Abstract

We present the design, construction, and characterization of a multiphoton microscope that uses reflective elements for beam shaping and steering. This compact all reflective design removes the adverse effects of dispersion on laser pulse broadening as well as chromatic aberration in the focusing of broadband and multicolored laser sources. The design of this system is discussed in detail, including aberrations analysis via ray-tracing simulation and opto-mechanical design. The resolution of this mirror based all-reflective microscope is characterized using fluorescent microbeads. The performance of the system at multiple wavelengths is investigated along with some potential multiphoton imaging and writing applications.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multi-photon microscopy with a low-cost and highly efficient Cr:LiCAF laser

Sava Sakadžić, Umit Demirbas, Thorsten R. Mempel, Anna Moore, Svetlana Ruvinskaya, David A. Boas, Alphan Sennaroglu, Franz X. Kartner, and James G. Fujimoto
Opt. Express 16(25) 20848-20863 (2008)

Tri-modal microscopy with multiphoton and optical coherence microscopy/tomography for multi-scale and multi-contrast imaging

Shau Poh Chong, Tom Lai, Yifeng Zhou, and Shuo Tang
Biomed. Opt. Express 4(9) 1584-1594 (2013)

Characterization and application of chirped photonic crystal fiber in multiphoton imaging

Jiali Yu, Haishan Zeng, Harvey Lui, Julia S. Skibina, Günter Steinmeyer, and Shuo Tang
Opt. Express 22(9) 10366-10379 (2014)

References

  • View by:
  • |
  • |
  • |

  1. K. König, “Multiphoton microscopy in life sciences,” J. Microsc. 200(2), 83–104 (2000).
    [Crossref] [PubMed]
  2. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: Multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
    [Crossref] [PubMed]
  3. D. Kobat, N. G. Horton, and C. Xu, “In vivo two-photon microscopy to 1.6-mm depth in mouse cortex,” J. Biomed. Opt. 16(10), 106014 (2011).
    [Crossref] [PubMed]
  4. S. Mehravar, B. Banerjee, H. Chatrath, B. Amirsolaimani, K. Patel, C. Patel, R. A. Norwood, N. Peyghambarian, and K. Kieu, “Label-free multi-photon imaging of dysplasia in Barrett’s esophagus,” Biomed. Opt. Express 7(1), 148–157 (2016).
    [Crossref] [PubMed]
  5. J. K. Barton, B. Amirsolaimani, Ph. Rice, K. Hatch, and K. Kieu, “Three-photon imaging of ovarian cancer,” Proc. SPIE 9689, 96893P (2016).
    [Crossref]
  6. T. Kaplas, L. Karvonen, S. Ahmadi, B. Amirsolaimani, S. Mehravar, N. Peyghambarian, K. Kieu, S. Honkanen, H. Lipsanen, and Y. Svirko, “Optical characterization of directly deposited graphene on a dielectric substrate,” Opt. Express 24(3), 2965–2970 (2016).
    [Crossref] [PubMed]
  7. A. Autere, C. R. Ryder, A. Säynätjoki, L. Karvonen, B. Amirsolaimani, R. A. Norwood, N. Peyghambarian, K. Kieu, H. Lipsanen, M. C. Hersam, and Z. Sun, “Rapid and large-area characterization of exfoliated black phosphorus using third-harmonic generation microscopy,” J. Phys. Chem. Lett. 8(7), 1343–1350 (2017).
    [Crossref] [PubMed]
  8. L. Karvonen, A. Säynätjoki, M. J. Huttunen, A. Autere, B. Amirsolaimani, S. Li, R. A. Norwood, N. Peyghambarian, H. Lipsanen, G. Eda, K. Kieu, and Z. Sun, “Rapid visualization of grain boundaries in monolayer MoS2 by multiphoton microscopy,” Nat. Commun. 8, 15714 (2017).
    [Crossref] [PubMed]
  9. R. Himmelhuber, S. Mehravar, O. D. Herrera, V. Demir, K. Kieu, J. Luo, A. Jen, R. A. Norwood, and N. Peyghambarian, “Characterization of coplanar poled electro optic polymer films for Si-photonic devices with multiphoton microscopy,” Appl. Phys. Lett. 104(16), 161109 (2014).
    [Crossref]
  10. M. Thiel, J. Ott, A. Radke, J. Kaschke, and M. Wegener, “Dip-in depletion optical lithography of three-dimensional chiral polarizers,” Opt. Lett. 38(20), 4252–4255 (2013).
    [Crossref] [PubMed]
  11. N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 20(16), 17667–17677 (2012).
    [Crossref] [PubMed]
  12. M. Nawrot, L. Zinkiewicz, B. Włodarczyk, and P. Wasylczyk, “Transmission phase gratings fabricated with direct laser writing as color filters in the visible,” Opt. Express 21(26), 31919–31924 (2013).
    [Crossref] [PubMed]
  13. V. Magdanz, M. Medina-Sánchez, L. Schwarz, H. Xu, J. Elgeti, and O. G. Schmidt, “Spermatozoa as Functional Components of Robotic Microswimmers,” Adv. Mater. 29(24), 1606301 (2017).
    [Crossref] [PubMed]
  14. M. A. Zeeshan, R. Grisch, E. Pellicer, K. M. Sivaraman, K. E. Peyer, J. Sort, B. Özkale, M. S. Sakar, B. J. Nelson, and S. Pané, “Hybrid Helical Magnetic Microrobots Obtained by 3D Template-Assisted Electrodeposition,” Small 10(7), 1284–1288 (2014).
    [Crossref] [PubMed]
  15. T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
    [Crossref]
  16. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
    [Crossref] [PubMed]
  17. E. E. Hoover and J. A. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7(2), 93–101 (2013).
    [Crossref] [PubMed]
  18. K. Kieu, S. Mehravar, R. Gowda, R. A. Norwood, and N. Peyghambarian, “Label-free multi-photon imaging using a compact femtosecond fiber laser mode-locked by carbon nanotube saturable absorber,” Biomed. Opt. Express 4(10), 2187–2195 (2013).
    [Crossref] [PubMed]
  19. N. G. Horton and C. Xu, “Dispersion compensation in three-photon fluorescence microscopy at 1,700 nm,” Biomed. Opt. Express 6(4), 1392–1397 (2015).
    [Crossref] [PubMed]
  20. I. D. Tullis, S. M. Ameer-Beg, P. R. Barber, V. Rankov, and B. Vojnovic, “Mapping femtosecond pulse front distortion and group velocity dispersion in multiphoton microscopy,” Proc. SPIE 6089, 60890Y (2006).
    [Crossref]
  21. W. Wang, Y. Liu, P. Xi, and Q. Ren, “Origin and effect of high-order dispersion in ultrashort pulse multiphoton microscopy in the 10 fs regime,” Appl. Opt. 49(35), 6703–6709 (2010).
    [Crossref] [PubMed]
  22. M. D. Young, J. J. Field, K. E. Sheetz, R. A. Bartels, and J. Squier, “A pragmatic guide to multiphoton microscope design,” Adv. Opt. Photonics 7(2), 276–378 (2015).
    [Crossref] [PubMed]
  23. J. Y. Yu, C. S. Liao, Z. Y. Zhuo, C. H. Huang, H. C. Chui, and S. W. Chu, “A diffraction-limited scanning system providing broad spectral range for laser scanning microscopy,” Rev. Sci. Instrum. 80(11), 113704 (2009).
    [Crossref] [PubMed]
  24. B. Cromey, R. Baker, B. Amirsolaimani, S. Mehravar, and K. Q. Kieu, “All Reflective Multiphoton Microscope for use with Compact Multi-colored Broadband Femtosecond Fiber Lasers,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2017), paper JTu5A.82.
    [Crossref]
  25. D. Vucinić, T. M. Bartol, and T. J. Sejnowski, “Hybrid reflecting objectives for functional multiphoton microscopy in turbid media,” Opt. Lett. 31(16), 2447–2449 (2006).
    [Crossref] [PubMed]
  26. R. A. Buchroeder, “Tilted-Component Telescopes. Part I: Theory,” Appl. Opt. 9(9), 2169–2171 (1970).
    [Crossref] [PubMed]
  27. G. H. Smith, R. Ceragioli, and R. Berry, “Telescopes Eyepieces Astrographs”, Willmann-Bell, Inc., Richmond, Virginia, USA, Chap. 13 “Tilted-Component Telescopes” 323–372, (2012).
  28. V. F. Duma, K. S. Lee, P. Meemon, and J. P. Rolland, “Experimental investigations of the scanning functions of galvanometer-based scanners with applications in OCT,” Appl. Opt. 50(29), 5735–5749 (2011).
    [Crossref] [PubMed]
  29. D. Sage, L. Donati, F. Soulez, D. Fortun, G. Schmit, A. Seitz, R. Guiet, C. Vonesch, and M. Unser, “DeconvolutionLab2: An Open-Source Software for Deconvolution Microscopy,” Methods-Image Processing for Biologists, vol. 115 (2017).
  30. Huygens Professional version 16.10 (Scientific Volume Imaging, The Netherlands, __ http://svi.nl __)
  31. H. Kirshner, F. Aguet, D. Sage, and M. Unser, “3-D PSF Fitting for Fluorescence Microscopy: Implementation and Localization Application,” J. Microsc. 249(1), 13–25 (2013).
    [Crossref] [PubMed]
  32. W. S. Rasband, “ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, https://imagej.nih.gov/ij/ ,” 1997–2016.
  33. B. Amirsolaimani, O. Herrera, R. Himmelhuber, K. Kieu, R. Norwood, and N. Peyghambarian, “Electro-optic polymer channel waveguide fabrication using multiphoton direct laser writing,” Proceedings of IEEE Conference on Optical interconnects (2015), pp. 104–105.
    [Crossref]
  34. K. Harpel, R. D. Baker, B. Amirsolaimani, S. Mehravar, J. Vagner, T. O. Matsunaga, B. Banerjee, and K. Kieu, “Imaging of targeted lipid microbubbles to detect cancer cells using third harmonic generation microscopy,” Biomed. Opt. Express 7(7), 2849–2860 (2016).
    [Crossref] [PubMed]

