Abstract

An integrated heterodyne optical phase-locked loop was designed and demonstrated with an indium phosphide based photonic integrated circuit and commercial off-the-shelf electronic components. As an input reference, a stable microresonator-based optical frequency comb with a 50-dB span of 25 nm (~3 THz) around 1550 nm, having a spacing of ~26 GHz, was used. A widely-tunable on-chip sampled-grating distributed-Bragg-reflector laser is offset locked across multiple comb lines. An arbitrary frequency synthesis between the comb lines is demonstrated by tuning the RF offset source, and better than 100Hz tuning resolution with ± 5 Hz accuracy is obtained. Frequency switching of the on-chip laser to a point more than two dozen comb lines away (~5.6 nm) and simultaneous locking to the corresponding nearest comb line is also achieved in a time ~200 ns. A low residual phase noise of the optical phase-locking system is successfully achieved, as experimentally verified by the value of −80 dBc/Hz at an offset of as low as 200 Hz.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Highly integrated optical heterodyne phase-locked loop with phase/frequency detection

Mingzhi Lu, Hyunchul Park, Eli Bloch, Abirami Sivananthan, Ashish Bhardwaj, Zach Griffith, Leif A. Johansson, Mark J. Rodwell, and Larry A. Coldren
Opt. Express 20(9) 9736-9741 (2012)

Optical injection locking of monolithically integrated photonic source for generation of high purity signals above 100 GHz

Katarzyna Balakier, Martyn J. Fice, Frederic van Dijk, Gael Kervella, Guillermo Carpintero, Alwyn J. Seeds, and Cyril C. Renaud
Opt. Express 22(24) 29404-29412 (2014)

Soliton frequency comb at microwave rates in a high-Q silica microresonator

Xu Yi, Qi-Fan Yang, Ki Youl Yang, Myoung-Gyun Suh, and Kerry Vahala
Optica 2(12) 1078-1085 (2015)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
    [Crossref] [PubMed]
  2. J. Castillega, D. Livingston, A. Sanders, and D. Shiner, “Precise measurement of the J = 1 to J = 2 fine structure interval in the 2( 3)P state of helium,” Phys. Rev. Lett. 84(19), 4321–4324 (2000).
    [Crossref] [PubMed]
  3. M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311(5767), 1595–1599 (2006).
    [Crossref] [PubMed]
  4. W. C. Swann and N. R. Newbury, “Frequency-resolved coherent lidar using a femtosecond fiber laser,” Opt. Lett. 31(6), 826–828 (2006).
    [Crossref] [PubMed]
  5. T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the Cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82(18), 3568–3571 (1999).
    [Crossref]
  6. A. A. Madej, L. Marmet, and J. E. Bernard, “Rb atomic absorption line reference for single Sr+ laser cooling systems,” Appl. Phys. B 67(2), 229–234 (1998).
    [Crossref]
  7. H. S. Moon, E. B. Kim, S. E. Park, and C. Y. Park, “Selection and amplification of modes of an optical frequency comb using a femtosecond laser injection-locking technique,” Appl. Phys. Lett. 89(18), 181110 (2006).
    [Crossref]
  8. L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10(-19) level,” Science 303(5665), 1843–1845 (2004).
    [Crossref] [PubMed]
  9. Y.-J. Kim, J. Jin, Y. Kim, S. Hyun, and S.-W. Kim, “A wide-range optical frequency generator based on the frequency comb of a femtosecond laser,” Opt. Express 16(1), 258–264 (2008).
    [Crossref] [PubMed]
  10. H. Y. Ryu, S. H. Lee, W. K. Lee, H. S. Moon, and H. S. Suh, “Absolute frequency measurement of an acetylene stabilized laser using a selected single mode from a femtosecond fiber laser comb,” Opt. Express 16(5), 2867–2873 (2008).
    [Crossref] [PubMed]
  11. http://www.menlosystems.com/assets/documents-2/FC1500-ProductBrochure.pdf
  12. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
    [Crossref] [PubMed]
  13. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
    [Crossref] [PubMed]
  14. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
    [Crossref] [PubMed]
  15. K. Saha, Y. Okawachi, B. Shim, J. S. Levy, R. Salem, A. R. Johnson, M. A. Foster, M. R. E. Lamont, M. Lipson, and A. L. Gaeta, “Mode locking and femtosecond pulse generation in chip-based frequency combs,” Opt. Express 21(1), 1335–1343 (2013).
    [Crossref] [PubMed]
  16. V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137(7–8), 393–397 (1989).
    [Crossref]
  17. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Optical resonators with ten million finesse,” Opt. Express 15(11), 6768–6773 (2007).
    [Crossref] [PubMed]
  18. W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6, 7957 (2015).
  19. V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Generation of Kerr frequency combs in a sapphire whispering gallery mode microresonator,” Opt. Eng. 53(12), 122607 (2014).
    [Crossref]
  20. I. M. White, J. D. Suter, H. Oveys, X. Fan, T. L. Smith, J. Zhang, B. J. Koch, and M. A. Haase, “Universal coupling between metal-clad waveguides and optical ring resonators,” Opt. Express 15(2), 646–651 (2007).
    [Crossref] [PubMed]
  21. X. Zhang and A. M. Armani, “Silica microtoroid resonator sensor with monolithically integrated waveguides,” Opt. Express 21(20), 23592–23603 (2013).
    [Crossref] [PubMed]
  22. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
    [Crossref] [PubMed]
  23. T. Herr, V. Brasch, J. D. Jost, I. Mirgorodskiy, G. Lihachev, M. L. Gorodetsky, and T. J. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” Phys. Rev. Lett. 113(12), 123901 (2014).
    [Crossref] [PubMed]
  24. M. Erkintalo and S. Coen, “Coherence properties of Kerr frequency combs,” Opt. Lett. 39(2), 283–286 (2014).
    [Crossref] [PubMed]
  25. W. Liang, V. S. Ilchenko, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Ultralow noise miniature external cavity semiconductor laser,” Nat. Commun. 6, 7371 (2015).
    [Crossref] [PubMed]
  26. A. B. Matsko and L. Maleki, “On timing jitter of mode-locked Kerr frequency combs,” Opt. Express 21(23), 28862–28876 (2013).
    [Crossref] [PubMed]
  27. A. A. Savchenkov, D. Eliyahu, W. Liang, V. S. Ilchenko, J. Byrd, A. B. Matsko, D. Seidel, and L. Maleki, “Stabilization of a Kerr frequency comb oscillator,” Opt. Lett. 38(15), 2636–2639 (2013).
    [Crossref] [PubMed]
  28. A. C. Bordonalli, C. Walton, and A. J. Seeds, “High-performance homodyne optical injection phase-lock loop using wide-linewidth semiconductor lasers,” IEEE Photonics Technol. Lett. 8(9), 1217–1219 (1996).
    [Crossref]
  29. K. Balakier, M. J. Fice, L. Ponnampalam, A. J. Seeds, and C. C. Renaud, “Monolithically integrated optical phase-lock loop for microwave photonics,” J. Lightwave Technol. 32(20), 3893–3900 (2014).
    [Crossref]
  30. C. C. Renaud, M. Duser, C. F. C. Silva, B. Puttnam, T. Lovell, P. Bayvel, and A. J. Seeds, “Nanosecond channel-switching exact optical frequency synthesizer using an optical injection phase-locked loop (OIPLL),” IEEE Photonics Technol. Lett. 16(3), 903–905 (2004).
    [Crossref]
  31. C. C. Renaud, C. F. C. Silva, M. Dueser, P. Bayvel, and A. J. Seeds, “Exact, agile, optical frequency synthesis using an optical comb generator and optical injection phase-lock loop,” in Digest of the LEOS Summer Topical Meetings (2003), paper WC1.3/67.
    [Crossref]
  32. H. Inaba, T. Ikegami, H. Feng-Lei, A. Onae, Y. Koga, T. R. Schibli, K. Minoshima, H. Matsumoto, S. Yamadori, O. Tohyama, and S. I. Yamaguchi, “Phase locking of a continuous-wave optical parametric oscillator to an optical frequency comb for optical frequency synthesis,” IEEE J. Quantum Electron. 40(7), 929–936 (2004).
    [Crossref]
  33. T. R. Schibli, K. Minoshima, E. L. Hong, H. Inaba, Y. Bitou, A. Onae, and H. Matsumoto, “Phase-locked widely tunable optical single-frequency generator based on a femtosecond comb,” Opt. Lett. 30(17), 2323–2325 (2005).
    [Crossref] [PubMed]
  34. J. E. Bowers, A. Beling, A. Bluestone, S. M. Bowers, L. Chang, S. Diddams, G. Fish, T. Kippenberg, T. Komljenovic, E. Norberg, S. Papp, K. Srinivasan, L. Theogarajan, K. Vahala, and N. Volet, “Chip-scale optical resonator enabled synthesizer (CORES): Miniature systems for optical frequency synthesis,” in IEEE International Frequency Control Symposium (IFCS) (2016), pp. 1–5.
  35. L. Mingzhi, P. Hyun-chul, E. Bloch, A. Sivananthan, J. S. Parker, Z. Griffith, L. A. Johansson, M. J. W. Rodwell, and L. A. Coldren, “An integrated 40 gbit/s optical costas receiver,” J. Lightwave Technol. 31(13), 2244–2253 (2013).
    [Crossref]
  36. S. Ristic, A. Bhardwaj, M. J. Rodwell, L. A. Coldren, and L. A. Johansson, “An optical phase-locked loop photonic integrated circuit,” J. Lightwave Technol. 28(4), 526–538 (2010).
    [Crossref]
  37. M. Lu, H.-C. Park, E. Bloch, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “A highly-integrated optical frequency synthesizer based on phase-locked loops,” Optical Fiber Communication Conference 2014 (2014).
    [Crossref]
  38. J. Parker, M. Lu, H. Park, E. Bloch, A. Sivananthan, Z. Griffith, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “Offset locking of an SG-DBR to an InGaAsP/InP mode-locked laser,” in IEEE Photonics Conference (IPC) (2012).
    [Crossref]
  39. J. Parker, A. Sivananthan, M. Lu, L. Johansson, and L. Coldren, “Integrated phase-locked multi-THz comb for broadband offset locking,” in OSA Technical Digest, Optical Fiber Communication Conference (2012), paper OM3E.5.
    [Crossref]
  40. M. Lu, “Integrated optical phase-locked loops,” in Electrical and Computer Engineering, University of California, Santa Barbara (2013) p. 252.
  41. http://www.adsantec.com/200-asnt5020-pqc.html http://www.adsantec.com/83-asnt5040-kmc.html
  42. R. J. Steed, F. Pozzi, M. J. Fice, C. C. Renaud, D. C. Rogers, I. F. Lealman, D. G. Moodie, P. J. Cannard, C. Lynch, L. Johnston, M. J. Robertson, R. Cronin, L. Pavlovic, L. Naglic, M. Vidmar, and A. J. Seeds, “Monolithically integrated heterodyne optical phase-lock loop with RF XOR phase detector,” Opt. Express 19(21), 20048–20053 (2011).
    [Crossref] [PubMed]

