Opt. Fiber Technol. 17(5), 377–386 (2011).
[Crossref]

X. Piao, Z. Zhang, Y. Mori, M. Koishi, A. Nakaya, S. Inoue, I. Aoki, A. Otomo, and S. Yokoyama, “Nonlinear optical side-chain polymers postfunctionalized with high-β chromophores exhibiting large electro-optic property,” J. Polym. Sci. A 49(1), 47–54 (2011).
[Crossref]

J. D. Luo, S. Huang, Z. W. Shi, B. M. Polishak, X. H. Zhou, and A. K. Y. Jen, “Tailored organic electro-optic materials and their hybrid systems for device applications,” Chem. Mater. 23(3), 544–553 (2011).
[Crossref]

L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19(12), 11841–11851 (2011).
[Crossref] [PubMed]

L. R. Dalton, S. J. Benight, L. E. Johnson, D. B. Knorr, I. Kosilkin, B. E. Eichinger, B. H. Robinson, A. K. Jen, and R. M. Overney, “Systematic nanoengineering of soft mater organic electro-optic materials,” Chem. Mater. 23(3), 430–445 (2011).
[Crossref]

2010 (1)

L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev. 110(1), 25–55 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (2)

T. Kim, J. Luo, Y. Cheng, Z. Shi, S. Hau, S. Jang, X. Zhou, Y. Tian, B. Polishak, S. Huang, H. Ma, L. R. Dalton, and A. K. Jen, “Binary chromophore systems in nonlinear optical dendrimers and polymers for large electrooptic activities,” J. Phys. Chem. C 112(21), 8091–8098 (2008).
[Crossref]

H. Chen, B. Chen, D. Huang, D. Jin, J. D. Luo, A. K.-Y. Jen, and R. Dinu, “Broadband electro-optic polymer modulators with high electro-optic activity and low poling induced optical loss,” Appl. Phys. Lett. 93(4), 043507 (2008).
[Crossref]

2007 (1)

R. Song, H. Song, W. H. Steier, and C. H. Cox, “Analysis and demonstration of Mach-Zehnder polymer modulators using in-plane coplanar waveguide structure,” IEEE J. Quantum Electron. 43(8), 633–640 (2007).
[Crossref]

2003 (1)

M. Oubaha, M. Smaihi, P. Etienne, P. Coudray, and Y. Moreau, “Spectroscopic characterization of intrinsic losses in an organic-inorganic hybrid waveguide synthesized by the sol-gel process,” J. Non-Cryst. Solids 318, 305–313 (2003).

2002 (1)

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298(5597), 1401–1403 (2002).
[Crossref] [PubMed]

1997 (1)

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70(25), 3335–3337 (1997).
[Crossref]

1992 (1)

C. C. Teng, “Traveling-wave polymeric optical intensity modulator with more than 40 GHz of 3-dB electric bandwidth,” Appl. Phys. Lett. 60(13), 1538–1540 (1992).
[Crossref]

Alloatti, L.

Aoki, A. I.

F. Qiu, A. M. Spring, F. Yu, A. I. Aoki, A. Otomo, and S. Yokoyama, “Electro-optic polymer / titanium dioxide hybrid core ring resonator modulators,” Laser Photonics Rev. 7(6), L84–L88 (2013).
[Crossref]

Aoki, I.

X. Piao, Z. Zhang, Y. Mori, M. Koishi, A. Nakaya, S. Inoue, I. Aoki, A. Otomo, and S. Yokoyama, “Nonlinear optical side-chain polymers postfunctionalized with high-β chromophores exhibiting large electro-optic property,” J. Polym. Sci. A 49(1), 47–54 (2011).
[Crossref]

Baets, R.

Bale, D. H.

L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev. 110(1), 25–55 (2010).
[Crossref] [PubMed]

Barklund, A.

Benight, S. J.

L. R. Dalton, S. J. Benight, L. E. Johnson, D. B. Knorr, I. Kosilkin, B. E. Eichinger, B. H. Robinson, A. K. Jen, and R. M. Overney, “Systematic nanoengineering of soft mater organic electro-optic materials,” Chem. Mater. 23(3), 430–445 (2011).
[Crossref]

Bogaerts, W.

Chakravarty, S.

Chang-Hasnain, C. J.

Chen, A.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70(25), 3335–3337 (1997).
[Crossref]

Chen, B.

H. Chen, B. Chen, D. Huang, D. Jin, J. D. Luo, A. K.-Y. Jen, and R. Dinu, “Broadband electro-optic polymer modulators with high electro-optic activity and low poling induced optical loss,” Appl. Phys. Lett. 93(4), 043507 (2008).
[Crossref]

Chen, D.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70(25), 3335–3337 (1997).
[Crossref]

Chen, H.

H. Chen, B. Chen, D. Huang, D. Jin, J. D. Luo, A. K.-Y. Jen, and R. Dinu, “Broadband electro-optic polymer modulators with high electro-optic activity and low poling induced optical loss,” Appl. Phys. Lett. 93(4), 043507 (2008).
[Crossref]

Chen, R. T.