2017 (3)

A. Autere, C. R. Ryder, A. Säynätjoki, L. Karvonen, B. Amirsolaimani, R. A. Norwood, N. Peyghambarian, K. Kieu, H. Lipsanen, M. C. Hersam, and Z. Sun, “Rapid and large-area characterization of exfoliated black phosphorus using third-harmonic generation microscopy,” J. Phys. Chem. Lett. 8(7), 1343–1350 (2017).
[Crossref] [PubMed]

L. Karvonen, A. Säynätjoki, M. J. Huttunen, A. Autere, B. Amirsolaimani, S. Li, R. A. Norwood, N. Peyghambarian, H. Lipsanen, G. Eda, K. Kieu, and Z. Sun, “Rapid visualization of grain boundaries in monolayer MoS2 by multiphoton microscopy,” Nat. Commun. 8, 15714 (2017).
[Crossref] [PubMed]

V. Magdanz, M. Medina-Sánchez, L. Schwarz, H. Xu, J. Elgeti, and O. G. Schmidt, “Spermatozoa as Functional Components of Robotic Microswimmers,” Adv. Mater. 29(24), 1606301 (2017).
[Crossref] [PubMed]

2016 (5)

2015 (2)

N. G. Horton and C. Xu, “Dispersion compensation in three-photon fluorescence microscopy at 1,700 nm,” Biomed. Opt. Express 6(4), 1392–1397 (2015).
[Crossref] [PubMed]

M. D. Young, J. J. Field, K. E. Sheetz, R. A. Bartels, and J. Squier, “A pragmatic guide to multiphoton microscope design,” Adv. Opt. Photonics 7(2), 276–378 (2015).
[Crossref] [PubMed]

2014 (2)

M. A. Zeeshan, R. Grisch, E. Pellicer, K. M. Sivaraman, K. E. Peyer, J. Sort, B. Özkale, M. S. Sakar, B. J. Nelson, and S. Pané, “Hybrid Helical Magnetic Microrobots Obtained by 3D Template-Assisted Electrodeposition,” Small 10(7), 1284–1288 (2014).
[Crossref] [PubMed]

R. Himmelhuber, S. Mehravar, O. D. Herrera, V. Demir, K. Kieu, J. Luo, A. Jen, R. A. Norwood, and N. Peyghambarian, “Characterization of coplanar poled electro optic polymer films for Si-photonic devices with multiphoton microscopy,” Appl. Phys. Lett. 104(16), 161109 (2014).
[Crossref]

2013 (5)

2012 (1)

2011 (2)

2010 (1)

2009 (1)

J. Y. Yu, C. S. Liao, Z. Y. Zhuo, C. H. Huang, H. C. Chui, and S. W. Chu, “A diffraction-limited scanning system providing broad spectral range for laser scanning microscopy,” Rev. Sci. Instrum. 80(11), 113704 (2009).
[Crossref] [PubMed]

2006 (2)

I. D. Tullis, S. M. Ameer-Beg, P. R. Barber, V. Rankov, and B. Vojnovic, “Mapping femtosecond pulse front distortion and group velocity dispersion in multiphoton microscopy,” Proc. SPIE 6089, 60890Y (2006).
[Crossref]

D. Vucinić, T. M. Bartol, and T. J. Sejnowski, “Hybrid reflecting objectives for functional multiphoton microscopy in turbid media,” Opt. Lett. 31(16), 2447–2449 (2006).
[Crossref] [PubMed]

2003 (1)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: Multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

2000 (1)

K. König, “Multiphoton microscopy in life sciences,” J. Microsc. 200(2), 83–104 (2000).
[Crossref] [PubMed]

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

1970 (1)

Aguet, F.

H. Kirshner, F. Aguet, D. Sage, and M. Unser, “3-D PSF Fitting for Fluorescence Microscopy: Implementation and Localization Application,” J. Microsc. 249(1), 13–25 (2013).
[Crossref] [PubMed]

Ahmadi, S.

Ameer-Beg, S. M.

I. D. Tullis, S. M. Ameer-Beg, P. R. Barber, V. Rankov, and B. Vojnovic, “Mapping femtosecond pulse front distortion and group velocity dispersion in multiphoton microscopy,” Proc. SPIE 6089, 60890Y (2006).
[Crossref]

Amirsolaimani, B.

