Abstract

We present a coherence scanning interferometer configured to deal with rough glass surfaces exhibiting very low reflectance due to severe sub-surface light scattering. A compound light source is prepared by combining a superluminescent light-emitting diode with an ytterbium-doped fiber amplifier. The light source is attuned to offer a short temporal coherence length of 15 μm but with high spatial coherence to secure an adequate correlogram contrast by delivering strongly unbalanced optical power to the low reflectance target. In addition, the infrared spectral range of the light source is shifted close to the visible side at a 1,038 nm center wavelength, so a digital camera of multi-mega pixels available for industrial machine vision can be used to improve the correlogram contrast further with better lateral image resolutions. Experimental results obtained from a ground Zerodur mirror of 200 mm aperture size and 0.9 μm rms roughness are discussed to validate the proposed interferometer system.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
3D profiling of rough silicon carbide surfaces by coherence scanning interferometry using a femtosecond laser

Yang Lu, Jiyong Park, Liandong Yu, and Seung-Woo Kim
Appl. Opt. 57(10) 2584-2589 (2018)

Surface profile measurement of doped silicon using near-infrared low-coherence light

Xinyu Yan, Jie Cheng, Dian Bian, Yang Lu, and Liandong Yu
Appl. Opt. 58(27) 7436-7442 (2019)

Surface and thickness measurement of a transparent film using wavelength scanning interferometry

Feng Gao, Hussam Muhamedsalih, and Xiangqian Jiang
Opt. Express 20(19) 21450-21456 (2012)

References

  • View by:
  • |
  • |
  • |

  1. P. R. Yoder, Opto-Mechanical Systems Design, 3rd ed. (CRC, 2006). Chap. 3.
  2. P. Y. Bely, The Design and Construction of Large Optical Telescopes (Springer, 2002), Chap. 4.
  3. D. Malacara, Optical Shop Testing, 2nd ed. (John Wiley & Sons, 1992).
  4. O. Kwon, J. C. Wyant, and C. R. Hayslett, “Rough surface interferometry at 10.6 microm,” Appl. Opt. 19(11), 1862–1869 (1980).
    [Crossref] [PubMed]
  5. Y. Wang, P. Su, R. E. Parks, C. J. Oh, and J. H. Burge, “Swing arm optical coordinate-measuring machine: High precision measuring ground aspheric surfaces using a laser triangulation probe,” Opt. Eng. 51(7), 073603 (2012).
    [Crossref]
  6. T. Dresel, G. Häusler, and H. Venzke, “Three-dimensional sensing of rough surfaces by coherence radar,” Appl. Opt. 31(7), 919–925 (1992).
    [Crossref] [PubMed]
  7. P. de Groot, “Principles of interference microscopy for the measurement of surface topography,” Adv. Opt. Photonics 7(1), 1–65 (2015).
    [Crossref]
  8. J. Schmit, “White-Light Interference 3D Microscopes,” in Handbook of Optical Dimensional Metrology, K. Harding ed. (Taylor & Francis, 2013), pp. 395–418.
  9. X. Colonna de Lega, J. Biegen, P. de Groot, G. Häusler, and P. Andretzky, “Large field-of-view scanning white-light interferometers,” in Annual Meeting of the American Society for Precision Engineering, Proc. ASPE 1275, (2003).
  10. H. E. Bennett and J. O. Porteus, “Relation between surface roughness and specular reflectance at normal incidence,” J. Opt. Soc. Am. 51(2), 123–129 (1961).
    [Crossref]
  11. H. E. Bennett, “Specular reflectance of aluminized ground glass and the height distribution of surface irregularities,” J. Opt. Soc. Am. 53(12), 1389–1394 (1963).
    [Crossref]
  12. C. K. Hitzenberger, M. Danner, W. Drexler, and A. F. Fercher, “Measurement of the spatial coherence of superluminescent diodes,” J. Mod. Opt. 46(12), 1763–1774 (1999).
    [Crossref]
  13. Y. Chiba, H. Takada, K. Torizuka, and K. Misawa, “65-fs Yb-doped fiber laser system with gain-narrowing compensation,” Opt. Express 23(5), 6809–6814 (2015).
    [Crossref] [PubMed]
  14. P. Magnan, “Detection of visible photons in CCD and CMOS: A comparative view,” Nucl. Instrum. Methods Phys. Res. A 504(1-3), 199–212 (2003).
    [Crossref]
  15. P. Pavliček and J. Soubusta, “Theoretical measurement uncertainty of white-light interferometry on rough surfaces,” Appl. Opt. 42(10), 1809–1813 (2003).
    [Crossref] [PubMed]
  16. S. Chen, A. W. Palmer, K. T. V. Grattan, and B. T. Meggitt, “Digital signal-processing techniques for electronically scanned optical-fiber white-light interferometry,” Appl. Opt. 31(28), 6003–6010 (1992).
    [Crossref] [PubMed]
  17. P. Pavliček and O. Hýbl, “White-light interferometry on rough surfaces--measurement uncertainty caused by surface roughness,” Appl. Opt. 47(16), 2941–2949 (2008).
    [Crossref] [PubMed]
  18. B. Wiesner, O. Hybl, and G. Häusler, “Improved white-light interferometry on rough surfaces by statistically independent speckle patterns,” Appl. Opt. 51(6), 751–757 (2012).
    [Crossref] [PubMed]
  19. S. J. Kirkpatrick, D. D. Duncan, and E. M. Wells-Gray, “Detrimental effects of speckle-pixel size matching in laser speckle contrast imaging,” Opt. Lett. 33(24), 2886–2888 (2008).
    [Crossref] [PubMed]
  20. J. C. Dainty, “The statistics of speckle patterns,” in Progress in Optics 14, E. Wolf, ed. (Elsevier, 1977).
  21. B. S. Fritz, “Absolute calibration of an optical flat,” Opt. Eng. 23(4), 379–383 (1984).
    [Crossref]
  22. J. Y. Wang and D. E. Silva, “Wave-front interpretation with Zernike polynomials,” Appl. Opt. 19(9), 1510–1518 (1980).
    [Crossref] [PubMed]
  23. S. Scheiding, C. Damm, W. Holota, T. Peschel, A. Gebhardt, S. Risse, and A. Tünnermann, “Ultra precisely manufactured mirror assemblies with well defined reference structures,” Proc. SPIE 7739, 773908 (2010).
    [Crossref]