X. Zhang, C. Chung, A. Hosseini, H. Subbaraman, J. Luo, A. K. Jen, R. L. Nelson, C. Y.-C. Lee, and R. T. Chen, “High performance optical modulator based on electro-optic polymer filled silicon slot photonic crystal waveguide,” J. Lightwave Technol. 34(12), 2941–2951 (2016).
[Crossref]

X. Zhang, A. Hosseini, X. Lin, H. Subbaraman, and R. T. Chen, “Polymer-based hybrid-integrated photonic devices for silicon on-chip modulation and board-level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19(6), 196 (2013).
[Crossref]

X. Zhang, A. Hosseini, S. Chakravarty, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Wide optical spectrum range, subvolt, compact modulator based on an electro-optic polymer refilled silicon slot photonic crystal waveguide,” Opt. Lett. 38(22), 4931–4934 (2013).
[Crossref] [PubMed]

X. Zhang, B. Lee, C. Lin, A. X. Wang, A. Hosseini, and R. T. Chen, “Highly linear broadband optical modulator based on electro-optic polymer,” IEEE Photonics J. 4(6), 2214–2228 (2012).
[Crossref]

Cheng, Y.

T. Kim, J. Luo, Y. Cheng, Z. Shi, S. Hau, S. Jang, X. Zhou, Y. Tian, B. Polishak, S. Huang, H. Ma, L. R. Dalton, and A. K. Jen, “Binary chromophore systems in nonlinear optical dendrimers and polymers for large electrooptic activities,” J. Phys. Chem. C 112(21), 8091–8098 (2008).
[Crossref]

Chung, C.

Coudray, P.

M. Oubaha, M. Smaihi, P. Etienne, P. Coudray, and Y. Moreau, “Spectroscopic characterization of intrinsic losses in an organic-inorganic hybrid waveguide synthesized by the sol-gel process,” J. Non-Cryst. Solids 318, 305–313 (2003).

Cox, C. H.

R. Song, H. Song, W. H. Steier, and C. H. Cox, “Analysis and demonstration of Mach-Zehnder polymer modulators using in-plane coplanar waveguide structure,” IEEE J. Quantum Electron. 43(8), 633–640 (2007).
[Crossref]

Dalton, L.

Dalton, L. R.

L. R. Dalton, S. J. Benight, L. E. Johnson, D. B. Knorr, I. Kosilkin, B. E. Eichinger, B. H. Robinson, A. K. Jen, and R. M. Overney, “Systematic nanoengineering of soft mater organic electro-optic materials,” Chem. Mater. 23(3), 430–445 (2011).
[Crossref]

L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev. 110(1), 25–55 (2010).
[Crossref] [PubMed]

T. Kim, J. Luo, Y. Cheng, Z. Shi, S. Hau, S. Jang, X. Zhou, Y. Tian, B. Polishak, S. Huang, H. Ma, L. R. Dalton, and A. K. Jen, “Binary chromophore systems in nonlinear optical dendrimers and polymers for large electrooptic activities,” J. Phys. Chem. C 112(21), 8091–8098 (2008).
[Crossref]

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70(25), 3335–3337 (1997).
[Crossref]

Dangel, R.

Dinu, R.

Dumon, P.

Eichinger, B. E.

L. R. Dalton, S. J. Benight, L. E. Johnson, D. B. Knorr, I. Kosilkin, B. E. Eichinger, B. H. Robinson, A. K. Jen, and R. M. Overney, “Systematic nanoengineering of soft mater organic electro-optic materials,” Chem. Mater. 23(3), 430–445 (2011).
[Crossref]

Elder, D. L.

Erben, C.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298(5597), 1401–1403 (2002).
[Crossref] [PubMed]

Etienne, P.

M. Oubaha, M. Smaihi, P. Etienne, P. Coudray, and Y. Moreau, “Spectroscopic characterization of intrinsic losses in an organic-inorganic hybrid waveguide synthesized by the sol-gel process,” J. Non-Cryst. Solids 318, 305–313 (2003).

Fedeli, J.

Fetterman, H. R.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70(25), 3335–3337 (1997).
[Crossref]

Fournier, M.

Freude, W.

Fukuyama, H.

Gill, D. M.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298(5597), 1401–1403 (2002).
[Crossref] [PubMed]

Gopalan, P.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298(5597), 1401–1403 (2002).
[Crossref] [PubMed]

Hau, S.

T. Kim, J. Luo, Y. Cheng, Z. Shi, S. Hau, S. Jang, X. Zhou, Y. Tian, B. Polishak, S. Huang, H. Ma, L. R. Dalton, and A. K. Jen, “Binary chromophore systems in nonlinear optical dendrimers and polymers for large electrooptic activities,” J. Phys. Chem. C 112(21), 8091–8098 (2008).
[Crossref]

Heber, J. D.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298(5597), 1401–1403 (2002).
[Crossref] [PubMed]

Heni, W.

Hillerkuss, D.

Hofrichter, J.

Hong, J.

F. Qiu, H. Miura, A. M. Spring, J. Hong, D. Maeda, M. Ozawa, K. Odoi, and S. Yokoyama, “An electro-optic polymer-cladded TiO2 waveguide modulator,” Appl. Phys. Lett. 109(17), 173301 (2016).
[Crossref]

Horst, F.

Hosseini, A.