2015 (2)

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6, 7957 (2015).

W. Liang, V. S. Ilchenko, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Ultralow noise miniature external cavity semiconductor laser,” Nat. Commun. 6, 7371 (2015).
[Crossref] [PubMed]

2014 (4)

T. Herr, V. Brasch, J. D. Jost, I. Mirgorodskiy, G. Lihachev, M. L. Gorodetsky, and T. J. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” Phys. Rev. Lett. 113(12), 123901 (2014).
[Crossref] [PubMed]

M. Erkintalo and S. Coen, “Coherence properties of Kerr frequency combs,” Opt. Lett. 39(2), 283–286 (2014).
[Crossref] [PubMed]

K. Balakier, M. J. Fice, L. Ponnampalam, A. J. Seeds, and C. C. Renaud, “Monolithically integrated optical phase-lock loop for microwave photonics,” J. Lightwave Technol. 32(20), 3893–3900 (2014).
[Crossref]

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Generation of Kerr frequency combs in a sapphire whispering gallery mode microresonator,” Opt. Eng. 53(12), 122607 (2014).
[Crossref]

2013 (5)

2011 (2)

2010 (1)

2008 (2)

2007 (3)

2006 (3)

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311(5767), 1595–1599 (2006).
[Crossref] [PubMed]

W. C. Swann and N. R. Newbury, “Frequency-resolved coherent lidar using a femtosecond fiber laser,” Opt. Lett. 31(6), 826–828 (2006).
[Crossref] [PubMed]

H. S. Moon, E. B. Kim, S. E. Park, and C. Y. Park, “Selection and amplification of modes of an optical frequency comb using a femtosecond laser injection-locking technique,” Appl. Phys. Lett. 89(18), 181110 (2006).
[Crossref]

2005 (1)

2004 (4)

C. C. Renaud, M. Duser, C. F. C. Silva, B. Puttnam, T. Lovell, P. Bayvel, and A. J. Seeds, “Nanosecond channel-switching exact optical frequency synthesizer using an optical injection phase-locked loop (OIPLL),” IEEE Photonics Technol. Lett. 16(3), 903–905 (2004).
[Crossref]

H. Inaba, T. Ikegami, H. Feng-Lei, A. Onae, Y. Koga, T. R. Schibli, K. Minoshima, H. Matsumoto, S. Yamadori, O. Tohyama, and S. I. Yamaguchi, “Phase locking of a continuous-wave optical parametric oscillator to an optical frequency comb for optical frequency synthesis,” IEEE J. Quantum Electron. 40(7), 929–936 (2004).
[Crossref]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
[Crossref] [PubMed]

L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10(-19) level,” Science 303(5665), 1843–1845 (2004).
[Crossref] [PubMed]

2003 (1)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

2000 (2)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

J. Castillega, D. Livingston, A. Sanders, and D. Shiner, “Precise measurement of the J = 1 to J = 2 fine structure interval in the 2( 3)P state of helium,” Phys. Rev. Lett. 84(19), 4321–4324 (2000).
[Crossref] [PubMed]

1999 (1)

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the Cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82(18), 3568–3571 (1999).
[Crossref]

1998 (1)

A. A. Madej, L. Marmet, and J. E. Bernard, “Rb atomic absorption line reference for single Sr+ laser cooling systems,” Appl. Phys. B 67(2), 229–234 (1998).
[Crossref]

1996 (1)

A. C. Bordonalli, C. Walton, and A. J. Seeds, “High-performance homodyne optical injection phase-lock loop using wide-linewidth semiconductor lasers,” IEEE Photonics Technol. Lett. 8(9), 1217–1219 (1996).
[Crossref]

1989 (1)

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137(7–8), 393–397 (1989).
[Crossref]

Arcizet, O.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Armani, A. M.

Balakier, K.

Bartels, A.

L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10(-19) level,” Science 303(5665), 1843–1845 (2004).
[Crossref] [PubMed]

Bayvel, P.

C. C. Renaud, M. Duser, C. F. C. Silva, B. Puttnam, T. Lovell, P. Bayvel, and A. J. Seeds, “Nanosecond channel-switching exact optical frequency synthesizer using an optical injection phase-locked loop (OIPLL),” IEEE Photonics Technol. Lett. 16(3), 903–905 (2004).
[Crossref]

Beling, A.

J. E. Bowers, A. Beling, A. Bluestone, S. M. Bowers, L. Chang, S. Diddams, G. Fish, T. Kippenberg, T. Komljenovic, E. Norberg, S. Papp, K. Srinivasan, L. Theogarajan, K. Vahala, and N. Volet, “Chip-scale optical resonator enabled synthesizer (CORES): Miniature systems for optical frequency synthesis,” in IEEE International Frequency Control Symposium (IFCS) (2016), pp. 1–5.

Bernard, J. E.

A. A. Madej, L. Marmet, and J. E. Bernard, “Rb atomic absorption line reference for single Sr+ laser cooling systems,” Appl. Phys. B 67(2), 229–234 (1998).
[Crossref]

Bhardwaj, A.

Bi, Z.

L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10(-19) level,” Science 303(5665), 1843–1845 (2004).
[Crossref] [PubMed]

Bitou, Y.

Bloch, E.

