Abstract

We demonstrate supercontinuum generation in stoichiometric silicon nitride (Si3N4 in SiO2) integrated optical waveguides, pumped at telecommunication wavelengths. The pump laser is a mode-locked erbium fiber laser at a wavelength of 1.56 µm with a pulse duration of 120 fs. With a waveguide-internal pulse energy of 1.4 nJ and a waveguide with 1.0 µm × 0.9 µm cross section, designed for anomalous dispersion across the 1500 nm telecommunication range, the output spectrum extends from the visible, at around 526 nm, up to the mid-infrared, at least to 2.6 µm, the instrumental limit of our detection. This output spans more than 2.2 octaves (454 THz at the −30 dB level). The measured output spectra agree well with theoretical modeling based on the generalized nonlinear Schrödinger equation. The infrared part of the supercontinuum spectra shifts progressively towards the mid-infrared, well beyond 2.6 µm, by increasing the width of the waveguides.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Telecom to mid-infrared spanning supercontinuum generation in hydrogenated amorphous silicon waveguides using a Thulium doped fiber laser pump source

Utsav D. Dave, Sarah Uvin, Bart Kuyken, Shankar Selvaraja, Francois Leo, and Gunther Roelkens
Opt. Express 21(26) 32032-32039 (2013)

Frequency comb offset detection using supercontinuum generation in silicon nitride waveguides

A. S. Mayer, A. Klenner, A. R. Johnson, K. Luke, M. R. E. Lamont, Y. Okawachi, M. Lipson, A. L. Gaeta, and U. Keller
Opt. Express 23(12) 15440-15451 (2015)

Octave-spanning supercontinuum generation in a silicon-rich nitride waveguide

Xing Liu, Minhao Pu, Binbin Zhou, Clemens J. Krückel, Attila Fülöp, Victor Torres-Company, and Morten Bache
Opt. Lett. 41(12) 2719-2722 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [Crossref]
  2. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis,” Science 288, 635–639 (2000).
    [Crossref] [PubMed]
  3. A. Ruehl, M. J. Martin, K. C. Cossel, L. Chen, H. McKay, B. Thomas, C. Benko, L. Dong, J. M. Dudley, M. E. Fermann, I. Hartl, and J. Ye, “Ultrabroadband coherent supercontinuum frequency comb,” Phys. Rev. A 84, 011806 (2011).
    [Crossref]
  4. H. Kano and H. Hamaguchi, “Characterization of a supercontinuum generated from a photonic crystal fiber and its application to coherent Raman spectroscopy,” Opt. Lett. 28, 2360–2362 (2003).
    [Crossref] [PubMed]
  5. G. Humbert, W. Wadsworth, S. Leon-Saval, J. Knight, T. Birks, P. St, J. Russell, M. Lederer, D. Kopf, K. Wiesauer, E. Breuer, and D. Stifter, “Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre,” Opt. Express 14, 1596–1603 (2006).
    [Crossref] [PubMed]
  6. J. T. Woodward, A. W. Smith, C. A. Jenkins, C. Lin, S. W. Brown, and K. R. Lykke, “Supercontinuum sources for metrology,” Metrologia 46, S277–S282 (2009).
    [Crossref]
  7. G. Ycas, S. Osterman, and S. A. Diddams, “Generation of a 660–2100 nm laser frequency comb based on an erbium fiber laser,” Opt. Lett. 37, 2199–2201 (2012).
    [Crossref] [PubMed]
  8. V. Brasch, T. Herr, M. Geiselmann, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip based optical frequency comb using soliton induced Cherenkov radiation,” Science 351, 357–360 (2016).
    [Crossref] [PubMed]
  9. V. Torres-Company and A. M. Weiner, “Optical frequency comb technology for ultra-broadband radio-frequency photonics,” Laser Photonics Rev. 8, 368–393 (2014).
    [Crossref]
  10. T. G. Nguyen, M. Shoeiby, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Integrated frequency comb source based Hilbert transformer for wideband microwave photonic phase analysis,” Opt. Express 23, 22087–22097 (2015).
    [Crossref] [PubMed]
  11. K.L. Corwin, N.R. Newbury, J.M. Dudley, S. Coen, S.A. Diddams, K. Weber, and R.S. Windeler, “Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber,” Phys. Rev. Lett. 90, 113904 (2003).
    [Crossref] [PubMed]
  12. B. Kuyken, F. Leo, S. Clemmen, U. Dave, R. Van Laer, T. Ideguchi, H. Zhao, X. Liu, J. Safioui, S. Coen, S.P. Gorza, S.K. Selvaraja, S. Massar, R.M. Osgood, P. Verheyen, J. Van Campenhout, R. Baets, W.M.J. Green, and G. Roelkens, “Nonlinear optical interactions in silicon waveguides,” Nanophotonics 5, 1–16 (2016).
  13. C. Ciret and S-P. Gorza, “Generation of ultra broadband coherent supercontinuum in tapered and dispersion managed silicon nanophotonic waveguides,” arXiv:1610.05665 [physics.optics] (2016).
  14. H. Hu, W. Li, and N.K. Dutta, “Dispersion-engineered tapered planar waveguide for coherent supercontinuum generation,” Opt. Commun. 324, 252–257 (2014).
    [Crossref]
  15. D. Y. Oh, D. Sell, H. Lee, K. Y. Yang, S. A. Diddams, and K. J. Vahala, “Supercontinuum generation in an on-chip silica waveguide,” Opt. Lett. 39, 1046–1048 (2014).
    [Crossref] [PubMed]
  16. D. Duchesne, M. Peccianti, M. R. E. Lamont, M. Ferrera, L. Razzari, F. Légaré, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “Supercontinuum generation in a high index doped silica glass spiral waveguide,” Opt. Express 18, 923–930 (2010).
    [Crossref] [PubMed]
  17. R. Halir, Y. Okawachi, J. S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, “Ultrabroadband supercontinuum generation in a CMOS-compatible platform,” Opt. Lett. 37, 1685–1687 (2012).
    [Crossref] [PubMed]
  18. J. M. Chavez Boggio, D. Bodenmüller, T. Fremberg, R. Haynes, M. M. Roth, R. Eisermann, M. Lisker, L. Zimmermann, and M. Böhm, “Dispersion engineered silicon nitride waveguides by geometrical and refractive-index optimization,” J. Opt. Soc. Am. B 31, 2846–2857 (2014).
    [Crossref]
  19. M. R. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10/W/m) As2S3 chalcogenide planar waveguide,” Opt. Express 16, 14938–14944 (2008).
    [Crossref] [PubMed]
  20. Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photonics Rev. 8, 792–798 (2014).
    [Crossref]
  21. F. Leo, S.-P. Gorza, J. Safioui, P. Kockaert, S. Coen, U. Dave, B. Kuyken, and G. Roelkens, “Dispersive wave emission and supercontinuum generation in a silicon wire waveguide pumped around the 1550 nm telecommunication wavelength,” Opt. Lett. 39, 3623–3626 (2014).
    [Crossref] [PubMed]
  22. R. K. W. Lau, M. R. E. Lamont, A. G. Griffith, Y. Okawachi, M. Lipson, and A. L. Gaeta, “Octave-spanning mid-infrared supercontinuum generation in silicon nanowaveguides,” Opt. Lett. 39, 4518–4521 (2014).
    [Crossref] [PubMed]
  23. B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
    [Crossref] [PubMed]
  24. X. Liu, M. Pu, B. Zhou, C. J. Krückel, A. Fülöp, V. Torres-Company, and M. Bache, “Octave-spanning supercontinuum generation in a silicon-rich nitride waveguide,” Opt. Lett. 41, 2719–2722 (2016).
    [Crossref] [PubMed]
  25. F. Morichetti, A. Melloni, M. Martinelli, R. Heideman, A. Leinse, D. Geuzebroek, and A. Borremann, “Box-shaped dielectric waveguides: A new concept in integrated optics?” J. Lightwave Technol. 25, 2579–2589 (2007).
    [Crossref]
  26. R. G. H. Kerstin Wörhoff, “TriPleX: A versatile dielectric photonic platform,” Adv. Opt. Techn. 4, 189–207 (2015).
  27. R. M. Oldenbeuving, E. J. Klein, H. L. Offerhaus, C. J. Lee, H. Song, and K.-J. Boller, “25 kHz narrow spectral bandwidth of a wavelength tunable diode laser with a short waveguide-based external cavity,” Laser Phys. Lett. 10, 015804 (2013).
    [Crossref]
  28. Y. Fan, R. M. Oldenbeuving, E. J. Klein, C. J. Lee, H. Song, M. R. H. Khan, H. L. Offerhaus, P. J. M. van der Slot, and K.-J. Boller, “A hybrid semiconductor-glass waveguide laser,” Proc. SPIE 9135, 91351 (2014).
    [Crossref]
  29. A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express 17, 11366–11370 (2009).
    [Crossref] [PubMed]
  30. J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M.-C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19, 3163–3174 (2011).
    [Crossref] [PubMed]
  31. C. Xiong, X. Zhang, A. Mahendra, J. He, D.-Y. Choi, J. Chae, D. Marpaung, A. Leinse, R. G. Heideman, M. Hoekman, C. G. H. Roeloffzen, R. M. Oldenbeuving, P. W. L. van Dijk, C. Taddei, P. H. W. Leong, and B. J. Eggleton, “Compact and reconfigurable silicon nitride time-bin entanglement circuit,” Optica 2, 724–727 (2015).
    [Crossref]
  32. L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, and C. Roeloffzen, “Low-loss, high-index-contrast Si3N4/SiO2 optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express 19, 23162–23170 (2011).
    [Crossref] [PubMed]
  33. C. G. H. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. L. van Dijk, R. M. Oldenbeuving, D. A. I. Marpaung, M. Burla, and K. J. Boller, “Silicon nitride microwave photonic circuits,” Opt. Express 21, 22937–22961 (2013).
    [Crossref] [PubMed]
  34. L. Zhuang, C. G. H. Roeloffzen, M. Hoekman, K.-J. Boller, and A. J. Lowery, “Programmable photonic signal processor chip for radiofrequency applications,” Optica 2, 854–859 (2015).
    [Crossref]
  35. A. Klenner, A.S. Mayer, A.R. Johnson, K. Luke, M.R.E. Lamont, Y. Okawachi, M. Lipson, A.L. Gaeta, and U. Keller, “Gigahertz frequency comb offset stabilization based on supercontinuum generation in silicon nitride waveguides,” Opt. Express 24, 11043–11053 (2016).
    [Crossref] [PubMed]
  36. J. P. Epping, T. Hellwig, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman, A. van Rees, P. J. M. van der Slot, C. J. Lee, C. Fallnich, and K.-J. Boller, “On-chip visible-to-infrared supercontinuum generation with more than 495 THz spectral bandwidth,” Opt. Express 23, 19596–19604 (2015).
    [Crossref] [PubMed]
  37. A.R. Johnson, A.S. Mayer, A. Klenner, K. Luke, E.S. Lamb, M.R.E. Lamont, C. Joshi, Y. Okawachi, F.W. Wise, M. Lipson, U. Keller, and A.L. Gaeta, “Octave-spanning coherent supercontinuum generation in a silicon nitride waveguide,” Opt. Lett. 40, 5117–5120, (2015).
    [Crossref] [PubMed]
  38. A.S. Mayer, A. Klenner, A.R. Johnson, K. Luke, M.R.E. Lamont, Y. Okawachi, M. Lipson, A.L. Gaeta, and U. Keller, “Frequency comb offset detection using supercontinuum generation in silicon nitride waveguides,” Opt. Express 23, 15440–15451 (2015).
    [Crossref] [PubMed]
  39. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2007).
  40. J. P. Epping, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman, A. van Rees, P. J. van der Slot, C. J. Lee, and K.-J. Boller, “High confinement, high yield Si3N4 waveguides for nonlinear optical applications,” Opt. Express 23, 642–648 (2015).
    [Crossref] [PubMed]
  41. K. Luke, Y. Okawachi, M. R. E. Lamont, A. L. Gaeta, and M. Lipson, “Broadband mid-infrared frequency comb generation in a Si3N4 microresonator,” Opt. Lett. 40, 4823–4826 (2015).
    [Crossref] [PubMed]
  42. M. Kues, N. Brauckmann, T. Walbaum, P. Groß, and C. Fallnich, “Nonlinear dynamics of femtosecond supercontinuum generation with feedback,” Opt. Express 17, 15827–15841 (2009).
    [Crossref] [PubMed]
  43. J.S. Levy, Integrated nonlinear optics in silicon nitride waveguides resonators, PhD Thesis, Cornell University (2011).
  44. K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides,” Opt. Express 16, 12987–12994 (2008).
    [Crossref] [PubMed]
  45. X.-J. Liu, J.-J. Zhang, X.-W. Sun, Y.-B. Pan, L.-H. Huang, and C.-Y. Jin, “Growth and properties of silicon nitride films prepared by low pressure chemical vapor deposition using trichorosilane and ammonia,” Thin Solid Films 460, 72–77 (2004).
    [Crossref]
  46. C. Krueckel, A. Fulop, T. Klintberg, J. Bengtsson, P. Andrekson, and V. Torres-Company, “Linear and nonlinear characterization of low-stress high-confinement silicon-rich nitride waveguides,” Opt. Express 23, 25827–25837 (2015).
    [Crossref]
  47. H. Zhao, B. Kuyken, S. Clemmen, F. Leo, A. Subramanian, A. Dhakal, P. Helin, S. Severi, E. Brainis, G. Roelkens, and R. Baets, “Visible-to-near-infrared octave spanning supercontinuum generation in a silicon nitride waveguide,” Opt. Lett. 40, 2177–2180 (2015).
    [Crossref] [PubMed]
  48. N. Karasawa, S. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, “Comparison between theory and experiment of nonlinear propagation for a-few-cycle and ultrabroadband optical pulses in a fused silica fiber,” IEEE J. Sel. Top. Quantum Electron. 37, 398–404 (2001).
    [Crossref]
  49. J. M. C. Boggio, A. O. M. Moñux, D. Modotto, T. Fremberg, D. Bodenmüller, D. Giannone, M. M. Roth, T. Hansson, S. Wabnitz, E. Silvestre, and L. Zimmermann, “Dispersion-optimized multicladding silicon nitride waveguides for nonlinear frequency generation from ultraviolet to mid-infrared,” J. Opt. Soc. Am. B 33, 2402–2413 (2016).
    [Crossref]
  50. J.P. Epping, Dispersion engineering silicon nitride waveguides for broadband nonlinear frequency conversion, PhD thesis, University of Twente (2015)
  51. N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
    [Crossref] [PubMed]
  52. I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, “Dispersive wave generation by solitons in microstructured optical fibers,” Opt. Express 12, 124–135 (2004).
    [Crossref] [PubMed]
  53. F. Schepers, M. A. G. Porcel, J. P. Epping, T. Hellwig, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman, A. van Rees, P. J. M. van der Slot, C. J. Lee, R. Schmidt, R. Bratschitsch, K.-J. Boller, and C. Fallnich, “Ultrabroadband supercontinuum generation at telecommunication wavelengths in dispersion engineered stoichiometric Si3N4 waveguides,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), p. AM3J.5.
  54. D. Grassani, A. Billat, M. H. P. Pfeiffer, H. Guo, T. North, T. J. Kippenberg, and C.-S. Bres, “Mid-infrared supercontinuum generation in a SiN waveguide pumped at 1.55 micron,” in “Frontiers in Optics 2016,” (Optical Society of America, 2016), p. FTu5D.3.
    [Crossref]
  55. B.-H. Liao and C.-N. Hsiao, “Improving optical properties of silicon nitride films to be applied in the middle infrared optics by a combined high-power impulse/unbalanced magnetron sputtering deposition technique,” Appl. Opt. 53, A377–A382 (2014).
    [Crossref] [PubMed]
  56. A. H. Hosseinnia, A. H. Atabaki, A. A. Eftekhar, and A. Adibi, “High-quality silicon on silicon nitride integrated optical platform with an octave-spanning adiabatic interlayer coupler,” Opt. Express 23, 30297–30307 (2015).
    [Crossref] [PubMed]
  57. Y.K. Chembo, “Kerr optical frequency combs: theory, applications and perspectives,” Nanophotonics,  5, 214–230 (2016).
    [Crossref]
  58. A. Schliesser, N. Picqué, and T.W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
    [Crossref]

