Abstract

We propose the use of alternating pulse wavelengths in a direct-detection coherent optical time domain reflectometry (C-OTDR) setup not only to measure strain and temperature changes but also to determine the correct algebraic sign of the change. The sign information is essential for the intended use in distributed mode shape analysis of civil engineering structures. Correlating relative backscatter signal shifts in the temporal/signal domain allows for measuring with correct magnitude and sign. This novel approach is simulated, experimentally implemented and demonstrated for temperature change measurement at a spatial resolution of 1 m.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Wavelength-scanning coherent OTDR for dynamic high strain resolution sensing

Sascha Liehr, Sven Münzenberger, and Katerina Krebber
Opt. Express 26(8) 10573-10588 (2018)

Towards large dynamic range and ultrahigh measurement resolution in distributed fiber sensing based on multicore fiber

Yunli Dang, Zhiyong Zhao, Ming Tang, Can Zhao, Lin Gan, Songnian Fu, Tongqing Liu, Weijun Tong, Perry Ping Shum, and Deming Liu
Opt. Express 25(17) 20183-20193 (2017)

High spatial resolution distributed fiber system for multi-parameter sensing based on modulated pulses

Jingdong Zhang, Tao Zhu, Huan Zhou, Shihong Huang, Min Liu, and Wei Huang
Opt. Express 24(24) 27482-27493 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. V. Shatalin, V. N. Treschikov, and A. J. Rogers, “Interferometric optical time-domain reflectometry for distributed optical-fiber sensing,” Appl. Opt. 37(24), 5600–5604 (1998).
    [Crossref] [PubMed]
  2. Z. Qin, T. Zhu, L. Chen, and X. Bao, “High sensitivity distributed vibration sensor based on polarization-maintaining configurations of phase-OTDR,” IEEE Photonics Technol. Lett. 23(15), 1091–1093 (2011).
    [Crossref]
  3. A. H. Hartog and L. B. Liokumovich, “Phase sensitive coherent otdr with multi-frequency interrogation,” U.S. patent WO2013066654 A1 (October 22, 2012).
  4. Y. Dong, X. Chen, E. Liu, C. Fu, H. Zhang, and Z. Lu, “Quantitative measurement of dynamic nanostrain based on a phase-sensitive optical time domain reflectometer,” Appl. Opt. 55(28), 7810–7815 (2016).
    [Crossref] [PubMed]
  5. R. Posey, G. A. Johnson, and S. T. Vohra, “Strain sensing based on coherent Rayleigh scattering in an optical fibre,” Electron. Lett. 36(20), 1688–1689 (2000).
    [Crossref]
  6. A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
    [Crossref]
  7. A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “A phase-sensitive optical time-domain reflectometer with dual-pulse diverse frequency probe signal,” Laser Phys. 25(6), 065101 (2015).
    [Crossref]
  8. Y. Shi, H. Feng, and Z. Zeng, “Phase-sensitive optical time domain reflectometer with dual-wavelength probe pulse,” Int. J. Distrib. Sens. Netw. 11(5), 624643 (2015).
  9. J. P. Dakin and C. Lamb, “Distributed fibre optic sensor system,” U.S. patent GB 2 222 247A (1990).
  10. Z. Wang, Z. Pan, Z. Fang, Q. Ye, B. Lu, H. Cai, and R. Qu, “Ultra-broadband phase-sensitive optical time-domain reflectometry with a temporally sequenced multi-frequency source,” Opt. Lett. 40(22), 5192–5195 (2015).
    [Crossref] [PubMed]
  11. D. Iida, K. Toge, and T. Manabe, “High-frequency distributed acoustic sensing faster than repetition limit with frequency-multiplexed phase-OTDR,” in Opt. Fiber Comm. Conf. and Exhibit. OFC (2016), pp. 1–3.
    [Crossref]
  12. Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR,” J. Lightwave Technol. 27(9), 1142–1146 (2009).
    [Crossref]
  13. L. Zhou, F. Wang, X. Wang, Y. Pan, Z. Sun, J. Hua, and X. Zhang, “Distributed strain and vibration sensing system based on phase-sensitive OTDR,” IEEE Photonics Technol. Lett. 27(17), 1884–1887 (2015).
    [Crossref]
  14. J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses,” Opt. Express 24(12), 13121–13133 (2016).
    [Crossref] [PubMed]

2016 (2)

2015 (4)

L. Zhou, F. Wang, X. Wang, Y. Pan, Z. Sun, J. Hua, and X. Zhang, “Distributed strain and vibration sensing system based on phase-sensitive OTDR,” IEEE Photonics Technol. Lett. 27(17), 1884–1887 (2015).
[Crossref]

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “A phase-sensitive optical time-domain reflectometer with dual-pulse diverse frequency probe signal,” Laser Phys. 25(6), 065101 (2015).
[Crossref]

Y. Shi, H. Feng, and Z. Zeng, “Phase-sensitive optical time domain reflectometer with dual-wavelength probe pulse,” Int. J. Distrib. Sens. Netw. 11(5), 624643 (2015).

