Abstract

We report continuous-wave beam conversion from 1.06 to 1.49 µm in a diamond Raman laser operating on the second Stokes shift. High power (114 W) and high conversion efficiency (44%) is achieved using a single cavity that is highly resonant at the first Stokes wavelength but has high output coupling at the second Stokes wavelength (89%). An analytical model was developed for external-cavity Raman lasers operating in steady-state, revealing that optimization of second Stokes output is markedly different to first Stokes and that there is a direct and proportional relationship between the second Stokes output coupling and the pump depletion in the diamond, which we have confirmed by experiment. This technology shows promise for power scaling beyond the capabilities of current fiber lasers operating in the applications-rich 1.5–1.6 µm wavelength range.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
302 W quasi-continuous cascaded diamond Raman laser at 1.5 microns with large brightness enhancement

Zhenxu Bai, Robert J. Williams, Ondrej Kitzler, Soumya Sarang, David J. Spence, and Richard P. Mildren
Opt. Express 26(16) 19797-19803 (2018)

Tunable continuous-wave diamond Raman laser

Daniele C. Parrotta, Alan J. Kemp, Martin D. Dawson, and Jennifer E. Hastie
Opt. Express 19(24) 24165-24170 (2011)

Efficient conversion of a 1.064 μm Nd:YAG laser to the eye-safe region using a diamond Raman laser

Alexander Sabella, James A. Piper, and Richard P. Mildren
Opt. Express 19(23) 23554-23560 (2011)

References

  • View by:
  • |
  • |
  • |

  1. E. Stiles, “New developments in IPG fiber laser technology,” in Proceedings of the 5th International Workshop on Fiber Lasers (2009).
  2. T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, “1-kW, all-glass Tm:fiber laser,” Proc. SPIE 7580, 758016 (2010).
  3. V. R. Supradeepa and J. W. Nicholson, “Power scaling of high-efficiency 1.5 µm cascaded Raman fiber lasers,” Opt. Lett. 38, 2538–2541 (2013).
    [Crossref] [PubMed]
  4. Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297-W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13, 573–579 (2007).
    [Crossref]
  5. M. A. Jebali, J. N. Maran, and S. LaRochelle, “264 W output power at 1585 nm in Er-Yb codoped fiber laser using in-band pumping,” Opt. Lett. 39, 3974–3977 (2014).
    [Crossref] [PubMed]
  6. A. Sabella, J. A. Piper, and R. P. Mildren, “Diamond Raman laser with continuously tunable output from 3.38 to 3.80 µm,” Opt. Lett. 39, 4037–4040 (2014).
    [Crossref] [PubMed]
  7. S. Reilly, V. G. Savitski, H. Liu, E. Gu, M. D. Dawson, and A. J. Kemp, “Monolithic diamond Raman laser,” Opt. Lett. 40, 930–933 (2015).
    [Crossref] [PubMed]
  8. E. Granados, D. J. Spence, and R. P. Mildren, “Deep ultraviolet diamond Raman laser,” Opt. Express 19, 10857–10863 (2011).
    [Crossref] [PubMed]
  9. M. Jelínek, O. Kitzler, H. Jelínková, J. Šulc, and M. Němec, “CVD-diamond external cavity nanosecond Raman laser operating at 1.63 µm pumped by 1.34 µm Nd:YAP laser,” Laser Phys. Lett. 9, 35–38 (2012).
    [Crossref]
  10. O. Kitzler, A. McKay, and R. P. Mildren, “Continuous-wave wavelength conversion for high-power applications using an external cavity diamond Raman laser,” Opt. Lett. 37, 2790–2792 (2012).
    [Crossref] [PubMed]
  11. P. J. Schlosser, D. C. Parrotta, V. G. Savitski, A. J. Kemp, and J. E. Hastie, “Intracavity Raman conversion of a red semiconductor disk laser using diamond,” Opt. Express 23, 8454–8461 (2015).
    [Crossref] [PubMed]
  12. R. J. Williams, J. Nold, M. Strecker, O. Kitzler, A. McKay, T. Schreiber, and R. P. Mildren, “Efficient Raman frequency conversion of high-power fiber lasers in diamond,” Laser Photon. Rev. 9, 405–411 (2015).
    [Crossref]
  13. A. S. Grabtchikov, V. A. Lisinetskii, V. A. Orlovich, M. Schmitt, R. Maksimenka, and W. Kiefer, “Multimode pumped continuous-wave solid-state Raman laser,” Opt. Lett. 29, 2524–2526 (2004).
    [Crossref] [PubMed]
  14. O. Kitzler, A. McKay, D. J. Spence, and R. P. Mildren, “Modelling and optimization of continuous-wave external cavity Raman lasers,” Opt. Express 23, 8590–8602 (2015).
    [Crossref] [PubMed]
  15. A. Sabella, J. A. Piper, and R. P. Mildren, “Efficient conversion of a 1.064 µm Nd:YAG laser to the eye-safe region using a diamond Raman laser,” Opt. Express 19, 23554–23560 (2011).
    [Crossref] [PubMed]
  16. A. McKay, O. Kitzler, and R. P. Mildren, “Simultaneous brightness enhancement and wavelength conversion to the eye-safe region in a high-power diamond Raman laser,” Laser Photon. Rev. 8, L37–L41 (2014).
    [Crossref]
  17. P. V. Shpak, S. V. Voitikov, R. V. Chulkov, P. A. Apanasevich, V. A. Orlovich, A. S. Grabtchikov, A. Kushwaha, N. Satti, L. Agrawal, and A. K. Maini, “Passively Q-switched diode-pumped Raman laser with third-order Stokes eye-safe oscillation,” Opt. Commun. 285, 3659–3664 (2012).
    [Crossref]
  18. G. M. A. Gad, H. J. Eichler, and A. A. Kaminskii, “Highly efficient 1.3-µm second-stokes PbWO4 Raman laser,” Opt. Lett. 28, 426–428 (2003).
    [Crossref] [PubMed]
  19. W. Lubeigt, G. M. Bonner, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “An intra-cavity Raman laser using synthetic single-crystal diamond,” Opt. Express 18, 16765–16770 (2010).
    [Crossref] [PubMed]
  20. A. S. Grabtchikov, V. A. Lisinetskii, V. A. Orlovich, M. Schmitt, S. Schluecker, B. Kuestner, and W. Kiefer, “Continuous-wave solid-state two-stokes Raman laser,” Quantum Electron. 39, 624 (2009).
    [Crossref]
  21. S. Ding, X. Zhang, Q. Wang, P. Jia, C. Zhang, and B. Liu, “Numerical optimization of the extracavity Raman laser with barium nitrate crystal,” Opt. Commun. 267, 480–486 (2006).
    [Crossref]
  22. D. J. Spence, “Spatial and spectral effects in continuous-wave intracavity Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 134–141 (2015).
    [Crossref]
  23. A. Penzkofer, A. Laubereau, and W. Kaiser, “High intensity Raman interactions,” Prog. Quantum Electron. 6, 55–140 (1979).
    [Crossref]
  24. A. Sabella, D. J. Spence, and R. P. Mildren, “Pump-probe measurements of the Raman gain coefficient in crystals using multi-longitudinal-mode beams,” IEEE J. Quantum Electron. 51, 1–8 (2015).
    [Crossref]
  25. V. G. Savitski, S. Reilly, and A. J. Kemp, “Steady-state Raman gain in diamond as a function of pump wavelength,” IEEE J. Quantum Electron. 49, 218–223 (2013).
    [Crossref]
  26. R. J. Williams, O. Kitzler, A. McKay, and R. P. Mildren, “Investigating diamond Raman lasers at the 100 W level using quasi-continuous-wave pumping,” Opt. Lett. 39, 4152–4155 (2014).
    [Crossref] [PubMed]
  27. A. Sabella, J. A. Piper, and R. P. Mildren, “1240 nm diamond Raman laser operating near the quantum limit,” Opt. Lett. 35, 3874–3876 (2010).
    [Crossref] [PubMed]
  28. H. Jasbeer, R. J. Williams, O. Kitzler, A. McKay, S. Sarang, J. Lin, and R. P. Mildren, “Birefringence and piezo-Raman analysis of single crystal CVD diamond and effects on Raman laser performance,” J. Opt. Soc. Am. B 33, B56–B64 (2016).
    [Crossref]
  29. F. Beier, C. Hupel, J. Nold, S. Kuhn, S. Hein, J. Ihring, B. Sattler, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Narrow linewidth, single mode 3 kW average power from a directly diode pumped ytterbium-doped low NA fiber amplifier,” Opt. Express 24, 6011–6020 (2016).
    [Crossref] [PubMed]
  30. O. Lux, S. Sarang, O. Kitzler, D. J. Spence, and R. P. Mildren, “Intrinsically stable high-power single longitudinal mode laser using spatial hole burning free gain,” Optica 3, 876–881 (2016).
    [Crossref]
  31. O. Lux, S. Sarang, R. J. Williams, A. McKay, and R. P. Mildren, “Single longitudinal mode diamond Raman laser in the eye-safe spectral region for water vapor detection,” Opt. Express 24, 27812–27820 (2016).
    [Crossref] [PubMed]