2016 (6)

V. Brasch, T. Herr, M. Geiselmann, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip based optical frequency comb using soliton induced Cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref] [PubMed]

B. Kuyken, F. Leo, S. Clemmen, U. Dave, R. Van Laer, T. Ideguchi, H. Zhao, X. Liu, J. Safioui, S. Coen, S.P. Gorza, S.K. Selvaraja, S. Massar, R.M. Osgood, P. Verheyen, J. Van Campenhout, R. Baets, W.M.J. Green, and G. Roelkens, “Nonlinear optical interactions in silicon waveguides,” Nanophotonics 5, 1–16 (2016).

Y.K. Chembo, “Kerr optical frequency combs: theory, applications and perspectives,” Nanophotonics,  5, 214–230 (2016).
[Crossref]

A. Klenner, A.S. Mayer, A.R. Johnson, K. Luke, M.R.E. Lamont, Y. Okawachi, M. Lipson, A.L. Gaeta, and U. Keller, “Gigahertz frequency comb offset stabilization based on supercontinuum generation in silicon nitride waveguides,” Opt. Express 24, 11043–11053 (2016).
[Crossref] [PubMed]

X. Liu, M. Pu, B. Zhou, C. J. Krückel, A. Fülöp, V. Torres-Company, and M. Bache, “Octave-spanning supercontinuum generation in a silicon-rich nitride waveguide,” Opt. Lett. 41, 2719–2722 (2016).
[Crossref] [PubMed]

J. M. C. Boggio, A. O. M. Moñux, D. Modotto, T. Fremberg, D. Bodenmüller, D. Giannone, M. M. Roth, T. Hansson, S. Wabnitz, E. Silvestre, and L. Zimmermann, “Dispersion-optimized multicladding silicon nitride waveguides for nonlinear frequency generation from ultraviolet to mid-infrared,” J. Opt. Soc. Am. B 33, 2402–2413 (2016).
[Crossref]

2015 (13)

J. P. Epping, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman, A. van Rees, P. J. van der Slot, C. J. Lee, and K.-J. Boller, “High confinement, high yield Si3N4 waveguides for nonlinear optical applications,” Opt. Express 23, 642–648 (2015).
[Crossref] [PubMed]

H. Zhao, B. Kuyken, S. Clemmen, F. Leo, A. Subramanian, A. Dhakal, P. Helin, S. Severi, E. Brainis, G. Roelkens, and R. Baets, “Visible-to-near-infrared octave spanning supercontinuum generation in a silicon nitride waveguide,” Opt. Lett. 40, 2177–2180 (2015).
[Crossref] [PubMed]

A.S. Mayer, A. Klenner, A.R. Johnson, K. Luke, M.R.E. Lamont, Y. Okawachi, M. Lipson, A.L. Gaeta, and U. Keller, “Frequency comb offset detection using supercontinuum generation in silicon nitride waveguides,” Opt. Express 23, 15440–15451 (2015).
[Crossref] [PubMed]

J. P. Epping, T. Hellwig, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman, A. van Rees, P. J. M. van der Slot, C. J. Lee, C. Fallnich, and K.-J. Boller, “On-chip visible-to-infrared supercontinuum generation with more than 495 THz spectral bandwidth,” Opt. Express 23, 19596–19604 (2015).
[Crossref] [PubMed]

C. Xiong, X. Zhang, A. Mahendra, J. He, D.-Y. Choi, J. Chae, D. Marpaung, A. Leinse, R. G. Heideman, M. Hoekman, C. G. H. Roeloffzen, R. M. Oldenbeuving, P. W. L. van Dijk, C. Taddei, P. H. W. Leong, and B. J. Eggleton, “Compact and reconfigurable silicon nitride time-bin entanglement circuit,” Optica 2, 724–727 (2015).
[Crossref]

T. G. Nguyen, M. Shoeiby, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Integrated frequency comb source based Hilbert transformer for wideband microwave photonic phase analysis,” Opt. Express 23, 22087–22097 (2015).
[Crossref] [PubMed]

C. Krueckel, A. Fulop, T. Klintberg, J. Bengtsson, P. Andrekson, and V. Torres-Company, “Linear and nonlinear characterization of low-stress high-confinement silicon-rich nitride waveguides,” Opt. Express 23, 25827–25837 (2015).
[Crossref]

L. Zhuang, C. G. H. Roeloffzen, M. Hoekman, K.-J. Boller, and A. J. Lowery, “Programmable photonic signal processor chip for radiofrequency applications,” Optica 2, 854–859 (2015).
[Crossref]

K. Luke, Y. Okawachi, M. R. E. Lamont, A. L. Gaeta, and M. Lipson, “Broadband mid-infrared frequency comb generation in a Si3N4 microresonator,” Opt. Lett. 40, 4823–4826 (2015).
[Crossref] [PubMed]

A.R. Johnson, A.S. Mayer, A. Klenner, K. Luke, E.S. Lamb, M.R.E. Lamont, C. Joshi, Y. Okawachi, F.W. Wise, M. Lipson, U. Keller, and A.L. Gaeta, “Octave-spanning coherent supercontinuum generation in a silicon nitride waveguide,” Opt. Lett. 40, 5117–5120, (2015).
[Crossref] [PubMed]

A. H. Hosseinnia, A. H. Atabaki, A. A. Eftekhar, and A. Adibi, “High-quality silicon on silicon nitride integrated optical platform with an octave-spanning adiabatic interlayer coupler,” Opt. Express 23, 30297–30307 (2015).
[Crossref] [PubMed]

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref] [PubMed]

R. G. H. Kerstin Wörhoff, “TriPleX: A versatile dielectric photonic platform,” Adv. Opt. Techn. 4, 189–207 (2015).

2014 (9)

Y. Fan, R. M. Oldenbeuving, E. J. Klein, C. J. Lee, H. Song, M. R. H. Khan, H. L. Offerhaus, P. J. M. van der Slot, and K.-J. Boller, “A hybrid semiconductor-glass waveguide laser,” Proc. SPIE 9135, 91351 (2014).
[Crossref]

H. Hu, W. Li, and N.K. Dutta, “Dispersion-engineered tapered planar waveguide for coherent supercontinuum generation,” Opt. Commun. 324, 252–257 (2014).
[Crossref]

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photonics Rev. 8, 792–798 (2014).
[Crossref]

V. Torres-Company and A. M. Weiner, “Optical frequency comb technology for ultra-broadband radio-frequency photonics,” Laser Photonics Rev. 8, 368–393 (2014).
[Crossref]

B.-H. Liao and C.-N. Hsiao, “Improving optical properties of silicon nitride films to be applied in the middle infrared optics by a combined high-power impulse/unbalanced magnetron sputtering deposition technique,” Appl. Opt. 53, A377–A382 (2014).
[Crossref] [PubMed]

D. Y. Oh, D. Sell, H. Lee, K. Y. Yang, S. A. Diddams, and K. J. Vahala, “Supercontinuum generation in an on-chip silica waveguide,” Opt. Lett. 39, 1046–1048 (2014).
[Crossref] [PubMed]

F. Leo, S.-P. Gorza, J. Safioui, P. Kockaert, S. Coen, U. Dave, B. Kuyken, and G. Roelkens, “Dispersive wave emission and supercontinuum generation in a silicon wire waveguide pumped around the 1550 nm telecommunication wavelength,” Opt. Lett. 39, 3623–3626 (2014).
[Crossref] [PubMed]

R. K. W. Lau, M. R. E. Lamont, A. G. Griffith, Y. Okawachi, M. Lipson, and A. L. Gaeta, “Octave-spanning mid-infrared supercontinuum generation in silicon nanowaveguides,” Opt. Lett. 39, 4518–4521 (2014).
[Crossref] [PubMed]

J. M. Chavez Boggio, D. Bodenmüller, T. Fremberg, R. Haynes, M. M. Roth, R. Eisermann, M. Lisker, L. Zimmermann, and M. Böhm, “Dispersion engineered silicon nitride waveguides by geometrical and refractive-index optimization,” J. Opt. Soc. Am. B 31, 2846–2857 (2014).
[Crossref]

2013 (2)

R. M. Oldenbeuving, E. J. Klein, H. L. Offerhaus, C. J. Lee, H. Song, and K.-J. Boller, “25 kHz narrow spectral bandwidth of a wavelength tunable diode laser with a short waveguide-based external cavity,” Laser Phys. Lett. 10, 015804 (2013).
[Crossref]

C. G. H. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. L. van Dijk, R. M. Oldenbeuving, D. A. I. Marpaung, M. Burla, and K. J. Boller, “Silicon nitride microwave photonic circuits,” Opt. Express 21, 22937–22961 (2013).
[Crossref] [PubMed]

2012 (3)

2011 (3)

2010 (1)

2009 (3)

2008 (2)

2007 (1)

2006 (2)

2004 (2)

X.-J. Liu, J.-J. Zhang, X.-W. Sun, Y.-B. Pan, L.-H. Huang, and C.-Y. Jin, “Growth and properties of silicon nitride films prepared by low pressure chemical vapor deposition using trichorosilane and ammonia,” Thin Solid Films 460, 72–77 (2004).
[Crossref]

I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, “Dispersive wave generation by solitons in microstructured optical fibers,” Opt. Express 12, 124–135 (2004).
[Crossref] [PubMed]

2003 (2)

H. Kano and H. Hamaguchi, “Characterization of a supercontinuum generated from a photonic crystal fiber and its application to coherent Raman spectroscopy,” Opt. Lett. 28, 2360–2362 (2003).
[Crossref] [PubMed]

K.L. Corwin, N.R. Newbury, J.M. Dudley, S. Coen, S.A. Diddams, K. Weber, and R.S. Windeler, “Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[Crossref] [PubMed]

2001 (1)

N. Karasawa, S. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, “Comparison between theory and experiment of nonlinear propagation for a-few-cycle and ultrabroadband optical pulses in a fused silica fiber,” IEEE J. Sel. Top. Quantum Electron. 37, 398–404 (2001).
[Crossref]

2000 (1)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis,” Science 288, 635–639 (2000).
[Crossref] [PubMed]

1995 (1)

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[Crossref] [PubMed]

Adibi, A.