X. Zhang, C. Chung, A. Hosseini, H. Subbaraman, J. Luo, A. K. Jen, R. L. Nelson, C. Y.-C. Lee, and R. T. Chen, “High performance optical modulator based on electro-optic polymer filled silicon slot photonic crystal waveguide,” J. Lightwave Technol. 34(12), 2941–2951 (2016).
[Crossref]

X. Zhang, A. Hosseini, S. Chakravarty, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Wide optical spectrum range, subvolt, compact modulator based on an electro-optic polymer refilled silicon slot photonic crystal waveguide,” Opt. Lett. 38(22), 4931–4934 (2013).
[Crossref] [PubMed]

X. Zhang, A. Hosseini, X. Lin, H. Subbaraman, and R. T. Chen, “Polymer-based hybrid-integrated photonic devices for silicon on-chip modulation and board-level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19(6), 196 (2013).
[Crossref]

X. Zhang, B. Lee, C. Lin, A. X. Wang, A. Hosseini, and R. T. Chen, “Highly linear broadband optical modulator based on electro-optic polymer,” IEEE Photonics J. 4(6), 2214–2228 (2012).
[Crossref]

Huang, D.

H. Chen, B. Chen, D. Huang, D. Jin, J. D. Luo, A. K.-Y. Jen, and R. Dinu, “Broadband electro-optic polymer modulators with high electro-optic activity and low poling induced optical loss,” Appl. Phys. Lett. 93(4), 043507 (2008).
[Crossref]

Huang, H.

Huang, S.

J. D. Luo, S. Huang, Z. W. Shi, B. M. Polishak, X. H. Zhou, and A. K. Y. Jen, “Tailored organic electro-optic materials and their hybrid systems for device applications,” Chem. Mater. 23(3), 544–553 (2011).
[Crossref]

T. Kim, J. Luo, Y. Cheng, Z. Shi, S. Hau, S. Jang, X. Zhou, Y. Tian, B. Polishak, S. Huang, H. Ma, L. R. Dalton, and A. K. Jen, “Binary chromophore systems in nonlinear optical dendrimers and polymers for large electrooptic activities,” J. Phys. Chem. C 112(21), 8091–8098 (2008).
[Crossref]

Idler, W.

E. Lach and W. Idler, “Modulation formats for 100G and beyond,” Opt. Fiber Technol. 17(5), 377–386 (2011).
[Crossref]

Inoue, S.

X. Piao, Z. Zhang, Y. Mori, M. Koishi, A. Nakaya, S. Inoue, I. Aoki, A. Otomo, and S. Yokoyama, “Nonlinear optical side-chain polymers postfunctionalized with high-β chromophores exhibiting large electro-optic property,” J. Polym. Sci. A 49(1), 47–54 (2011).
[Crossref]

Itoh, M.

Jang, S.

T. Kim, J. Luo, Y. Cheng, Z. Shi, S. Hau, S. Jang, X. Zhou, Y. Tian, B. Polishak, S. Huang, H. Ma, L. R. Dalton, and A. K. Jen, “Binary chromophore systems in nonlinear optical dendrimers and polymers for large electrooptic activities,” J. Phys. Chem. C 112(21), 8091–8098 (2008).
[Crossref]

Jen, A. K.

X. Zhang, C. Chung, A. Hosseini, H. Subbaraman, J. Luo, A. K. Jen, R. L. Nelson, C. Y.-C. Lee, and R. T. Chen, “High performance optical modulator based on electro-optic polymer filled silicon slot photonic crystal waveguide,” J. Lightwave Technol. 34(12), 2941–2951 (2016).
[Crossref]

L. R. Dalton, S. J. Benight, L. E. Johnson, D. B. Knorr, I. Kosilkin, B. E. Eichinger, B. H. Robinson, A. K. Jen, and R. M. Overney, “Systematic nanoengineering of soft mater organic electro-optic materials,” Chem. Mater. 23(3), 430–445 (2011).
[Crossref]

T. Kim, J. Luo, Y. Cheng, Z. Shi, S. Hau, S. Jang, X. Zhou, Y. Tian, B. Polishak, S. Huang, H. Ma, L. R. Dalton, and A. K. Jen, “Binary chromophore systems in nonlinear optical dendrimers and polymers for large electrooptic activities,” J. Phys. Chem. C 112(21), 8091–8098 (2008).
[Crossref]

Jen, A. K. Y.

J. Luo and A. K. Y. Jen, “Highly efficient organic electrooptic materials and their hybrid systems for advanced photonic devices,” IEEE J. Sel. Top. Quantum Electron. 19(6), 42 (2013).
[Crossref]

J. D. Luo, S. Huang, Z. W. Shi, B. M. Polishak, X. H. Zhou, and A. K. Y. Jen, “Tailored organic electro-optic materials and their hybrid systems for device applications,” Chem. Mater. 23(3), 544–553 (2011).
[Crossref]

Jen, A. K.-Y.

X. Zhang, A. Hosseini, S. Chakravarty, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Wide optical spectrum range, subvolt, compact modulator based on an electro-optic polymer refilled silicon slot photonic crystal waveguide,” Opt. Lett. 38(22), 4931–4934 (2013).
[Crossref] [PubMed]

H. Chen, B. Chen, D. Huang, D. Jin, J. D. Luo, A. K.-Y. Jen, and R. Dinu, “Broadband electro-optic polymer modulators with high electro-optic activity and low poling induced optical loss,” Appl. Phys. Lett. 93(4), 043507 (2008).
[Crossref]

Jin, D.