2016 (4)

2015 (6)

D. J. Spence, “Spatial and spectral effects in continuous-wave intracavity Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 134–141 (2015).
[Crossref]

A. Sabella, D. J. Spence, and R. P. Mildren, “Pump-probe measurements of the Raman gain coefficient in crystals using multi-longitudinal-mode beams,” IEEE J. Quantum Electron. 51, 1–8 (2015).
[Crossref]

S. Reilly, V. G. Savitski, H. Liu, E. Gu, M. D. Dawson, and A. J. Kemp, “Monolithic diamond Raman laser,” Opt. Lett. 40, 930–933 (2015).
[Crossref] [PubMed]

P. J. Schlosser, D. C. Parrotta, V. G. Savitski, A. J. Kemp, and J. E. Hastie, “Intracavity Raman conversion of a red semiconductor disk laser using diamond,” Opt. Express 23, 8454–8461 (2015).
[Crossref] [PubMed]

R. J. Williams, J. Nold, M. Strecker, O. Kitzler, A. McKay, T. Schreiber, and R. P. Mildren, “Efficient Raman frequency conversion of high-power fiber lasers in diamond,” Laser Photon. Rev. 9, 405–411 (2015).
[Crossref]

O. Kitzler, A. McKay, D. J. Spence, and R. P. Mildren, “Modelling and optimization of continuous-wave external cavity Raman lasers,” Opt. Express 23, 8590–8602 (2015).
[Crossref] [PubMed]

2014 (4)

2013 (2)

V. G. Savitski, S. Reilly, and A. J. Kemp, “Steady-state Raman gain in diamond as a function of pump wavelength,” IEEE J. Quantum Electron. 49, 218–223 (2013).
[Crossref]

V. R. Supradeepa and J. W. Nicholson, “Power scaling of high-efficiency 1.5 µm cascaded Raman fiber lasers,” Opt. Lett. 38, 2538–2541 (2013).
[Crossref] [PubMed]

2012 (3)

M. Jelínek, O. Kitzler, H. Jelínková, J. Šulc, and M. Němec, “CVD-diamond external cavity nanosecond Raman laser operating at 1.63 µm pumped by 1.34 µm Nd:YAP laser,” Laser Phys. Lett. 9, 35–38 (2012).
[Crossref]