A. Autere, C. R. Ryder, A. Säynätjoki, L. Karvonen, B. Amirsolaimani, R. A. Norwood, N. Peyghambarian, K. Kieu, H. Lipsanen, M. C. Hersam, and Z. Sun, “Rapid and large-area characterization of exfoliated black phosphorus using third-harmonic generation microscopy,” J. Phys. Chem. Lett. 8(7), 1343–1350 (2017).
[Crossref] [PubMed]

L. Karvonen, A. Säynätjoki, M. J. Huttunen, A. Autere, B. Amirsolaimani, S. Li, R. A. Norwood, N. Peyghambarian, H. Lipsanen, G. Eda, K. Kieu, and Z. Sun, “Rapid visualization of grain boundaries in monolayer MoS2 by multiphoton microscopy,” Nat. Commun. 8, 15714 (2017).
[Crossref] [PubMed]

J. K. Barton, B. Amirsolaimani, Ph. Rice, K. Hatch, and K. Kieu, “Three-photon imaging of ovarian cancer,” Proc. SPIE 9689, 96893P (2016).
[Crossref]

T. Kaplas, L. Karvonen, S. Ahmadi, B. Amirsolaimani, S. Mehravar, N. Peyghambarian, K. Kieu, S. Honkanen, H. Lipsanen, and Y. Svirko, “Optical characterization of directly deposited graphene on a dielectric substrate,” Opt. Express 24(3), 2965–2970 (2016).
[Crossref] [PubMed]

S. Mehravar, B. Banerjee, H. Chatrath, B. Amirsolaimani, K. Patel, C. Patel, R. A. Norwood, N. Peyghambarian, and K. Kieu, “Label-free multi-photon imaging of dysplasia in Barrett’s esophagus,” Biomed. Opt. Express 7(1), 148–157 (2016).
[Crossref] [PubMed]

K. Harpel, R. D. Baker, B. Amirsolaimani, S. Mehravar, J. Vagner, T. O. Matsunaga, B. Banerjee, and K. Kieu, “Imaging of targeted lipid microbubbles to detect cancer cells using third harmonic generation microscopy,” Biomed. Opt. Express 7(7), 2849–2860 (2016).
[Crossref] [PubMed]

B. Amirsolaimani, O. Herrera, R. Himmelhuber, K. Kieu, R. Norwood, and N. Peyghambarian, “Electro-optic polymer channel waveguide fabrication using multiphoton direct laser writing,” Proceedings of IEEE Conference on Optical interconnects (2015), pp. 104–105.
[Crossref]

Autere, A.

A. Autere, C. R. Ryder, A. Säynätjoki, L. Karvonen, B. Amirsolaimani, R. A. Norwood, N. Peyghambarian, K. Kieu, H. Lipsanen, M. C. Hersam, and Z. Sun, “Rapid and large-area characterization of exfoliated black phosphorus using third-harmonic generation microscopy,” J. Phys. Chem. Lett. 8(7), 1343–1350 (2017).
[Crossref] [PubMed]

L. Karvonen, A. Säynätjoki, M. J. Huttunen, A. Autere, B. Amirsolaimani, S. Li, R. A. Norwood, N. Peyghambarian, H. Lipsanen, G. Eda, K. Kieu, and Z. Sun, “Rapid visualization of grain boundaries in monolayer MoS2 by multiphoton microscopy,” Nat. Commun. 8, 15714 (2017).
[Crossref] [PubMed]

Baker, R. D.

Balthasar, G.

Banerjee, B.

Barber, P. R.

I. D. Tullis, S. M. Ameer-Beg, P. R. Barber, V. Rankov, and B. Vojnovic, “Mapping femtosecond pulse front distortion and group velocity dispersion in multiphoton microscopy,” Proc. SPIE 6089, 60890Y (2006).
[Crossref]

Bartels, R. A.

M. D. Young, J. J. Field, K. E. Sheetz, R. A. Bartels, and J. Squier, “A pragmatic guide to multiphoton microscope design,” Adv. Opt. Photonics 7(2), 276–378 (2015).
[Crossref] [PubMed]

Bartol, T. M.

Barton, J. K.

J. K. Barton, B. Amirsolaimani, Ph. Rice, K. Hatch, and K. Kieu, “Three-photon imaging of ovarian cancer,” Proc. SPIE 9689, 96893P (2016).
[Crossref]

Buchroeder, R. A.

Chatrath, H.

Chu, S. W.

J. Y. Yu, C. S. Liao, Z. Y. Zhuo, C. H. Huang, H. C. Chui, and S. W. Chu, “A diffraction-limited scanning system providing broad spectral range for laser scanning microscopy,” Rev. Sci. Instrum. 80(11), 113704 (2009).
[Crossref] [PubMed]

Chui, H. C.

J. Y. Yu, C. S. Liao, Z. Y. Zhuo, C. H. Huang, H. C. Chui, and S. W. Chu, “A diffraction-limited scanning system providing broad spectral range for laser scanning microscopy,” Rev. Sci. Instrum. 80(11), 113704 (2009).
[Crossref] [PubMed]

Demir, V.

R. Himmelhuber, S. Mehravar, O. D. Herrera, V. Demir, K. Kieu, J. Luo, A. Jen, R. A. Norwood, and N. Peyghambarian, “Characterization of coplanar poled electro optic polymer films for Si-photonic devices with multiphoton microscopy,” Appl. Phys. Lett. 104(16), 161109 (2014).
[Crossref]

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Duma, V. F.

Eda, G.

L. Karvonen, A. Säynätjoki, M. J. Huttunen, A. Autere, B. Amirsolaimani, S. Li, R. A. Norwood, N. Peyghambarian, H. Lipsanen, G. Eda, K. Kieu, and Z. Sun, “Rapid visualization of grain boundaries in monolayer MoS2 by multiphoton microscopy,” Nat. Commun. 8, 15714 (2017).
[Crossref] [PubMed]

Elgeti, J.

V. Magdanz, M. Medina-Sánchez, L. Schwarz, H. Xu, J. Elgeti, and O. G. Schmidt, “Spermatozoa as Functional Components of Robotic Microswimmers,” Adv. Mater. 29(24), 1606301 (2017).
[Crossref] [PubMed]

Field, J. J.

M. D. Young, J. J. Field, K. E. Sheetz, R. A. Bartels, and J. Squier, “A pragmatic guide to multiphoton microscope design,” Adv. Opt. Photonics 7(2), 276–378 (2015).
[Crossref] [PubMed]

Freude, W.

Giessen, H.

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
[Crossref]

Gissibl, T.

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
[Crossref]

Gowda, R.

Grisch, R.

M. A. Zeeshan, R. Grisch, E. Pellicer, K. M. Sivaraman, K. E. Peyer, J. Sort, B. Özkale, M. S. Sakar, B. J. Nelson, and S. Pané, “Hybrid Helical Magnetic Microrobots Obtained by 3D Template-Assisted Electrodeposition,” Small 10(7), 1284–1288 (2014).
[Crossref] [PubMed]

Harpel, K.

Hatch, K.

J. K. Barton, B. Amirsolaimani, Ph. Rice, K. Hatch, and K. Kieu, “Three-photon imaging of ovarian cancer,” Proc. SPIE 9689, 96893P (2016).
[Crossref]

Herkommer, A.

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
[Crossref]

Herrera, O.