Z. Wang, Z. Pan, Z. Fang, Q. Ye, B. Lu, H. Cai, and R. Qu, “Ultra-broadband phase-sensitive optical time-domain reflectometry with a temporally sequenced multi-frequency source,” Opt. Lett. 40(22), 5192–5195 (2015).
[Crossref] [PubMed]

2013 (1)

A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
[Crossref]

2011 (1)

Z. Qin, T. Zhu, L. Chen, and X. Bao, “High sensitivity distributed vibration sensor based on polarization-maintaining configurations of phase-OTDR,” IEEE Photonics Technol. Lett. 23(15), 1091–1093 (2011).
[Crossref]

2009 (1)

2000 (1)

R. Posey, G. A. Johnson, and S. T. Vohra, “Strain sensing based on coherent Rayleigh scattering in an optical fibre,” Electron. Lett. 36(20), 1688–1689 (2000).
[Crossref]

1998 (1)

Alekseev, A. E.

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “A phase-sensitive optical time-domain reflectometer with dual-pulse diverse frequency probe signal,” Laser Phys. 25(6), 065101 (2015).
[Crossref]

Bao, X.

Z. Qin, T. Zhu, L. Chen, and X. Bao, “High sensitivity distributed vibration sensor based on polarization-maintaining configurations of phase-OTDR,” IEEE Photonics Technol. Lett. 23(15), 1091–1093 (2011).
[Crossref]

Belal, M.

A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
[Crossref]

Cai, H.

Chen, L.

Z. Qin, T. Zhu, L. Chen, and X. Bao, “High sensitivity distributed vibration sensor based on polarization-maintaining configurations of phase-OTDR,” IEEE Photonics Technol. Lett. 23(15), 1091–1093 (2011).
[Crossref]

Chen, X.

Dong, Y.

Fang, Z.

Feng, H.

Y. Shi, H. Feng, and Z. Zeng, “Phase-sensitive optical time domain reflectometer with dual-wavelength probe pulse,” Int. J. Distrib. Sens. Netw. 11(5), 624643 (2015).

Fu, C.

Garcia-Ruiz, A.

Gonzalez-Herraez, M.

Gorshkov, B. G.

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “A phase-sensitive optical time-domain reflectometer with dual-pulse diverse frequency probe signal,” Laser Phys. 25(6), 065101 (2015).
[Crossref]

Hogari, K.

Hua, J.

L. Zhou, F. Wang, X. Wang, Y. Pan, Z. Sun, J. Hua, and X. Zhang, “Distributed strain and vibration sensing system based on phase-sensitive OTDR,” IEEE Photonics Technol. Lett. 27(17), 1884–1887 (2015).
[Crossref]

Iida, D.

D. Iida, K. Toge, and T. Manabe, “High-frequency distributed acoustic sensing faster than repetition limit with frequency-multiplexed phase-OTDR,” in Opt. Fiber Comm. Conf. and Exhibit. OFC (2016), pp. 1–3.
[Crossref]

Imahama, M.

Johnson, G. A.

R. Posey, G. A. Johnson, and S. T. Vohra, “Strain sensing based on coherent Rayleigh scattering in an optical fibre,” Electron. Lett. 36(20), 1688–1689 (2000).
[Crossref]

Koyamada, Y.

Kubota, K.

Liu, E.

Lu, B.

Lu, Z.

Manabe, T.

D. Iida, K. Toge, and T. Manabe, “High-frequency distributed acoustic sensing faster than repetition limit with frequency-multiplexed phase-OTDR,” in Opt. Fiber Comm. Conf. and Exhibit. OFC (2016), pp. 1–3.
[Crossref]

Martin-Lopez, S.

Martins, H. F.

Masoudi, A.

A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
[Crossref]

Newson, T. P.

A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
[Crossref]

Pan, Y.

L. Zhou, F. Wang, X. Wang, Y. Pan, Z. Sun, J. Hua, and X. Zhang, “Distributed strain and vibration sensing system based on phase-sensitive OTDR,” IEEE Photonics Technol. Lett. 27(17), 1884–1887 (2015).
[Crossref]

Pan, Z.

Pastor-Graells, J.

Posey, R.

R. Posey, G. A. Johnson, and S. T. Vohra, “Strain sensing based on coherent Rayleigh scattering in an optical fibre,” Electron. Lett. 36(20), 1688–1689 (2000).
[Crossref]

Potapov, V. T.