O. Kitzler, A. McKay, and R. P. Mildren, “Continuous-wave wavelength conversion for high-power applications using an external cavity diamond Raman laser,” Opt. Lett. 37, 2790–2792 (2012).
[Crossref] [PubMed]

P. V. Shpak, S. V. Voitikov, R. V. Chulkov, P. A. Apanasevich, V. A. Orlovich, A. S. Grabtchikov, A. Kushwaha, N. Satti, L. Agrawal, and A. K. Maini, “Passively Q-switched diode-pumped Raman laser with third-order Stokes eye-safe oscillation,” Opt. Commun. 285, 3659–3664 (2012).
[Crossref]

2011 (2)

2010 (3)

2009 (1)

A. S. Grabtchikov, V. A. Lisinetskii, V. A. Orlovich, M. Schmitt, S. Schluecker, B. Kuestner, and W. Kiefer, “Continuous-wave solid-state two-stokes Raman laser,” Quantum Electron. 39, 624 (2009).
[Crossref]

2007 (1)

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297-W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13, 573–579 (2007).
[Crossref]

2006 (1)

S. Ding, X. Zhang, Q. Wang, P. Jia, C. Zhang, and B. Liu, “Numerical optimization of the extracavity Raman laser with barium nitrate crystal,” Opt. Commun. 267, 480–486 (2006).
[Crossref]

2004 (1)

2003 (1)

1979 (1)

A. Penzkofer, A. Laubereau, and W. Kaiser, “High intensity Raman interactions,” Prog. Quantum Electron. 6, 55–140 (1979).
[Crossref]

Agrawal, L.

P. V. Shpak, S. V. Voitikov, R. V. Chulkov, P. A. Apanasevich, V. A. Orlovich, A. S. Grabtchikov, A. Kushwaha, N. Satti, L. Agrawal, and A. K. Maini, “Passively Q-switched diode-pumped Raman laser with third-order Stokes eye-safe oscillation,” Opt. Commun. 285, 3659–3664 (2012).
[Crossref]

Apanasevich, P. A.

P. V. Shpak, S. V. Voitikov, R. V. Chulkov, P. A. Apanasevich, V. A. Orlovich, A. S. Grabtchikov, A. Kushwaha, N. Satti, L. Agrawal, and A. K. Maini, “Passively Q-switched diode-pumped Raman laser with third-order Stokes eye-safe oscillation,” Opt. Commun. 285, 3659–3664 (2012).
[Crossref]

Beier, F.

Bonner, G. M.

Burns, D.

Chulkov, R. V.

P. V. Shpak, S. V. Voitikov, R. V. Chulkov, P. A. Apanasevich, V. A. Orlovich, A. S. Grabtchikov, A. Kushwaha, N. Satti, L. Agrawal, and A. K. Maini, “Passively Q-switched diode-pumped Raman laser with third-order Stokes eye-safe oscillation,” Opt. Commun. 285, 3659–3664 (2012).
[Crossref]

Codemard, C. A.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297-W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13, 573–579 (2007).
[Crossref]

Dawson, M. D.

Ding, S.

S. Ding, X. Zhang, Q. Wang, P. Jia, C. Zhang, and B. Liu, “Numerical optimization of the extracavity Raman laser with barium nitrate crystal,” Opt. Commun. 267, 480–486 (2006).
[Crossref]

Eberhardt, R.

Ehrenreich, T.

T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, “1-kW, all-glass Tm:fiber laser,” Proc. SPIE 7580, 758016 (2010).

Eichler, H. J.

Gad, G. M. A.

Grabtchikov, A. S.

P. V. Shpak, S. V. Voitikov, R. V. Chulkov, P. A. Apanasevich, V. A. Orlovich, A. S. Grabtchikov, A. Kushwaha, N. Satti, L. Agrawal, and A. K. Maini, “Passively Q-switched diode-pumped Raman laser with third-order Stokes eye-safe oscillation,” Opt. Commun. 285, 3659–3664 (2012).
[Crossref]

A. S. Grabtchikov, V. A. Lisinetskii, V. A. Orlovich, M. Schmitt, S. Schluecker, B. Kuestner, and W. Kiefer, “Continuous-wave solid-state two-stokes Raman laser,” Quantum Electron. 39, 624 (2009).
[Crossref]

A. S. Grabtchikov, V. A. Lisinetskii, V. A. Orlovich, M. Schmitt, R. Maksimenka, and W. Kiefer, “Multimode pumped continuous-wave solid-state Raman laser,” Opt. Lett. 29, 2524–2526 (2004).
[Crossref] [PubMed]

Granados, E.

Gu, E.

Haarlammert, N.

Harker, A.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297-W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13, 573–579 (2007).
[Crossref]

Hastie, J. E.

Hein, S.

Hickey, L.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297-W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13, 573–579 (2007).
[Crossref]

Horley, R.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297-W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13, 573–579 (2007).
[Crossref]

Hupel, C.

Ihring, J.

Jasbeer, H.

Jebali, M. A.

Jelínek, M.

M. Jelínek, O. Kitzler, H. Jelínková, J. Šulc, and M. Němec, “CVD-diamond external cavity nanosecond Raman laser operating at 1.63 µm pumped by 1.34 µm Nd:YAP laser,” Laser Phys. Lett. 9, 35–38 (2012).
[Crossref]

Jelínková, H.

M. Jelínek, O. Kitzler, H. Jelínková, J. Šulc, and M. Němec, “CVD-diamond external cavity nanosecond Raman laser operating at 1.63 µm pumped by 1.34 µm Nd:YAP laser,” Laser Phys. Lett. 9, 35–38 (2012).
[Crossref]

Jeong, Y.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297-W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13, 573–579 (2007).
[Crossref]

Jia, P.