L. Mingzhi, P. Hyun-chul, E. Bloch, A. Sivananthan, J. S. Parker, Z. Griffith, L. A. Johansson, M. J. W. Rodwell, and L. A. Coldren, “An integrated 40 gbit/s optical costas receiver,” J. Lightwave Technol. 31(13), 2244–2253 (2013).
[Crossref]

M. Lu, H.-C. Park, E. Bloch, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “A highly-integrated optical frequency synthesizer based on phase-locked loops,” Optical Fiber Communication Conference 2014 (2014).
[Crossref]

J. Parker, M. Lu, H. Park, E. Bloch, A. Sivananthan, Z. Griffith, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “Offset locking of an SG-DBR to an InGaAsP/InP mode-locked laser,” in IEEE Photonics Conference (IPC) (2012).
[Crossref]

Bluestone, A.

J. E. Bowers, A. Beling, A. Bluestone, S. M. Bowers, L. Chang, S. Diddams, G. Fish, T. Kippenberg, T. Komljenovic, E. Norberg, S. Papp, K. Srinivasan, L. Theogarajan, K. Vahala, and N. Volet, “Chip-scale optical resonator enabled synthesizer (CORES): Miniature systems for optical frequency synthesis,” in IEEE International Frequency Control Symposium (IFCS) (2016), pp. 1–5.

Bordonalli, A. C.

A. C. Bordonalli, C. Walton, and A. J. Seeds, “High-performance homodyne optical injection phase-lock loop using wide-linewidth semiconductor lasers,” IEEE Photonics Technol. Lett. 8(9), 1217–1219 (1996).
[Crossref]

Bowers, J. E.

J. E. Bowers, A. Beling, A. Bluestone, S. M. Bowers, L. Chang, S. Diddams, G. Fish, T. Kippenberg, T. Komljenovic, E. Norberg, S. Papp, K. Srinivasan, L. Theogarajan, K. Vahala, and N. Volet, “Chip-scale optical resonator enabled synthesizer (CORES): Miniature systems for optical frequency synthesis,” in IEEE International Frequency Control Symposium (IFCS) (2016), pp. 1–5.

Bowers, S. M.

J. E. Bowers, A. Beling, A. Bluestone, S. M. Bowers, L. Chang, S. Diddams, G. Fish, T. Kippenberg, T. Komljenovic, E. Norberg, S. Papp, K. Srinivasan, L. Theogarajan, K. Vahala, and N. Volet, “Chip-scale optical resonator enabled synthesizer (CORES): Miniature systems for optical frequency synthesis,” in IEEE International Frequency Control Symposium (IFCS) (2016), pp. 1–5.

Braginsky, V. B.

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137(7–8), 393–397 (1989).
[Crossref]

Brasch, V.

T. Herr, V. Brasch, J. D. Jost, I. Mirgorodskiy, G. Lihachev, M. L. Gorodetsky, and T. J. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” Phys. Rev. Lett. 113(12), 123901 (2014).
[Crossref] [PubMed]

Byrd, J.

Cannard, P. J.

Castillega, J.

J. Castillega, D. Livingston, A. Sanders, and D. Shiner, “Precise measurement of the J = 1 to J = 2 fine structure interval in the 2( 3)P state of helium,” Phys. Rev. Lett. 84(19), 4321–4324 (2000).
[Crossref] [PubMed]

Chang, L.

J. E. Bowers, A. Beling, A. Bluestone, S. M. Bowers, L. Chang, S. Diddams, G. Fish, T. Kippenberg, T. Komljenovic, E. Norberg, S. Papp, K. Srinivasan, L. Theogarajan, K. Vahala, and N. Volet, “Chip-scale optical resonator enabled synthesizer (CORES): Miniature systems for optical frequency synthesis,” in IEEE International Frequency Control Symposium (IFCS) (2016), pp. 1–5.

Coen, S.

Coldren, L. A.

L. Mingzhi, P. Hyun-chul, E. Bloch, A. Sivananthan, J. S. Parker, Z. Griffith, L. A. Johansson, M. J. W. Rodwell, and L. A. Coldren, “An integrated 40 gbit/s optical costas receiver,” J. Lightwave Technol. 31(13), 2244–2253 (2013).
[Crossref]

S. Ristic, A. Bhardwaj, M. J. Rodwell, L. A. Coldren, and L. A. Johansson, “An optical phase-locked loop photonic integrated circuit,” J. Lightwave Technol. 28(4), 526–538 (2010).
[Crossref]

M. Lu, H.-C. Park, E. Bloch, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “A highly-integrated optical frequency synthesizer based on phase-locked loops,” Optical Fiber Communication Conference 2014 (2014).
[Crossref]

J. Parker, M. Lu, H. Park, E. Bloch, A. Sivananthan, Z. Griffith, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “Offset locking of an SG-DBR to an InGaAsP/InP mode-locked laser,” in IEEE Photonics Conference (IPC) (2012).
[Crossref]

Cronin, R.

Cundiff, S. T.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

Del’Haye, P.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Diddams, S.

J. E. Bowers, A. Beling, A. Bluestone, S. M. Bowers, L. Chang, S. Diddams, G. Fish, T. Kippenberg, T. Komljenovic, E. Norberg, S. Papp, K. Srinivasan, L. Theogarajan, K. Vahala, and N. Volet, “Chip-scale optical resonator enabled synthesizer (CORES): Miniature systems for optical frequency synthesis,” in IEEE International Frequency Control Symposium (IFCS) (2016), pp. 1–5.

Diddams, S. A.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10(-19) level,” Science 303(5665), 1843–1845 (2004).
[Crossref] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

Duser, M.

C. C. Renaud, M. Duser, C. F. C. Silva, B. Puttnam, T. Lovell, P. Bayvel, and A. J. Seeds, “Nanosecond channel-switching exact optical frequency synthesizer using an optical injection phase-locked loop (OIPLL),” IEEE Photonics Technol. Lett. 16(3), 903–905 (2004).
[Crossref]

Eliyahu, D.

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6, 7957 (2015).

W. Liang, V. S. Ilchenko, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Ultralow noise miniature external cavity semiconductor laser,” Nat. Commun. 6, 7371 (2015).
[Crossref] [PubMed]

A. A. Savchenkov, D. Eliyahu, W. Liang, V. S. Ilchenko, J. Byrd, A. B. Matsko, D. Seidel, and L. Maleki, “Stabilization of a Kerr frequency comb oscillator,” Opt. Lett. 38(15), 2636–2639 (2013).
[Crossref] [PubMed]

Erkintalo, M.

Fan, X.

Feng-Lei, H.

H. Inaba, T. Ikegami, H. Feng-Lei, A. Onae, Y. Koga, T. R. Schibli, K. Minoshima, H. Matsumoto, S. Yamadori, O. Tohyama, and S. I. Yamaguchi, “Phase locking of a continuous-wave optical parametric oscillator to an optical frequency comb for optical frequency synthesis,” IEEE J. Quantum Electron. 40(7), 929–936 (2004).
[Crossref]

Fice, M. J.

Fish, G.

J. E. Bowers, A. Beling, A. Bluestone, S. M. Bowers, L. Chang, S. Diddams, G. Fish, T. Kippenberg, T. Komljenovic, E. Norberg, S. Papp, K. Srinivasan, L. Theogarajan, K. Vahala, and N. Volet, “Chip-scale optical resonator enabled synthesizer (CORES): Miniature systems for optical frequency synthesis,” in IEEE International Frequency Control Symposium (IFCS) (2016), pp. 1–5.

Foster, M. A.

Gaeta, A. L.

Gorodetsky, M. L.

T. Herr, V. Brasch, J. D. Jost, I. Mirgorodskiy, G. Lihachev, M. L. Gorodetsky, and T. J. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” Phys. Rev. Lett. 113(12), 123901 (2014).
[Crossref] [PubMed]

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137(7–8), 393–397 (1989).
[Crossref]

Griffith, Z.

L. Mingzhi, P. Hyun-chul, E. Bloch, A. Sivananthan, J. S. Parker, Z. Griffith, L. A. Johansson, M. J. W. Rodwell, and L. A. Coldren, “An integrated 40 gbit/s optical costas receiver,” J. Lightwave Technol. 31(13), 2244–2253 (2013).
[Crossref]

J. Parker, M. Lu, H. Park, E. Bloch, A. Sivananthan, Z. Griffith, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “Offset locking of an SG-DBR to an InGaAsP/InP mode-locked laser,” in IEEE Photonics Conference (IPC) (2012).
[Crossref]

Haase, M. A.

