Abstract

We report a multiple-gain-element Nd:YAG laser where the gain media (three pieces of slab crystal) are alternately bonded to two optical quality 4H-SiC wafers. Such composite gain configuration can efficiently remove waste heat from the gain medium, preventing thermal lensing and heat-induced birefringence/distortion under high power laser operation. Through near Brewster’s angles incidence designing and polarization discrimination, two orthogonally linearly polarized (P and S polarized) laser beams are generated simultaneously from different parts of the same system. Based on a T = 3% output coupler, this continuous wave laser produces maximum power of 5.34 W (0.83 W) with a slope efficiency of 21.1% (3.6%) for the S (P) polarized laser beam. At the 5-W level, the S polarized beam has a beam quality of M2~1.2. The wavelengths of these two perpendicularly polarized laser beams differ about 0.6 nm (1063.7 and 1064.3 nm). Polarized output behavior dependent on the output-coupler transmission is also studied, and it is found that increasing the transmission leads to steady growth of the P polarized laser beam; when a T = 1.3% output coupler is adopted, more than 99% of the output is the S polarized beam. The highest total output power is 6.75 W obtained with the T = 1.3% output coupler, corresponding to slope efficiency of 25.7%. This composite laser scheme, bonding multiple gain media with high-thermal-conductivity materials, opens a new avenue for high-power high-beam-quality solid-state lasers with multiple-polarization output beams.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Composite Yb:YAG/SiC-prism thin disk laser

G. A. Newburgh, A. Michael, and M. Dubinskii
Opt. Express 18(16) 17066-17074 (2010)

Diode-pumped Nd:YAG and Nd:glass spinning-disk lasers

Steven M. Massey, Jason B. McKay, Timothy H. Russell, Alan H. Paxton, Harold C. Miller, and Santanu Basu
J. Opt. Soc. Am. B 22(5) 1003-1009 (2005)

References

  • View by:
  • |
  • |
  • |

  1. J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, and R. L. Byer, “The slab geometry laser-part I: theory,” IEEE J. Quantum Electron. 20(3), 289–301 (1984).
    [Crossref]
  2. A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
    [Crossref]
  3. T. S. Rutherford, W. M. Tulloch, S. Sinha, and R. L. Byer, “Yb:YAG and Nd:YAG edge-pumped slab lasers,” Opt. Lett. 26(13), 986–988 (2001).
    [Crossref] [PubMed]
  4. A. Giesen and J. Speiser, “Fifteen years of work on thin disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
    [Crossref]
  5. Y. Tzuk, A. Tal, S. Goldring, Y. Glick, E. Lebiush, G. Kaufman, and R. Lavi, “Diamond cooling of high-power diode-pumped solid state lasers,” IEEE J. Quantum Electron. 40(3), 262–269 (2004).
    [Crossref]
  6. G. A. Newburgh, M. Dubinskii, and L. D. Merkle, “Silicon carbide face-cooled 4% ceramic Nd:YAG laser,” Electron. Lett. 43(5), 286–288 (2007).
    [Crossref]
  7. S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb: YAG lasers,” Appl. Phys. B 80(6), 635–638 (2005).
    [Crossref]
  8. P. Millar, R. B. Birch, A. J. Kemp, and D. Burns, “Synthetic diamond for intracavity thermal management in compact solid-state lasers,” IEEE J. Quantum Electron. 44(8), 709–717 (2008).
    [Crossref]
  9. P. Millar, A. J. Kemp, and D. Burns, “Power scaling of Nd:YVO4 and Nd:GdVO4 disk lasers using synthetic diamond as a heat spreader,” Opt. Lett. 34(6), 782–784 (2009).
    [Crossref] [PubMed]
  10. G. A. Newburgh, A. Michael, and M. Dubinskii, “Composite Yb:YAG/SiC-prism thin disk laser,” Opt. Express 18(16), 17066–17074 (2010).
    [Crossref] [PubMed]
  11. R. Zhang, J. Niu, J. Xu, and J. Xu, “High-power air-cooled SiC-clad Nd:YVO4 slab lasers,” Opt. Lett. 36(10), 1857–1859 (2011).
    [Crossref] [PubMed]
  12. R. Zhang, H. Q. Li, Y. Liu, Y. L. Tang, X. F. Chen, X. G. Xu, and J. Q. Xu, “Compact split disk laser with SiC wafer and Nd:YVO4 bonding via liquid capillarity,” IEEE J. Quantum Electron. 49(8), 705–710 (2013).
    [Crossref]

2013 (1)