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2007).

Akhmediev, N.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[Crossref] [PubMed]

Alic, N.

Andrekson, P.

Atabaki, A. H.

Bache, M.

Baets, R.

B. Kuyken, F. Leo, S. Clemmen, U. Dave, R. Van Laer, T. Ideguchi, H. Zhao, X. Liu, J. Safioui, S. Coen, S.P. Gorza, S.K. Selvaraja, S. Massar, R.M. Osgood, P. Verheyen, J. Van Campenhout, R. Baets, W.M.J. Green, and G. Roelkens, “Nonlinear optical interactions in silicon waveguides,” Nanophotonics 5, 1–16 (2016).

H. Zhao, B. Kuyken, S. Clemmen, F. Leo, A. Subramanian, A. Dhakal, P. Helin, S. Severi, E. Brainis, G. Roelkens, and R. Baets, “Visible-to-near-infrared octave spanning supercontinuum generation in a silicon nitride waveguide,” Opt. Lett. 40, 2177–2180 (2015).
[Crossref] [PubMed]

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref] [PubMed]

Barton, J. S.

Bauters, J. F.

Beeker, W.

Bengtsson, J.

Benko, C.

A. Ruehl, M. J. Martin, K. C. Cossel, L. Chen, H. McKay, B. Thomas, C. Benko, L. Dong, J. M. Dudley, M. E. Fermann, I. Hartl, and J. Ye, “Ultrabroadband coherent supercontinuum frequency comb,” Phys. Rev. A 84, 011806 (2011).
[Crossref]

Billat, A.

D. Grassani, A. Billat, M. H. P. Pfeiffer, H. Guo, T. North, T. J. Kippenberg, and C.-S. Bres, “Mid-infrared supercontinuum generation in a SiN waveguide pumped at 1.55 micron,” in “Frontiers in Optics 2016,” (Optical Society of America, 2016), p. FTu5D.3.
[Crossref]

Birks, T.

Blumenthal, D. J.

Bodenmüller, D.

Boggio, J. M. C.

Böhm, M.

Boller, K. J.

Boller, K.-J.

L. Zhuang, C. G. H. Roeloffzen, M. Hoekman, K.-J. Boller, and A. J. Lowery, “Programmable photonic signal processor chip for radiofrequency applications,” Optica 2, 854–859 (2015).
[Crossref]

J. P. Epping, T. Hellwig, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman, A. van Rees, P. J. M. van der Slot, C. J. Lee, C. Fallnich, and K.-J. Boller, “On-chip visible-to-infrared supercontinuum generation with more than 495 THz spectral bandwidth,” Opt. Express 23, 19596–19604 (2015).
[Crossref] [PubMed]

J. P. Epping, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman, A. van Rees, P. J. van der Slot, C. J. Lee, and K.-J. Boller, “High confinement, high yield Si3N4 waveguides for nonlinear optical applications,” Opt. Express 23, 642–648 (2015).
[Crossref] [PubMed]

Y. Fan, R. M. Oldenbeuving, E. J. Klein, C. J. Lee, H. Song, M. R. H. Khan, H. L. Offerhaus, P. J. M. van der Slot, and K.-J. Boller, “A hybrid semiconductor-glass waveguide laser,” Proc. SPIE 9135, 91351 (2014).
[Crossref]

R. M. Oldenbeuving, E. J. Klein, H. L. Offerhaus, C. J. Lee, H. Song, and K.-J. Boller, “25 kHz narrow spectral bandwidth of a wavelength tunable diode laser with a short waveguide-based external cavity,” Laser Phys. Lett. 10, 015804 (2013).
[Crossref]

F. Schepers, M. A. G. Porcel, J. P. Epping, T. Hellwig, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman, A. van Rees, P. J. M. van der Slot, C. J. Lee, R. Schmidt, R. Bratschitsch, K.-J. Boller, and C. Fallnich, “Ultrabroadband supercontinuum generation at telecommunication wavelengths in dispersion engineered stoichiometric Si3N4 waveguides,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), p. AM3J.5.

Borremann, A.

Bowers, J. E.

Brainis, E.

Brasch, V.

V. Brasch, T. Herr, M. Geiselmann, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip based optical frequency comb using soliton induced Cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref] [PubMed]

Bratschitsch, R.

F. Schepers, M. A. G. Porcel, J. P. Epping, T. Hellwig, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman, A. van Rees, P. J. M. van der Slot, C. J. Lee, R. Schmidt, R. Bratschitsch, K.-J. Boller, and C. Fallnich, “Ultrabroadband supercontinuum generation at telecommunication wavelengths in dispersion engineered stoichiometric Si3N4 waveguides,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), p. AM3J.5.

Brauckmann, N.

Bres, C.-S.

D. Grassani, A. Billat, M. H. P. Pfeiffer, H. Guo, T. North, T. J. Kippenberg, and C.-S. Bres, “Mid-infrared supercontinuum generation in a SiN waveguide pumped at 1.55 micron,” in “Frontiers in Optics 2016,” (Optical Society of America, 2016), p. FTu5D.3.
[Crossref]

Breuer, E.

Brown, S. W.

J. T. Woodward, A. W. Smith, C. A. Jenkins, C. Lin, S. W. Brown, and K. R. Lykke, “Supercontinuum sources for metrology,” Metrologia 46, S277–S282 (2009).
[Crossref]

Burla, M.

Chae, J.

Chavez Boggio, J. M.

Chembo, Y.K.

Y.K. Chembo, “Kerr optical frequency combs: theory, applications and perspectives,” Nanophotonics,  5, 214–230 (2016).
[Crossref]

Chen, L.

A. Ruehl, M. J. Martin, K. C. Cossel, L. Chen, H. McKay, B. Thomas, C. Benko, L. Dong, J. M. Dudley, M. E. Fermann, I. Hartl, and J. Ye, “Ultrabroadband coherent supercontinuum frequency comb,” Phys. Rev. A 84, 011806 (2011).
[Crossref]

Choi, D.-Y.

Chu, S.

Chu, S. T.

Ciret, C.

C. Ciret and S-P. Gorza, “Generation of ultra broadband coherent supercontinuum in tapered and dispersion managed silicon nanophotonic waveguides,” arXiv:1610.05665 [physics.optics] (2016).

Clemmen, S.

B. Kuyken, F. Leo, S. Clemmen, U. Dave, R. Van Laer, T. Ideguchi, H. Zhao, X. Liu, J. Safioui, S. Coen, S.P. Gorza, S.K. Selvaraja, S. Massar, R.M. Osgood, P. Verheyen, J. Van Campenhout, R. Baets, W.M.J. Green, and G. Roelkens, “Nonlinear optical interactions in silicon waveguides,” Nanophotonics 5, 1–16 (2016).

H. Zhao, B. Kuyken, S. Clemmen, F. Leo, A. Subramanian, A. Dhakal, P. Helin, S. Severi, E. Brainis, G. Roelkens, and R. Baets, “Visible-to-near-infrared octave spanning supercontinuum generation in a silicon nitride waveguide,” Opt. Lett. 40, 2177–2180 (2015).
[Crossref] [PubMed]

Coen, S.

B. Kuyken, F. Leo, S. Clemmen, U. Dave, R. Van Laer, T. Ideguchi, H. Zhao, X. Liu, J. Safioui, S. Coen, S.P. Gorza, S.K. Selvaraja, S. Massar, R.M. Osgood, P. Verheyen, J. Van Campenhout, R. Baets, W.M.J. Green, and G. Roelkens, “Nonlinear optical interactions in silicon waveguides,” Nanophotonics 5, 1–16 (2016).

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref] [PubMed]

F. Leo, S.-P. Gorza, J. Safioui, P. Kockaert, S. Coen, U. Dave, B. Kuyken, and G. Roelkens, “Dispersive wave emission and supercontinuum generation in a silicon wire waveguide pumped around the 1550 nm telecommunication wavelength,” Opt. Lett. 39, 3623–3626 (2014).
[Crossref] [PubMed]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

K.L. Corwin, N.R. Newbury, J.M. Dudley, S. Coen, S.A. Diddams, K. Weber, and R.S. Windeler, “Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[Crossref] [PubMed]

Corwin, K.L.

K.L. Corwin, N.R. Newbury, J.M. Dudley, S. Coen, S.A. Diddams, K. Weber, and R.S. Windeler, “Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[Crossref] [PubMed]

Cossel, K. C.

A. Ruehl, M. J. Martin, K. C. Cossel, L. Chen, H. McKay, B. Thomas, C. Benko, L. Dong, J. M. Dudley, M. E. Fermann, I. Hartl, and J. Ye, “Ultrabroadband coherent supercontinuum frequency comb,” Phys. Rev. A 84, 011806 (2011).
[Crossref]

Cristiani, I.

Cundiff, S. T.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis,” Science 288, 635–639 (2000).
[Crossref] [PubMed]

Dai, D.

Dave, U.

B. Kuyken, F. Leo, S. Clemmen, U. Dave, R. Van Laer, T. Ideguchi, H. Zhao, X. Liu, J. Safioui, S. Coen, S.P. Gorza, S.K. Selvaraja, S. Massar, R.M. Osgood, P. Verheyen, J. Van Campenhout, R. Baets, W.M.J. Green, and G. Roelkens, “Nonlinear optical interactions in silicon waveguides,” Nanophotonics 5, 1–16 (2016).

F. Leo, S.-P. Gorza, J. Safioui, P. Kockaert, S. Coen, U. Dave, B. Kuyken, and G. Roelkens, “Dispersive wave emission and supercontinuum generation in a silicon wire waveguide pumped around the 1550 nm telecommunication wavelength,” Opt. Lett. 39, 3623–3626 (2014).
[Crossref] [PubMed]

Debbarma, S.

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photonics Rev. 8, 792–798 (2014).
[Crossref]

Degiorgio, V.

Dhakal, A.

Diddams, S. A.

Diddams, S.A.

K.L. Corwin, N.R. Newbury, J.M. Dudley, S. Coen, S.A. Diddams, K. Weber, and R.S. Windeler, “Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[Crossref] [PubMed]

Dong, L.

A. Ruehl, M. J. Martin, K. C. Cossel, L. Chen, H. McKay, B. Thomas, C. Benko, L. Dong, J. M. Dudley, M. E. Fermann, I. Hartl, and J. Ye, “Ultrabroadband coherent supercontinuum frequency comb,” Phys. Rev. A 84, 011806 (2011).
[Crossref]

Duchesne, D.

Dudley, J. M.

A. Ruehl, M. J. Martin, K. C. Cossel, L. Chen, H. McKay, B. Thomas, C. Benko, L. Dong, J. M. Dudley, M. E. Fermann, I. Hartl, and J. Ye, “Ultrabroadband coherent supercontinuum frequency comb,” Phys. Rev. A 84, 011806 (2011).
[Crossref]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Dudley, J.M.

K.L. Corwin, N.R. Newbury, J.M. Dudley, S. Coen, S.A. Diddams, K. Weber, and R.S. Windeler, “Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[Crossref] [PubMed]

Dutta, N.K.

H. Hu, W. Li, and N.K. Dutta, “Dispersion-engineered tapered planar waveguide for coherent supercontinuum generation,” Opt. Commun. 324, 252–257 (2014).
[Crossref]

Eftekhar, A. A.

Eggleton, B. J.

Eisermann, R.

Epping, J. P.

J. P. Epping, T. Hellwig, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman, A. van Rees, P. J. M. van der Slot, C. J. Lee, C. Fallnich, and K.-J. Boller, “On-chip visible-to-infrared supercontinuum generation with more than 495 THz spectral bandwidth,” Opt. Express 23, 19596–19604 (2015).
[Crossref] [PubMed]

J. P. Epping, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman, A. van Rees, P. J. van der Slot, C. J. Lee, and K.-J. Boller, “High confinement, high yield Si3N4 waveguides for nonlinear optical applications,” Opt. Express 23, 642–648 (2015).
[Crossref] [PubMed]

F. Schepers, M. A. G. Porcel, J. P. Epping, T. Hellwig, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman, A. van Rees, P. J. M. van der Slot, C. J. Lee, R. Schmidt, R. Bratschitsch, K.-J. Boller, and C. Fallnich, “Ultrabroadband supercontinuum generation at telecommunication wavelengths in dispersion engineered stoichiometric Si3N4 waveguides,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), p. AM3J.5.