H. Chen, B. Chen, D. Huang, D. Jin, J. D. Luo, A. K.-Y. Jen, and R. Dinu, “Broadband electro-optic polymer modulators with high electro-optic activity and low poling induced optical loss,” Appl. Phys. Lett. 93(4), 043507 (2008).
[Crossref]

Johnson, L. E.

L. R. Dalton, S. J. Benight, L. E. Johnson, D. B. Knorr, I. Kosilkin, B. E. Eichinger, B. H. Robinson, A. K. Jen, and R. M. Overney, “Systematic nanoengineering of soft mater organic electro-optic materials,” Chem. Mater. 23(3), 430–445 (2011).
[Crossref]

Jubin, D.

Katz, H. E.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298(5597), 1401–1403 (2002).
[Crossref] [PubMed]

Kim, T.

T. Kim, J. Luo, Y. Cheng, Z. Shi, S. Hau, S. Jang, X. Zhou, Y. Tian, B. Polishak, S. Huang, H. Ma, L. R. Dalton, and A. K. Jen, “Binary chromophore systems in nonlinear optical dendrimers and polymers for large electrooptic activities,” J. Phys. Chem. C 112(21), 8091–8098 (2008).
[Crossref]

Knorr, D. B.

L. R. Dalton, S. J. Benight, L. E. Johnson, D. B. Knorr, I. Kosilkin, B. E. Eichinger, B. H. Robinson, A. K. Jen, and R. M. Overney, “Systematic nanoengineering of soft mater organic electro-optic materials,” Chem. Mater. 23(3), 430–445 (2011).
[Crossref]

Koeber, S.

Koishi, M.

X. Piao, Z. Zhang, Y. Mori, M. Koishi, A. Nakaya, S. Inoue, I. Aoki, A. Otomo, and S. Yokoyama, “Nonlinear optical side-chain polymers postfunctionalized with high-β chromophores exhibiting large electro-optic property,” J. Polym. Sci. A 49(1), 47–54 (2011).
[Crossref]

Koos, C.

Korn, D.

Kosilkin, I.

L. R. Dalton, S. J. Benight, L. E. Johnson, D. B. Knorr, I. Kosilkin, B. E. Eichinger, B. H. Robinson, A. K. Jen, and R. M. Overney, “Systematic nanoengineering of soft mater organic electro-optic materials,” Chem. Mater. 23(3), 430–445 (2011).
[Crossref]

Kurata, Y.

La Porta, A.

Lach, E.

E. Lach and W. Idler, “Modulation formats for 100G and beyond,” Opt. Fiber Technol. 17(5), 377–386 (2011).
[Crossref]

Lauermann, M.

Lee, B.

X. Zhang, B. Lee, C. Lin, A. X. Wang, A. Hosseini, and R. T. Chen, “Highly linear broadband optical modulator based on electro-optic polymer,” IEEE Photonics J. 4(6), 2214–2228 (2012).
[Crossref]

Lee, C. Y.-C.

Lee, M.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298(5597), 1401–1403 (2002).
[Crossref] [PubMed]

Leuthold, J.

Li, B.

Li, J.

Lin, C.

X. Zhang, B. Lee, C. Lin, A. X. Wang, A. Hosseini, and R. T. Chen, “Highly linear broadband optical modulator based on electro-optic polymer,” IEEE Photonics J. 4(6), 2214–2228 (2012).
[Crossref]

Lin, X.

X. Zhang, A. Hosseini, X. Lin, H. Subbaraman, and R. T. Chen, “Polymer-based hybrid-integrated photonic devices for silicon on-chip modulation and board-level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19(6), 196 (2013).
[Crossref]

Luo, J.

X. Zhang, C. Chung, A. Hosseini, H. Subbaraman, J. Luo, A. K. Jen, R. L. Nelson, C. Y.-C. Lee, and R. T. Chen, “High performance optical modulator based on electro-optic polymer filled silicon slot photonic crystal waveguide,” J. Lightwave Technol. 34(12), 2941–2951 (2016).
[Crossref]

X. Zhang, A. Hosseini, S. Chakravarty, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Wide optical spectrum range, subvolt, compact modulator based on an electro-optic polymer refilled silicon slot photonic crystal waveguide,” Opt. Lett. 38(22), 4931–4934 (2013).
[Crossref] [PubMed]

J. Luo and A. K. Y. Jen, “Highly efficient organic electrooptic materials and their hybrid systems for advanced photonic devices,” IEEE J. Sel. Top. Quantum Electron. 19(6), 42 (2013).
[Crossref]

T. Kim, J. Luo, Y. Cheng, Z. Shi, S. Hau, S. Jang, X. Zhou, Y. Tian, B. Polishak, S. Huang, H. Ma, L. R. Dalton, and A. K. Jen, “Binary chromophore systems in nonlinear optical dendrimers and polymers for large electrooptic activities,” J. Phys. Chem. C 112(21), 8091–8098 (2008).
[Crossref]

Luo, J. D.