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “A phase-sensitive optical time-domain reflectometer with dual-pulse diverse frequency probe signal,” Laser Phys. 25(6), 065101 (2015).
[Crossref]

Qin, Z.

Z. Qin, T. Zhu, L. Chen, and X. Bao, “High sensitivity distributed vibration sensor based on polarization-maintaining configurations of phase-OTDR,” IEEE Photonics Technol. Lett. 23(15), 1091–1093 (2011).
[Crossref]

Qu, R.

Rogers, A. J.

Shatalin, S. V.

Shi, Y.

Y. Shi, H. Feng, and Z. Zeng, “Phase-sensitive optical time domain reflectometer with dual-wavelength probe pulse,” Int. J. Distrib. Sens. Netw. 11(5), 624643 (2015).

Simikin, D. E.

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “A phase-sensitive optical time-domain reflectometer with dual-pulse diverse frequency probe signal,” Laser Phys. 25(6), 065101 (2015).
[Crossref]

Sun, Z.

L. Zhou, F. Wang, X. Wang, Y. Pan, Z. Sun, J. Hua, and X. Zhang, “Distributed strain and vibration sensing system based on phase-sensitive OTDR,” IEEE Photonics Technol. Lett. 27(17), 1884–1887 (2015).
[Crossref]

Toge, K.

D. Iida, K. Toge, and T. Manabe, “High-frequency distributed acoustic sensing faster than repetition limit with frequency-multiplexed phase-OTDR,” in Opt. Fiber Comm. Conf. and Exhibit. OFC (2016), pp. 1–3.
[Crossref]

Treschikov, V. N.

Vdovenko, V. S.

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “A phase-sensitive optical time-domain reflectometer with dual-pulse diverse frequency probe signal,” Laser Phys. 25(6), 065101 (2015).
[Crossref]

Vohra, S. T.

R. Posey, G. A. Johnson, and S. T. Vohra, “Strain sensing based on coherent Rayleigh scattering in an optical fibre,” Electron. Lett. 36(20), 1688–1689 (2000).
[Crossref]

Wang, F.

L. Zhou, F. Wang, X. Wang, Y. Pan, Z. Sun, J. Hua, and X. Zhang, “Distributed strain and vibration sensing system based on phase-sensitive OTDR,” IEEE Photonics Technol. Lett. 27(17), 1884–1887 (2015).
[Crossref]

Wang, X.

L. Zhou, F. Wang, X. Wang, Y. Pan, Z. Sun, J. Hua, and X. Zhang, “Distributed strain and vibration sensing system based on phase-sensitive OTDR,” IEEE Photonics Technol. Lett. 27(17), 1884–1887 (2015).
[Crossref]

Wang, Z.

Ye, Q.

Zeng, Z.

Y. Shi, H. Feng, and Z. Zeng, “Phase-sensitive optical time domain reflectometer with dual-wavelength probe pulse,” Int. J. Distrib. Sens. Netw. 11(5), 624643 (2015).

Zhang, H.

Zhang, X.

L. Zhou, F. Wang, X. Wang, Y. Pan, Z. Sun, J. Hua, and X. Zhang, “Distributed strain and vibration sensing system based on phase-sensitive OTDR,” IEEE Photonics Technol. Lett. 27(17), 1884–1887 (2015).
[Crossref]

Zhou, L.

L. Zhou, F. Wang, X. Wang, Y. Pan, Z. Sun, J. Hua, and X. Zhang, “Distributed strain and vibration sensing system based on phase-sensitive OTDR,” IEEE Photonics Technol. Lett. 27(17), 1884–1887 (2015).
[Crossref]

Zhu, T.

Z. Qin, T. Zhu, L. Chen, and X. Bao, “High sensitivity distributed vibration sensor based on polarization-maintaining configurations of phase-OTDR,” IEEE Photonics Technol. Lett. 23(15), 1091–1093 (2011).
[Crossref]

Appl. Opt. (2)

Electron. Lett. (1)

R. Posey, G. A. Johnson, and S. T. Vohra, “Strain sensing based on coherent Rayleigh scattering in an optical fibre,” Electron. Lett. 36(20), 1688–1689 (2000).
[Crossref]

IEEE Photonics Technol. Lett. (2)

Z. Qin, T. Zhu, L. Chen, and X. Bao, “High sensitivity distributed vibration sensor based on polarization-maintaining configurations of phase-OTDR,” IEEE Photonics Technol. Lett. 23(15), 1091–1093 (2011).
[Crossref]

L. Zhou, F. Wang, X. Wang, Y. Pan, Z. Sun, J. Hua, and X. Zhang, “Distributed strain and vibration sensing system based on phase-sensitive OTDR,” IEEE Photonics Technol. Lett. 27(17), 1884–1887 (2015).
[Crossref]

Int. J. Distrib. Sens. Netw. (1)

Y. Shi, H. Feng, and Z. Zeng, “Phase-sensitive optical time domain reflectometer with dual-wavelength probe pulse,” Int. J. Distrib. Sens. Netw. 11(5), 624643 (2015).