2015 (2)

P. de Groot, “Principles of interference microscopy for the measurement of surface topography,” Adv. Opt. Photonics 7(1), 1–65 (2015).
[Crossref]

Y. Chiba, H. Takada, K. Torizuka, and K. Misawa, “65-fs Yb-doped fiber laser system with gain-narrowing compensation,” Opt. Express 23(5), 6809–6814 (2015).
[Crossref] [PubMed]

2012 (2)

Y. Wang, P. Su, R. E. Parks, C. J. Oh, and J. H. Burge, “Swing arm optical coordinate-measuring machine: High precision measuring ground aspheric surfaces using a laser triangulation probe,” Opt. Eng. 51(7), 073603 (2012).
[Crossref]

B. Wiesner, O. Hybl, and G. Häusler, “Improved white-light interferometry on rough surfaces by statistically independent speckle patterns,” Appl. Opt. 51(6), 751–757 (2012).
[Crossref] [PubMed]

2010 (1)

S. Scheiding, C. Damm, W. Holota, T. Peschel, A. Gebhardt, S. Risse, and A. Tünnermann, “Ultra precisely manufactured mirror assemblies with well defined reference structures,” Proc. SPIE 7739, 773908 (2010).
[Crossref]

2008 (2)

2003 (2)

P. Magnan, “Detection of visible photons in CCD and CMOS: A comparative view,” Nucl. Instrum. Methods Phys. Res. A 504(1-3), 199–212 (2003).
[Crossref]

P. Pavliček and J. Soubusta, “Theoretical measurement uncertainty of white-light interferometry on rough surfaces,” Appl. Opt. 42(10), 1809–1813 (2003).
[Crossref] [PubMed]

1999 (1)

C. K. Hitzenberger, M. Danner, W. Drexler, and A. F. Fercher, “Measurement of the spatial coherence of superluminescent diodes,” J. Mod. Opt. 46(12), 1763–1774 (1999).
[Crossref]

1992 (2)

1984 (1)

B. S. Fritz, “Absolute calibration of an optical flat,” Opt. Eng. 23(4), 379–383 (1984).
[Crossref]

1980 (2)

1963 (1)

1961 (1)

Bennett, H. E.

Burge, J. H.

Y. Wang, P. Su, R. E. Parks, C. J. Oh, and J. H. Burge, “Swing arm optical coordinate-measuring machine: High precision measuring ground aspheric surfaces using a laser triangulation probe,” Opt. Eng. 51(7), 073603 (2012).
[Crossref]

Chen, S.

Chiba, Y.

Damm, C.

S. Scheiding, C. Damm, W. Holota, T. Peschel, A. Gebhardt, S. Risse, and A. Tünnermann, “Ultra precisely manufactured mirror assemblies with well defined reference structures,” Proc. SPIE 7739, 773908 (2010).
[Crossref]

Danner, M.