B. Amirsolaimani, O. Herrera, R. Himmelhuber, K. Kieu, R. Norwood, and N. Peyghambarian, “Electro-optic polymer channel waveguide fabrication using multiphoton direct laser writing,” Proceedings of IEEE Conference on Optical interconnects (2015), pp. 104–105.
[Crossref]

Herrera, O. D.

R. Himmelhuber, S. Mehravar, O. D. Herrera, V. Demir, K. Kieu, J. Luo, A. Jen, R. A. Norwood, and N. Peyghambarian, “Characterization of coplanar poled electro optic polymer films for Si-photonic devices with multiphoton microscopy,” Appl. Phys. Lett. 104(16), 161109 (2014).
[Crossref]

Hersam, M. C.

A. Autere, C. R. Ryder, A. Säynätjoki, L. Karvonen, B. Amirsolaimani, R. A. Norwood, N. Peyghambarian, K. Kieu, H. Lipsanen, M. C. Hersam, and Z. Sun, “Rapid and large-area characterization of exfoliated black phosphorus using third-harmonic generation microscopy,” J. Phys. Chem. Lett. 8(7), 1343–1350 (2017).
[Crossref] [PubMed]

Hillerkuss, D.

Himmelhuber, R.

R. Himmelhuber, S. Mehravar, O. D. Herrera, V. Demir, K. Kieu, J. Luo, A. Jen, R. A. Norwood, and N. Peyghambarian, “Characterization of coplanar poled electro optic polymer films for Si-photonic devices with multiphoton microscopy,” Appl. Phys. Lett. 104(16), 161109 (2014).
[Crossref]

B. Amirsolaimani, O. Herrera, R. Himmelhuber, K. Kieu, R. Norwood, and N. Peyghambarian, “Electro-optic polymer channel waveguide fabrication using multiphoton direct laser writing,” Proceedings of IEEE Conference on Optical interconnects (2015), pp. 104–105.
[Crossref]

Honkanen, S.

Hoover, E. E.

E. E. Hoover and J. A. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7(2), 93–101 (2013).
[Crossref] [PubMed]

Horton, N. G.

N. G. Horton and C. Xu, “Dispersion compensation in three-photon fluorescence microscopy at 1,700 nm,” Biomed. Opt. Express 6(4), 1392–1397 (2015).
[Crossref] [PubMed]

D. Kobat, N. G. Horton, and C. Xu, “In vivo two-photon microscopy to 1.6-mm depth in mouse cortex,” J. Biomed. Opt. 16(10), 106014 (2011).
[Crossref] [PubMed]

Huang, C. H.

J. Y. Yu, C. S. Liao, Z. Y. Zhuo, C. H. Huang, H. C. Chui, and S. W. Chu, “A diffraction-limited scanning system providing broad spectral range for laser scanning microscopy,” Rev. Sci. Instrum. 80(11), 113704 (2009).
[Crossref] [PubMed]

Huttunen, M. J.

L. Karvonen, A. Säynätjoki, M. J. Huttunen, A. Autere, B. Amirsolaimani, S. Li, R. A. Norwood, N. Peyghambarian, H. Lipsanen, G. Eda, K. Kieu, and Z. Sun, “Rapid visualization of grain boundaries in monolayer MoS2 by multiphoton microscopy,” Nat. Commun. 8, 15714 (2017).
[Crossref] [PubMed]

Jen, A.

R. Himmelhuber, S. Mehravar, O. D. Herrera, V. Demir, K. Kieu, J. Luo, A. Jen, R. A. Norwood, and N. Peyghambarian, “Characterization of coplanar poled electro optic polymer films for Si-photonic devices with multiphoton microscopy,” Appl. Phys. Lett. 104(16), 161109 (2014).
[Crossref]

Jordan, M.

Kaplas, T.

Karvonen, L.

A. Autere, C. R. Ryder, A. Säynätjoki, L. Karvonen, B. Amirsolaimani, R. A. Norwood, N. Peyghambarian, K. Kieu, H. Lipsanen, M. C. Hersam, and Z. Sun, “Rapid and large-area characterization of exfoliated black phosphorus using third-harmonic generation microscopy,” J. Phys. Chem. Lett. 8(7), 1343–1350 (2017).
[Crossref] [PubMed]

L. Karvonen, A. Säynätjoki, M. J. Huttunen, A. Autere, B. Amirsolaimani, S. Li, R. A. Norwood, N. Peyghambarian, H. Lipsanen, G. Eda, K. Kieu, and Z. Sun, “Rapid visualization of grain boundaries in monolayer MoS2 by multiphoton microscopy,” Nat. Commun. 8, 15714 (2017).
[Crossref] [PubMed]

T. Kaplas, L. Karvonen, S. Ahmadi, B. Amirsolaimani, S. Mehravar, N. Peyghambarian, K. Kieu, S. Honkanen, H. Lipsanen, and Y. Svirko, “Optical characterization of directly deposited graphene on a dielectric substrate,” Opt. Express 24(3), 2965–2970 (2016).
[Crossref] [PubMed]

Kaschke, J.

Kieu, K.

A. Autere, C. R. Ryder, A. Säynätjoki, L. Karvonen, B. Amirsolaimani, R. A. Norwood, N. Peyghambarian, K. Kieu, H. Lipsanen, M. C. Hersam, and Z. Sun, “Rapid and large-area characterization of exfoliated black phosphorus using third-harmonic generation microscopy,” J. Phys. Chem. Lett. 8(7), 1343–1350 (2017).
[Crossref] [PubMed]

L. Karvonen, A. Säynätjoki, M. J. Huttunen, A. Autere, B. Amirsolaimani, S. Li, R. A. Norwood, N. Peyghambarian, H. Lipsanen, G. Eda, K. Kieu, and Z. Sun, “Rapid visualization of grain boundaries in monolayer MoS2 by multiphoton microscopy,” Nat. Commun. 8, 15714 (2017).
[Crossref] [PubMed]

J. K. Barton, B. Amirsolaimani, Ph. Rice, K. Hatch, and K. Kieu, “Three-photon imaging of ovarian cancer,” Proc. SPIE 9689, 96893P (2016).
[Crossref]

S. Mehravar, B. Banerjee, H. Chatrath, B. Amirsolaimani, K. Patel, C. Patel, R. A. Norwood, N. Peyghambarian, and K. Kieu, “Label-free multi-photon imaging of dysplasia in Barrett’s esophagus,” Biomed. Opt. Express 7(1), 148–157 (2016).
[Crossref] [PubMed]

T. Kaplas, L. Karvonen, S. Ahmadi, B. Amirsolaimani, S. Mehravar, N. Peyghambarian, K. Kieu, S. Honkanen, H. Lipsanen, and Y. Svirko, “Optical characterization of directly deposited graphene on a dielectric substrate,” Opt. Express 24(3), 2965–2970 (2016).
[Crossref] [PubMed]

K. Harpel, R. D. Baker, B. Amirsolaimani, S. Mehravar, J. Vagner, T. O. Matsunaga, B. Banerjee, and K. Kieu, “Imaging of targeted lipid microbubbles to detect cancer cells using third harmonic generation microscopy,” Biomed. Opt. Express 7(7), 2849–2860 (2016).
[Crossref] [PubMed]

R. Himmelhuber, S. Mehravar, O. D. Herrera, V. Demir, K. Kieu, J. Luo, A. Jen, R. A. Norwood, and N. Peyghambarian, “Characterization of coplanar poled electro optic polymer films for Si-photonic devices with multiphoton microscopy,” Appl. Phys. Lett. 104(16), 161109 (2014).
[Crossref]

K. Kieu, S. Mehravar, R. Gowda, R. A. Norwood, and N. Peyghambarian, “Label-free multi-photon imaging using a compact femtosecond fiber laser mode-locked by carbon nanotube saturable absorber,” Biomed. Opt. Express 4(10), 2187–2195 (2013).
[Crossref] [PubMed]

B. Amirsolaimani, O. Herrera, R. Himmelhuber, K. Kieu, R. Norwood, and N. Peyghambarian, “Electro-optic polymer channel waveguide fabrication using multiphoton direct laser writing,” Proceedings of IEEE Conference on Optical interconnects (2015), pp. 104–105.
[Crossref]

Kirshner, H.