Epping, J.P.

J.P. Epping, Dispersion engineering silicon nitride waveguides for broadband nonlinear frequency conversion, PhD thesis, University of Twente (2015)

Fainman, Y.

Fallnich, C.

J. P. Epping, T. Hellwig, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman, A. van Rees, P. J. M. van der Slot, C. J. Lee, C. Fallnich, and K.-J. Boller, “On-chip visible-to-infrared supercontinuum generation with more than 495 THz spectral bandwidth,” Opt. Express 23, 19596–19604 (2015).
[Crossref] [PubMed]

M. Kues, N. Brauckmann, T. Walbaum, P. Groß, and C. Fallnich, “Nonlinear dynamics of femtosecond supercontinuum generation with feedback,” Opt. Express 17, 15827–15841 (2009).
[Crossref] [PubMed]

F. Schepers, M. A. G. Porcel, J. P. Epping, T. Hellwig, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman, A. van Rees, P. J. M. van der Slot, C. J. Lee, R. Schmidt, R. Bratschitsch, K.-J. Boller, and C. Fallnich, “Ultrabroadband supercontinuum generation at telecommunication wavelengths in dispersion engineered stoichiometric Si3N4 waveguides,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), p. AM3J.5.

Fan, Y.

Y. Fan, R. M. Oldenbeuving, E. J. Klein, C. J. Lee, H. Song, M. R. H. Khan, H. L. Offerhaus, P. J. M. van der Slot, and K.-J. Boller, “A hybrid semiconductor-glass waveguide laser,” Proc. SPIE 9135, 91351 (2014).
[Crossref]

Fermann, M. E.

A. Ruehl, M. J. Martin, K. C. Cossel, L. Chen, H. McKay, B. Thomas, C. Benko, L. Dong, J. M. Dudley, M. E. Fermann, I. Hartl, and J. Ye, “Ultrabroadband coherent supercontinuum frequency comb,” Phys. Rev. A 84, 011806 (2011).
[Crossref]

Ferrera, M.

Foster, M. A.

Fremberg, T.

Fulop, A.

Fülöp, A.

Gaeta, A. L.

Gaeta, A.L.

Gai, X.

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photonics Rev. 8, 792–798 (2014).
[Crossref]

Geiselmann, M.

V. Brasch, T. Herr, M. Geiselmann, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip based optical frequency comb using soliton induced Cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref] [PubMed]

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Geuzebroek, D.

Giannone, D.

Gondarenko, A.

Gorodetsky, M. L.

V. Brasch, T. Herr, M. Geiselmann, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip based optical frequency comb using soliton induced Cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref] [PubMed]

Gorza, S.P.

B. Kuyken, F. Leo, S. Clemmen, U. Dave, R. Van Laer, T. Ideguchi, H. Zhao, X. Liu, J. Safioui, S. Coen, S.P. Gorza, S.K. Selvaraja, S. Massar, R.M. Osgood, P. Verheyen, J. Van Campenhout, R. Baets, W.M.J. Green, and G. Roelkens, “Nonlinear optical interactions in silicon waveguides,” Nanophotonics 5, 1–16 (2016).

Gorza, S.-P.

Gorza, S-P.

C. Ciret and S-P. Gorza, “Generation of ultra broadband coherent supercontinuum in tapered and dispersion managed silicon nanophotonic waveguides,” arXiv:1610.05665 [physics.optics] (2016).

Grassani, D.

D. Grassani, A. Billat, M. H. P. Pfeiffer, H. Guo, T. North, T. J. Kippenberg, and C.-S. Bres, “Mid-infrared supercontinuum generation in a SiN waveguide pumped at 1.55 micron,” in “Frontiers in Optics 2016,” (Optical Society of America, 2016), p. FTu5D.3.
[Crossref]

Green, W.M.J.

B. Kuyken, F. Leo, S. Clemmen, U. Dave, R. Van Laer, T. Ideguchi, H. Zhao, X. Liu, J. Safioui, S. Coen, S.P. Gorza, S.K. Selvaraja, S. Massar, R.M. Osgood, P. Verheyen, J. Van Campenhout, R. Baets, W.M.J. Green, and G. Roelkens, “Nonlinear optical interactions in silicon waveguides,” Nanophotonics 5, 1–16 (2016).

Griffith, A. G.

Groß, P.

Guo, H.

D. Grassani, A. Billat, M. H. P. Pfeiffer, H. Guo, T. North, T. J. Kippenberg, and C.-S. Bres, “Mid-infrared supercontinuum generation in a SiN waveguide pumped at 1.55 micron,” in “Frontiers in Optics 2016,” (Optical Society of America, 2016), p. FTu5D.3.
[Crossref]

Halir, R.

Hall, J. L.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis,” Science 288, 635–639 (2000).
[Crossref] [PubMed]

Hamaguchi, H.

Hänsch, T. W.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref] [PubMed]

Hänsch, T.W.

A. Schliesser, N. Picqué, and T.W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

Hansson, T.

Hartl, I.

A. Ruehl, M. J. Martin, K. C. Cossel, L. Chen, H. McKay, B. Thomas, C. Benko, L. Dong, J. M. Dudley, M. E. Fermann, I. Hartl, and J. Ye, “Ultrabroadband coherent supercontinuum frequency comb,” Phys. Rev. A 84, 011806 (2011).
[Crossref]

Haynes, R.

He, J.

Heck, M. J. R.

Heideman, R.

Heideman, R. G.

J. P. Epping, T. Hellwig, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman, A. van Rees, P. J. M. van der Slot, C. J. Lee, C. Fallnich, and K.-J. Boller, “On-chip visible-to-infrared supercontinuum generation with more than 495 THz spectral bandwidth,” Opt. Express 23, 19596–19604 (2015).
[Crossref] [PubMed]

J. P. Epping, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman, A. van Rees, P. J. van der Slot, C. J. Lee, and K.-J. Boller, “High confinement, high yield Si3N4 waveguides for nonlinear optical applications,” Opt. Express 23, 642–648 (2015).
[Crossref] [PubMed]

C. Xiong, X. Zhang, A. Mahendra, J. He, D.-Y. Choi, J. Chae, D. Marpaung, A. Leinse, R. G. Heideman, M. Hoekman, C. G. H. Roeloffzen, R. M. Oldenbeuving, P. W. L. van Dijk, C. Taddei, P. H. W. Leong, and B. J. Eggleton, “Compact and reconfigurable silicon nitride time-bin entanglement circuit,” Optica 2, 724–727 (2015).
[Crossref]

C. G. H. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. L. van Dijk, R. M. Oldenbeuving, D. A. I. Marpaung, M. Burla, and K. J. Boller, “Silicon nitride microwave photonic circuits,” Opt. Express 21, 22937–22961 (2013).
[Crossref] [PubMed]

J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M.-C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19, 3163–3174 (2011).
[Crossref] [PubMed]

F. Schepers, M. A. G. Porcel, J. P. Epping, T. Hellwig, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman, A. van Rees, P. J. M. van der Slot, C. J. Lee, R. Schmidt, R. Bratschitsch, K.-J. Boller, and C. Fallnich, “Ultrabroadband supercontinuum generation at telecommunication wavelengths in dispersion engineered stoichiometric Si3N4 waveguides,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), p. AM3J.5.

Helin, P.

Hellwig, T.

J. P. Epping, T. Hellwig, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman, A. van Rees, P. J. M. van der Slot, C. J. Lee, C. Fallnich, and K.-J. Boller, “On-chip visible-to-infrared supercontinuum generation with more than 495 THz spectral bandwidth,” Opt. Express 23, 19596–19604 (2015).
[Crossref] [PubMed]

F. Schepers, M. A. G. Porcel, J. P. Epping, T. Hellwig, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman, A. van Rees, P. J. M. van der Slot, C. J. Lee, R. Schmidt, R. Bratschitsch, K.-J. Boller, and C. Fallnich, “Ultrabroadband supercontinuum generation at telecommunication wavelengths in dispersion engineered stoichiometric Si3N4 waveguides,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), p. AM3J.5.

Herr, T.

V. Brasch, T. Herr, M. Geiselmann, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip based optical frequency comb using soliton induced Cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref] [PubMed]

Hoekman, M.

J. P. Epping, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman, A. van Rees, P. J. van der Slot, C. J. Lee, and K.-J. Boller, “High confinement, high yield Si3N4 waveguides for nonlinear optical applications,” Opt. Express 23, 642–648 (2015).
[Crossref] [PubMed]

J. P. Epping, T. Hellwig, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman, A. van Rees, P. J. M. van der Slot, C. J. Lee, C. Fallnich, and K.-J. Boller, “On-chip visible-to-infrared supercontinuum generation with more than 495 THz spectral bandwidth,” Opt. Express 23, 19596–19604 (2015).
[Crossref] [PubMed]

C. Xiong, X. Zhang, A. Mahendra, J. He, D.-Y. Choi, J. Chae, D. Marpaung, A. Leinse, R. G. Heideman, M. Hoekman, C. G. H. Roeloffzen, R. M. Oldenbeuving, P. W. L. van Dijk, C. Taddei, P. H. W. Leong, and B. J. Eggleton, “Compact and reconfigurable silicon nitride time-bin entanglement circuit,” Optica 2, 724–727 (2015).
[Crossref]

L. Zhuang, C. G. H. Roeloffzen, M. Hoekman, K.-J. Boller, and A. J. Lowery, “Programmable photonic signal processor chip for radiofrequency applications,” Optica 2, 854–859 (2015).
[Crossref]

F. Schepers, M. A. G. Porcel, J. P. Epping, T. Hellwig, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman, A. van Rees, P. J. M. van der Slot, C. J. Lee, R. Schmidt, R. Bratschitsch, K.-J. Boller, and C. Fallnich, “Ultrabroadband supercontinuum generation at telecommunication wavelengths in dispersion engineered stoichiometric Si3N4 waveguides,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), p. AM3J.5.

Holzner, S.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref] [PubMed]

Hosseinnia, A. H.

Hsiao, C.-N.

Hu, H.

H. Hu, W. Li, and N.K. Dutta, “Dispersion-engineered tapered planar waveguide for coherent supercontinuum generation,” Opt. Commun. 324, 252–257 (2014).
[Crossref]

Huang, L.-H.

X.-J. Liu, J.-J. Zhang, X.-W. Sun, Y.-B. Pan, L.-H. Huang, and C.-Y. Jin, “Growth and properties of silicon nitride films prepared by low pressure chemical vapor deposition using trichorosilane and ammonia,” Thin Solid Films 460, 72–77 (2004).
[Crossref]

Humbert, G.

Ideguchi, T.

B. Kuyken, F. Leo, S. Clemmen, U. Dave, R. Van Laer, T. Ideguchi, H. Zhao, X. Liu, J. Safioui, S. Coen, S.P. Gorza, S.K. Selvaraja, S. Massar, R.M. Osgood, P. Verheyen, J. Van Campenhout, R. Baets, W.M.J. Green, and G. Roelkens, “Nonlinear optical interactions in silicon waveguides,” Nanophotonics 5, 1–16 (2016).

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref] [PubMed]

Ikeda, K.

Jenkins, C. A.

J. T. Woodward, A. W. Smith, C. A. Jenkins, C. Lin, S. W. Brown, and K. R. Lykke, “Supercontinuum sources for metrology,” Metrologia 46, S277–S282 (2009).
[Crossref]

Jin, C.-Y.

X.-J. Liu, J.-J. Zhang, X.-W. Sun, Y.-B. Pan, L.-H. Huang, and C.-Y. Jin, “Growth and properties of silicon nitride films prepared by low pressure chemical vapor deposition using trichorosilane and ammonia,” Thin Solid Films 460, 72–77 (2004).
[Crossref]

John, D.

Johnson, A.R.

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis,” Science 288, 635–639 (2000).
[Crossref] [PubMed]

Joshi, C.

Kano, H.

Karasawa, N.

N. Karasawa, S. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, “Comparison between theory and experiment of nonlinear propagation for a-few-cycle and ultrabroadband optical pulses in a fused silica fiber,” IEEE J. Sel. Top. Quantum Electron. 37, 398–404 (2001).
[Crossref]

Karlsson, M.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[Crossref] [PubMed]

Keller, U.

Kerstin Wörhoff, R. G. H.

R. G. H. Kerstin Wörhoff, “TriPleX: A versatile dielectric photonic platform,” Adv. Opt. Techn. 4, 189–207 (2015).

Khan, M. R. H.

Y. Fan, R. M. Oldenbeuving, E. J. Klein, C. J. Lee, H. Song, M. R. H. Khan, H. L. Offerhaus, P. J. M. van der Slot, and K.-J. Boller, “A hybrid semiconductor-glass waveguide laser,” Proc. SPIE 9135, 91351 (2014).
[Crossref]

Kippenberg, T. J.