J. D. Luo, S. Huang, Z. W. Shi, B. M. Polishak, X. H. Zhou, and A. K. Y. Jen, “Tailored organic electro-optic materials and their hybrid systems for device applications,” Chem. Mater. 23(3), 544–553 (2011).
[Crossref]

H. Chen, B. Chen, D. Huang, D. Jin, J. D. Luo, A. K.-Y. Jen, and R. Dinu, “Broadband electro-optic polymer modulators with high electro-optic activity and low poling induced optical loss,” Appl. Phys. Lett. 93(4), 043507 (2008).
[Crossref]

Ma, H.

T. Kim, J. Luo, Y. Cheng, Z. Shi, S. Hau, S. Jang, X. Zhou, Y. Tian, B. Polishak, S. Huang, H. Ma, L. R. Dalton, and A. K. Jen, “Binary chromophore systems in nonlinear optical dendrimers and polymers for large electrooptic activities,” J. Phys. Chem. C 112(21), 8091–8098 (2008).
[Crossref]

Maeda, D.

F. Qiu, H. Miura, A. M. Spring, J. Hong, D. Maeda, M. Ozawa, K. Odoi, and S. Yokoyama, “An electro-optic polymer-cladded TiO2 waveguide modulator,” Appl. Phys. Lett. 109(17), 173301 (2016).
[Crossref]

McGee, D. J.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298(5597), 1401–1403 (2002).
[Crossref] [PubMed]

Meier, N.

Miura, H.

F. Qiu, H. Miura, A. M. Spring, J. Hong, D. Maeda, M. Ozawa, K. Odoi, and S. Yokoyama, “An electro-optic polymer-cladded TiO2 waveguide modulator,” Appl. Phys. Lett. 109(17), 173301 (2016).
[Crossref]

Moreau, Y.

M. Oubaha, M. Smaihi, P. Etienne, P. Coudray, and Y. Moreau, “Spectroscopic characterization of intrinsic losses in an organic-inorganic hybrid waveguide synthesized by the sol-gel process,” J. Non-Cryst. Solids 318, 305–313 (2003).

Mori, Y.

X. Piao, Z. Zhang, Y. Mori, M. Koishi, A. Nakaya, S. Inoue, I. Aoki, A. Otomo, and S. Yokoyama, “Nonlinear optical side-chain polymers postfunctionalized with high-β chromophores exhibiting large electro-optic property,” J. Polym. Sci. A 49(1), 47–54 (2011).
[Crossref]

Nakanishi, Y.

Nakaya, A.

X. Piao, Z. Zhang, Y. Mori, M. Koishi, A. Nakaya, S. Inoue, I. Aoki, A. Otomo, and S. Yokoyama, “Nonlinear optical side-chain polymers postfunctionalized with high-β chromophores exhibiting large electro-optic property,” J. Polym. Sci. A 49(1), 47–54 (2011).
[Crossref]

Nelson, R. L.

Nuccio, S. R.

Odoi, K.

F. Qiu, H. Miura, A. M. Spring, J. Hong, D. Maeda, M. Ozawa, K. Odoi, and S. Yokoyama, “An electro-optic polymer-cladded TiO2 waveguide modulator,” Appl. Phys. Lett. 109(17), 173301 (2016).
[Crossref]

Offrein, B. J.

Otomo, A.

F. Qiu, A. M. Spring, F. Yu, A. I. Aoki, A. Otomo, and S. Yokoyama, “Electro-optic polymer / titanium dioxide hybrid core ring resonator modulators,” Laser Photonics Rev. 7(6), L84–L88 (2013).
[Crossref]

X. Piao, Z. Zhang, Y. Mori, M. Koishi, A. Nakaya, S. Inoue, I. Aoki, A. Otomo, and S. Yokoyama, “Nonlinear optical side-chain polymers postfunctionalized with high-β chromophores exhibiting large electro-optic property,” J. Polym. Sci. A 49(1), 47–54 (2011).
[Crossref]

Oubaha, M.

M. Oubaha, M. Smaihi, P. Etienne, P. Coudray, and Y. Moreau, “Spectroscopic characterization of intrinsic losses in an organic-inorganic hybrid waveguide synthesized by the sol-gel process,” J. Non-Cryst. Solids 318, 305–313 (2003).

Overney, R. M.

L. R. Dalton, S. J. Benight, L. E. Johnson, D. B. Knorr, I. Kosilkin, B. E. Eichinger, B. H. Robinson, A. K. Jen, and R. M. Overney, “Systematic nanoengineering of soft mater organic electro-optic materials,” Chem. Mater. 23(3), 430–445 (2011).
[Crossref]

Ozawa, M.

F. Qiu, H. Miura, A. M. Spring, J. Hong, D. Maeda, M. Ozawa, K. Odoi, and S. Yokoyama, “An electro-optic polymer-cladded TiO2 waveguide modulator,” Appl. Phys. Lett. 109(17), 173301 (2016).
[Crossref]

Palmer, R.

Parekh, D.

Piao, X.

X. Piao, Z. Zhang, Y. Mori, M. Koishi, A. Nakaya, S. Inoue, I. Aoki, A. Otomo, and S. Yokoyama, “Nonlinear optical side-chain polymers postfunctionalized with high-β chromophores exhibiting large electro-optic property,” J. Polym. Sci. A 49(1), 47–54 (2011).
[Crossref]

Polishak, B.