H. Kirshner, F. Aguet, D. Sage, and M. Unser, “3-D PSF Fitting for Fluorescence Microscopy: Implementation and Localization Application,” J. Microsc. 249(1), 13–25 (2013).
[Crossref] [PubMed]

Kobat, D.

D. Kobat, N. G. Horton, and C. Xu, “In vivo two-photon microscopy to 1.6-mm depth in mouse cortex,” J. Biomed. Opt. 16(10), 106014 (2011).
[Crossref] [PubMed]

König, K.

K. König, “Multiphoton microscopy in life sciences,” J. Microsc. 200(2), 83–104 (2000).
[Crossref] [PubMed]

Koos, C.

Lee, K. S.

Leuthold, J.

Li, S.

L. Karvonen, A. Säynätjoki, M. J. Huttunen, A. Autere, B. Amirsolaimani, S. Li, R. A. Norwood, N. Peyghambarian, H. Lipsanen, G. Eda, K. Kieu, and Z. Sun, “Rapid visualization of grain boundaries in monolayer MoS2 by multiphoton microscopy,” Nat. Commun. 8, 15714 (2017).
[Crossref] [PubMed]

Liao, C. S.

J. Y. Yu, C. S. Liao, Z. Y. Zhuo, C. H. Huang, H. C. Chui, and S. W. Chu, “A diffraction-limited scanning system providing broad spectral range for laser scanning microscopy,” Rev. Sci. Instrum. 80(11), 113704 (2009).
[Crossref] [PubMed]

Lindenmann, N.

Lipsanen, H.

A. Autere, C. R. Ryder, A. Säynätjoki, L. Karvonen, B. Amirsolaimani, R. A. Norwood, N. Peyghambarian, K. Kieu, H. Lipsanen, M. C. Hersam, and Z. Sun, “Rapid and large-area characterization of exfoliated black phosphorus using third-harmonic generation microscopy,” J. Phys. Chem. Lett. 8(7), 1343–1350 (2017).
[Crossref] [PubMed]

L. Karvonen, A. Säynätjoki, M. J. Huttunen, A. Autere, B. Amirsolaimani, S. Li, R. A. Norwood, N. Peyghambarian, H. Lipsanen, G. Eda, K. Kieu, and Z. Sun, “Rapid visualization of grain boundaries in monolayer MoS2 by multiphoton microscopy,” Nat. Commun. 8, 15714 (2017).
[Crossref] [PubMed]

T. Kaplas, L. Karvonen, S. Ahmadi, B. Amirsolaimani, S. Mehravar, N. Peyghambarian, K. Kieu, S. Honkanen, H. Lipsanen, and Y. Svirko, “Optical characterization of directly deposited graphene on a dielectric substrate,” Opt. Express 24(3), 2965–2970 (2016).
[Crossref] [PubMed]

Liu, Y.

Luo, J.

R. Himmelhuber, S. Mehravar, O. D. Herrera, V. Demir, K. Kieu, J. Luo, A. Jen, R. A. Norwood, and N. Peyghambarian, “Characterization of coplanar poled electro optic polymer films for Si-photonic devices with multiphoton microscopy,” Appl. Phys. Lett. 104(16), 161109 (2014).
[Crossref]

Magdanz, V.

V. Magdanz, M. Medina-Sánchez, L. Schwarz, H. Xu, J. Elgeti, and O. G. Schmidt, “Spermatozoa as Functional Components of Robotic Microswimmers,” Adv. Mater. 29(24), 1606301 (2017).
[Crossref] [PubMed]

Matsunaga, T. O.

Medina-Sánchez, M.

V. Magdanz, M. Medina-Sánchez, L. Schwarz, H. Xu, J. Elgeti, and O. G. Schmidt, “Spermatozoa as Functional Components of Robotic Microswimmers,” Adv. Mater. 29(24), 1606301 (2017).
[Crossref] [PubMed]

Meemon, P.

Mehravar, S.

Nawrot, M.

Nelson, B. J.

M. A. Zeeshan, R. Grisch, E. Pellicer, K. M. Sivaraman, K. E. Peyer, J. Sort, B. Özkale, M. S. Sakar, B. J. Nelson, and S. Pané, “Hybrid Helical Magnetic Microrobots Obtained by 3D Template-Assisted Electrodeposition,” Small 10(7), 1284–1288 (2014).
[Crossref] [PubMed]

Norwood, R.

B. Amirsolaimani, O. Herrera, R. Himmelhuber, K. Kieu, R. Norwood, and N. Peyghambarian, “Electro-optic polymer channel waveguide fabrication using multiphoton direct laser writing,” Proceedings of IEEE Conference on Optical interconnects (2015), pp. 104–105.
[Crossref]

Norwood, R. A.

A. Autere, C. R. Ryder, A. Säynätjoki, L. Karvonen, B. Amirsolaimani, R. A. Norwood, N. Peyghambarian, K. Kieu, H. Lipsanen, M. C. Hersam, and Z. Sun, “Rapid and large-area characterization of exfoliated black phosphorus using third-harmonic generation microscopy,” J. Phys. Chem. Lett. 8(7), 1343–1350 (2017).
[Crossref] [PubMed]

L. Karvonen, A. Säynätjoki, M. J. Huttunen, A. Autere, B. Amirsolaimani, S. Li, R. A. Norwood, N. Peyghambarian, H. Lipsanen, G. Eda, K. Kieu, and Z. Sun, “Rapid visualization of grain boundaries in monolayer MoS2 by multiphoton microscopy,” Nat. Commun. 8, 15714 (2017).
[Crossref] [PubMed]

S. Mehravar, B. Banerjee, H. Chatrath, B. Amirsolaimani, K. Patel, C. Patel, R. A. Norwood, N. Peyghambarian, and K. Kieu, “Label-free multi-photon imaging of dysplasia in Barrett’s esophagus,” Biomed. Opt. Express 7(1), 148–157 (2016).
[Crossref] [PubMed]

R. Himmelhuber, S. Mehravar, O. D. Herrera, V. Demir, K. Kieu, J. Luo, A. Jen, R. A. Norwood, and N. Peyghambarian, “Characterization of coplanar poled electro optic polymer films for Si-photonic devices with multiphoton microscopy,” Appl. Phys. Lett. 104(16), 161109 (2014).
[Crossref]

K. Kieu, S. Mehravar, R. Gowda, R. A. Norwood, and N. Peyghambarian, “Label-free multi-photon imaging using a compact femtosecond fiber laser mode-locked by carbon nanotube saturable absorber,” Biomed. Opt. Express 4(10), 2187–2195 (2013).
[Crossref] [PubMed]

Ott, J.