Hall, J. L.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

Hänsch, T. W.

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the Cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82(18), 3568–3571 (1999).
[Crossref]

Herr, T.

T. Herr, V. Brasch, J. D. Jost, I. Mirgorodskiy, G. Lihachev, M. L. Gorodetsky, and T. J. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” Phys. Rev. Lett. 113(12), 123901 (2014).
[Crossref] [PubMed]

Hollberg, L.

L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10(-19) level,” Science 303(5665), 1843–1845 (2004).
[Crossref] [PubMed]

Holzwarth, R.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the Cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82(18), 3568–3571 (1999).
[Crossref]

Hong, E. L.

Hyun, S.

Hyun-chul, P.

Ikegami, T.

H. Inaba, T. Ikegami, H. Feng-Lei, A. Onae, Y. Koga, T. R. Schibli, K. Minoshima, H. Matsumoto, S. Yamadori, O. Tohyama, and S. I. Yamaguchi, “Phase locking of a continuous-wave optical parametric oscillator to an optical frequency comb for optical frequency synthesis,” IEEE J. Quantum Electron. 40(7), 929–936 (2004).
[Crossref]

Ilchenko, V. S.

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6, 7957 (2015).

W. Liang, V. S. Ilchenko, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Ultralow noise miniature external cavity semiconductor laser,” Nat. Commun. 6, 7371 (2015).
[Crossref] [PubMed]

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Generation of Kerr frequency combs in a sapphire whispering gallery mode microresonator,” Opt. Eng. 53(12), 122607 (2014).
[Crossref]

A. A. Savchenkov, D. Eliyahu, W. Liang, V. S. Ilchenko, J. Byrd, A. B. Matsko, D. Seidel, and L. Maleki, “Stabilization of a Kerr frequency comb oscillator,” Opt. Lett. 38(15), 2636–2639 (2013).
[Crossref] [PubMed]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Optical resonators with ten million finesse,” Opt. Express 15(11), 6768–6773 (2007).
[Crossref] [PubMed]

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137(7–8), 393–397 (1989).
[Crossref]

Inaba, H.

T. R. Schibli, K. Minoshima, E. L. Hong, H. Inaba, Y. Bitou, A. Onae, and H. Matsumoto, “Phase-locked widely tunable optical single-frequency generator based on a femtosecond comb,” Opt. Lett. 30(17), 2323–2325 (2005).
[Crossref] [PubMed]

H. Inaba, T. Ikegami, H. Feng-Lei, A. Onae, Y. Koga, T. R. Schibli, K. Minoshima, H. Matsumoto, S. Yamadori, O. Tohyama, and S. I. Yamaguchi, “Phase locking of a continuous-wave optical parametric oscillator to an optical frequency comb for optical frequency synthesis,” IEEE J. Quantum Electron. 40(7), 929–936 (2004).
[Crossref]

Jin, J.

Johansson, L. A.

L. Mingzhi, P. Hyun-chul, E. Bloch, A. Sivananthan, J. S. Parker, Z. Griffith, L. A. Johansson, M. J. W. Rodwell, and L. A. Coldren, “An integrated 40 gbit/s optical costas receiver,” J. Lightwave Technol. 31(13), 2244–2253 (2013).
[Crossref]

S. Ristic, A. Bhardwaj, M. J. Rodwell, L. A. Coldren, and L. A. Johansson, “An optical phase-locked loop photonic integrated circuit,” J. Lightwave Technol. 28(4), 526–538 (2010).
[Crossref]

J. Parker, M. Lu, H. Park, E. Bloch, A. Sivananthan, Z. Griffith, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “Offset locking of an SG-DBR to an InGaAsP/InP mode-locked laser,” in IEEE Photonics Conference (IPC) (2012).
[Crossref]

M. Lu, H.-C. Park, E. Bloch, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “A highly-integrated optical frequency synthesizer based on phase-locked loops,” Optical Fiber Communication Conference 2014 (2014).
[Crossref]

Johnson, A. R.

Johnston, L.

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

Jones, R. J.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311(5767), 1595–1599 (2006).
[Crossref] [PubMed]

Jost, J. D.

T. Herr, V. Brasch, J. D. Jost, I. Mirgorodskiy, G. Lihachev, M. L. Gorodetsky, and T. J. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” Phys. Rev. Lett. 113(12), 123901 (2014).
[Crossref] [PubMed]

Kim, E. B.

H. S. Moon, E. B. Kim, S. E. Park, and C. Y. Park, “Selection and amplification of modes of an optical frequency comb using a femtosecond laser injection-locking technique,” Appl. Phys. Lett. 89(18), 181110 (2006).
[Crossref]

Kim, S.-W.

Kim, Y.

Kim, Y.-J.

Kippenberg, T.

J. E. Bowers, A. Beling, A. Bluestone, S. M. Bowers, L. Chang, S. Diddams, G. Fish, T. Kippenberg, T. Komljenovic, E. Norberg, S. Papp, K. Srinivasan, L. Theogarajan, K. Vahala, and N. Volet, “Chip-scale optical resonator enabled synthesizer (CORES): Miniature systems for optical frequency synthesis,” in IEEE International Frequency Control Symposium (IFCS) (2016), pp. 1–5.

Kippenberg, T. J.

T. Herr, V. Brasch, J. D. Jost, I. Mirgorodskiy, G. Lihachev, M. L. Gorodetsky, and T. J. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” Phys. Rev. Lett. 113(12), 123901 (2014).
[Crossref] [PubMed]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
[Crossref] [PubMed]

Koch, B. J.

Koga, Y.

H. Inaba, T. Ikegami, H. Feng-Lei, A. Onae, Y. Koga, T. R. Schibli, K. Minoshima, H. Matsumoto, S. Yamadori, O. Tohyama, and S. I. Yamaguchi, “Phase locking of a continuous-wave optical parametric oscillator to an optical frequency comb for optical frequency synthesis,” IEEE J. Quantum Electron. 40(7), 929–936 (2004).
[Crossref]

Komljenovic, T.

J. E. Bowers, A. Beling, A. Bluestone, S. M. Bowers, L. Chang, S. Diddams, G. Fish, T. Kippenberg, T. Komljenovic, E. Norberg, S. Papp, K. Srinivasan, L. Theogarajan, K. Vahala, and N. Volet, “Chip-scale optical resonator enabled synthesizer (CORES): Miniature systems for optical frequency synthesis,” in IEEE International Frequency Control Symposium (IFCS) (2016), pp. 1–5.

Lamont, M. R. E.

Lealman, I. F.

Lee, S. H.

Lee, W. K.

Levy, J. S.

Liang, W.

W. Liang, V. S. Ilchenko, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Ultralow noise miniature external cavity semiconductor laser,” Nat. Commun. 6, 7371 (2015).
[Crossref] [PubMed]

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6, 7957 (2015).

A. A. Savchenkov, D. Eliyahu, W. Liang, V. S. Ilchenko, J. Byrd, A. B. Matsko, D. Seidel, and L. Maleki, “Stabilization of a Kerr frequency comb oscillator,” Opt. Lett. 38(15), 2636–2639 (2013).
[Crossref] [PubMed]

Lihachev, G.

T. Herr, V. Brasch, J. D. Jost, I. Mirgorodskiy, G. Lihachev, M. L. Gorodetsky, and T. J. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” Phys. Rev. Lett. 113(12), 123901 (2014).
[Crossref] [PubMed]

Lipson, M.

Livingston, D.

J. Castillega, D. Livingston, A. Sanders, and D. Shiner, “Precise measurement of the J = 1 to J = 2 fine structure interval in the 2( 3)P state of helium,” Phys. Rev. Lett. 84(19), 4321–4324 (2000).
[Crossref] [PubMed]

Lovell, T.

C. C. Renaud, M. Duser, C. F. C. Silva, B. Puttnam, T. Lovell, P. Bayvel, and A. J. Seeds, “Nanosecond channel-switching exact optical frequency synthesizer using an optical injection phase-locked loop (OIPLL),” IEEE Photonics Technol. Lett. 16(3), 903–905 (2004).
[Crossref]

Lu, M.