T. Kim, J. Luo, Y. Cheng, Z. Shi, S. Hau, S. Jang, X. Zhou, Y. Tian, B. Polishak, S. Huang, H. Ma, L. R. Dalton, and A. K. Jen, “Binary chromophore systems in nonlinear optical dendrimers and polymers for large electrooptic activities,” J. Phys. Chem. C 112(21), 8091–8098 (2008).
[Crossref]

Polishak, B. M.

J. D. Luo, S. Huang, Z. W. Shi, B. M. Polishak, X. H. Zhou, and A. K. Y. Jen, “Tailored organic electro-optic materials and their hybrid systems for device applications,” Chem. Mater. 23(3), 544–553 (2011).
[Crossref]

Qiu, F.

F. Qiu, H. Miura, A. M. Spring, J. Hong, D. Maeda, M. Ozawa, K. Odoi, and S. Yokoyama, “An electro-optic polymer-cladded TiO2 waveguide modulator,” Appl. Phys. Lett. 109(17), 173301 (2016).
[Crossref]

F. Qiu, A. M. Spring, F. Yu, A. I. Aoki, A. Otomo, and S. Yokoyama, “Electro-optic polymer / titanium dioxide hybrid core ring resonator modulators,” Laser Photonics Rev. 7(6), L84–L88 (2013).
[Crossref]

Ren, Y.

Robinson, B. H.

L. R. Dalton, S. J. Benight, L. E. Johnson, D. B. Knorr, I. Kosilkin, B. E. Eichinger, B. H. Robinson, A. K. Jen, and R. M. Overney, “Systematic nanoengineering of soft mater organic electro-optic materials,” Chem. Mater. 23(3), 430–445 (2011).
[Crossref]

Shi, Y.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70(25), 3335–3337 (1997).
[Crossref]

Shi, Z.

T. Kim, J. Luo, Y. Cheng, Z. Shi, S. Hau, S. Jang, X. Zhou, Y. Tian, B. Polishak, S. Huang, H. Ma, L. R. Dalton, and A. K. Jen, “Binary chromophore systems in nonlinear optical dendrimers and polymers for large electrooptic activities,” J. Phys. Chem. C 112(21), 8091–8098 (2008).
[Crossref]

Shi, Z. W.

J. D. Luo, S. Huang, Z. W. Shi, B. M. Polishak, X. H. Zhou, and A. K. Y. Jen, “Tailored organic electro-optic materials and their hybrid systems for device applications,” Chem. Mater. 23(3), 544–553 (2011).
[Crossref]

Smaihi, M.

M. Oubaha, M. Smaihi, P. Etienne, P. Coudray, and Y. Moreau, “Spectroscopic characterization of intrinsic losses in an organic-inorganic hybrid waveguide synthesized by the sol-gel process,” J. Non-Cryst. Solids 318, 305–313 (2003).

Soganci, I. M.

Song, H.

R. Song, H. Song, W. H. Steier, and C. H. Cox, “Analysis and demonstration of Mach-Zehnder polymer modulators using in-plane coplanar waveguide structure,” IEEE J. Quantum Electron. 43(8), 633–640 (2007).
[Crossref]

Song, R.

R. Song, H. Song, W. H. Steier, and C. H. Cox, “Analysis and demonstration of Mach-Zehnder polymer modulators using in-plane coplanar waveguide structure,” IEEE J. Quantum Electron. 43(8), 633–640 (2007).
[Crossref]

Spring, A. M.

F. Qiu, H. Miura, A. M. Spring, J. Hong, D. Maeda, M. Ozawa, K. Odoi, and S. Yokoyama, “An electro-optic polymer-cladded TiO2 waveguide modulator,” Appl. Phys. Lett. 109(17), 173301 (2016).
[Crossref]

F. Qiu, A. M. Spring, F. Yu, A. I. Aoki, A. Otomo, and S. Yokoyama, “Electro-optic polymer / titanium dioxide hybrid core ring resonator modulators,” Laser Photonics Rev. 7(6), L84–L88 (2013).
[Crossref]

Steier, W. H.

R. Song, H. Song, W. H. Steier, and C. H. Cox, “Analysis and demonstration of Mach-Zehnder polymer modulators using in-plane coplanar waveguide structure,” IEEE J. Quantum Electron. 43(8), 633–640 (2007).
[Crossref]

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70(25), 3335–3337 (1997).
[Crossref]

Subbaraman, H.

X. Zhang, C. Chung, A. Hosseini, H. Subbaraman, J. Luo, A. K. Jen, R. L. Nelson, C. Y.-C. Lee, and R. T. Chen, “High performance optical modulator based on electro-optic polymer filled silicon slot photonic crystal waveguide,” J. Lightwave Technol. 34(12), 2941–2951 (2016).
[Crossref]

X. Zhang, A. Hosseini, X. Lin, H. Subbaraman, and R. T. Chen, “Polymer-based hybrid-integrated photonic devices for silicon on-chip modulation and board-level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19(6), 196 (2013).
[Crossref]

Sullivan, P. A.

L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev. 110(1), 25–55 (2010).
[Crossref] [PubMed]

Tanobe, H.

Teng, C. C.