Özkale, B.

M. A. Zeeshan, R. Grisch, E. Pellicer, K. M. Sivaraman, K. E. Peyer, J. Sort, B. Özkale, M. S. Sakar, B. J. Nelson, and S. Pané, “Hybrid Helical Magnetic Microrobots Obtained by 3D Template-Assisted Electrodeposition,” Small 10(7), 1284–1288 (2014).
[Crossref] [PubMed]

Pané, S.

M. A. Zeeshan, R. Grisch, E. Pellicer, K. M. Sivaraman, K. E. Peyer, J. Sort, B. Özkale, M. S. Sakar, B. J. Nelson, and S. Pané, “Hybrid Helical Magnetic Microrobots Obtained by 3D Template-Assisted Electrodeposition,” Small 10(7), 1284–1288 (2014).
[Crossref] [PubMed]

Patel, C.

Patel, K.

Pellicer, E.

M. A. Zeeshan, R. Grisch, E. Pellicer, K. M. Sivaraman, K. E. Peyer, J. Sort, B. Özkale, M. S. Sakar, B. J. Nelson, and S. Pané, “Hybrid Helical Magnetic Microrobots Obtained by 3D Template-Assisted Electrodeposition,” Small 10(7), 1284–1288 (2014).
[Crossref] [PubMed]

Peyer, K. E.

M. A. Zeeshan, R. Grisch, E. Pellicer, K. M. Sivaraman, K. E. Peyer, J. Sort, B. Özkale, M. S. Sakar, B. J. Nelson, and S. Pané, “Hybrid Helical Magnetic Microrobots Obtained by 3D Template-Assisted Electrodeposition,” Small 10(7), 1284–1288 (2014).
[Crossref] [PubMed]

Peyghambarian, N.

L. Karvonen, A. Säynätjoki, M. J. Huttunen, A. Autere, B. Amirsolaimani, S. Li, R. A. Norwood, N. Peyghambarian, H. Lipsanen, G. Eda, K. Kieu, and Z. Sun, “Rapid visualization of grain boundaries in monolayer MoS2 by multiphoton microscopy,” Nat. Commun. 8, 15714 (2017).
[Crossref] [PubMed]

A. Autere, C. R. Ryder, A. Säynätjoki, L. Karvonen, B. Amirsolaimani, R. A. Norwood, N. Peyghambarian, K. Kieu, H. Lipsanen, M. C. Hersam, and Z. Sun, “Rapid and large-area characterization of exfoliated black phosphorus using third-harmonic generation microscopy,” J. Phys. Chem. Lett. 8(7), 1343–1350 (2017).
[Crossref] [PubMed]

S. Mehravar, B. Banerjee, H. Chatrath, B. Amirsolaimani, K. Patel, C. Patel, R. A. Norwood, N. Peyghambarian, and K. Kieu, “Label-free multi-photon imaging of dysplasia in Barrett’s esophagus,” Biomed. Opt. Express 7(1), 148–157 (2016).
[Crossref] [PubMed]

T. Kaplas, L. Karvonen, S. Ahmadi, B. Amirsolaimani, S. Mehravar, N. Peyghambarian, K. Kieu, S. Honkanen, H. Lipsanen, and Y. Svirko, “Optical characterization of directly deposited graphene on a dielectric substrate,” Opt. Express 24(3), 2965–2970 (2016).
[Crossref] [PubMed]

R. Himmelhuber, S. Mehravar, O. D. Herrera, V. Demir, K. Kieu, J. Luo, A. Jen, R. A. Norwood, and N. Peyghambarian, “Characterization of coplanar poled electro optic polymer films for Si-photonic devices with multiphoton microscopy,” Appl. Phys. Lett. 104(16), 161109 (2014).
[Crossref]

K. Kieu, S. Mehravar, R. Gowda, R. A. Norwood, and N. Peyghambarian, “Label-free multi-photon imaging using a compact femtosecond fiber laser mode-locked by carbon nanotube saturable absorber,” Biomed. Opt. Express 4(10), 2187–2195 (2013).
[Crossref] [PubMed]

B. Amirsolaimani, O. Herrera, R. Himmelhuber, K. Kieu, R. Norwood, and N. Peyghambarian, “Electro-optic polymer channel waveguide fabrication using multiphoton direct laser writing,” Proceedings of IEEE Conference on Optical interconnects (2015), pp. 104–105.
[Crossref]

Radke, A.

Rankov, V.

I. D. Tullis, S. M. Ameer-Beg, P. R. Barber, V. Rankov, and B. Vojnovic, “Mapping femtosecond pulse front distortion and group velocity dispersion in multiphoton microscopy,” Proc. SPIE 6089, 60890Y (2006).
[Crossref]

Ren, Q.

Rice, Ph.

J. K. Barton, B. Amirsolaimani, Ph. Rice, K. Hatch, and K. Kieu, “Three-photon imaging of ovarian cancer,” Proc. SPIE 9689, 96893P (2016).
[Crossref]

Rolland, J. P.

Ryder, C. R.

A. Autere, C. R. Ryder, A. Säynätjoki, L. Karvonen, B. Amirsolaimani, R. A. Norwood, N. Peyghambarian, K. Kieu, H. Lipsanen, M. C. Hersam, and Z. Sun, “Rapid and large-area characterization of exfoliated black phosphorus using third-harmonic generation microscopy,” J. Phys. Chem. Lett. 8(7), 1343–1350 (2017).
[Crossref] [PubMed]

Sage, D.

H. Kirshner, F. Aguet, D. Sage, and M. Unser, “3-D PSF Fitting for Fluorescence Microscopy: Implementation and Localization Application,” J. Microsc. 249(1), 13–25 (2013).
[Crossref] [PubMed]

Sakar, M. S.

M. A. Zeeshan, R. Grisch, E. Pellicer, K. M. Sivaraman, K. E. Peyer, J. Sort, B. Özkale, M. S. Sakar, B. J. Nelson, and S. Pané, “Hybrid Helical Magnetic Microrobots Obtained by 3D Template-Assisted Electrodeposition,” Small 10(7), 1284–1288 (2014).
[Crossref] [PubMed]

Säynätjoki, A.

A. Autere, C. R. Ryder, A. Säynätjoki, L. Karvonen, B. Amirsolaimani, R. A. Norwood, N. Peyghambarian, K. Kieu, H. Lipsanen, M. C. Hersam, and Z. Sun, “Rapid and large-area characterization of exfoliated black phosphorus using third-harmonic generation microscopy,” J. Phys. Chem. Lett. 8(7), 1343–1350 (2017).
[Crossref] [PubMed]

L. Karvonen, A. Säynätjoki, M. J. Huttunen, A. Autere, B. Amirsolaimani, S. Li, R. A. Norwood, N. Peyghambarian, H. Lipsanen, G. Eda, K. Kieu, and Z. Sun, “Rapid visualization of grain boundaries in monolayer MoS2 by multiphoton microscopy,” Nat. Commun. 8, 15714 (2017).
[Crossref] [PubMed]

Schmidt, O. G.