M. Lu, H.-C. Park, E. Bloch, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “A highly-integrated optical frequency synthesizer based on phase-locked loops,” Optical Fiber Communication Conference 2014 (2014).
[Crossref]

J. Parker, M. Lu, H. Park, E. Bloch, A. Sivananthan, Z. Griffith, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “Offset locking of an SG-DBR to an InGaAsP/InP mode-locked laser,” in IEEE Photonics Conference (IPC) (2012).
[Crossref]

Lynch, C.

Ma, L.-S.

L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10(-19) level,” Science 303(5665), 1843–1845 (2004).
[Crossref] [PubMed]

Madej, A. A.

A. A. Madej, L. Marmet, and J. E. Bernard, “Rb atomic absorption line reference for single Sr+ laser cooling systems,” Appl. Phys. B 67(2), 229–234 (1998).
[Crossref]

Maleki, L.

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6, 7957 (2015).

W. Liang, V. S. Ilchenko, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Ultralow noise miniature external cavity semiconductor laser,” Nat. Commun. 6, 7371 (2015).
[Crossref] [PubMed]

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Generation of Kerr frequency combs in a sapphire whispering gallery mode microresonator,” Opt. Eng. 53(12), 122607 (2014).
[Crossref]

A. A. Savchenkov, D. Eliyahu, W. Liang, V. S. Ilchenko, J. Byrd, A. B. Matsko, D. Seidel, and L. Maleki, “Stabilization of a Kerr frequency comb oscillator,” Opt. Lett. 38(15), 2636–2639 (2013).
[Crossref] [PubMed]

A. B. Matsko and L. Maleki, “On timing jitter of mode-locked Kerr frequency combs,” Opt. Express 21(23), 28862–28876 (2013).
[Crossref] [PubMed]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Optical resonators with ten million finesse,” Opt. Express 15(11), 6768–6773 (2007).
[Crossref] [PubMed]

Marmet, L.

A. A. Madej, L. Marmet, and J. E. Bernard, “Rb atomic absorption line reference for single Sr+ laser cooling systems,” Appl. Phys. B 67(2), 229–234 (1998).
[Crossref]

Matsko, A. B.

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6, 7957 (2015).

W. Liang, V. S. Ilchenko, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Ultralow noise miniature external cavity semiconductor laser,” Nat. Commun. 6, 7371 (2015).
[Crossref] [PubMed]

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Generation of Kerr frequency combs in a sapphire whispering gallery mode microresonator,” Opt. Eng. 53(12), 122607 (2014).
[Crossref]

A. B. Matsko and L. Maleki, “On timing jitter of mode-locked Kerr frequency combs,” Opt. Express 21(23), 28862–28876 (2013).
[Crossref] [PubMed]

A. A. Savchenkov, D. Eliyahu, W. Liang, V. S. Ilchenko, J. Byrd, A. B. Matsko, D. Seidel, and L. Maleki, “Stabilization of a Kerr frequency comb oscillator,” Opt. Lett. 38(15), 2636–2639 (2013).
[Crossref] [PubMed]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Optical resonators with ten million finesse,” Opt. Express 15(11), 6768–6773 (2007).
[Crossref] [PubMed]

Matsumoto, H.

T. R. Schibli, K. Minoshima, E. L. Hong, H. Inaba, Y. Bitou, A. Onae, and H. Matsumoto, “Phase-locked widely tunable optical single-frequency generator based on a femtosecond comb,” Opt. Lett. 30(17), 2323–2325 (2005).
[Crossref] [PubMed]

H. Inaba, T. Ikegami, H. Feng-Lei, A. Onae, Y. Koga, T. R. Schibli, K. Minoshima, H. Matsumoto, S. Yamadori, O. Tohyama, and S. I. Yamaguchi, “Phase locking of a continuous-wave optical parametric oscillator to an optical frequency comb for optical frequency synthesis,” IEEE J. Quantum Electron. 40(7), 929–936 (2004).
[Crossref]

Mingzhi, L.

Minoshima, K.

T. R. Schibli, K. Minoshima, E. L. Hong, H. Inaba, Y. Bitou, A. Onae, and H. Matsumoto, “Phase-locked widely tunable optical single-frequency generator based on a femtosecond comb,” Opt. Lett. 30(17), 2323–2325 (2005).
[Crossref] [PubMed]

H. Inaba, T. Ikegami, H. Feng-Lei, A. Onae, Y. Koga, T. R. Schibli, K. Minoshima, H. Matsumoto, S. Yamadori, O. Tohyama, and S. I. Yamaguchi, “Phase locking of a continuous-wave optical parametric oscillator to an optical frequency comb for optical frequency synthesis,” IEEE J. Quantum Electron. 40(7), 929–936 (2004).
[Crossref]

Mirgorodskiy, I.

T. Herr, V. Brasch, J. D. Jost, I. Mirgorodskiy, G. Lihachev, M. L. Gorodetsky, and T. J. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” Phys. Rev. Lett. 113(12), 123901 (2014).
[Crossref] [PubMed]

Moll, K. D.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311(5767), 1595–1599 (2006).
[Crossref] [PubMed]

Moodie, D. G.

Moon, H. S.

H. Y. Ryu, S. H. Lee, W. K. Lee, H. S. Moon, and H. S. Suh, “Absolute frequency measurement of an acetylene stabilized laser using a selected single mode from a femtosecond fiber laser comb,” Opt. Express 16(5), 2867–2873 (2008).
[Crossref] [PubMed]

H. S. Moon, E. B. Kim, S. E. Park, and C. Y. Park, “Selection and amplification of modes of an optical frequency comb using a femtosecond laser injection-locking technique,” Appl. Phys. Lett. 89(18), 181110 (2006).
[Crossref]

Naglic, L.

Newbury, N. R.

Norberg, E.

J. E. Bowers, A. Beling, A. Bluestone, S. M. Bowers, L. Chang, S. Diddams, G. Fish, T. Kippenberg, T. Komljenovic, E. Norberg, S. Papp, K. Srinivasan, L. Theogarajan, K. Vahala, and N. Volet, “Chip-scale optical resonator enabled synthesizer (CORES): Miniature systems for optical frequency synthesis,” in IEEE International Frequency Control Symposium (IFCS) (2016), pp. 1–5.

Oates, C.

L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10(-19) level,” Science 303(5665), 1843–1845 (2004).
[Crossref] [PubMed]

Okawachi, Y.

Onae, A.

T. R. Schibli, K. Minoshima, E. L. Hong, H. Inaba, Y. Bitou, A. Onae, and H. Matsumoto, “Phase-locked widely tunable optical single-frequency generator based on a femtosecond comb,” Opt. Lett. 30(17), 2323–2325 (2005).
[Crossref] [PubMed]

H. Inaba, T. Ikegami, H. Feng-Lei, A. Onae, Y. Koga, T. R. Schibli, K. Minoshima, H. Matsumoto, S. Yamadori, O. Tohyama, and S. I. Yamaguchi, “Phase locking of a continuous-wave optical parametric oscillator to an optical frequency comb for optical frequency synthesis,” IEEE J. Quantum Electron. 40(7), 929–936 (2004).
[Crossref]

Oveys, H.

Papp, S.

J. E. Bowers, A. Beling, A. Bluestone, S. M. Bowers, L. Chang, S. Diddams, G. Fish, T. Kippenberg, T. Komljenovic, E. Norberg, S. Papp, K. Srinivasan, L. Theogarajan, K. Vahala, and N. Volet, “Chip-scale optical resonator enabled synthesizer (CORES): Miniature systems for optical frequency synthesis,” in IEEE International Frequency Control Symposium (IFCS) (2016), pp. 1–5.

Park, C. Y.

H. S. Moon, E. B. Kim, S. E. Park, and C. Y. Park, “Selection and amplification of modes of an optical frequency comb using a femtosecond laser injection-locking technique,” Appl. Phys. Lett. 89(18), 181110 (2006).
[Crossref]

Park, H.

J. Parker, M. Lu, H. Park, E. Bloch, A. Sivananthan, Z. Griffith, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “Offset locking of an SG-DBR to an InGaAsP/InP mode-locked laser,” in IEEE Photonics Conference (IPC) (2012).
[Crossref]

Park, H.-C.