S. Ding, X. Zhang, Q. Wang, P. Jia, C. Zhang, and B. Liu, “Numerical optimization of the extracavity Raman laser with barium nitrate crystal,” Opt. Commun. 267, 480–486 (2006).
[Crossref]

Kaiser, W.

A. Penzkofer, A. Laubereau, and W. Kaiser, “High intensity Raman interactions,” Prog. Quantum Electron. 6, 55–140 (1979).
[Crossref]

Kaminskii, A. A.

Kemp, A. J.

Kiefer, W.

A. S. Grabtchikov, V. A. Lisinetskii, V. A. Orlovich, M. Schmitt, S. Schluecker, B. Kuestner, and W. Kiefer, “Continuous-wave solid-state two-stokes Raman laser,” Quantum Electron. 39, 624 (2009).
[Crossref]

A. S. Grabtchikov, V. A. Lisinetskii, V. A. Orlovich, M. Schmitt, R. Maksimenka, and W. Kiefer, “Multimode pumped continuous-wave solid-state Raman laser,” Opt. Lett. 29, 2524–2526 (2004).
[Crossref] [PubMed]

Kitzler, O.

H. Jasbeer, R. J. Williams, O. Kitzler, A. McKay, S. Sarang, J. Lin, and R. P. Mildren, “Birefringence and piezo-Raman analysis of single crystal CVD diamond and effects on Raman laser performance,” J. Opt. Soc. Am. B 33, B56–B64 (2016).
[Crossref]

O. Lux, S. Sarang, O. Kitzler, D. J. Spence, and R. P. Mildren, “Intrinsically stable high-power single longitudinal mode laser using spatial hole burning free gain,” Optica 3, 876–881 (2016).
[Crossref]

O. Kitzler, A. McKay, D. J. Spence, and R. P. Mildren, “Modelling and optimization of continuous-wave external cavity Raman lasers,” Opt. Express 23, 8590–8602 (2015).
[Crossref] [PubMed]

R. J. Williams, J. Nold, M. Strecker, O. Kitzler, A. McKay, T. Schreiber, and R. P. Mildren, “Efficient Raman frequency conversion of high-power fiber lasers in diamond,” Laser Photon. Rev. 9, 405–411 (2015).
[Crossref]

R. J. Williams, O. Kitzler, A. McKay, and R. P. Mildren, “Investigating diamond Raman lasers at the 100 W level using quasi-continuous-wave pumping,” Opt. Lett. 39, 4152–4155 (2014).
[Crossref] [PubMed]

A. McKay, O. Kitzler, and R. P. Mildren, “Simultaneous brightness enhancement and wavelength conversion to the eye-safe region in a high-power diamond Raman laser,” Laser Photon. Rev. 8, L37–L41 (2014).
[Crossref]

M. Jelínek, O. Kitzler, H. Jelínková, J. Šulc, and M. Němec, “CVD-diamond external cavity nanosecond Raman laser operating at 1.63 µm pumped by 1.34 µm Nd:YAP laser,” Laser Phys. Lett. 9, 35–38 (2012).
[Crossref]

O. Kitzler, A. McKay, and R. P. Mildren, “Continuous-wave wavelength conversion for high-power applications using an external cavity diamond Raman laser,” Opt. Lett. 37, 2790–2792 (2012).
[Crossref] [PubMed]

Kuestner, B.

A. S. Grabtchikov, V. A. Lisinetskii, V. A. Orlovich, M. Schmitt, S. Schluecker, B. Kuestner, and W. Kiefer, “Continuous-wave solid-state two-stokes Raman laser,” Quantum Electron. 39, 624 (2009).
[Crossref]

Kuhn, S.

Kushwaha, A.

P. V. Shpak, S. V. Voitikov, R. V. Chulkov, P. A. Apanasevich, V. A. Orlovich, A. S. Grabtchikov, A. Kushwaha, N. Satti, L. Agrawal, and A. K. Maini, “Passively Q-switched diode-pumped Raman laser with third-order Stokes eye-safe oscillation,” Opt. Commun. 285, 3659–3664 (2012).
[Crossref]

LaRochelle, S.

Laubereau, A.

A. Penzkofer, A. Laubereau, and W. Kaiser, “High intensity Raman interactions,” Prog. Quantum Electron. 6, 55–140 (1979).
[Crossref]

Leveille, R.

T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, “1-kW, all-glass Tm:fiber laser,” Proc. SPIE 7580, 758016 (2010).

Lin, J.

Lisinetskii, V. A.

A. S. Grabtchikov, V. A. Lisinetskii, V. A. Orlovich, M. Schmitt, S. Schluecker, B. Kuestner, and W. Kiefer, “Continuous-wave solid-state two-stokes Raman laser,” Quantum Electron. 39, 624 (2009).
[Crossref]

A. S. Grabtchikov, V. A. Lisinetskii, V. A. Orlovich, M. Schmitt, R. Maksimenka, and W. Kiefer, “Multimode pumped continuous-wave solid-state Raman laser,” Opt. Lett. 29, 2524–2526 (2004).
[Crossref] [PubMed]

Liu, B.

S. Ding, X. Zhang, Q. Wang, P. Jia, C. Zhang, and B. Liu, “Numerical optimization of the extracavity Raman laser with barium nitrate crystal,” Opt. Commun. 267, 480–486 (2006).
[Crossref]

Liu, H.

Lovelady, M.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297-W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13, 573–579 (2007).
[Crossref]

Lubeigt, W.

Lux, O.

Maini, A. K.

P. V. Shpak, S. V. Voitikov, R. V. Chulkov, P. A. Apanasevich, V. A. Orlovich, A. S. Grabtchikov, A. Kushwaha, N. Satti, L. Agrawal, and A. K. Maini, “Passively Q-switched diode-pumped Raman laser with third-order Stokes eye-safe oscillation,” Opt. Commun. 285, 3659–3664 (2012).
[Crossref]

Majid, I.