V. Magdanz, M. Medina-Sánchez, L. Schwarz, H. Xu, J. Elgeti, and O. G. Schmidt, “Spermatozoa as Functional Components of Robotic Microswimmers,” Adv. Mater. 29(24), 1606301 (2017).
[Crossref] [PubMed]

Schmogrow, R.

Schwarz, L.

V. Magdanz, M. Medina-Sánchez, L. Schwarz, H. Xu, J. Elgeti, and O. G. Schmidt, “Spermatozoa as Functional Components of Robotic Microswimmers,” Adv. Mater. 29(24), 1606301 (2017).
[Crossref] [PubMed]

Sejnowski, T. J.

Sheetz, K. E.

M. D. Young, J. J. Field, K. E. Sheetz, R. A. Bartels, and J. Squier, “A pragmatic guide to multiphoton microscope design,” Adv. Opt. Photonics 7(2), 276–378 (2015).
[Crossref] [PubMed]

Sivaraman, K. M.

M. A. Zeeshan, R. Grisch, E. Pellicer, K. M. Sivaraman, K. E. Peyer, J. Sort, B. Özkale, M. S. Sakar, B. J. Nelson, and S. Pané, “Hybrid Helical Magnetic Microrobots Obtained by 3D Template-Assisted Electrodeposition,” Small 10(7), 1284–1288 (2014).
[Crossref] [PubMed]

Sort, J.

M. A. Zeeshan, R. Grisch, E. Pellicer, K. M. Sivaraman, K. E. Peyer, J. Sort, B. Özkale, M. S. Sakar, B. J. Nelson, and S. Pané, “Hybrid Helical Magnetic Microrobots Obtained by 3D Template-Assisted Electrodeposition,” Small 10(7), 1284–1288 (2014).
[Crossref] [PubMed]

Squier, J.

M. D. Young, J. J. Field, K. E. Sheetz, R. A. Bartels, and J. Squier, “A pragmatic guide to multiphoton microscope design,” Adv. Opt. Photonics 7(2), 276–378 (2015).
[Crossref] [PubMed]

Squier, J. A.

E. E. Hoover and J. A. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7(2), 93–101 (2013).
[Crossref] [PubMed]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Sun, Z.

A. Autere, C. R. Ryder, A. Säynätjoki, L. Karvonen, B. Amirsolaimani, R. A. Norwood, N. Peyghambarian, K. Kieu, H. Lipsanen, M. C. Hersam, and Z. Sun, “Rapid and large-area characterization of exfoliated black phosphorus using third-harmonic generation microscopy,” J. Phys. Chem. Lett. 8(7), 1343–1350 (2017).
[Crossref] [PubMed]

L. Karvonen, A. Säynätjoki, M. J. Huttunen, A. Autere, B. Amirsolaimani, S. Li, R. A. Norwood, N. Peyghambarian, H. Lipsanen, G. Eda, K. Kieu, and Z. Sun, “Rapid visualization of grain boundaries in monolayer MoS2 by multiphoton microscopy,” Nat. Commun. 8, 15714 (2017).
[Crossref] [PubMed]

Svirko, Y.

Thiel, M.

Thiele, S.

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
[Crossref]

Tullis, I. D.

I. D. Tullis, S. M. Ameer-Beg, P. R. Barber, V. Rankov, and B. Vojnovic, “Mapping femtosecond pulse front distortion and group velocity dispersion in multiphoton microscopy,” Proc. SPIE 6089, 60890Y (2006).
[Crossref]

Unser, M.

H. Kirshner, F. Aguet, D. Sage, and M. Unser, “3-D PSF Fitting for Fluorescence Microscopy: Implementation and Localization Application,” J. Microsc. 249(1), 13–25 (2013).
[Crossref] [PubMed]

Vagner, J.

Vojnovic, B.

I. D. Tullis, S. M. Ameer-Beg, P. R. Barber, V. Rankov, and B. Vojnovic, “Mapping femtosecond pulse front distortion and group velocity dispersion in multiphoton microscopy,” Proc. SPIE 6089, 60890Y (2006).
[Crossref]

Vucinic, D.

Wang, W.

Wasylczyk, P.

Webb, W. W.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: Multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Wegener, M.

Williams, R. M.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: Multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

Wlodarczyk, B.

Xi, P.

Xu, C.

N. G. Horton and C. Xu, “Dispersion compensation in three-photon fluorescence microscopy at 1,700 nm,” Biomed. Opt. Express 6(4), 1392–1397 (2015).
[Crossref] [PubMed]

D. Kobat, N. G. Horton, and C. Xu, “In vivo two-photon microscopy to 1.6-mm depth in mouse cortex,” J. Biomed. Opt. 16(10), 106014 (2011).
[Crossref] [PubMed]

Xu, H.

V. Magdanz, M. Medina-Sánchez, L. Schwarz, H. Xu, J. Elgeti, and O. G. Schmidt, “Spermatozoa as Functional Components of Robotic Microswimmers,” Adv. Mater. 29(24), 1606301 (2017).
[Crossref] [PubMed]

Young, M. D.

M. D. Young, J. J. Field, K. E. Sheetz, R. A. Bartels, and J. Squier, “A pragmatic guide to multiphoton microscope design,” Adv. Opt. Photonics 7(2), 276–378 (2015).
[Crossref] [PubMed]

Yu, J. Y.

J. Y. Yu, C. S. Liao, Z. Y. Zhuo, C. H. Huang, H. C. Chui, and S. W. Chu, “A diffraction-limited scanning system providing broad spectral range for laser scanning microscopy,” Rev. Sci. Instrum. 80(11), 113704 (2009).
[Crossref] [PubMed]

Zeeshan, M. A.

M. A. Zeeshan, R. Grisch, E. Pellicer, K. M. Sivaraman, K. E. Peyer, J. Sort, B. Özkale, M. S. Sakar, B. J. Nelson, and S. Pané, “Hybrid Helical Magnetic Microrobots Obtained by 3D Template-Assisted Electrodeposition,” Small 10(7), 1284–1288 (2014).
[Crossref] [PubMed]

Zhuo, Z. Y.

J. Y. Yu, C. S. Liao, Z. Y. Zhuo, C. H. Huang, H. C. Chui, and S. W. Chu, “A diffraction-limited scanning system providing broad spectral range for laser scanning microscopy,” Rev. Sci. Instrum. 80(11), 113704 (2009).
[Crossref] [PubMed]

Zinkiewicz, L.