M. Lu, H.-C. Park, E. Bloch, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “A highly-integrated optical frequency synthesizer based on phase-locked loops,” Optical Fiber Communication Conference 2014 (2014).
[Crossref]

Park, S. E.

H. S. Moon, E. B. Kim, S. E. Park, and C. Y. Park, “Selection and amplification of modes of an optical frequency comb using a femtosecond laser injection-locking technique,” Appl. Phys. Lett. 89(18), 181110 (2006).
[Crossref]

Parker, J.

J. Parker, M. Lu, H. Park, E. Bloch, A. Sivananthan, Z. Griffith, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “Offset locking of an SG-DBR to an InGaAsP/InP mode-locked laser,” in IEEE Photonics Conference (IPC) (2012).
[Crossref]

Parker, J. S.

Pavlovic, L.

Ponnampalam, L.

Pozzi, F.

Puttnam, B.

C. C. Renaud, M. Duser, C. F. C. Silva, B. Puttnam, T. Lovell, P. Bayvel, and A. J. Seeds, “Nanosecond channel-switching exact optical frequency synthesizer using an optical injection phase-locked loop (OIPLL),” IEEE Photonics Technol. Lett. 16(3), 903–905 (2004).
[Crossref]

Ranka, J. K.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

Reichert, J.

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the Cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82(18), 3568–3571 (1999).
[Crossref]

Renaud, C. C.

Ristic, S.

Robertson, M. J.

Robertsson, L.

L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10(-19) level,” Science 303(5665), 1843–1845 (2004).
[Crossref] [PubMed]

Rodwell, M. J.

S. Ristic, A. Bhardwaj, M. J. Rodwell, L. A. Coldren, and L. A. Johansson, “An optical phase-locked loop photonic integrated circuit,” J. Lightwave Technol. 28(4), 526–538 (2010).
[Crossref]

M. Lu, H.-C. Park, E. Bloch, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “A highly-integrated optical frequency synthesizer based on phase-locked loops,” Optical Fiber Communication Conference 2014 (2014).
[Crossref]

J. Parker, M. Lu, H. Park, E. Bloch, A. Sivananthan, Z. Griffith, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “Offset locking of an SG-DBR to an InGaAsP/InP mode-locked laser,” in IEEE Photonics Conference (IPC) (2012).
[Crossref]

Rodwell, M. J. W.

Rogers, D. C.

Ryu, H. Y.

Safdi, B.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311(5767), 1595–1599 (2006).
[Crossref] [PubMed]

Saha, K.

Salem, R.

Sanders, A.

J. Castillega, D. Livingston, A. Sanders, and D. Shiner, “Precise measurement of the J = 1 to J = 2 fine structure interval in the 2( 3)P state of helium,” Phys. Rev. Lett. 84(19), 4321–4324 (2000).
[Crossref] [PubMed]

Savchenkov, A. A.

W. Liang, V. S. Ilchenko, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Ultralow noise miniature external cavity semiconductor laser,” Nat. Commun. 6, 7371 (2015).
[Crossref] [PubMed]

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6, 7957 (2015).

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Generation of Kerr frequency combs in a sapphire whispering gallery mode microresonator,” Opt. Eng. 53(12), 122607 (2014).
[Crossref]

A. A. Savchenkov, D. Eliyahu, W. Liang, V. S. Ilchenko, J. Byrd, A. B. Matsko, D. Seidel, and L. Maleki, “Stabilization of a Kerr frequency comb oscillator,” Opt. Lett. 38(15), 2636–2639 (2013).
[Crossref] [PubMed]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Optical resonators with ten million finesse,” Opt. Express 15(11), 6768–6773 (2007).
[Crossref] [PubMed]

Schibli, T. R.

T. R. Schibli, K. Minoshima, E. L. Hong, H. Inaba, Y. Bitou, A. Onae, and H. Matsumoto, “Phase-locked widely tunable optical single-frequency generator based on a femtosecond comb,” Opt. Lett. 30(17), 2323–2325 (2005).
[Crossref] [PubMed]

H. Inaba, T. Ikegami, H. Feng-Lei, A. Onae, Y. Koga, T. R. Schibli, K. Minoshima, H. Matsumoto, S. Yamadori, O. Tohyama, and S. I. Yamaguchi, “Phase locking of a continuous-wave optical parametric oscillator to an optical frequency comb for optical frequency synthesis,” IEEE J. Quantum Electron. 40(7), 929–936 (2004).
[Crossref]

Schliesser, A.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Seeds, A. J.

K. Balakier, M. J. Fice, L. Ponnampalam, A. J. Seeds, and C. C. Renaud, “Monolithically integrated optical phase-lock loop for microwave photonics,” J. Lightwave Technol. 32(20), 3893–3900 (2014).
[Crossref]

R. J. Steed, F. Pozzi, M. J. Fice, C. C. Renaud, D. C. Rogers, I. F. Lealman, D. G. Moodie, P. J. Cannard, C. Lynch, L. Johnston, M. J. Robertson, R. Cronin, L. Pavlovic, L. Naglic, M. Vidmar, and A. J. Seeds, “Monolithically integrated heterodyne optical phase-lock loop with RF XOR phase detector,” Opt. Express 19(21), 20048–20053 (2011).
[Crossref] [PubMed]

C. C. Renaud, M. Duser, C. F. C. Silva, B. Puttnam, T. Lovell, P. Bayvel, and A. J. Seeds, “Nanosecond channel-switching exact optical frequency synthesizer using an optical injection phase-locked loop (OIPLL),” IEEE Photonics Technol. Lett. 16(3), 903–905 (2004).
[Crossref]

A. C. Bordonalli, C. Walton, and A. J. Seeds, “High-performance homodyne optical injection phase-lock loop using wide-linewidth semiconductor lasers,” IEEE Photonics Technol. Lett. 8(9), 1217–1219 (1996).
[Crossref]

Seidel, D.

W. Liang, V. S. Ilchenko, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Ultralow noise miniature external cavity semiconductor laser,” Nat. Commun. 6, 7371 (2015).
[Crossref] [PubMed]

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6, 7957 (2015).

A. A. Savchenkov, D. Eliyahu, W. Liang, V. S. Ilchenko, J. Byrd, A. B. Matsko, D. Seidel, and L. Maleki, “Stabilization of a Kerr frequency comb oscillator,” Opt. Lett. 38(15), 2636–2639 (2013).
[Crossref] [PubMed]

Shim, B.

Shiner, D.

J. Castillega, D. Livingston, A. Sanders, and D. Shiner, “Precise measurement of the J = 1 to J = 2 fine structure interval in the 2( 3)P state of helium,” Phys. Rev. Lett. 84(19), 4321–4324 (2000).
[Crossref] [PubMed]

Silva, C. F. C.

C. C. Renaud, M. Duser, C. F. C. Silva, B. Puttnam, T. Lovell, P. Bayvel, and A. J. Seeds, “Nanosecond channel-switching exact optical frequency synthesizer using an optical injection phase-locked loop (OIPLL),” IEEE Photonics Technol. Lett. 16(3), 903–905 (2004).
[Crossref]

Sivananthan, A.

L. Mingzhi, P. Hyun-chul, E. Bloch, A. Sivananthan, J. S. Parker, Z. Griffith, L. A. Johansson, M. J. W. Rodwell, and L. A. Coldren, “An integrated 40 gbit/s optical costas receiver,” J. Lightwave Technol. 31(13), 2244–2253 (2013).
[Crossref]

J. Parker, M. Lu, H. Park, E. Bloch, A. Sivananthan, Z. Griffith, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “Offset locking of an SG-DBR to an InGaAsP/InP mode-locked laser,” in IEEE Photonics Conference (IPC) (2012).
[Crossref]

Smith, T. L.

Spillane, S. M.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
[Crossref] [PubMed]

Srinivasan, K.

J. E. Bowers, A. Beling, A. Bluestone, S. M. Bowers, L. Chang, S. Diddams, G. Fish, T. Kippenberg, T. Komljenovic, E. Norberg, S. Papp, K. Srinivasan, L. Theogarajan, K. Vahala, and N. Volet, “Chip-scale optical resonator enabled synthesizer (CORES): Miniature systems for optical frequency synthesis,” in IEEE International Frequency Control Symposium (IFCS) (2016), pp. 1–5.