T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, “1-kW, all-glass Tm:fiber laser,” Proc. SPIE 7580, 758016 (2010).

Maksimenka, R.

Maran, J. N.

McKay, A.

H. Jasbeer, R. J. Williams, O. Kitzler, A. McKay, S. Sarang, J. Lin, and R. P. Mildren, “Birefringence and piezo-Raman analysis of single crystal CVD diamond and effects on Raman laser performance,” J. Opt. Soc. Am. B 33, B56–B64 (2016).
[Crossref]

O. Lux, S. Sarang, R. J. Williams, A. McKay, and R. P. Mildren, “Single longitudinal mode diamond Raman laser in the eye-safe spectral region for water vapor detection,” Opt. Express 24, 27812–27820 (2016).
[Crossref] [PubMed]

O. Kitzler, A. McKay, D. J. Spence, and R. P. Mildren, “Modelling and optimization of continuous-wave external cavity Raman lasers,” Opt. Express 23, 8590–8602 (2015).
[Crossref] [PubMed]

R. J. Williams, J. Nold, M. Strecker, O. Kitzler, A. McKay, T. Schreiber, and R. P. Mildren, “Efficient Raman frequency conversion of high-power fiber lasers in diamond,” Laser Photon. Rev. 9, 405–411 (2015).
[Crossref]

R. J. Williams, O. Kitzler, A. McKay, and R. P. Mildren, “Investigating diamond Raman lasers at the 100 W level using quasi-continuous-wave pumping,” Opt. Lett. 39, 4152–4155 (2014).
[Crossref] [PubMed]

A. McKay, O. Kitzler, and R. P. Mildren, “Simultaneous brightness enhancement and wavelength conversion to the eye-safe region in a high-power diamond Raman laser,” Laser Photon. Rev. 8, L37–L41 (2014).
[Crossref]

O. Kitzler, A. McKay, and R. P. Mildren, “Continuous-wave wavelength conversion for high-power applications using an external cavity diamond Raman laser,” Opt. Lett. 37, 2790–2792 (2012).
[Crossref] [PubMed]

Mildren, R. P.

H. Jasbeer, R. J. Williams, O. Kitzler, A. McKay, S. Sarang, J. Lin, and R. P. Mildren, “Birefringence and piezo-Raman analysis of single crystal CVD diamond and effects on Raman laser performance,” J. Opt. Soc. Am. B 33, B56–B64 (2016).
[Crossref]

O. Lux, S. Sarang, R. J. Williams, A. McKay, and R. P. Mildren, “Single longitudinal mode diamond Raman laser in the eye-safe spectral region for water vapor detection,” Opt. Express 24, 27812–27820 (2016).
[Crossref] [PubMed]

O. Lux, S. Sarang, O. Kitzler, D. J. Spence, and R. P. Mildren, “Intrinsically stable high-power single longitudinal mode laser using spatial hole burning free gain,” Optica 3, 876–881 (2016).
[Crossref]

A. Sabella, D. J. Spence, and R. P. Mildren, “Pump-probe measurements of the Raman gain coefficient in crystals using multi-longitudinal-mode beams,” IEEE J. Quantum Electron. 51, 1–8 (2015).
[Crossref]

R. J. Williams, J. Nold, M. Strecker, O. Kitzler, A. McKay, T. Schreiber, and R. P. Mildren, “Efficient Raman frequency conversion of high-power fiber lasers in diamond,” Laser Photon. Rev. 9, 405–411 (2015).
[Crossref]

O. Kitzler, A. McKay, D. J. Spence, and R. P. Mildren, “Modelling and optimization of continuous-wave external cavity Raman lasers,” Opt. Express 23, 8590–8602 (2015).
[Crossref] [PubMed]

A. Sabella, J. A. Piper, and R. P. Mildren, “Diamond Raman laser with continuously tunable output from 3.38 to 3.80 µm,” Opt. Lett. 39, 4037–4040 (2014).
[Crossref] [PubMed]

R. J. Williams, O. Kitzler, A. McKay, and R. P. Mildren, “Investigating diamond Raman lasers at the 100 W level using quasi-continuous-wave pumping,” Opt. Lett. 39, 4152–4155 (2014).
[Crossref] [PubMed]

A. McKay, O. Kitzler, and R. P. Mildren, “Simultaneous brightness enhancement and wavelength conversion to the eye-safe region in a high-power diamond Raman laser,” Laser Photon. Rev. 8, L37–L41 (2014).
[Crossref]

O. Kitzler, A. McKay, and R. P. Mildren, “Continuous-wave wavelength conversion for high-power applications using an external cavity diamond Raman laser,” Opt. Lett. 37, 2790–2792 (2012).
[Crossref] [PubMed]

E. Granados, D. J. Spence, and R. P. Mildren, “Deep ultraviolet diamond Raman laser,” Opt. Express 19, 10857–10863 (2011).
[Crossref] [PubMed]

A. Sabella, J. A. Piper, and R. P. Mildren, “Efficient conversion of a 1.064 µm Nd:YAG laser to the eye-safe region using a diamond Raman laser,” Opt. Express 19, 23554–23560 (2011).
[Crossref] [PubMed]

A. Sabella, J. A. Piper, and R. P. Mildren, “1240 nm diamond Raman laser operating near the quantum limit,” Opt. Lett. 35, 3874–3876 (2010).
[Crossref] [PubMed]

Moulton, P.

T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, “1-kW, all-glass Tm:fiber laser,” Proc. SPIE 7580, 758016 (2010).

Nemec, M.

M. Jelínek, O. Kitzler, H. Jelínková, J. Šulc, and M. Němec, “CVD-diamond external cavity nanosecond Raman laser operating at 1.63 µm pumped by 1.34 µm Nd:YAP laser,” Laser Phys. Lett. 9, 35–38 (2012).
[Crossref]

Nicholson, J. W.