C. C. Teng, “Traveling-wave polymeric optical intensity modulator with more than 40 GHz of 3-dB electric bandwidth,” Appl. Phys. Lett. 60(13), 1538–1540 (1992).
[Crossref]

Tian, Y.

T. Kim, J. Luo, Y. Cheng, Z. Shi, S. Hau, S. Jang, X. Zhou, Y. Tian, B. Polishak, S. Huang, H. Ma, L. R. Dalton, and A. K. Jen, “Binary chromophore systems in nonlinear optical dendrimers and polymers for large electrooptic activities,” J. Phys. Chem. C 112(21), 8091–8098 (2008).
[Crossref]

Vemagiri, J.

Wang, A. X.

X. Zhang, B. Lee, C. Lin, A. X. Wang, A. Hosseini, and R. T. Chen, “Highly linear broadband optical modulator based on electro-optic polymer,” IEEE Photonics J. 4(6), 2214–2228 (2012).
[Crossref]

Wang, W.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70(25), 3335–3337 (1997).
[Crossref]

Wei, C.

Weiss, J.

Wieland, J.

Willner, A. E.

Woessner, M.

Yang, J.-Y.

Yokoyama, S.

F. Qiu, H. Miura, A. M. Spring, J. Hong, D. Maeda, M. Ozawa, K. Odoi, and S. Yokoyama, “An electro-optic polymer-cladded TiO2 waveguide modulator,” Appl. Phys. Lett. 109(17), 173301 (2016).
[Crossref]

F. Qiu, A. M. Spring, F. Yu, A. I. Aoki, A. Otomo, and S. Yokoyama, “Electro-optic polymer / titanium dioxide hybrid core ring resonator modulators,” Laser Photonics Rev. 7(6), L84–L88 (2013).
[Crossref]

X. Piao, Z. Zhang, Y. Mori, M. Koishi, A. Nakaya, S. Inoue, I. Aoki, A. Otomo, and S. Yokoyama, “Nonlinear optical side-chain polymers postfunctionalized with high-β chromophores exhibiting large electro-optic property,” J. Polym. Sci. A 49(1), 47–54 (2011).
[Crossref]

Yoshida, E.

Yu, F.

F. Qiu, A. M. Spring, F. Yu, A. I. Aoki, A. Otomo, and S. Yokoyama, “Electro-optic polymer / titanium dioxide hybrid core ring resonator modulators,” Laser Photonics Rev. 7(6), L84–L88 (2013).
[Crossref]

Yu, G.

Yu, H.

Yue, Y.

Zhang, X.

X. Zhang, C. Chung, A. Hosseini, H. Subbaraman, J. Luo, A. K. Jen, R. L. Nelson, C. Y.-C. Lee, and R. T. Chen, “High performance optical modulator based on electro-optic polymer filled silicon slot photonic crystal waveguide,” J. Lightwave Technol. 34(12), 2941–2951 (2016).
[Crossref]

X. Zhang, A. Hosseini, S. Chakravarty, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Wide optical spectrum range, subvolt, compact modulator based on an electro-optic polymer refilled silicon slot photonic crystal waveguide,” Opt. Lett. 38(22), 4931–4934 (2013).
[Crossref] [PubMed]

X. Zhang, A. Hosseini, X. Lin, H. Subbaraman, and R. T. Chen, “Polymer-based hybrid-integrated photonic devices for silicon on-chip modulation and board-level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19(6), 196 (2013).
[Crossref]

X. Zhang, B. Lee, C. Lin, A. X. Wang, A. Hosseini, and R. T. Chen, “Highly linear broadband optical modulator based on electro-optic polymer,” IEEE Photonics J. 4(6), 2214–2228 (2012).
[Crossref]

Zhang, Z.

X. Piao, Z. Zhang, Y. Mori, M. Koishi, A. Nakaya, S. Inoue, I. Aoki, A. Otomo, and S. Yokoyama, “Nonlinear optical side-chain polymers postfunctionalized with high-β chromophores exhibiting large electro-optic property,” J. Polym. Sci. A 49(1), 47–54 (2011).
[Crossref]

Zhou, X.

T. Kim, J. Luo, Y. Cheng, Z. Shi, S. Hau, S. Jang, X. Zhou, Y. Tian, B. Polishak, S. Huang, H. Ma, L. R. Dalton, and A. K. Jen, “Binary chromophore systems in nonlinear optical dendrimers and polymers for large electrooptic activities,” J. Phys. Chem. C 112(21), 8091–8098 (2008).
[Crossref]

Zhou, X. H.