Steed, R. J.

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

Suh, H. S.

Suter, J. D.

Swann, W. C.

Theogarajan, L.

J. E. Bowers, A. Beling, A. Bluestone, S. M. Bowers, L. Chang, S. Diddams, G. Fish, T. Kippenberg, T. Komljenovic, E. Norberg, S. Papp, K. Srinivasan, L. Theogarajan, K. Vahala, and N. Volet, “Chip-scale optical resonator enabled synthesizer (CORES): Miniature systems for optical frequency synthesis,” in IEEE International Frequency Control Symposium (IFCS) (2016), pp. 1–5.

Thorpe, M. J.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311(5767), 1595–1599 (2006).
[Crossref] [PubMed]

Tohyama, O.

H. Inaba, T. Ikegami, H. Feng-Lei, A. Onae, Y. Koga, T. R. Schibli, K. Minoshima, H. Matsumoto, S. Yamadori, O. Tohyama, and S. I. Yamaguchi, “Phase locking of a continuous-wave optical parametric oscillator to an optical frequency comb for optical frequency synthesis,” IEEE J. Quantum Electron. 40(7), 929–936 (2004).
[Crossref]

Udem, T.

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the Cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82(18), 3568–3571 (1999).
[Crossref]

Vahala, K.

J. E. Bowers, A. Beling, A. Bluestone, S. M. Bowers, L. Chang, S. Diddams, G. Fish, T. Kippenberg, T. Komljenovic, E. Norberg, S. Papp, K. Srinivasan, L. Theogarajan, K. Vahala, and N. Volet, “Chip-scale optical resonator enabled synthesizer (CORES): Miniature systems for optical frequency synthesis,” in IEEE International Frequency Control Symposium (IFCS) (2016), pp. 1–5.

Vahala, K. J.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
[Crossref] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

Vidmar, M.

Volet, N.

J. E. Bowers, A. Beling, A. Bluestone, S. M. Bowers, L. Chang, S. Diddams, G. Fish, T. Kippenberg, T. Komljenovic, E. Norberg, S. Papp, K. Srinivasan, L. Theogarajan, K. Vahala, and N. Volet, “Chip-scale optical resonator enabled synthesizer (CORES): Miniature systems for optical frequency synthesis,” in IEEE International Frequency Control Symposium (IFCS) (2016), pp. 1–5.

Walton, C.

A. C. Bordonalli, C. Walton, and A. J. Seeds, “High-performance homodyne optical injection phase-lock loop using wide-linewidth semiconductor lasers,” IEEE Photonics Technol. Lett. 8(9), 1217–1219 (1996).
[Crossref]

White, I. M.

Wilken, T.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Wilpers, G.

L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10(-19) level,” Science 303(5665), 1843–1845 (2004).
[Crossref] [PubMed]

Windeler, R. S.

L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10(-19) level,” Science 303(5665), 1843–1845 (2004).
[Crossref] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

Yamadori, S.

H. Inaba, T. Ikegami, H. Feng-Lei, A. Onae, Y. Koga, T. R. Schibli, K. Minoshima, H. Matsumoto, S. Yamadori, O. Tohyama, and S. I. Yamaguchi, “Phase locking of a continuous-wave optical parametric oscillator to an optical frequency comb for optical frequency synthesis,” IEEE J. Quantum Electron. 40(7), 929–936 (2004).
[Crossref]

Yamaguchi, S. I.

H. Inaba, T. Ikegami, H. Feng-Lei, A. Onae, Y. Koga, T. R. Schibli, K. Minoshima, H. Matsumoto, S. Yamadori, O. Tohyama, and S. I. Yamaguchi, “Phase locking of a continuous-wave optical parametric oscillator to an optical frequency comb for optical frequency synthesis,” IEEE J. Quantum Electron. 40(7), 929–936 (2004).
[Crossref]

Ye, J.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311(5767), 1595–1599 (2006).
[Crossref] [PubMed]

Zhang, J.

Zhang, X.

Zucco, M.

L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10(-19) level,” Science 303(5665), 1843–1845 (2004).
[Crossref] [PubMed]

Appl. Phys. B (1)

A. A. Madej, L. Marmet, and J. E. Bernard, “Rb atomic absorption line reference for single Sr+ laser cooling systems,” Appl. Phys. B 67(2), 229–234 (1998).
[Crossref]

Appl. Phys. Lett. (1)

H. S. Moon, E. B. Kim, S. E. Park, and C. Y. Park, “Selection and amplification of modes of an optical frequency comb using a femtosecond laser injection-locking technique,” Appl. Phys. Lett. 89(18), 181110 (2006).
[Crossref]

IEEE J. Quantum Electron. (1)

H. Inaba, T. Ikegami, H. Feng-Lei, A. Onae, Y. Koga, T. R. Schibli, K. Minoshima, H. Matsumoto, S. Yamadori, O. Tohyama, and S. I. Yamaguchi, “Phase locking of a continuous-wave optical parametric oscillator to an optical frequency comb for optical frequency synthesis,” IEEE J. Quantum Electron. 40(7), 929–936 (2004).
[Crossref]

IEEE Photonics Technol. Lett. (2)

A. C. Bordonalli, C. Walton, and A. J. Seeds, “High-performance homodyne optical injection phase-lock loop using wide-linewidth semiconductor lasers,” IEEE Photonics Technol. Lett. 8(9), 1217–1219 (1996).
[Crossref]

C. C. Renaud, M. Duser, C. F. C. Silva, B. Puttnam, T. Lovell, P. Bayvel, and A. J. Seeds, “Nanosecond channel-switching exact optical frequency synthesizer using an optical injection phase-locked loop (OIPLL),” IEEE Photonics Technol. Lett. 16(3), 903–905 (2004).
[Crossref]

J. Lightwave Technol. (3)

Nat. Commun. (2)

W. Liang, V. S. Ilchenko, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Ultralow noise miniature external cavity semiconductor laser,” Nat. Commun. 6, 7371 (2015).
[Crossref] [PubMed]

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6, 7957 (2015).

Nature (2)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Opt. Eng. (1)

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Generation of Kerr frequency combs in a sapphire whispering gallery mode microresonator,” Opt. Eng. 53(12), 122607 (2014).
[Crossref]

Opt. Express (8)

I. M. White, J. D. Suter, H. Oveys, X. Fan, T. L. Smith, J. Zhang, B. J. Koch, and M. A. Haase, “Universal coupling between metal-clad waveguides and optical ring resonators,” Opt. Express 15(2), 646–651 (2007).
[Crossref] [PubMed]

X. Zhang and A. M. Armani, “Silica microtoroid resonator sensor with monolithically integrated waveguides,” Opt. Express 21(20), 23592–23603 (2013).
[Crossref] [PubMed]

K. Saha, Y. Okawachi, B. Shim, J. S. Levy, R. Salem, A. R. Johnson, M. A. Foster, M. R. E. Lamont, M. Lipson, and A. L. Gaeta, “Mode locking and femtosecond pulse generation in chip-based frequency combs,” Opt. Express 21(1), 1335–1343 (2013).
[Crossref] [PubMed]

Y.-J. Kim, J. Jin, Y. Kim, S. Hyun, and S.-W. Kim, “A wide-range optical frequency generator based on the frequency comb of a femtosecond laser,” Opt. Express 16(1), 258–264 (2008).
[Crossref] [PubMed]

H. Y. Ryu, S. H. Lee, W. K. Lee, H. S. Moon, and H. S. Suh, “Absolute frequency measurement of an acetylene stabilized laser using a selected single mode from a femtosecond fiber laser comb,” Opt. Express 16(5), 2867–2873 (2008).
[Crossref] [PubMed]

A. B. Matsko and L. Maleki, “On timing jitter of mode-locked Kerr frequency combs,” Opt. Express 21(23), 28862–28876 (2013).
[Crossref] [PubMed]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Optical resonators with ten million finesse,” Opt. Express 15(11), 6768–6773 (2007).
[Crossref] [PubMed]

R. J. Steed, F. Pozzi, M. J. Fice, C. C. Renaud, D. C. Rogers, I. F. Lealman, D. G. Moodie, P. J. Cannard, C. Lynch, L. Johnston, M. J. Robertson, R. Cronin, L. Pavlovic, L. Naglic, M. Vidmar, and A. J. Seeds, “Monolithically integrated heterodyne optical phase-lock loop with RF XOR phase detector,” Opt. Express 19(21), 20048–20053 (2011).
[Crossref] [PubMed]