V. Brasch, T. Herr, M. Geiselmann, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip based optical frequency comb using soliton induced Cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref] [PubMed]

D. Grassani, A. Billat, M. H. P. Pfeiffer, H. Guo, T. North, T. J. Kippenberg, and C.-S. Bres, “Mid-infrared supercontinuum generation in a SiN waveguide pumped at 1.55 micron,” in “Frontiers in Optics 2016,” (Optical Society of America, 2016), p. FTu5D.3.
[Crossref]

Klein, E. J.

Y. Fan, R. M. Oldenbeuving, E. J. Klein, C. J. Lee, H. Song, M. R. H. Khan, H. L. Offerhaus, P. J. M. van der Slot, and K.-J. Boller, “A hybrid semiconductor-glass waveguide laser,” Proc. SPIE 9135, 91351 (2014).
[Crossref]

R. M. Oldenbeuving, E. J. Klein, H. L. Offerhaus, C. J. Lee, H. Song, and K.-J. Boller, “25 kHz narrow spectral bandwidth of a wavelength tunable diode laser with a short waveguide-based external cavity,” Laser Phys. Lett. 10, 015804 (2013).
[Crossref]

Klenner, A.

Klintberg, T.

Knight, J.

Kockaert, P.

Kopf, D.

Krückel, C. J.

Krueckel, C.

Kues, M.

Kuyken, B.

B. Kuyken, F. Leo, S. Clemmen, U. Dave, R. Van Laer, T. Ideguchi, H. Zhao, X. Liu, J. Safioui, S. Coen, S.P. Gorza, S.K. Selvaraja, S. Massar, R.M. Osgood, P. Verheyen, J. Van Campenhout, R. Baets, W.M.J. Green, and G. Roelkens, “Nonlinear optical interactions in silicon waveguides,” Nanophotonics 5, 1–16 (2016).

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref] [PubMed]

H. Zhao, B. Kuyken, S. Clemmen, F. Leo, A. Subramanian, A. Dhakal, P. Helin, S. Severi, E. Brainis, G. Roelkens, and R. Baets, “Visible-to-near-infrared octave spanning supercontinuum generation in a silicon nitride waveguide,” Opt. Lett. 40, 2177–2180 (2015).
[Crossref] [PubMed]

F. Leo, S.-P. Gorza, J. Safioui, P. Kockaert, S. Coen, U. Dave, B. Kuyken, and G. Roelkens, “Dispersive wave emission and supercontinuum generation in a silicon wire waveguide pumped around the 1550 nm telecommunication wavelength,” Opt. Lett. 39, 3623–3626 (2014).
[Crossref] [PubMed]

Lamb, E.S.

Lamont, M. R.

Lamont, M. R. E.

Lamont, M.R.E.

Lau, R. K. W.

Lederer, M.

Lee, C. J.

J. P. Epping, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman, A. van Rees, P. J. van der Slot, C. J. Lee, and K.-J. Boller, “High confinement, high yield Si3N4 waveguides for nonlinear optical applications,” Opt. Express 23, 642–648 (2015).
[Crossref] [PubMed]

J. P. Epping, T. Hellwig, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman, A. van Rees, P. J. M. van der Slot, C. J. Lee, C. Fallnich, and K.-J. Boller, “On-chip visible-to-infrared supercontinuum generation with more than 495 THz spectral bandwidth,” Opt. Express 23, 19596–19604 (2015).
[Crossref] [PubMed]

Y. Fan, R. M. Oldenbeuving, E. J. Klein, C. J. Lee, H. Song, M. R. H. Khan, H. L. Offerhaus, P. J. M. van der Slot, and K.-J. Boller, “A hybrid semiconductor-glass waveguide laser,” Proc. SPIE 9135, 91351 (2014).
[Crossref]

R. M. Oldenbeuving, E. J. Klein, H. L. Offerhaus, C. J. Lee, H. Song, and K.-J. Boller, “25 kHz narrow spectral bandwidth of a wavelength tunable diode laser with a short waveguide-based external cavity,” Laser Phys. Lett. 10, 015804 (2013).
[Crossref]

F. Schepers, M. A. G. Porcel, J. P. Epping, T. Hellwig, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman, A. van Rees, P. J. M. van der Slot, C. J. Lee, R. Schmidt, R. Bratschitsch, K.-J. Boller, and C. Fallnich, “Ultrabroadband supercontinuum generation at telecommunication wavelengths in dispersion engineered stoichiometric Si3N4 waveguides,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), p. AM3J.5.

Lee, H.

Légaré, F.

Leinse, A.

C. Xiong, X. Zhang, A. Mahendra, J. He, D.-Y. Choi, J. Chae, D. Marpaung, A. Leinse, R. G. Heideman, M. Hoekman, C. G. H. Roeloffzen, R. M. Oldenbeuving, P. W. L. van Dijk, C. Taddei, P. H. W. Leong, and B. J. Eggleton, “Compact and reconfigurable silicon nitride time-bin entanglement circuit,” Optica 2, 724–727 (2015).
[Crossref]

J. P. Epping, T. Hellwig, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman, A. van Rees, P. J. M. van der Slot, C. J. Lee, C. Fallnich, and K.-J. Boller, “On-chip visible-to-infrared supercontinuum generation with more than 495 THz spectral bandwidth,” Opt. Express 23, 19596–19604 (2015).
[Crossref] [PubMed]

J. P. Epping, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman, A. van Rees, P. J. van der Slot, C. J. Lee, and K.-J. Boller, “High confinement, high yield Si3N4 waveguides for nonlinear optical applications,” Opt. Express 23, 642–648 (2015).
[Crossref] [PubMed]

C. G. H. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. L. van Dijk, R. M. Oldenbeuving, D. A. I. Marpaung, M. Burla, and K. J. Boller, “Silicon nitride microwave photonic circuits,” Opt. Express 21, 22937–22961 (2013).
[Crossref] [PubMed]

J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M.-C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19, 3163–3174 (2011).
[Crossref] [PubMed]

L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, and C. Roeloffzen, “Low-loss, high-index-contrast Si3N4/SiO2 optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express 19, 23162–23170 (2011).
[Crossref] [PubMed]

F. Morichetti, A. Melloni, M. Martinelli, R. Heideman, A. Leinse, D. Geuzebroek, and A. Borremann, “Box-shaped dielectric waveguides: A new concept in integrated optics?” J. Lightwave Technol. 25, 2579–2589 (2007).
[Crossref]

F. Schepers, M. A. G. Porcel, J. P. Epping, T. Hellwig, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman, A. van Rees, P. J. M. van der Slot, C. J. Lee, R. Schmidt, R. Bratschitsch, K.-J. Boller, and C. Fallnich, “Ultrabroadband supercontinuum generation at telecommunication wavelengths in dispersion engineered stoichiometric Si3N4 waveguides,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), p. AM3J.5.

Leo, F.

B. Kuyken, F. Leo, S. Clemmen, U. Dave, R. Van Laer, T. Ideguchi, H. Zhao, X. Liu, J. Safioui, S. Coen, S.P. Gorza, S.K. Selvaraja, S. Massar, R.M. Osgood, P. Verheyen, J. Van Campenhout, R. Baets, W.M.J. Green, and G. Roelkens, “Nonlinear optical interactions in silicon waveguides,” Nanophotonics 5, 1–16 (2016).

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref] [PubMed]

H. Zhao, B. Kuyken, S. Clemmen, F. Leo, A. Subramanian, A. Dhakal, P. Helin, S. Severi, E. Brainis, G. Roelkens, and R. Baets, “Visible-to-near-infrared octave spanning supercontinuum generation in a silicon nitride waveguide,” Opt. Lett. 40, 2177–2180 (2015).
[Crossref] [PubMed]

F. Leo, S.-P. Gorza, J. Safioui, P. Kockaert, S. Coen, U. Dave, B. Kuyken, and G. Roelkens, “Dispersive wave emission and supercontinuum generation in a silicon wire waveguide pumped around the 1550 nm telecommunication wavelength,” Opt. Lett. 39, 3623–3626 (2014).
[Crossref] [PubMed]

Leong, P. H. W.

Leon-Saval, S.

Levy, J. S.

Levy, J.S.

J.S. Levy, Integrated nonlinear optics in silicon nitride waveguides resonators, PhD Thesis, Cornell University (2011).

Li, W.

H. Hu, W. Li, and N.K. Dutta, “Dispersion-engineered tapered planar waveguide for coherent supercontinuum generation,” Opt. Commun. 324, 252–257 (2014).
[Crossref]

Liao, B.-H.

Lihachev, G.

V. Brasch, T. Herr, M. Geiselmann, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip based optical frequency comb using soliton induced Cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref] [PubMed]

Lin, C.

J. T. Woodward, A. W. Smith, C. A. Jenkins, C. Lin, S. W. Brown, and K. R. Lykke, “Supercontinuum sources for metrology,” Metrologia 46, S277–S282 (2009).
[Crossref]

Lipson, M.

A. Klenner, A.S. Mayer, A.R. Johnson, K. Luke, M.R.E. Lamont, Y. Okawachi, M. Lipson, A.L. Gaeta, and U. Keller, “Gigahertz frequency comb offset stabilization based on supercontinuum generation in silicon nitride waveguides,” Opt. Express 24, 11043–11053 (2016).
[Crossref] [PubMed]

A.R. Johnson, A.S. Mayer, A. Klenner, K. Luke, E.S. Lamb, M.R.E. Lamont, C. Joshi, Y. Okawachi, F.W. Wise, M. Lipson, U. Keller, and A.L. Gaeta, “Octave-spanning coherent supercontinuum generation in a silicon nitride waveguide,” Opt. Lett. 40, 5117–5120, (2015).
[Crossref] [PubMed]

K. Luke, Y. Okawachi, M. R. E. Lamont, A. L. Gaeta, and M. Lipson, “Broadband mid-infrared frequency comb generation in a Si3N4 microresonator,” Opt. Lett. 40, 4823–4826 (2015).
[Crossref] [PubMed]

A.S. Mayer, A. Klenner, A.R. Johnson, K. Luke, M.R.E. Lamont, Y. Okawachi, M. Lipson, A.L. Gaeta, and U. Keller, “Frequency comb offset detection using supercontinuum generation in silicon nitride waveguides,” Opt. Express 23, 15440–15451 (2015).
[Crossref] [PubMed]

R. K. W. Lau, M. R. E. Lamont, A. G. Griffith, Y. Okawachi, M. Lipson, and A. L. Gaeta, “Octave-spanning mid-infrared supercontinuum generation in silicon nanowaveguides,” Opt. Lett. 39, 4518–4521 (2014).
[Crossref] [PubMed]

R. Halir, Y. Okawachi, J. S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, “Ultrabroadband supercontinuum generation in a CMOS-compatible platform,” Opt. Lett. 37, 1685–1687 (2012).
[Crossref] [PubMed]

A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express 17, 11366–11370 (2009).
[Crossref] [PubMed]

Lisker, M.

Little, B. E.

Liu, X.

B. Kuyken, F. Leo, S. Clemmen, U. Dave, R. Van Laer, T. Ideguchi, H. Zhao, X. Liu, J. Safioui, S. Coen, S.P. Gorza, S.K. Selvaraja, S. Massar, R.M. Osgood, P. Verheyen, J. Van Campenhout, R. Baets, W.M.J. Green, and G. Roelkens, “Nonlinear optical interactions in silicon waveguides,” Nanophotonics 5, 1–16 (2016).

X. Liu, M. Pu, B. Zhou, C. J. Krückel, A. Fülöp, V. Torres-Company, and M. Bache, “Octave-spanning supercontinuum generation in a silicon-rich nitride waveguide,” Opt. Lett. 41, 2719–2722 (2016).
[Crossref] [PubMed]

Liu, X.-J.

X.-J. Liu, J.-J. Zhang, X.-W. Sun, Y.-B. Pan, L.-H. Huang, and C.-Y. Jin, “Growth and properties of silicon nitride films prepared by low pressure chemical vapor deposition using trichorosilane and ammonia,” Thin Solid Films 460, 72–77 (2004).
[Crossref]

Lowery, A. J.

Luke, K.

Luther-Davies, B.

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photonics Rev. 8, 792–798 (2014).
[Crossref]

M. R. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10/W/m) As2S3 chalcogenide planar waveguide,” Opt. Express 16, 14938–14944 (2008).
[Crossref] [PubMed]

Lykke, K. R.

J. T. Woodward, A. W. Smith, C. A. Jenkins, C. Lin, S. W. Brown, and K. R. Lykke, “Supercontinuum sources for metrology,” Metrologia 46, S277–S282 (2009).
[Crossref]

Ma, P.

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photonics Rev. 8, 792–798 (2014).
[Crossref]

Madden, S.

Madden, S. J.

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photonics Rev. 8, 792–798 (2014).
[Crossref]

Mahendra, A.

Marpaung, D.