R. Zhang, H. Q. Li, Y. Liu, Y. L. Tang, X. F. Chen, X. G. Xu, and J. Q. Xu, “Compact split disk laser with SiC wafer and Nd:YVO4 bonding via liquid capillarity,” IEEE J. Quantum Electron. 49(8), 705–710 (2013).
[Crossref]

2011 (1)

2010 (1)

2009 (1)

2008 (1)

P. Millar, R. B. Birch, A. J. Kemp, and D. Burns, “Synthetic diamond for intracavity thermal management in compact solid-state lasers,” IEEE J. Quantum Electron. 44(8), 709–717 (2008).
[Crossref]

2007 (2)

A. Giesen and J. Speiser, “Fifteen years of work on thin disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[Crossref]

G. A. Newburgh, M. Dubinskii, and L. D. Merkle, “Silicon carbide face-cooled 4% ceramic Nd:YAG laser,” Electron. Lett. 43(5), 286–288 (2007).
[Crossref]

2005 (1)

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb: YAG lasers,” Appl. Phys. B 80(6), 635–638 (2005).
[Crossref]

2004 (1)

Y. Tzuk, A. Tal, S. Goldring, Y. Glick, E. Lebiush, G. Kaufman, and R. Lavi, “Diamond cooling of high-power diode-pumped solid state lasers,” IEEE J. Quantum Electron. 40(3), 262–269 (2004).
[Crossref]

2001 (1)

1994 (1)

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

1984 (1)

J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, and R. L. Byer, “The slab geometry laser-part I: theory,” IEEE J. Quantum Electron. 20(3), 289–301 (1984).
[Crossref]

Birch, R. B.

P. Millar, R. B. Birch, A. J. Kemp, and D. Burns, “Synthetic diamond for intracavity thermal management in compact solid-state lasers,” IEEE J. Quantum Electron. 44(8), 709–717 (2008).
[Crossref]

Brauch, U.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Burns, D.

P. Millar, A. J. Kemp, and D. Burns, “Power scaling of Nd:YVO4 and Nd:GdVO4 disk lasers using synthetic diamond as a heat spreader,” Opt. Lett. 34(6), 782–784 (2009).
[Crossref] [PubMed]

P. Millar, R. B. Birch, A. J. Kemp, and D. Burns, “Synthetic diamond for intracavity thermal management in compact solid-state lasers,” IEEE J. Quantum Electron. 44(8), 709–717 (2008).
[Crossref]

Byer, R. L.

T. S. Rutherford, W. M. Tulloch, S. Sinha, and R. L. Byer, “Yb:YAG and Nd:YAG edge-pumped slab lasers,” Opt. Lett. 26(13), 986–988 (2001).
[Crossref] [PubMed]

J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, and R. L. Byer, “The slab geometry laser-part I: theory,” IEEE J. Quantum Electron. 20(3), 289–301 (1984).
[Crossref]

Chen, X. F.

R. Zhang, H. Q. Li, Y. Liu, Y. L. Tang, X. F. Chen, X. G. Xu, and J. Q. Xu, “Compact split disk laser with SiC wafer and Nd:YVO4 bonding via liquid capillarity,” IEEE J. Quantum Electron. 49(8), 705–710 (2013).
[Crossref]

Dubinskii, M.

G. A. Newburgh, A. Michael, and M. Dubinskii, “Composite Yb:YAG/SiC-prism thin disk laser,” Opt. Express 18(16), 17066–17074 (2010).
[Crossref] [PubMed]

G. A. Newburgh, M. Dubinskii, and L. D. Merkle, “Silicon carbide face-cooled 4% ceramic Nd:YAG laser,” Electron. Lett. 43(5), 286–288 (2007).
[Crossref]

Eggleston, J. M.

J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, and R. L. Byer, “The slab geometry laser-part I: theory,” IEEE J. Quantum Electron. 20(3), 289–301 (1984).
[Crossref]

Fujita, M.

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb: YAG lasers,” Appl. Phys. B 80(6), 635–638 (2005).
[Crossref]

Giesen, A.

A. Giesen and J. Speiser, “Fifteen years of work on thin disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[Crossref]

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Glick, Y.

Y. Tzuk, A. Tal, S. Goldring, Y. Glick, E. Lebiush, G. Kaufman, and R. Lavi, “Diamond cooling of high-power diode-pumped solid state lasers,” IEEE J. Quantum Electron. 40(3), 262–269 (2004).
[Crossref]

Goldring, S.

Y. Tzuk, A. Tal, S. Goldring, Y. Glick, E. Lebiush, G. Kaufman, and R. Lavi, “Diamond cooling of high-power diode-pumped solid state lasers,” IEEE J. Quantum Electron. 40(3), 262–269 (2004).
[Crossref]

Hügel, H.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Izawa, Y.