C. K. Hitzenberger, M. Danner, W. Drexler, and A. F. Fercher, “Measurement of the spatial coherence of superluminescent diodes,” J. Mod. Opt. 46(12), 1763–1774 (1999).
[Crossref]

de Groot, P.

P. de Groot, “Principles of interference microscopy for the measurement of surface topography,” Adv. Opt. Photonics 7(1), 1–65 (2015).
[Crossref]

Dresel, T.

Drexler, W.

C. K. Hitzenberger, M. Danner, W. Drexler, and A. F. Fercher, “Measurement of the spatial coherence of superluminescent diodes,” J. Mod. Opt. 46(12), 1763–1774 (1999).
[Crossref]

Duncan, D. D.

Fercher, A. F.

C. K. Hitzenberger, M. Danner, W. Drexler, and A. F. Fercher, “Measurement of the spatial coherence of superluminescent diodes,” J. Mod. Opt. 46(12), 1763–1774 (1999).
[Crossref]

Fritz, B. S.

B. S. Fritz, “Absolute calibration of an optical flat,” Opt. Eng. 23(4), 379–383 (1984).
[Crossref]

Gebhardt, A.

S. Scheiding, C. Damm, W. Holota, T. Peschel, A. Gebhardt, S. Risse, and A. Tünnermann, “Ultra precisely manufactured mirror assemblies with well defined reference structures,” Proc. SPIE 7739, 773908 (2010).
[Crossref]

Grattan, K. T. V.

Häusler, G.

Hayslett, C. R.

Hitzenberger, C. K.

C. K. Hitzenberger, M. Danner, W. Drexler, and A. F. Fercher, “Measurement of the spatial coherence of superluminescent diodes,” J. Mod. Opt. 46(12), 1763–1774 (1999).
[Crossref]

Holota, W.

S. Scheiding, C. Damm, W. Holota, T. Peschel, A. Gebhardt, S. Risse, and A. Tünnermann, “Ultra precisely manufactured mirror assemblies with well defined reference structures,” Proc. SPIE 7739, 773908 (2010).
[Crossref]

Hybl, O.

Hýbl, O.

Kirkpatrick, S. J.

Kwon, O.

Magnan, P.

P. Magnan, “Detection of visible photons in CCD and CMOS: A comparative view,” Nucl. Instrum. Methods Phys. Res. A 504(1-3), 199–212 (2003).
[Crossref]

Meggitt, B. T.

Misawa, K.

Oh, C. J.

Y. Wang, P. Su, R. E. Parks, C. J. Oh, and J. H. Burge, “Swing arm optical coordinate-measuring machine: High precision measuring ground aspheric surfaces using a laser triangulation probe,” Opt. Eng. 51(7), 073603 (2012).
[Crossref]

Palmer, A. W.

Parks, R. E.

Y. Wang, P. Su, R. E. Parks, C. J. Oh, and J. H. Burge, “Swing arm optical coordinate-measuring machine: High precision measuring ground aspheric surfaces using a laser triangulation probe,” Opt. Eng. 51(7), 073603 (2012).
[Crossref]

Pavlicek, P.

Peschel, T.

S. Scheiding, C. Damm, W. Holota, T. Peschel, A. Gebhardt, S. Risse, and A. Tünnermann, “Ultra precisely manufactured mirror assemblies with well defined reference structures,” Proc. SPIE 7739, 773908 (2010).
[Crossref]

Porteus, J. O.

Risse, S.

S. Scheiding, C. Damm, W. Holota, T. Peschel, A. Gebhardt, S. Risse, and A. Tünnermann, “Ultra precisely manufactured mirror assemblies with well defined reference structures,” Proc. SPIE 7739, 773908 (2010).
[Crossref]

Scheiding, S.

S. Scheiding, C. Damm, W. Holota, T. Peschel, A. Gebhardt, S. Risse, and A. Tünnermann, “Ultra precisely manufactured mirror assemblies with well defined reference structures,” Proc. SPIE 7739, 773908 (2010).
[Crossref]

Silva, D. E.

Soubusta, J.

Su, P.

Y. Wang, P. Su, R. E. Parks, C. J. Oh, and J. H. Burge, “Swing arm optical coordinate-measuring machine: High precision measuring ground aspheric surfaces using a laser triangulation probe,” Opt. Eng. 51(7), 073603 (2012).
[Crossref]

Takada, H.

Torizuka, K.

Tünnermann, A.