Marpaung, D. A. I.

Martin, M. J.

A. Ruehl, M. J. Martin, K. C. Cossel, L. Chen, H. McKay, B. Thomas, C. Benko, L. Dong, J. M. Dudley, M. E. Fermann, I. Hartl, and J. Ye, “Ultrabroadband coherent supercontinuum frequency comb,” Phys. Rev. A 84, 011806 (2011).
[Crossref]

Martinelli, M.

Massar, S.

B. Kuyken, F. Leo, S. Clemmen, U. Dave, R. Van Laer, T. Ideguchi, H. Zhao, X. Liu, J. Safioui, S. Coen, S.P. Gorza, S.K. Selvaraja, S. Massar, R.M. Osgood, P. Verheyen, J. Van Campenhout, R. Baets, W.M.J. Green, and G. Roelkens, “Nonlinear optical interactions in silicon waveguides,” Nanophotonics 5, 1–16 (2016).

Mateman, R.

J. P. Epping, T. Hellwig, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman, A. van Rees, P. J. M. van der Slot, C. J. Lee, C. Fallnich, and K.-J. Boller, “On-chip visible-to-infrared supercontinuum generation with more than 495 THz spectral bandwidth,” Opt. Express 23, 19596–19604 (2015).
[Crossref] [PubMed]

J. P. Epping, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman, A. van Rees, P. J. van der Slot, C. J. Lee, and K.-J. Boller, “High confinement, high yield Si3N4 waveguides for nonlinear optical applications,” Opt. Express 23, 642–648 (2015).
[Crossref] [PubMed]

F. Schepers, M. A. G. Porcel, J. P. Epping, T. Hellwig, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman, A. van Rees, P. J. M. van der Slot, C. J. Lee, R. Schmidt, R. Bratschitsch, K.-J. Boller, and C. Fallnich, “Ultrabroadband supercontinuum generation at telecommunication wavelengths in dispersion engineered stoichiometric Si3N4 waveguides,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), p. AM3J.5.

Mayer, A.S.

McKay, H.

A. Ruehl, M. J. Martin, K. C. Cossel, L. Chen, H. McKay, B. Thomas, C. Benko, L. Dong, J. M. Dudley, M. E. Fermann, I. Hartl, and J. Ye, “Ultrabroadband coherent supercontinuum frequency comb,” Phys. Rev. A 84, 011806 (2011).
[Crossref]

Melloni, A.

Mitchell, A.

Modotto, D.

Moñux, A. O. M.

Morandotti, R.

Morichetti, F.

Morita, R.

N. Karasawa, S. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, “Comparison between theory and experiment of nonlinear propagation for a-few-cycle and ultrabroadband optical pulses in a fused silica fiber,” IEEE J. Sel. Top. Quantum Electron. 37, 398–404 (2001).
[Crossref]

Moss, D. J.

Nakagawa, N.

N. Karasawa, S. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, “Comparison between theory and experiment of nonlinear propagation for a-few-cycle and ultrabroadband optical pulses in a fused silica fiber,” IEEE J. Sel. Top. Quantum Electron. 37, 398–404 (2001).
[Crossref]

Nakamura, S.

N. Karasawa, S. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, “Comparison between theory and experiment of nonlinear propagation for a-few-cycle and ultrabroadband optical pulses in a fused silica fiber,” IEEE J. Sel. Top. Quantum Electron. 37, 398–404 (2001).
[Crossref]

Newbury, N.R.

K.L. Corwin, N.R. Newbury, J.M. Dudley, S. Coen, S.A. Diddams, K. Weber, and R.S. Windeler, “Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[Crossref] [PubMed]

Nguyen, T. G.

North, T.

D. Grassani, A. Billat, M. H. P. Pfeiffer, H. Guo, T. North, T. J. Kippenberg, and C.-S. Bres, “Mid-infrared supercontinuum generation in a SiN waveguide pumped at 1.55 micron,” in “Frontiers in Optics 2016,” (Optical Society of America, 2016), p. FTu5D.3.
[Crossref]

Offerhaus, H. L.

Y. Fan, R. M. Oldenbeuving, E. J. Klein, C. J. Lee, H. Song, M. R. H. Khan, H. L. Offerhaus, P. J. M. van der Slot, and K.-J. Boller, “A hybrid semiconductor-glass waveguide laser,” Proc. SPIE 9135, 91351 (2014).
[Crossref]

R. M. Oldenbeuving, E. J. Klein, H. L. Offerhaus, C. J. Lee, H. Song, and K.-J. Boller, “25 kHz narrow spectral bandwidth of a wavelength tunable diode laser with a short waveguide-based external cavity,” Laser Phys. Lett. 10, 015804 (2013).
[Crossref]

Oh, D. Y.

Okawachi, Y.

A. Klenner, A.S. Mayer, A.R. Johnson, K. Luke, M.R.E. Lamont, Y. Okawachi, M. Lipson, A.L. Gaeta, and U. Keller, “Gigahertz frequency comb offset stabilization based on supercontinuum generation in silicon nitride waveguides,” Opt. Express 24, 11043–11053 (2016).
[Crossref] [PubMed]

A.R. Johnson, A.S. Mayer, A. Klenner, K. Luke, E.S. Lamb, M.R.E. Lamont, C. Joshi, Y. Okawachi, F.W. Wise, M. Lipson, U. Keller, and A.L. Gaeta, “Octave-spanning coherent supercontinuum generation in a silicon nitride waveguide,” Opt. Lett. 40, 5117–5120, (2015).
[Crossref] [PubMed]

K. Luke, Y. Okawachi, M. R. E. Lamont, A. L. Gaeta, and M. Lipson, “Broadband mid-infrared frequency comb generation in a Si3N4 microresonator,” Opt. Lett. 40, 4823–4826 (2015).
[Crossref] [PubMed]

A.S. Mayer, A. Klenner, A.R. Johnson, K. Luke, M.R.E. Lamont, Y. Okawachi, M. Lipson, A.L. Gaeta, and U. Keller, “Frequency comb offset detection using supercontinuum generation in silicon nitride waveguides,” Opt. Express 23, 15440–15451 (2015).
[Crossref] [PubMed]

R. K. W. Lau, M. R. E. Lamont, A. G. Griffith, Y. Okawachi, M. Lipson, and A. L. Gaeta, “Octave-spanning mid-infrared supercontinuum generation in silicon nanowaveguides,” Opt. Lett. 39, 4518–4521 (2014).
[Crossref] [PubMed]

R. Halir, Y. Okawachi, J. S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, “Ultrabroadband supercontinuum generation in a CMOS-compatible platform,” Opt. Lett. 37, 1685–1687 (2012).
[Crossref] [PubMed]

Oldenbeuving, R. M.

C. Xiong, X. Zhang, A. Mahendra, J. He, D.-Y. Choi, J. Chae, D. Marpaung, A. Leinse, R. G. Heideman, M. Hoekman, C. G. H. Roeloffzen, R. M. Oldenbeuving, P. W. L. van Dijk, C. Taddei, P. H. W. Leong, and B. J. Eggleton, “Compact and reconfigurable silicon nitride time-bin entanglement circuit,” Optica 2, 724–727 (2015).
[Crossref]

Y. Fan, R. M. Oldenbeuving, E. J. Klein, C. J. Lee, H. Song, M. R. H. Khan, H. L. Offerhaus, P. J. M. van der Slot, and K.-J. Boller, “A hybrid semiconductor-glass waveguide laser,” Proc. SPIE 9135, 91351 (2014).
[Crossref]

C. G. H. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. L. van Dijk, R. M. Oldenbeuving, D. A. I. Marpaung, M. Burla, and K. J. Boller, “Silicon nitride microwave photonic circuits,” Opt. Express 21, 22937–22961 (2013).
[Crossref] [PubMed]

R. M. Oldenbeuving, E. J. Klein, H. L. Offerhaus, C. J. Lee, H. Song, and K.-J. Boller, “25 kHz narrow spectral bandwidth of a wavelength tunable diode laser with a short waveguide-based external cavity,” Laser Phys. Lett. 10, 015804 (2013).
[Crossref]

Osgood, R.M.

B. Kuyken, F. Leo, S. Clemmen, U. Dave, R. Van Laer, T. Ideguchi, H. Zhao, X. Liu, J. Safioui, S. Coen, S.P. Gorza, S.K. Selvaraja, S. Massar, R.M. Osgood, P. Verheyen, J. Van Campenhout, R. Baets, W.M.J. Green, and G. Roelkens, “Nonlinear optical interactions in silicon waveguides,” Nanophotonics 5, 1–16 (2016).

Osterman, S.

Pan, Y.-B.

X.-J. Liu, J.-J. Zhang, X.-W. Sun, Y.-B. Pan, L.-H. Huang, and C.-Y. Jin, “Growth and properties of silicon nitride films prepared by low pressure chemical vapor deposition using trichorosilane and ammonia,” Thin Solid Films 460, 72–77 (2004).
[Crossref]

Peccianti, M.

Pfeiffer, M. H. P.

V. Brasch, T. Herr, M. Geiselmann, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip based optical frequency comb using soliton induced Cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref] [PubMed]

D. Grassani, A. Billat, M. H. P. Pfeiffer, H. Guo, T. North, T. J. Kippenberg, and C.-S. Bres, “Mid-infrared supercontinuum generation in a SiN waveguide pumped at 1.55 micron,” in “Frontiers in Optics 2016,” (Optical Society of America, 2016), p. FTu5D.3.
[Crossref]

Picqué, N.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref] [PubMed]

A. Schliesser, N. Picqué, and T.W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

Porcel, M. A. G.

F. Schepers, M. A. G. Porcel, J. P. Epping, T. Hellwig, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman, A. van Rees, P. J. M. van der Slot, C. J. Lee, R. Schmidt, R. Bratschitsch, K.-J. Boller, and C. Fallnich, “Ultrabroadband supercontinuum generation at telecommunication wavelengths in dispersion engineered stoichiometric Si3N4 waveguides,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), p. AM3J.5.

Pu, M.

Ranka, J. K.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis,” Science 288, 635–639 (2000).
[Crossref] [PubMed]

Razzari, L.

Roelkens, G.

B. Kuyken, F. Leo, S. Clemmen, U. Dave, R. Van Laer, T. Ideguchi, H. Zhao, X. Liu, J. Safioui, S. Coen, S.P. Gorza, S.K. Selvaraja, S. Massar, R.M. Osgood, P. Verheyen, J. Van Campenhout, R. Baets, W.M.J. Green, and G. Roelkens, “Nonlinear optical interactions in silicon waveguides,” Nanophotonics 5, 1–16 (2016).

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref] [PubMed]

H. Zhao, B. Kuyken, S. Clemmen, F. Leo, A. Subramanian, A. Dhakal, P. Helin, S. Severi, E. Brainis, G. Roelkens, and R. Baets, “Visible-to-near-infrared octave spanning supercontinuum generation in a silicon nitride waveguide,” Opt. Lett. 40, 2177–2180 (2015).
[Crossref] [PubMed]

F. Leo, S.-P. Gorza, J. Safioui, P. Kockaert, S. Coen, U. Dave, B. Kuyken, and G. Roelkens, “Dispersive wave emission and supercontinuum generation in a silicon wire waveguide pumped around the 1550 nm telecommunication wavelength,” Opt. Lett. 39, 3623–3626 (2014).
[Crossref] [PubMed]

Roeloffzen, C.

Roeloffzen, C. G. H.

Roth, M. M.

Ruehl, A.

A. Ruehl, M. J. Martin, K. C. Cossel, L. Chen, H. McKay, B. Thomas, C. Benko, L. Dong, J. M. Dudley, M. E. Fermann, I. Hartl, and J. Ye, “Ultrabroadband coherent supercontinuum frequency comb,” Phys. Rev. A 84, 011806 (2011).
[Crossref]

Russell, J.

Safioui, J.

B. Kuyken, F. Leo, S. Clemmen, U. Dave, R. Van Laer, T. Ideguchi, H. Zhao, X. Liu, J. Safioui, S. Coen, S.P. Gorza, S.K. Selvaraja, S. Massar, R.M. Osgood, P. Verheyen, J. Van Campenhout, R. Baets, W.M.J. Green, and G. Roelkens, “Nonlinear optical interactions in silicon waveguides,” Nanophotonics 5, 1–16 (2016).

F. Leo, S.-P. Gorza, J. Safioui, P. Kockaert, S. Coen, U. Dave, B. Kuyken, and G. Roelkens, “Dispersive wave emission and supercontinuum generation in a silicon wire waveguide pumped around the 1550 nm telecommunication wavelength,” Opt. Lett. 39, 3623–3626 (2014).
[Crossref] [PubMed]

Saperstein, R. E.

Schepers, F.

F. Schepers, M. A. G. Porcel, J. P. Epping, T. Hellwig, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman, A. van Rees, P. J. M. van der Slot, C. J. Lee, R. Schmidt, R. Bratschitsch, K.-J. Boller, and C. Fallnich, “Ultrabroadband supercontinuum generation at telecommunication wavelengths in dispersion engineered stoichiometric Si3N4 waveguides,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), p. AM3J.5.