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb: YAG lasers,” Appl. Phys. B 80(6), 635–638 (2005).
[Crossref]

Kane, T. J.

J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, and R. L. Byer, “The slab geometry laser-part I: theory,” IEEE J. Quantum Electron. 20(3), 289–301 (1984).
[Crossref]

Kaufman, G.

Y. Tzuk, A. Tal, S. Goldring, Y. Glick, E. Lebiush, G. Kaufman, and R. Lavi, “Diamond cooling of high-power diode-pumped solid state lasers,” IEEE J. Quantum Electron. 40(3), 262–269 (2004).
[Crossref]

Kawanaka, J.

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb: YAG lasers,” Appl. Phys. B 80(6), 635–638 (2005).
[Crossref]

Kawashima, T.

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb: YAG lasers,” Appl. Phys. B 80(6), 635–638 (2005).
[Crossref]

Kemp, A. J.

P. Millar, A. J. Kemp, and D. Burns, “Power scaling of Nd:YVO4 and Nd:GdVO4 disk lasers using synthetic diamond as a heat spreader,” Opt. Lett. 34(6), 782–784 (2009).
[Crossref] [PubMed]

P. Millar, R. B. Birch, A. J. Kemp, and D. Burns, “Synthetic diamond for intracavity thermal management in compact solid-state lasers,” IEEE J. Quantum Electron. 44(8), 709–717 (2008).
[Crossref]

Kuhn, K.

J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, and R. L. Byer, “The slab geometry laser-part I: theory,” IEEE J. Quantum Electron. 20(3), 289–301 (1984).
[Crossref]

Lavi, R.

Y. Tzuk, A. Tal, S. Goldring, Y. Glick, E. Lebiush, G. Kaufman, and R. Lavi, “Diamond cooling of high-power diode-pumped solid state lasers,” IEEE J. Quantum Electron. 40(3), 262–269 (2004).
[Crossref]

Lebiush, E.

Y. Tzuk, A. Tal, S. Goldring, Y. Glick, E. Lebiush, G. Kaufman, and R. Lavi, “Diamond cooling of high-power diode-pumped solid state lasers,” IEEE J. Quantum Electron. 40(3), 262–269 (2004).
[Crossref]

Li, H. Q.

R. Zhang, H. Q. Li, Y. Liu, Y. L. Tang, X. F. Chen, X. G. Xu, and J. Q. Xu, “Compact split disk laser with SiC wafer and Nd:YVO4 bonding via liquid capillarity,” IEEE J. Quantum Electron. 49(8), 705–710 (2013).
[Crossref]

Liu, Y.

R. Zhang, H. Q. Li, Y. Liu, Y. L. Tang, X. F. Chen, X. G. Xu, and J. Q. Xu, “Compact split disk laser with SiC wafer and Nd:YVO4 bonding via liquid capillarity,” IEEE J. Quantum Electron. 49(8), 705–710 (2013).
[Crossref]

Merkle, L. D.

G. A. Newburgh, M. Dubinskii, and L. D. Merkle, “Silicon carbide face-cooled 4% ceramic Nd:YAG laser,” Electron. Lett. 43(5), 286–288 (2007).
[Crossref]

Michael, A.

Millar, P.

P. Millar, A. J. Kemp, and D. Burns, “Power scaling of Nd:YVO4 and Nd:GdVO4 disk lasers using synthetic diamond as a heat spreader,” Opt. Lett. 34(6), 782–784 (2009).
[Crossref] [PubMed]

P. Millar, R. B. Birch, A. J. Kemp, and D. Burns, “Synthetic diamond for intracavity thermal management in compact solid-state lasers,” IEEE J. Quantum Electron. 44(8), 709–717 (2008).
[Crossref]

Newburgh, G. A.

G. A. Newburgh, A. Michael, and M. Dubinskii, “Composite Yb:YAG/SiC-prism thin disk laser,” Opt. Express 18(16), 17066–17074 (2010).
[Crossref] [PubMed]

G. A. Newburgh, M. Dubinskii, and L. D. Merkle, “Silicon carbide face-cooled 4% ceramic Nd:YAG laser,” Electron. Lett. 43(5), 286–288 (2007).
[Crossref]

Niu, J.

Opower, H.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Rutherford, T. S.

Sinha, S.

Speiser, J.

A. Giesen and J. Speiser, “Fifteen years of work on thin disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[Crossref]

Tal, A.

Y. Tzuk, A. Tal, S. Goldring, Y. Glick, E. Lebiush, G. Kaufman, and R. Lavi, “Diamond cooling of high-power diode-pumped solid state lasers,” IEEE J. Quantum Electron. 40(3), 262–269 (2004).
[Crossref]

Tang, Y. L.