Opt. Lett. (4)

Phys. Lett. A (1)

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137(7–8), 393–397 (1989).
[Crossref]

Phys. Rev. Lett. (4)

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
[Crossref] [PubMed]

T. Herr, V. Brasch, J. D. Jost, I. Mirgorodskiy, G. Lihachev, M. L. Gorodetsky, and T. J. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” Phys. Rev. Lett. 113(12), 123901 (2014).
[Crossref] [PubMed]

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the Cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82(18), 3568–3571 (1999).
[Crossref]

J. Castillega, D. Livingston, A. Sanders, and D. Shiner, “Precise measurement of the J = 1 to J = 2 fine structure interval in the 2( 3)P state of helium,” Phys. Rev. Lett. 84(19), 4321–4324 (2000).
[Crossref] [PubMed]

Science (4)

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311(5767), 1595–1599 (2006).
[Crossref] [PubMed]

L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10(-19) level,” Science 303(5665), 1843–1845 (2004).
[Crossref] [PubMed]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

Other (8)

C. C. Renaud, C. F. C. Silva, M. Dueser, P. Bayvel, and A. J. Seeds, “Exact, agile, optical frequency synthesis using an optical comb generator and optical injection phase-lock loop,” in Digest of the LEOS Summer Topical Meetings (2003), paper WC1.3/67.
[Crossref]

J. E. Bowers, A. Beling, A. Bluestone, S. M. Bowers, L. Chang, S. Diddams, G. Fish, T. Kippenberg, T. Komljenovic, E. Norberg, S. Papp, K. Srinivasan, L. Theogarajan, K. Vahala, and N. Volet, “Chip-scale optical resonator enabled synthesizer (CORES): Miniature systems for optical frequency synthesis,” in IEEE International Frequency Control Symposium (IFCS) (2016), pp. 1–5.

M. Lu, H.-C. Park, E. Bloch, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “A highly-integrated optical frequency synthesizer based on phase-locked loops,” Optical Fiber Communication Conference 2014 (2014).
[Crossref]

J. Parker, M. Lu, H. Park, E. Bloch, A. Sivananthan, Z. Griffith, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “Offset locking of an SG-DBR to an InGaAsP/InP mode-locked laser,” in IEEE Photonics Conference (IPC) (2012).
[Crossref]

J. Parker, A. Sivananthan, M. Lu, L. Johansson, and L. Coldren, “Integrated phase-locked multi-THz comb for broadband offset locking,” in OSA Technical Digest, Optical Fiber Communication Conference (2012), paper OM3E.5.
[Crossref]

M. Lu, “Integrated optical phase-locked loops,” in Electrical and Computer Engineering, University of California, Santa Barbara (2013) p. 252.

http://www.adsantec.com/200-asnt5020-pqc.html http://www.adsantec.com/83-asnt5040-kmc.html

http://www.menlosystems.com/assets/documents-2/FC1500-ProductBrochure.pdf

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Optical frequency synthesizer system, showing two main building blocks – a comb source and a heterodyne OPLL. The optical spectra are also plotted at the output of each block.

Fig. 2
Fig. 2

System architecture of the heterodyne OPLL-based widely tunable OFS.

Fig. 3
Fig. 3

The heterodyne OPLL on the test bench where the US quarter shown as a scale (right). A close-up view of the heterodyne OPLL board (left). The PIC, EIC and loop filter are labeled.

Fig. 4
Fig. 4

(a) Schematic diagram of the set-up of the optical frequency comb (OFC) in a MgF2 crystalline whispering gallery mode (WGM) resonator. The distributed feedback (DFB) laser pumps the resonator using an evanescent wave prism coupler. The generated frequency comb leaves the resonator through prism couplers. The light exiting one of the prism couplers was sent to a fast RF photodiode and optical output was obtained from the other coupler, (b) optical microscope image of the MgF2 crystal forming optical WGM resonators, (c) packaged OFC unit with green fiber pigtail, (d) optical spectrum of a stabilized Kerr frequency combs (left) generated in the unit (right). The comb spans 3 THz defined as the width where the intensity ≥ 50 dBm (red dotted line) and has a line spacing of 25.7 GHz, yielding more than 115 lines. The optical output comb power exiting the fiber (greenjacketed) is 100 µW obtained after subtracting from the pump laser power, meaning only ~0.5 µW per comb line is achieved in the wavelength range of 1535 nm-1575 nm. The horizontal (green) dashed line denotes the 0.5 μW per comb line power level. (e) Clearly observed lines of a multi-soliton Kerr frequency comb with a spacing of 0.2 nm.

Fig. 5
Fig. 5

The test setup of the optical synthesizer using heterodyne OPLL locking scheme. A microscope picture of the fully fabricated PIC mounted on AlN carrier with wirebonding shown at the top. (amp: amplifier, BM: back mirror, ESA: electrical spectrum analyzer, EDFA: erbium doped fiber amplifier, FM: front mirror, MMI: multimode interference, OSA: optical spectrum analyzer, PC: polarization controller, PT: phase tuner, PD: photodetector, PIC: photonic integrated circuit, SOA: semiconductor optical amplifier).

Fig. 6
Fig. 6

(a) Optical spectrum when SG-DBR laser and comb are phase locked with a frequency difference of 11 GHz. The locking is to the comb line at 1561.77 nm. The zoom-in spectrum with a span of 2 nm is shown as inset, and (b) the RF spectrum, showing the locked beat note between SG-DBR and comb at 11 GHz is recorded. The beat note generated between SG-DBR and adjacent comb line is also visible. Both the phase-locked and free-running cases are shown to illustrate the improved relative spectral coherence between the on-chip tunable laser and comb.

Fig. 7
Fig. 7

(a) The measurement setup for the tuning resolution of our OFS, (b) Power spectra of an RF frequency signal at 25.7 GHz generated by beating between comb lines on a high-speed PD integrated in the packaged unit measured with different resolution bandwidth. The smaller peaks are of 60 Hz and its harmonics, appearing from the power source, (c) locked beat signal between reference comb line and the SG-DBR laser and its movement by 100 Hz, and (d) plot of change in the optical beat note with respect to change in the RF offset frequency.

Fig. 8
Fig. 8

(a) The test setup for measuring the switching speed of our OFS, (b) the optical spectrum of SG-DBR laser when the front mirror is modulated by a 800 kHz square-wave from a signal generator and gain current is set to a constant value of 130 mA, resulting wavelength switching between λ1,SG-DBR = 1549.876 nm and λ2,SGDBR = 1555.596 nm, and (c) superimposed optical spectra of comb output and SG-DBR laser, where both comb peaks separated by 0.024 nm from their corresponding SG-DBR laser peaks can be resolved. (BM = back mirror, DC = direct current, EDFA = erbium doped fiber amplifier, ext. PD = external photodetector, FM = front mirror, PIC = photonic integrated circuit, PC = polarization controller, PT = phase tuner, RBW = resolution bandwidth)

Fig. 9
Fig. 9

RF spectrum measured at the ESA of modulated SG-DBR laser beating with the comb output during dynamic wavelength switching of SG-DBR. Three peaks are seen, (1) the locked beat note is at 2.5 GHz, produced by beating between both SGDBR peaks and the corresponding comb lines, (2) The beat note generated between both SG-DBR peak and adjacent corresponding comb line is at 23.3 GHz, and (3) the beat note produced between comb lines is at 25.7 GHz.

Fig. 10
Fig. 10

(a) A real-time oscilloscope trace of the external photodiode output of both wavelength component of SG-DBR laser during wavelength switching in order to measure the locking time of the OPLL system. Three periods are shown here which corresponds to the modulation frequency of front mirror, i.e. 800 kHz, (b) trace with a smaller span, showing the transition to phase-locking, and (c) trace with smallest span to show 2.5 GHz signal during phase-locking.

Fig. 11
Fig. 11

Single-sideband residual phase noise of the heterodyne OPLL at 2.9 GHz. Phase noise results of the RF signal at 25.7 GHz generated between comb lines, RF synthesizer, and background is also shown here for comparison.

Metrics