Nilsson, J.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297-W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13, 573–579 (2007).
[Crossref]

Nold, J.

F. Beier, C. Hupel, J. Nold, S. Kuhn, S. Hein, J. Ihring, B. Sattler, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Narrow linewidth, single mode 3 kW average power from a directly diode pumped ytterbium-doped low NA fiber amplifier,” Opt. Express 24, 6011–6020 (2016).
[Crossref] [PubMed]

R. J. Williams, J. Nold, M. Strecker, O. Kitzler, A. McKay, T. Schreiber, and R. P. Mildren, “Efficient Raman frequency conversion of high-power fiber lasers in diamond,” Laser Photon. Rev. 9, 405–411 (2015).
[Crossref]

Orlovich, V. A.

P. V. Shpak, S. V. Voitikov, R. V. Chulkov, P. A. Apanasevich, V. A. Orlovich, A. S. Grabtchikov, A. Kushwaha, N. Satti, L. Agrawal, and A. K. Maini, “Passively Q-switched diode-pumped Raman laser with third-order Stokes eye-safe oscillation,” Opt. Commun. 285, 3659–3664 (2012).
[Crossref]

A. S. Grabtchikov, V. A. Lisinetskii, V. A. Orlovich, M. Schmitt, S. Schluecker, B. Kuestner, and W. Kiefer, “Continuous-wave solid-state two-stokes Raman laser,” Quantum Electron. 39, 624 (2009).
[Crossref]

A. S. Grabtchikov, V. A. Lisinetskii, V. A. Orlovich, M. Schmitt, R. Maksimenka, and W. Kiefer, “Multimode pumped continuous-wave solid-state Raman laser,” Opt. Lett. 29, 2524–2526 (2004).
[Crossref] [PubMed]

Parrotta, D. C.

Payne, D. N.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297-W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13, 573–579 (2007).
[Crossref]

Penzkofer, A.

A. Penzkofer, A. Laubereau, and W. Kaiser, “High intensity Raman interactions,” Prog. Quantum Electron. 6, 55–140 (1979).
[Crossref]

Piper, A.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297-W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13, 573–579 (2007).
[Crossref]

Piper, J. A.

Reilly, S.

S. Reilly, V. G. Savitski, H. Liu, E. Gu, M. D. Dawson, and A. J. Kemp, “Monolithic diamond Raman laser,” Opt. Lett. 40, 930–933 (2015).
[Crossref] [PubMed]

V. G. Savitski, S. Reilly, and A. J. Kemp, “Steady-state Raman gain in diamond as a function of pump wavelength,” IEEE J. Quantum Electron. 49, 218–223 (2013).
[Crossref]

Rines, G.

T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, “1-kW, all-glass Tm:fiber laser,” Proc. SPIE 7580, 758016 (2010).

Sabella, A.

Sahu, J. K.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297-W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13, 573–579 (2007).
[Crossref]

Sarang, S.

Satti, N.

P. V. Shpak, S. V. Voitikov, R. V. Chulkov, P. A. Apanasevich, V. A. Orlovich, A. S. Grabtchikov, A. Kushwaha, N. Satti, L. Agrawal, and A. K. Maini, “Passively Q-switched diode-pumped Raman laser with third-order Stokes eye-safe oscillation,” Opt. Commun. 285, 3659–3664 (2012).
[Crossref]

Sattler, B.

Savitski, V. G.

Schlosser, P. J.

Schluecker, S.

A. S. Grabtchikov, V. A. Lisinetskii, V. A. Orlovich, M. Schmitt, S. Schluecker, B. Kuestner, and W. Kiefer, “Continuous-wave solid-state two-stokes Raman laser,” Quantum Electron. 39, 624 (2009).
[Crossref]

Schmitt, M.

A. S. Grabtchikov, V. A. Lisinetskii, V. A. Orlovich, M. Schmitt, S. Schluecker, B. Kuestner, and W. Kiefer, “Continuous-wave solid-state two-stokes Raman laser,” Quantum Electron. 39, 624 (2009).
[Crossref]

A. S. Grabtchikov, V. A. Lisinetskii, V. A. Orlovich, M. Schmitt, R. Maksimenka, and W. Kiefer, “Multimode pumped continuous-wave solid-state Raman laser,” Opt. Lett. 29, 2524–2526 (2004).
[Crossref] [PubMed]

Schreiber, T.

F. Beier, C. Hupel, J. Nold, S. Kuhn, S. Hein, J. Ihring, B. Sattler, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Narrow linewidth, single mode 3 kW average power from a directly diode pumped ytterbium-doped low NA fiber amplifier,” Opt. Express 24, 6011–6020 (2016).
[Crossref] [PubMed]

R. J. Williams, J. Nold, M. Strecker, O. Kitzler, A. McKay, T. Schreiber, and R. P. Mildren, “Efficient Raman frequency conversion of high-power fiber lasers in diamond,” Laser Photon. Rev. 9, 405–411 (2015).
[Crossref]

Shpak, P. V.

P. V. Shpak, S. V. Voitikov, R. V. Chulkov, P. A. Apanasevich, V. A. Orlovich, A. S. Grabtchikov, A. Kushwaha, N. Satti, L. Agrawal, and A. K. Maini, “Passively Q-switched diode-pumped Raman laser with third-order Stokes eye-safe oscillation,” Opt. Commun. 285, 3659–3664 (2012).
[Crossref]

Spence, D. J.

Stiles, E.

E. Stiles, “New developments in IPG fiber laser technology,” in Proceedings of the 5th International Workshop on Fiber Lasers (2009).

Strecker, M.

R. J. Williams, J. Nold, M. Strecker, O. Kitzler, A. McKay, T. Schreiber, and R. P. Mildren, “Efficient Raman frequency conversion of high-power fiber lasers in diamond,” Laser Photon. Rev. 9, 405–411 (2015).
[Crossref]

Šulc, J.