R. Zhang, H. Q. Li, Y. Liu, Y. L. Tang, X. F. Chen, X. G. Xu, and J. Q. Xu, “Compact split disk laser with SiC wafer and Nd:YVO4 bonding via liquid capillarity,” IEEE J. Quantum Electron. 49(8), 705–710 (2013).
[Crossref]

Tokita, S.

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb: YAG lasers,” Appl. Phys. B 80(6), 635–638 (2005).
[Crossref]

Tulloch, W. M.

Tzuk, Y.

Y. Tzuk, A. Tal, S. Goldring, Y. Glick, E. Lebiush, G. Kaufman, and R. Lavi, “Diamond cooling of high-power diode-pumped solid state lasers,” IEEE J. Quantum Electron. 40(3), 262–269 (2004).
[Crossref]

Unternahrer, J.

J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, and R. L. Byer, “The slab geometry laser-part I: theory,” IEEE J. Quantum Electron. 20(3), 289–301 (1984).
[Crossref]

Voss, A.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Wittig, K.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Xu, J.

Xu, J. Q.

R. Zhang, H. Q. Li, Y. Liu, Y. L. Tang, X. F. Chen, X. G. Xu, and J. Q. Xu, “Compact split disk laser with SiC wafer and Nd:YVO4 bonding via liquid capillarity,” IEEE J. Quantum Electron. 49(8), 705–710 (2013).
[Crossref]

Xu, X. G.

R. Zhang, H. Q. Li, Y. Liu, Y. L. Tang, X. F. Chen, X. G. Xu, and J. Q. Xu, “Compact split disk laser with SiC wafer and Nd:YVO4 bonding via liquid capillarity,” IEEE J. Quantum Electron. 49(8), 705–710 (2013).
[Crossref]

Zhang, R.

R. Zhang, H. Q. Li, Y. Liu, Y. L. Tang, X. F. Chen, X. G. Xu, and J. Q. Xu, “Compact split disk laser with SiC wafer and Nd:YVO4 bonding via liquid capillarity,” IEEE J. Quantum Electron. 49(8), 705–710 (2013).
[Crossref]

R. Zhang, J. Niu, J. Xu, and J. Xu, “High-power air-cooled SiC-clad Nd:YVO4 slab lasers,” Opt. Lett. 36(10), 1857–1859 (2011).
[Crossref] [PubMed]

Appl. Phys. B (2)

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb: YAG lasers,” Appl. Phys. B 80(6), 635–638 (2005).
[Crossref]

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Electron. Lett. (1)

G. A. Newburgh, M. Dubinskii, and L. D. Merkle, “Silicon carbide face-cooled 4% ceramic Nd:YAG laser,” Electron. Lett. 43(5), 286–288 (2007).
[Crossref]

IEEE J. Quantum Electron. (4)

R. Zhang, H. Q. Li, Y. Liu, Y. L. Tang, X. F. Chen, X. G. Xu, and J. Q. Xu, “Compact split disk laser with SiC wafer and Nd:YVO4 bonding via liquid capillarity,” IEEE J. Quantum Electron. 49(8), 705–710 (2013).
[Crossref]

P. Millar, R. B. Birch, A. J. Kemp, and D. Burns, “Synthetic diamond for intracavity thermal management in compact solid-state lasers,” IEEE J. Quantum Electron. 44(8), 709–717 (2008).
[Crossref]

J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, and R. L. Byer, “The slab geometry laser-part I: theory,” IEEE J. Quantum Electron. 20(3), 289–301 (1984).
[Crossref]

Y. Tzuk, A. Tal, S. Goldring, Y. Glick, E. Lebiush, G. Kaufman, and R. Lavi, “Diamond cooling of high-power diode-pumped solid state lasers,” IEEE J. Quantum Electron. 40(3), 262–269 (2004).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Giesen and J. Speiser, “Fifteen years of work on thin disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup and design of the multi-element composite Nd:YAG/SiC bonded slab laser. P: parallel polarization; S: perpendicular polarization; L: lens; M: mirror; LD: laser diode. Blue arrows indicate the polarization directions of the output laser beams. Inset shows the schematic diagram of single light passing through the composite gain medium.

Fig. 2
Fig. 2

Output characteristics of the composite bonding Nd:YAG laser with various output couplers.

Fig. 3
Fig. 3

Polarization features of the P- and S-polarized laser beams.

Fig. 4
Fig. 4

Beam quality of the S polarized laser output.

Fig. 5
Fig. 5

Laser spectra of the laser beams with different polarizations.

Metrics