S. Scheiding, C. Damm, W. Holota, T. Peschel, A. Gebhardt, S. Risse, and A. Tünnermann, “Ultra precisely manufactured mirror assemblies with well defined reference structures,” Proc. SPIE 7739, 773908 (2010).
[Crossref]

Venzke, H.

Wang, J. Y.

Wang, Y.

Y. Wang, P. Su, R. E. Parks, C. J. Oh, and J. H. Burge, “Swing arm optical coordinate-measuring machine: High precision measuring ground aspheric surfaces using a laser triangulation probe,” Opt. Eng. 51(7), 073603 (2012).
[Crossref]

Wells-Gray, E. M.

Wiesner, B.

Wyant, J. C.

Adv. Opt. Photonics (1)

P. de Groot, “Principles of interference microscopy for the measurement of surface topography,” Adv. Opt. Photonics 7(1), 1–65 (2015).
[Crossref]

Appl. Opt. (7)

J. Mod. Opt. (1)

C. K. Hitzenberger, M. Danner, W. Drexler, and A. F. Fercher, “Measurement of the spatial coherence of superluminescent diodes,” J. Mod. Opt. 46(12), 1763–1774 (1999).
[Crossref]

J. Opt. Soc. Am. (2)

Nucl. Instrum. Methods Phys. Res. A (1)

P. Magnan, “Detection of visible photons in CCD and CMOS: A comparative view,” Nucl. Instrum. Methods Phys. Res. A 504(1-3), 199–212 (2003).
[Crossref]

Opt. Eng. (2)

B. S. Fritz, “Absolute calibration of an optical flat,” Opt. Eng. 23(4), 379–383 (1984).
[Crossref]

Y. Wang, P. Su, R. E. Parks, C. J. Oh, and J. H. Burge, “Swing arm optical coordinate-measuring machine: High precision measuring ground aspheric surfaces using a laser triangulation probe,” Opt. Eng. 51(7), 073603 (2012).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Proc. SPIE (1)

S. Scheiding, C. Damm, W. Holota, T. Peschel, A. Gebhardt, S. Risse, and A. Tünnermann, “Ultra precisely manufactured mirror assemblies with well defined reference structures,” Proc. SPIE 7739, 773908 (2010).
[Crossref]

Other (6)

J. C. Dainty, “The statistics of speckle patterns,” in Progress in Optics 14, E. Wolf, ed. (Elsevier, 1977).

J. Schmit, “White-Light Interference 3D Microscopes,” in Handbook of Optical Dimensional Metrology, K. Harding ed. (Taylor & Francis, 2013), pp. 395–418.

X. Colonna de Lega, J. Biegen, P. de Groot, G. Häusler, and P. Andretzky, “Large field-of-view scanning white-light interferometers,” in Annual Meeting of the American Society for Precision Engineering, Proc. ASPE 1275, (2003).

P. R. Yoder, Opto-Mechanical Systems Design, 3rd ed. (CRC, 2006). Chap. 3.

P. Y. Bely, The Design and Construction of Large Optical Telescopes (Springer, 2002), Chap. 4.

D. Malacara, Optical Shop Testing, 2nd ed. (John Wiley & Sons, 1992).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Compound light source constructed for coherent scanning interferometry of rough glass surfaces. (a) Optical configuration of the light source based on a superluminiscent light-emitting diode (SLD). (b) Optical spectrum at the exit fiber of the ytterbium-doped fiber amplifier (YDFA). (c) Coherent correlogram obtained from a mirror target surface to measure the temporal coherence length.
Fig. 2
Fig. 2 Interferometer configuration for testing a large rough glass surface. CL: collimating lens, HWP: half-wave plate, QWP: quarter-wave plate, PBS: polarizing beam splitter, LP: linear polarizer, IL: imaging lens.
Fig. 3
Fig. 3 Measurement results. (a) Surface profile reconstructed using raw data. (b) Smoothened profile by median filtering with a spatial cut-off frequency of 0.55/mm.
Fig. 4
Fig. 4 Comparative analysis results for correlogram contrast vs. speckle intensity in scanning coherence interferometry from rough glass.
Fig. 5
Fig. 5 Histogram of correlogram contrast for various pixel sizes; (a) N = 1.79, (b) N = 0.90, (c) N = 0.45 and (d) combined plot in terms of the probability density.
Fig. 6
Fig. 6 Final measurement results of the test surface: measurement results obtained using (a) the proposed method and (b) contact-type profiler and (c) the difference between two measurements.

Tables (2)

Tables Icon

Table 1 Coherence scanning interferometer conditions.

Tables Icon

Table 2 Comparison of Measurement Results.

Metrics