Schliesser, A.

A. Schliesser, N. Picqué, and T.W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

Schmidt, R.

F. Schepers, M. A. G. Porcel, J. P. Epping, T. Hellwig, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman, A. van Rees, P. J. M. van der Slot, C. J. Lee, R. Schmidt, R. Bratschitsch, K.-J. Boller, and C. Fallnich, “Ultrabroadband supercontinuum generation at telecommunication wavelengths in dispersion engineered stoichiometric Si3N4 waveguides,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), p. AM3J.5.

Sell, D.

Selvaraja, S.K.

B. Kuyken, F. Leo, S. Clemmen, U. Dave, R. Van Laer, T. Ideguchi, H. Zhao, X. Liu, J. Safioui, S. Coen, S.P. Gorza, S.K. Selvaraja, S. Massar, R.M. Osgood, P. Verheyen, J. Van Campenhout, R. Baets, W.M.J. Green, and G. Roelkens, “Nonlinear optical interactions in silicon waveguides,” Nanophotonics 5, 1–16 (2016).

Severi, S.

Shibata, M.

N. Karasawa, S. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, “Comparison between theory and experiment of nonlinear propagation for a-few-cycle and ultrabroadband optical pulses in a fused silica fiber,” IEEE J. Sel. Top. Quantum Electron. 37, 398–404 (2001).
[Crossref]

Shigekawa, H.

N. Karasawa, S. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, “Comparison between theory and experiment of nonlinear propagation for a-few-cycle and ultrabroadband optical pulses in a fused silica fiber,” IEEE J. Sel. Top. Quantum Electron. 37, 398–404 (2001).
[Crossref]

Shoeiby, M.

Silvestre, E.

Smith, A. W.

J. T. Woodward, A. W. Smith, C. A. Jenkins, C. Lin, S. W. Brown, and K. R. Lykke, “Supercontinuum sources for metrology,” Metrologia 46, S277–S282 (2009).
[Crossref]

Song, H.

Y. Fan, R. M. Oldenbeuving, E. J. Klein, C. J. Lee, H. Song, M. R. H. Khan, H. L. Offerhaus, P. J. M. van der Slot, and K.-J. Boller, “A hybrid semiconductor-glass waveguide laser,” Proc. SPIE 9135, 91351 (2014).
[Crossref]

R. M. Oldenbeuving, E. J. Klein, H. L. Offerhaus, C. J. Lee, H. Song, and K.-J. Boller, “25 kHz narrow spectral bandwidth of a wavelength tunable diode laser with a short waveguide-based external cavity,” Laser Phys. Lett. 10, 015804 (2013).
[Crossref]

St, P.

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis,” Science 288, 635–639 (2000).
[Crossref] [PubMed]

Stifter, D.

Subramanian, A.

Sun, X.-W.

X.-J. Liu, J.-J. Zhang, X.-W. Sun, Y.-B. Pan, L.-H. Huang, and C.-Y. Jin, “Growth and properties of silicon nitride films prepared by low pressure chemical vapor deposition using trichorosilane and ammonia,” Thin Solid Films 460, 72–77 (2004).
[Crossref]

Taddei, C.

Tartara, L.

Tediosi, R.

Thomas, B.

A. Ruehl, M. J. Martin, K. C. Cossel, L. Chen, H. McKay, B. Thomas, C. Benko, L. Dong, J. M. Dudley, M. E. Fermann, I. Hartl, and J. Ye, “Ultrabroadband coherent supercontinuum frequency comb,” Phys. Rev. A 84, 011806 (2011).
[Crossref]

Tien, M.-C.

Torres-Company, V.

Vahala, K. J.

Van Campenhout, J.

B. Kuyken, F. Leo, S. Clemmen, U. Dave, R. Van Laer, T. Ideguchi, H. Zhao, X. Liu, J. Safioui, S. Coen, S.P. Gorza, S.K. Selvaraja, S. Massar, R.M. Osgood, P. Verheyen, J. Van Campenhout, R. Baets, W.M.J. Green, and G. Roelkens, “Nonlinear optical interactions in silicon waveguides,” Nanophotonics 5, 1–16 (2016).

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref] [PubMed]

van der Slot, P. J.

van der Slot, P. J. M.

J. P. Epping, T. Hellwig, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman, A. van Rees, P. J. M. van der Slot, C. J. Lee, C. Fallnich, and K.-J. Boller, “On-chip visible-to-infrared supercontinuum generation with more than 495 THz spectral bandwidth,” Opt. Express 23, 19596–19604 (2015).
[Crossref] [PubMed]

Y. Fan, R. M. Oldenbeuving, E. J. Klein, C. J. Lee, H. Song, M. R. H. Khan, H. L. Offerhaus, P. J. M. van der Slot, and K.-J. Boller, “A hybrid semiconductor-glass waveguide laser,” Proc. SPIE 9135, 91351 (2014).
[Crossref]

F. Schepers, M. A. G. Porcel, J. P. Epping, T. Hellwig, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman, A. van Rees, P. J. M. van der Slot, C. J. Lee, R. Schmidt, R. Bratschitsch, K.-J. Boller, and C. Fallnich, “Ultrabroadband supercontinuum generation at telecommunication wavelengths in dispersion engineered stoichiometric Si3N4 waveguides,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), p. AM3J.5.

van Dijk, P. W. L.

Van Laer, R.

B. Kuyken, F. Leo, S. Clemmen, U. Dave, R. Van Laer, T. Ideguchi, H. Zhao, X. Liu, J. Safioui, S. Coen, S.P. Gorza, S.K. Selvaraja, S. Massar, R.M. Osgood, P. Verheyen, J. Van Campenhout, R. Baets, W.M.J. Green, and G. Roelkens, “Nonlinear optical interactions in silicon waveguides,” Nanophotonics 5, 1–16 (2016).

van Rees, A.

J. P. Epping, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman, A. van Rees, P. J. van der Slot, C. J. Lee, and K.-J. Boller, “High confinement, high yield Si3N4 waveguides for nonlinear optical applications,” Opt. Express 23, 642–648 (2015).
[Crossref] [PubMed]

J. P. Epping, T. Hellwig, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman, A. van Rees, P. J. M. van der Slot, C. J. Lee, C. Fallnich, and K.-J. Boller, “On-chip visible-to-infrared supercontinuum generation with more than 495 THz spectral bandwidth,” Opt. Express 23, 19596–19604 (2015).
[Crossref] [PubMed]

F. Schepers, M. A. G. Porcel, J. P. Epping, T. Hellwig, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman, A. van Rees, P. J. M. van der Slot, C. J. Lee, R. Schmidt, R. Bratschitsch, K.-J. Boller, and C. Fallnich, “Ultrabroadband supercontinuum generation at telecommunication wavelengths in dispersion engineered stoichiometric Si3N4 waveguides,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), p. AM3J.5.

Verheyen, P.

B. Kuyken, F. Leo, S. Clemmen, U. Dave, R. Van Laer, T. Ideguchi, H. Zhao, X. Liu, J. Safioui, S. Coen, S.P. Gorza, S.K. Selvaraja, S. Massar, R.M. Osgood, P. Verheyen, J. Van Campenhout, R. Baets, W.M.J. Green, and G. Roelkens, “Nonlinear optical interactions in silicon waveguides,” Nanophotonics 5, 1–16 (2016).

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref] [PubMed]

Wabnitz, S.

Wadsworth, W.

Walbaum, T.

Wang, R.

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photonics Rev. 8, 792–798 (2014).
[Crossref]

Weber, K.

K.L. Corwin, N.R. Newbury, J.M. Dudley, S. Coen, S.A. Diddams, K. Weber, and R.S. Windeler, “Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[Crossref] [PubMed]

Weiner, A. M.

V. Torres-Company and A. M. Weiner, “Optical frequency comb technology for ultra-broadband radio-frequency photonics,” Laser Photonics Rev. 8, 368–393 (2014).
[Crossref]

Wiesauer, K.

Windeler, R. S.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis,” Science 288, 635–639 (2000).
[Crossref] [PubMed]

Windeler, R.S.

K.L. Corwin, N.R. Newbury, J.M. Dudley, S. Coen, S.A. Diddams, K. Weber, and R.S. Windeler, “Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[Crossref] [PubMed]

Wise, F.W.

Woodward, J. T.

J. T. Woodward, A. W. Smith, C. A. Jenkins, C. Lin, S. W. Brown, and K. R. Lykke, “Supercontinuum sources for metrology,” Metrologia 46, S277–S282 (2009).
[Crossref]

Xiong, C.

Yamashita, M.

N. Karasawa, S. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, “Comparison between theory and experiment of nonlinear propagation for a-few-cycle and ultrabroadband optical pulses in a fused silica fiber,” IEEE J. Sel. Top. Quantum Electron. 37, 398–404 (2001).
[Crossref]

Yan, M.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref] [PubMed]

Yang, K. Y.

Yang, Z.

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photonics Rev. 8, 792–798 (2014).
[Crossref]

Ycas, G.

Ye, J.

A. Ruehl, M. J. Martin, K. C. Cossel, L. Chen, H. McKay, B. Thomas, C. Benko, L. Dong, J. M. Dudley, M. E. Fermann, I. Hartl, and J. Ye, “Ultrabroadband coherent supercontinuum frequency comb,” Phys. Rev. A 84, 011806 (2011).
[Crossref]

Yu, Y.

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photonics Rev. 8, 792–798 (2014).
[Crossref]

Zhang, J.-J.

X.-J. Liu, J.-J. Zhang, X.-W. Sun, Y.-B. Pan, L.-H. Huang, and C.-Y. Jin, “Growth and properties of silicon nitride films prepared by low pressure chemical vapor deposition using trichorosilane and ammonia,” Thin Solid Films 460, 72–77 (2004).
[Crossref]

Zhang, X.

Zhao, H.

B. Kuyken, F. Leo, S. Clemmen, U. Dave, R. Van Laer, T. Ideguchi, H. Zhao, X. Liu, J. Safioui, S. Coen, S.P. Gorza, S.K. Selvaraja, S. Massar, R.M. Osgood, P. Verheyen, J. Van Campenhout, R. Baets, W.M.J. Green, and G. Roelkens, “Nonlinear optical interactions in silicon waveguides,” Nanophotonics 5, 1–16 (2016).

H. Zhao, B. Kuyken, S. Clemmen, F. Leo, A. Subramanian, A. Dhakal, P. Helin, S. Severi, E. Brainis, G. Roelkens, and R. Baets, “Visible-to-near-infrared octave spanning supercontinuum generation in a silicon nitride waveguide,” Opt. Lett. 40, 2177–2180 (2015).
[Crossref] [PubMed]

Zhou, B.

Zhuang, L.

Zimmermann, L.

Adv. Opt. Techn. (1)

R. G. H. Kerstin Wörhoff, “TriPleX: A versatile dielectric photonic platform,” Adv. Opt. Techn. 4, 189–207 (2015).

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

N. Karasawa, S. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, “Comparison between theory and experiment of nonlinear propagation for a-few-cycle and ultrabroadband optical pulses in a fused silica fiber,” IEEE J. Sel. Top. Quantum Electron. 37, 398–404 (2001).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Laser Photonics Rev. (2)

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photonics Rev. 8, 792–798 (2014).
[Crossref]

V. Torres-Company and A. M. Weiner, “Optical frequency comb technology for ultra-broadband radio-frequency photonics,” Laser Photonics Rev. 8, 368–393 (2014).
[Crossref]

Laser Phys. Lett. (1)

R. M. Oldenbeuving, E. J. Klein, H. L. Offerhaus, C. J. Lee, H. Song, and K.-J. Boller, “25 kHz narrow spectral bandwidth of a wavelength tunable diode laser with a short waveguide-based external cavity,” Laser Phys. Lett. 10, 015804 (2013).
[Crossref]

Metrologia (1)

J. T. Woodward, A. W. Smith, C. A. Jenkins, C. Lin, S. W. Brown, and K. R. Lykke, “Supercontinuum sources for metrology,” Metrologia 46, S277–S282 (2009).
[Crossref]

Nanophotonics (2)

B. Kuyken, F. Leo, S. Clemmen, U. Dave, R. Van Laer, T. Ideguchi, H. Zhao, X. Liu, J. Safioui, S. Coen, S.P. Gorza, S.K. Selvaraja, S. Massar, R.M. Osgood, P. Verheyen, J. Van Campenhout, R. Baets, W.M.J. Green, and G. Roelkens, “Nonlinear optical interactions in silicon waveguides,” Nanophotonics 5, 1–16 (2016).