M. Jelínek, O. Kitzler, H. Jelínková, J. Šulc, and M. Němec, “CVD-diamond external cavity nanosecond Raman laser operating at 1.63 µm pumped by 1.34 µm Nd:YAP laser,” Laser Phys. Lett. 9, 35–38 (2012).
[Crossref]

Supradeepa, V. R.

Tankala, K.

T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, “1-kW, all-glass Tm:fiber laser,” Proc. SPIE 7580, 758016 (2010).

Tünnermann, A.

Turner, P. W.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297-W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13, 573–579 (2007).
[Crossref]

Voitikov, S. V.

P. V. Shpak, S. V. Voitikov, R. V. Chulkov, P. A. Apanasevich, V. A. Orlovich, A. S. Grabtchikov, A. Kushwaha, N. Satti, L. Agrawal, and A. K. Maini, “Passively Q-switched diode-pumped Raman laser with third-order Stokes eye-safe oscillation,” Opt. Commun. 285, 3659–3664 (2012).
[Crossref]

Wang, Q.

S. Ding, X. Zhang, Q. Wang, P. Jia, C. Zhang, and B. Liu, “Numerical optimization of the extracavity Raman laser with barium nitrate crystal,” Opt. Commun. 267, 480–486 (2006).
[Crossref]

Williams, R. J.

Yoo, S.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297-W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13, 573–579 (2007).
[Crossref]

Zhang, C.

S. Ding, X. Zhang, Q. Wang, P. Jia, C. Zhang, and B. Liu, “Numerical optimization of the extracavity Raman laser with barium nitrate crystal,” Opt. Commun. 267, 480–486 (2006).
[Crossref]

Zhang, X.

S. Ding, X. Zhang, Q. Wang, P. Jia, C. Zhang, and B. Liu, “Numerical optimization of the extracavity Raman laser with barium nitrate crystal,” Opt. Commun. 267, 480–486 (2006).
[Crossref]

IEEE J. Quantum Electron. (2)

A. Sabella, D. J. Spence, and R. P. Mildren, “Pump-probe measurements of the Raman gain coefficient in crystals using multi-longitudinal-mode beams,” IEEE J. Quantum Electron. 51, 1–8 (2015).
[Crossref]

V. G. Savitski, S. Reilly, and A. J. Kemp, “Steady-state Raman gain in diamond as a function of pump wavelength,” IEEE J. Quantum Electron. 49, 218–223 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

D. J. Spence, “Spatial and spectral effects in continuous-wave intracavity Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 134–141 (2015).
[Crossref]

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297-W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13, 573–579 (2007).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (2)

R. J. Williams, J. Nold, M. Strecker, O. Kitzler, A. McKay, T. Schreiber, and R. P. Mildren, “Efficient Raman frequency conversion of high-power fiber lasers in diamond,” Laser Photon. Rev. 9, 405–411 (2015).
[Crossref]

A. McKay, O. Kitzler, and R. P. Mildren, “Simultaneous brightness enhancement and wavelength conversion to the eye-safe region in a high-power diamond Raman laser,” Laser Photon. Rev. 8, L37–L41 (2014).
[Crossref]

Laser Phys. Lett. (1)

M. Jelínek, O. Kitzler, H. Jelínková, J. Šulc, and M. Němec, “CVD-diamond external cavity nanosecond Raman laser operating at 1.63 µm pumped by 1.34 µm Nd:YAP laser,” Laser Phys. Lett. 9, 35–38 (2012).
[Crossref]

Opt. Commun. (2)

P. V. Shpak, S. V. Voitikov, R. V. Chulkov, P. A. Apanasevich, V. A. Orlovich, A. S. Grabtchikov, A. Kushwaha, N. Satti, L. Agrawal, and A. K. Maini, “Passively Q-switched diode-pumped Raman laser with third-order Stokes eye-safe oscillation,” Opt. Commun. 285, 3659–3664 (2012).
[Crossref]

S. Ding, X. Zhang, Q. Wang, P. Jia, C. Zhang, and B. Liu, “Numerical optimization of the extracavity Raman laser with barium nitrate crystal,” Opt. Commun. 267, 480–486 (2006).
[Crossref]

Opt. Express (7)

P. J. Schlosser, D. C. Parrotta, V. G. Savitski, A. J. Kemp, and J. E. Hastie, “Intracavity Raman conversion of a red semiconductor disk laser using diamond,” Opt. Express 23, 8454–8461 (2015).
[Crossref] [PubMed]

W. Lubeigt, G. M. Bonner, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “An intra-cavity Raman laser using synthetic single-crystal diamond,” Opt. Express 18, 16765–16770 (2010).
[Crossref] [PubMed]

F. Beier, C. Hupel, J. Nold, S. Kuhn, S. Hein, J. Ihring, B. Sattler, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Narrow linewidth, single mode 3 kW average power from a directly diode pumped ytterbium-doped low NA fiber amplifier,” Opt. Express 24, 6011–6020 (2016).
[Crossref] [PubMed]

O. Lux, S. Sarang, R. J. Williams, A. McKay, and R. P. Mildren, “Single longitudinal mode diamond Raman laser in the eye-safe spectral region for water vapor detection,” Opt. Express 24, 27812–27820 (2016).
[Crossref] [PubMed]

O. Kitzler, A. McKay, D. J. Spence, and R. P. Mildren, “Modelling and optimization of continuous-wave external cavity Raman lasers,” Opt. Express 23, 8590–8602 (2015).
[Crossref] [PubMed]

A. Sabella, J. A. Piper, and R. P. Mildren, “Efficient conversion of a 1.064 µm Nd:YAG laser to the eye-safe region using a diamond Raman laser,” Opt. Express 19, 23554–23560 (2011).
[Crossref] [PubMed]