J. Lightwave Technol. (1)

Laser Phys. (1)

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “A phase-sensitive optical time-domain reflectometer with dual-pulse diverse frequency probe signal,” Laser Phys. 25(6), 065101 (2015).
[Crossref]

Meas. Sci. Technol. (1)

A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Other (3)

D. Iida, K. Toge, and T. Manabe, “High-frequency distributed acoustic sensing faster than repetition limit with frequency-multiplexed phase-OTDR,” in Opt. Fiber Comm. Conf. and Exhibit. OFC (2016), pp. 1–3.
[Crossref]

J. P. Dakin and C. Lamb, “Distributed fibre optic sensor system,” U.S. patent GB 2 222 247A (1990).

A. H. Hartog and L. B. Liokumovich, “Phase sensitive coherent otdr with multi-frequency interrogation,” U.S. patent WO2013066654 A1 (October 22, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Left: simulated power results I1,2(t,ts,ν1,2) as a function of temperature change ΔT(ts) for two different pulse wavelengths (N = 10000, ν0 = c0/1.55 µm, τd = 10 ns, Δν = 200 MHz) and right: power changes I1,2(t = 46 ns,ts) at z ≈4.7 m.
Fig. 2
Fig. 2 Schematic of the dual-wavelength direct-detection C-OTDR setup.
Fig. 3
Fig. 3 Sketch of the dual-wavelength scheme (left) and measured C-OTDR traces I1,2(z) at different pulse optical frequencies with Δν ≈ 34 MHz (right)
Fig. 4
Fig. 4 Measurements: increasing temperature Ī1,2(ts,z = 1001.1 m) (left) and ΔT(ts,z) at z = 1000.7 m, z = 1000.9 m and z = 1001.1 m during increasing temperature (right), (τd = 10 ns, Δν ≈ 34 MHz, a = 19, fp = 5 kHz, τc = 150 s, τshift = 5 s).
Fig. 5
Fig. 5 Measurement results, left: Ī1,2(ts,z = 1001.1 m) and right: ΔT(ts) at z = 1000.7 m, z = 1000.9 m and z = 1001.1 m during heating and cooling of the fiber (τd = 10 ns, Δν ≈ 34 MHz, a = 19, fp = 5 kHz, τc = 150 s, τshift = 5 s).

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

I( t )= | i=1 N r i E ^ 0 e j2π ν 0 ( t τ i ) rect( t τ i τ d ) | 2 = I incoh ( t )+ I coh ( t )= i=1 N r i I 0 rect( t τ i τ d )+ I coh ( t )
I coh ( t )= i=1 N1 e=i1 N 2 r i r e I 0 cos[ 2π ν 0 τ ie ]rect( t τ i τ d )rect( t τ e τ d )
Δν ν 0 = Δλ λ 0 = Δ τ ie τ ie =( 1 p e )Δε= K ε Δε 0.78 Δε Δν ν 0 = Δλ λ 0 = Δ τ ie τ ie =( ξ+α )ΔT= K T ΔT 6.92 10 6 ΔT
τ ie Δ τ ie =  τ ie ( 1+ K ε Δε+ K T ΔT )
I( t,Δε( t s ),ΔT( t s ),Δν )= I incoh ( t )+ i=1 N1 e=i1 N 2 r i r e I 0 cos[ 2π( ν 0 +Δν ) τ ie ( 1+ K ε Δε( t s )+ K T ΔT( t s ) ) ] rect( t τ i τ d )rect( t τ e τ d )
t s 1,2 = n 1,2 f p          { n 1 0 |  n 1  mod 2=0 } { n 2 + |  n 2  mod 2=1 }
Δ p T = Δν ν 0 1 K T                  Δ p ε = Δν ν 0 1 K ε
m T ( t s )= Δ p T Δt( t s ) m ε ( t s )= Δ p ε Δt( t s )
I ¯ 1,2 ( t s 1,2 )= 1 a i= a1 2 a1 2 I 1,2 ( t s 1,2 +i  τ r ) with a odd, a3 and  t s 1,2 a1 2 τ r
Δt( t s )=[ argmax t s ( cov{ I ¯ 1 ( t s 1 ), I ¯ 2 ( t s 2 ) } )1 ] τ r τ c τ p with   t s τ c 2 t s 1,2 < t s + τ c 2
ΔT( t s i )= j=0 i τ shift Δ p T Δt( t s j )              Δε( t s i )= j=0 i τ shift Δ p ε Δt( t s j )

Metrics