Y.K. Chembo, “Kerr optical frequency combs: theory, applications and perspectives,” Nanophotonics,  5, 214–230 (2016).
[Crossref]

Nat. Commun. (1)

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

A. Schliesser, N. Picqué, and T.W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

Opt. Commun. (1)

H. Hu, W. Li, and N.K. Dutta, “Dispersion-engineered tapered planar waveguide for coherent supercontinuum generation,” Opt. Commun. 324, 252–257 (2014).
[Crossref]

Opt. Express (17)

K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides,” Opt. Express 16, 12987–12994 (2008).
[Crossref] [PubMed]

M. R. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10/W/m) As2S3 chalcogenide planar waveguide,” Opt. Express 16, 14938–14944 (2008).
[Crossref] [PubMed]

A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express 17, 11366–11370 (2009).
[Crossref] [PubMed]

M. Kues, N. Brauckmann, T. Walbaum, P. Groß, and C. Fallnich, “Nonlinear dynamics of femtosecond supercontinuum generation with feedback,” Opt. Express 17, 15827–15841 (2009).
[Crossref] [PubMed]

D. Duchesne, M. Peccianti, M. R. E. Lamont, M. Ferrera, L. Razzari, F. Légaré, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “Supercontinuum generation in a high index doped silica glass spiral waveguide,” Opt. Express 18, 923–930 (2010).
[Crossref] [PubMed]

J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M.-C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19, 3163–3174 (2011).
[Crossref] [PubMed]

L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, and C. Roeloffzen, “Low-loss, high-index-contrast Si3N4/SiO2 optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express 19, 23162–23170 (2011).
[Crossref] [PubMed]

C. G. H. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. L. van Dijk, R. M. Oldenbeuving, D. A. I. Marpaung, M. Burla, and K. J. Boller, “Silicon nitride microwave photonic circuits,” Opt. Express 21, 22937–22961 (2013).
[Crossref] [PubMed]

J. P. Epping, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman, A. van Rees, P. J. van der Slot, C. J. Lee, and K.-J. Boller, “High confinement, high yield Si3N4 waveguides for nonlinear optical applications,” Opt. Express 23, 642–648 (2015).
[Crossref] [PubMed]

I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, “Dispersive wave generation by solitons in microstructured optical fibers,” Opt. Express 12, 124–135 (2004).
[Crossref] [PubMed]

G. Humbert, W. Wadsworth, S. Leon-Saval, J. Knight, T. Birks, P. St, J. Russell, M. Lederer, D. Kopf, K. Wiesauer, E. Breuer, and D. Stifter, “Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre,” Opt. Express 14, 1596–1603 (2006).
[Crossref] [PubMed]

A.S. Mayer, A. Klenner, A.R. Johnson, K. Luke, M.R.E. Lamont, Y. Okawachi, M. Lipson, A.L. Gaeta, and U. Keller, “Frequency comb offset detection using supercontinuum generation in silicon nitride waveguides,” Opt. Express 23, 15440–15451 (2015).
[Crossref] [PubMed]

J. P. Epping, T. Hellwig, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman, A. van Rees, P. J. M. van der Slot, C. J. Lee, C. Fallnich, and K.-J. Boller, “On-chip visible-to-infrared supercontinuum generation with more than 495 THz spectral bandwidth,” Opt. Express 23, 19596–19604 (2015).
[Crossref] [PubMed]

T. G. Nguyen, M. Shoeiby, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Integrated frequency comb source based Hilbert transformer for wideband microwave photonic phase analysis,” Opt. Express 23, 22087–22097 (2015).
[Crossref] [PubMed]

C. Krueckel, A. Fulop, T. Klintberg, J. Bengtsson, P. Andrekson, and V. Torres-Company, “Linear and nonlinear characterization of low-stress high-confinement silicon-rich nitride waveguides,” Opt. Express 23, 25827–25837 (2015).
[Crossref]

A. H. Hosseinnia, A. H. Atabaki, A. A. Eftekhar, and A. Adibi, “High-quality silicon on silicon nitride integrated optical platform with an octave-spanning adiabatic interlayer coupler,” Opt. Express 23, 30297–30307 (2015).
[Crossref] [PubMed]

A. Klenner, A.S. Mayer, A.R. Johnson, K. Luke, M.R.E. Lamont, Y. Okawachi, M. Lipson, A.L. Gaeta, and U. Keller, “Gigahertz frequency comb offset stabilization based on supercontinuum generation in silicon nitride waveguides,” Opt. Express 24, 11043–11053 (2016).
[Crossref] [PubMed]

Opt. Lett. (10)

X. Liu, M. Pu, B. Zhou, C. J. Krückel, A. Fülöp, V. Torres-Company, and M. Bache, “Octave-spanning supercontinuum generation in a silicon-rich nitride waveguide,” Opt. Lett. 41, 2719–2722 (2016).
[Crossref] [PubMed]

K. Luke, Y. Okawachi, M. R. E. Lamont, A. L. Gaeta, and M. Lipson, “Broadband mid-infrared frequency comb generation in a Si3N4 microresonator,” Opt. Lett. 40, 4823–4826 (2015).
[Crossref] [PubMed]

A.R. Johnson, A.S. Mayer, A. Klenner, K. Luke, E.S. Lamb, M.R.E. Lamont, C. Joshi, Y. Okawachi, F.W. Wise, M. Lipson, U. Keller, and A.L. Gaeta, “Octave-spanning coherent supercontinuum generation in a silicon nitride waveguide,” Opt. Lett. 40, 5117–5120, (2015).
[Crossref] [PubMed]

H. Zhao, B. Kuyken, S. Clemmen, F. Leo, A. Subramanian, A. Dhakal, P. Helin, S. Severi, E. Brainis, G. Roelkens, and R. Baets, “Visible-to-near-infrared octave spanning supercontinuum generation in a silicon nitride waveguide,” Opt. Lett. 40, 2177–2180 (2015).
[Crossref] [PubMed]

D. Y. Oh, D. Sell, H. Lee, K. Y. Yang, S. A. Diddams, and K. J. Vahala, “Supercontinuum generation in an on-chip silica waveguide,” Opt. Lett. 39, 1046–1048 (2014).
[Crossref] [PubMed]

F. Leo, S.-P. Gorza, J. Safioui, P. Kockaert, S. Coen, U. Dave, B. Kuyken, and G. Roelkens, “Dispersive wave emission and supercontinuum generation in a silicon wire waveguide pumped around the 1550 nm telecommunication wavelength,” Opt. Lett. 39, 3623–3626 (2014).
[Crossref] [PubMed]

R. K. W. Lau, M. R. E. Lamont, A. G. Griffith, Y. Okawachi, M. Lipson, and A. L. Gaeta, “Octave-spanning mid-infrared supercontinuum generation in silicon nanowaveguides,” Opt. Lett. 39, 4518–4521 (2014).
[Crossref] [PubMed]

R. Halir, Y. Okawachi, J. S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, “Ultrabroadband supercontinuum generation in a CMOS-compatible platform,” Opt. Lett. 37, 1685–1687 (2012).
[Crossref] [PubMed]

G. Ycas, S. Osterman, and S. A. Diddams, “Generation of a 660–2100 nm laser frequency comb based on an erbium fiber laser,” Opt. Lett. 37, 2199–2201 (2012).
[Crossref] [PubMed]

H. Kano and H. Hamaguchi, “Characterization of a supercontinuum generated from a photonic crystal fiber and its application to coherent Raman spectroscopy,” Opt. Lett. 28, 2360–2362 (2003).
[Crossref] [PubMed]

Optica (2)

Phys. Rev. A (2)

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[Crossref] [PubMed]

A. Ruehl, M. J. Martin, K. C. Cossel, L. Chen, H. McKay, B. Thomas, C. Benko, L. Dong, J. M. Dudley, M. E. Fermann, I. Hartl, and J. Ye, “Ultrabroadband coherent supercontinuum frequency comb,” Phys. Rev. A 84, 011806 (2011).
[Crossref]

Phys. Rev. Lett. (1)

K.L. Corwin, N.R. Newbury, J.M. Dudley, S. Coen, S.A. Diddams, K. Weber, and R.S. Windeler, “Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[Crossref] [PubMed]

Proc. SPIE (1)

Y. Fan, R. M. Oldenbeuving, E. J. Klein, C. J. Lee, H. Song, M. R. H. Khan, H. L. Offerhaus, P. J. M. van der Slot, and K.-J. Boller, “A hybrid semiconductor-glass waveguide laser,” Proc. SPIE 9135, 91351 (2014).
[Crossref]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Science (2)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis,” Science 288, 635–639 (2000).
[Crossref] [PubMed]

V. Brasch, T. Herr, M. Geiselmann, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip based optical frequency comb using soliton induced Cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref] [PubMed]

Thin Solid Films (1)

X.-J. Liu, J.-J. Zhang, X.-W. Sun, Y.-B. Pan, L.-H. Huang, and C.-Y. Jin, “Growth and properties of silicon nitride films prepared by low pressure chemical vapor deposition using trichorosilane and ammonia,” Thin Solid Films 460, 72–77 (2004).
[Crossref]

Other (6)

F. Schepers, M. A. G. Porcel, J. P. Epping, T. Hellwig, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman, A. van Rees, P. J. M. van der Slot, C. J. Lee, R. Schmidt, R. Bratschitsch, K.-J. Boller, and C. Fallnich, “Ultrabroadband supercontinuum generation at telecommunication wavelengths in dispersion engineered stoichiometric Si3N4 waveguides,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), p. AM3J.5.

D. Grassani, A. Billat, M. H. P. Pfeiffer, H. Guo, T. North, T. J. Kippenberg, and C.-S. Bres, “Mid-infrared supercontinuum generation in a SiN waveguide pumped at 1.55 micron,” in “Frontiers in Optics 2016,” (Optical Society of America, 2016), p. FTu5D.3.
[Crossref]

J.P. Epping, Dispersion engineering silicon nitride waveguides for broadband nonlinear frequency conversion, PhD thesis, University of Twente (2015)

C. Ciret and S-P. Gorza, “Generation of ultra broadband coherent supercontinuum in tapered and dispersion managed silicon nanophotonic waveguides,” arXiv:1610.05665 [physics.optics] (2016).

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2007).

J.S. Levy, Integrated nonlinear optics in silicon nitride waveguides resonators, PhD Thesis, Cornell University (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Calculated dispersion coefficient, D(λ), for the fundamental TM-mode in Si3N4 waveguides with a height h = 0.90 µm and widths varied from w1 = 0.70 µm to w7 = 1.3 µm in steps of 0.1 µm. Anomalous dispersion is present above the dashed zero-dispersion line. The center wavelength of the pump laser at 1560 nm is indicated as red vertical line.

Fig. 2
Fig. 2

Schematic view of the experimental setup for supercontinuum generation (SCG) with ultrashort pulses from a mode-locked erbium fiber laser. The pulses enter the Si3N4-waveguide sample via two half-wave plates (HWP), a polarizing beam splitter (PBS) and an aspherical lens (AL). A lensed fiber (LF) and an off-axis parabolic mirror (OAPM) collect and collimate the generated SC. A curved mirror (CM) focuses the beam via a removable mirror (RM) into two different optical spectrum analyzers.

Fig. 3
Fig. 3

a) Measured spectral power density (color-coded) obtained from supercontinuum generation in a 0.9 µm high and 1 µm wide Si3N4 waveguide, using ultrashort pulses (120 fs) from an erbium fiber laser at 1560 nm. The nominal pump wavelength is indicated by the vertical red line. The spectra are displayed vs. the pump pulse energy incident on the aspheric lens (upper vertical axis), of which about 29 % was coupled into the waveguide. Each spectrum is normalized to its peak value. b) Theoretical spectral density vs. waveguide internal pulse energy (lower vertical axis) as obtained from simulations with the experimental values of the waveguide parameters.

Fig. 4
Fig. 4

Measured spectral power density of supercontinuum generation using seven different waveguide widths, increasing from (blue trace) 0.7 µm (blue trace) to 1.3 µm (red trace) in steps of 0.1 µm, pumped with the same, maximum available pump pulse energy of 6.8 nJ incident on the aspheric lens. For clarity the peak values of all spectra are normalized to 0 dB and vertically offset by 80 dB with respect to each other. The horizontal dashed lines mark the respective −30 dB levels. The dash-dotted curves show the average noise levels for the short-wavelength OSA, and a baseline after dark-count subtraction for the long-wavelength OSA. The straight dotted line shows that the −30 dB infrared-end of the spectra tunes towards the mid-infrared range with increasing width of the waveguides.

Fig. 5
Fig. 5

Supercontinuum spectrum generated in a 1 µm wide and 0.9 µm high waveguide using a pump pulse energy of 4.7 nJ incident to the aspheric lens (in-coupled pulse energy 1.4 nJ). The pump wavelength of 1560 nm is indicated with an arrow. From the short-wavelength −30 dB-edge at 526 nm the spectrum extends to at least 2584 nm (mid-infrared end of OSA detection range). This corresponds to a spectral bandwidth of more than 454 THz and spans more than 2.2 octaves.

Metrics