E. Granados, D. J. Spence, and R. P. Mildren, “Deep ultraviolet diamond Raman laser,” Opt. Express 19, 10857–10863 (2011).
[Crossref] [PubMed]

Opt. Lett. (9)

V. R. Supradeepa and J. W. Nicholson, “Power scaling of high-efficiency 1.5 µm cascaded Raman fiber lasers,” Opt. Lett. 38, 2538–2541 (2013).
[Crossref] [PubMed]

M. A. Jebali, J. N. Maran, and S. LaRochelle, “264 W output power at 1585 nm in Er-Yb codoped fiber laser using in-band pumping,” Opt. Lett. 39, 3974–3977 (2014).
[Crossref] [PubMed]

A. Sabella, J. A. Piper, and R. P. Mildren, “Diamond Raman laser with continuously tunable output from 3.38 to 3.80 µm,” Opt. Lett. 39, 4037–4040 (2014).
[Crossref] [PubMed]

S. Reilly, V. G. Savitski, H. Liu, E. Gu, M. D. Dawson, and A. J. Kemp, “Monolithic diamond Raman laser,” Opt. Lett. 40, 930–933 (2015).
[Crossref] [PubMed]

G. M. A. Gad, H. J. Eichler, and A. A. Kaminskii, “Highly efficient 1.3-µm second-stokes PbWO4 Raman laser,” Opt. Lett. 28, 426–428 (2003).
[Crossref] [PubMed]

O. Kitzler, A. McKay, and R. P. Mildren, “Continuous-wave wavelength conversion for high-power applications using an external cavity diamond Raman laser,” Opt. Lett. 37, 2790–2792 (2012).
[Crossref] [PubMed]

A. S. Grabtchikov, V. A. Lisinetskii, V. A. Orlovich, M. Schmitt, R. Maksimenka, and W. Kiefer, “Multimode pumped continuous-wave solid-state Raman laser,” Opt. Lett. 29, 2524–2526 (2004).
[Crossref] [PubMed]

R. J. Williams, O. Kitzler, A. McKay, and R. P. Mildren, “Investigating diamond Raman lasers at the 100 W level using quasi-continuous-wave pumping,” Opt. Lett. 39, 4152–4155 (2014).
[Crossref] [PubMed]

A. Sabella, J. A. Piper, and R. P. Mildren, “1240 nm diamond Raman laser operating near the quantum limit,” Opt. Lett. 35, 3874–3876 (2010).
[Crossref] [PubMed]

Optica (1)

Proc. SPIE (1)

T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, “1-kW, all-glass Tm:fiber laser,” Proc. SPIE 7580, 758016 (2010).

Prog. Quantum Electron. (1)

A. Penzkofer, A. Laubereau, and W. Kaiser, “High intensity Raman interactions,” Prog. Quantum Electron. 6, 55–140 (1979).
[Crossref]

Quantum Electron. (1)

A. S. Grabtchikov, V. A. Lisinetskii, V. A. Orlovich, M. Schmitt, S. Schluecker, B. Kuestner, and W. Kiefer, “Continuous-wave solid-state two-stokes Raman laser,” Quantum Electron. 39, 624 (2009).
[Crossref]

Other (1)

E. Stiles, “New developments in IPG fiber laser technology,” in Proceedings of the 5th International Workshop on Fiber Lasers (2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 The second Stokes slope efficiency (red dashed curve), maximum pump depletion (black solid curve) and the ratio of second Stokes threshold to first Stokes threshold (blue dotted curve) for 1064 nm pumping in diamond, given by the model.
Fig. 2
Fig. 2 Illustration of the laser setup. FL = focussing lens; IC = input coupler; OC = output coupler; HWP = half-wave plate; POL = polarizer. The green, yellow and red beams represent the pump, first Stokes and second Stokes beams, respectively.
Fig. 3
Fig. 3 Slope efficiency (red circles) and pump depletion (blue triangles) for R2S = 11%. Inset shows the beam profile at maximum power with line profile (white solid curve) and Gaussian fit (blue dashed curve).
Fig. 4
Fig. 4 Slope efficiency (red circles) for R2S = 96%, and corresponding values for pump depletion (blue triangles) which never exceeds 5%, and first Stokes output (green squares) which remains approximately constant above the second Stokes threshold.

Tables (1)

Tables Icon

Table 1 Reflectivites of the Tested Output Couplers at λp, λ1S, and λ2S.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

d P p ( z ) d z = g 1 P p ( z ) η 1 A ( P 1 S ( z ) + P 1 S ( 2 L z ) ) , and
d P 2 S ( z ) d z = P 2 S ( z ) ( g 2 A ( P 1 S ( z ) + P 1 S ( 2 L z ) ) α ) ,
P p ( 2 L ) P p ( 0 ) exp [ 4 L g 1 P 1 S ( z ) ¯ η 1 A ] , and
P 2 S ( 2 L ) = P 2 S ( 0 ) exp [ 4 L g 2 P 1 S ( z ) ¯ A 2 α L ] ,
P 1 S ( z ) ¯ A = ln R 2 S + 2 α L 4 L g 2 .
η p Depl . = 1 P p ( 2 L ) / P p ( 0 ) = 1 exp [ ln R 2 S 2 α L η 1 η 2 ] = 1 R 2 S 1 η 1 η 2 e 2 α L η 1 η 2 .
P 2 S gen = ( ( P p ( 0 ) P p Th ( 0 ) ) ( P p ( 2 L ) P p Th . ( 2 L ) ) ) η 1 η 2 = η 1 η 2 ( P p ( 0 ) P p Th ( 0 ) ) ( 1 R 2 S 1 η 1 η 2 e 2 α L η 1 η 2 ) ,

Metrics