J. D. Luo, S. Huang, Z. W. Shi, B. M. Polishak, X. H. Zhou, and A. K. Y. Jen, “Tailored organic electro-optic materials and their hybrid systems for device applications,” Chem. Mater. 23(3), 544–553 (2011).
[Crossref]

Appl. Phys. Lett. (4)

H. Chen, B. Chen, D. Huang, D. Jin, J. D. Luo, A. K.-Y. Jen, and R. Dinu, “Broadband electro-optic polymer modulators with high electro-optic activity and low poling induced optical loss,” Appl. Phys. Lett. 93(4), 043507 (2008).
[Crossref]

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70(25), 3335–3337 (1997).
[Crossref]

F. Qiu, H. Miura, A. M. Spring, J. Hong, D. Maeda, M. Ozawa, K. Odoi, and S. Yokoyama, “An electro-optic polymer-cladded TiO2 waveguide modulator,” Appl. Phys. Lett. 109(17), 173301 (2016).
[Crossref]

C. C. Teng, “Traveling-wave polymeric optical intensity modulator with more than 40 GHz of 3-dB electric bandwidth,” Appl. Phys. Lett. 60(13), 1538–1540 (1992).
[Crossref]

Chem. Mater. (2)

L. R. Dalton, S. J. Benight, L. E. Johnson, D. B. Knorr, I. Kosilkin, B. E. Eichinger, B. H. Robinson, A. K. Jen, and R. M. Overney, “Systematic nanoengineering of soft mater organic electro-optic materials,” Chem. Mater. 23(3), 430–445 (2011).
[Crossref]

J. D. Luo, S. Huang, Z. W. Shi, B. M. Polishak, X. H. Zhou, and A. K. Y. Jen, “Tailored organic electro-optic materials and their hybrid systems for device applications,” Chem. Mater. 23(3), 544–553 (2011).
[Crossref]

Chem. Rev. (1)

L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev. 110(1), 25–55 (2010).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

R. Song, H. Song, W. H. Steier, and C. H. Cox, “Analysis and demonstration of Mach-Zehnder polymer modulators using in-plane coplanar waveguide structure,” IEEE J. Quantum Electron. 43(8), 633–640 (2007).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

X. Zhang, A. Hosseini, X. Lin, H. Subbaraman, and R. T. Chen, “Polymer-based hybrid-integrated photonic devices for silicon on-chip modulation and board-level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19(6), 196 (2013).
[Crossref]

J. Luo and A. K. Y. Jen, “Highly efficient organic electrooptic materials and their hybrid systems for advanced photonic devices,” IEEE J. Sel. Top. Quantum Electron. 19(6), 42 (2013).
[Crossref]

IEEE Photonics J. (1)

X. Zhang, B. Lee, C. Lin, A. X. Wang, A. Hosseini, and R. T. Chen, “Highly linear broadband optical modulator based on electro-optic polymer,” IEEE Photonics J. 4(6), 2214–2228 (2012).
[Crossref]

J. Lightwave Technol. (4)

J. Non-Cryst. Solids (1)

M. Oubaha, M. Smaihi, P. Etienne, P. Coudray, and Y. Moreau, “Spectroscopic characterization of intrinsic losses in an organic-inorganic hybrid waveguide synthesized by the sol-gel process,” J. Non-Cryst. Solids 318, 305–313 (2003).

J. Phys. Chem. C (1)

T. Kim, J. Luo, Y. Cheng, Z. Shi, S. Hau, S. Jang, X. Zhou, Y. Tian, B. Polishak, S. Huang, H. Ma, L. R. Dalton, and A. K. Jen, “Binary chromophore systems in nonlinear optical dendrimers and polymers for large electrooptic activities,” J. Phys. Chem. C 112(21), 8091–8098 (2008).
[Crossref]

J. Polym. Sci. A (1)

X. Piao, Z. Zhang, Y. Mori, M. Koishi, A. Nakaya, S. Inoue, I. Aoki, A. Otomo, and S. Yokoyama, “Nonlinear optical side-chain polymers postfunctionalized with high-β chromophores exhibiting large electro-optic property,” J. Polym. Sci. A 49(1), 47–54 (2011).
[Crossref]

Laser Photonics Rev. (1)

F. Qiu, A. M. Spring, F. Yu, A. I. Aoki, A. Otomo, and S. Yokoyama, “Electro-optic polymer / titanium dioxide hybrid core ring resonator modulators,” Laser Photonics Rev. 7(6), L84–L88 (2013).
[Crossref]

Opt. Express (3)

Opt. Fiber Technol. (1)

E. Lach and W. Idler, “Modulation formats for 100G and beyond,” Opt. Fiber Technol. 17(5), 377–386 (2011).
[Crossref]

Opt. Lett. (1)

Science (1)

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298(5597), 1401–1403 (2002).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) The cross section of the hybrid silicon and EO polymer waveguide with 50 nm-thick silicon core, (b) the calculated mode distribution of the TM polarization, (c) the schematic top view of the silicon MZI with the traveling-wave electrode (EO polymer is not shown).
Fig. 2
Fig. 2 The SEM images of the silicon core indicating (a) 5 μm width and (b) 50 nm thickness.
Fig. 3
Fig. 3 (a) Poling of the hybrid MZI modulator, (b) measurement of Vπ by differential voltage operation, (c) the EO polymer structure used in this study, and (d) the measured transfer function of the modular at 10 KHz.
Fig. 4
Fig. 4 Measured normalized frequency response of the hybrid EO modulator.
Fig. 5
Fig. 5 The measured optical transmission spectra of the hybrid modulator at (a) 10 GHz, (b) 20 GHz, (c) 30 GHz, and (d) 40 GHz
Fig. 6
Fig. 6 (a) Change of the modulation index for different voltages for 10 GHz, 20 GHz, and 40 GHz operations. (b) Change of the modulation index at different frequencies for 1 Vpp and 2 Vpp

Metrics