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: Multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

Adv. Mater. (1)

V. Magdanz, M. Medina-Sánchez, L. Schwarz, H. Xu, J. Elgeti, and O. G. Schmidt, “Spermatozoa as Functional Components of Robotic Microswimmers,” Adv. Mater. 29(24), 1606301 (2017).
[Crossref] [PubMed]

Adv. Opt. Photonics (1)

M. D. Young, J. J. Field, K. E. Sheetz, R. A. Bartels, and J. Squier, “A pragmatic guide to multiphoton microscope design,” Adv. Opt. Photonics 7(2), 276–378 (2015).
[Crossref] [PubMed]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

R. Himmelhuber, S. Mehravar, O. D. Herrera, V. Demir, K. Kieu, J. Luo, A. Jen, R. A. Norwood, and N. Peyghambarian, “Characterization of coplanar poled electro optic polymer films for Si-photonic devices with multiphoton microscopy,” Appl. Phys. Lett. 104(16), 161109 (2014).
[Crossref]

Biomed. Opt. Express (4)

J. Biomed. Opt. (1)

D. Kobat, N. G. Horton, and C. Xu, “In vivo two-photon microscopy to 1.6-mm depth in mouse cortex,” J. Biomed. Opt. 16(10), 106014 (2011).
[Crossref] [PubMed]

J. Microsc. (2)

K. König, “Multiphoton microscopy in life sciences,” J. Microsc. 200(2), 83–104 (2000).
[Crossref] [PubMed]

H. Kirshner, F. Aguet, D. Sage, and M. Unser, “3-D PSF Fitting for Fluorescence Microscopy: Implementation and Localization Application,” J. Microsc. 249(1), 13–25 (2013).
[Crossref] [PubMed]

J. Phys. Chem. Lett. (1)

A. Autere, C. R. Ryder, A. Säynätjoki, L. Karvonen, B. Amirsolaimani, R. A. Norwood, N. Peyghambarian, K. Kieu, H. Lipsanen, M. C. Hersam, and Z. Sun, “Rapid and large-area characterization of exfoliated black phosphorus using third-harmonic generation microscopy,” J. Phys. Chem. Lett. 8(7), 1343–1350 (2017).
[Crossref] [PubMed]

Nat. Biotechnol. (1)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: Multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

Nat. Commun. (1)

L. Karvonen, A. Säynätjoki, M. J. Huttunen, A. Autere, B. Amirsolaimani, S. Li, R. A. Norwood, N. Peyghambarian, H. Lipsanen, G. Eda, K. Kieu, and Z. Sun, “Rapid visualization of grain boundaries in monolayer MoS2 by multiphoton microscopy,” Nat. Commun. 8, 15714 (2017).
[Crossref] [PubMed]

Nat. Photonics (2)

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
[Crossref]

E. E. Hoover and J. A. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7(2), 93–101 (2013).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Proc. SPIE (2)

I. D. Tullis, S. M. Ameer-Beg, P. R. Barber, V. Rankov, and B. Vojnovic, “Mapping femtosecond pulse front distortion and group velocity dispersion in multiphoton microscopy,” Proc. SPIE 6089, 60890Y (2006).
[Crossref]

J. K. Barton, B. Amirsolaimani, Ph. Rice, K. Hatch, and K. Kieu, “Three-photon imaging of ovarian cancer,” Proc. SPIE 9689, 96893P (2016).
[Crossref]

Rev. Sci. Instrum. (1)

J. Y. Yu, C. S. Liao, Z. Y. Zhuo, C. H. Huang, H. C. Chui, and S. W. Chu, “A diffraction-limited scanning system providing broad spectral range for laser scanning microscopy,” Rev. Sci. Instrum. 80(11), 113704 (2009).
[Crossref] [PubMed]

Science (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Small (1)

M. A. Zeeshan, R. Grisch, E. Pellicer, K. M. Sivaraman, K. E. Peyer, J. Sort, B. Özkale, M. S. Sakar, B. J. Nelson, and S. Pané, “Hybrid Helical Magnetic Microrobots Obtained by 3D Template-Assisted Electrodeposition,” Small 10(7), 1284–1288 (2014).
[Crossref] [PubMed]

Other (6)

B. Cromey, R. Baker, B. Amirsolaimani, S. Mehravar, and K. Q. Kieu, “All Reflective Multiphoton Microscope for use with Compact Multi-colored Broadband Femtosecond Fiber Lasers,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2017), paper JTu5A.82.
[Crossref]

G. H. Smith, R. Ceragioli, and R. Berry, “Telescopes Eyepieces Astrographs”, Willmann-Bell, Inc., Richmond, Virginia, USA, Chap. 13 “Tilted-Component Telescopes” 323–372, (2012).

D. Sage, L. Donati, F. Soulez, D. Fortun, G. Schmit, A. Seitz, R. Guiet, C. Vonesch, and M. Unser, “DeconvolutionLab2: An Open-Source Software for Deconvolution Microscopy,” Methods-Image Processing for Biologists, vol. 115 (2017).

Huygens Professional version 16.10 (Scientific Volume Imaging, The Netherlands, __ http://svi.nl __)

W. S. Rasband, “ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, https://imagej.nih.gov/ij/ ,” 1997–2016.

B. Amirsolaimani, O. Herrera, R. Himmelhuber, K. Kieu, R. Norwood, and N. Peyghambarian, “Electro-optic polymer channel waveguide fabrication using multiphoton direct laser writing,” Proceedings of IEEE Conference on Optical interconnects (2015), pp. 104–105.
[Crossref]

Supplementary Material (1)

NameDescription
» Visualization 1       Simultaneous multiphoton writing and imaging

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the All-Reflective Multiphoton Microscope. The collimated laser beam is raster scanned using a 2D galvo scanner. The beam is later expanded by reflective optics to fill the back aperture of the objective lens. Dichroic mirrors are utilized to separate the excitation laser light from the back-scattered nonlinear signals from the sample, and also to separate the different generated wavelengths from the sample into appropriate PMT channels.

Fig. 2
Fig. 2

Fabricated ARMPM image. (a) birds eye view of the rendered design of the ARMPM. The red color represents the laser light path. Total volume of the system including laser source and galvo mirror drivers is 18in*18in*18in. (b) The whole system is placed inside a black enclosure to minimize the room light and other sources of noise going into the photomultiplier tubes (PMTs). Numbered parts are as follows: (I) 1550 nm femtosecond fiber laser, (II) 1040 nm femtosecond fiber laser, (III) galvo mirrors, (IV) dichroic mirrors, (V) PMTs, and (VI) translation stage and sample.

Fig. 3
Fig. 3

ARMPM design using off-the-shelf optics. (a) The compact arrangement is achieved by employing two flat mirrors to fold the beam (colors represent different scanning angles). The mirror numbering follows the microscope schematic depicted in Fig. 1. (b) OPD of less than 0.35 waves is achieved throughout the scanning field before the objective lens for 800nm, 1040nm, 1550nm, 1700nm laser sources. (c) Diffraction limited spot size is shown for the simulated all reflective afocal system. The Airy disk is drawn for 1040nm wavelength. (d) Ray fan diagram at four different wavelengths. The rays form different wavelengths overlap each other due to the reflective design of the system.

Fig. 4
Fig. 4

Multiphoton image of the euphorbia cactus leaf using. (a) 1550nm laser and (b) 1040nm laser. Red color represents the two-photon excited fluorescence (2PEF) and second harmonic generated signal (SHG). Green color illustrates three-photon excited fluorescence (3PEF) and third harmonic generated signal (THG). The focus does not change by changing the source wavelength due to the all-reflective design of the system.

Fig. 5
Fig. 5

ARMPM image of fluorescent beads. (a) Image of the microbeads with 500 nm diameter. (b) The experimental PSF image exported from averaged individual bead images. (c) The comparison between the ideal vs the experimental PSF functions. The red curve shows the Gaussian function fitted to the experimental data.

Fig. 6
Fig. 6

Multiphoton writing using ARMPM. (a) Multiphoton image of a ring resonator fabricated on electro optical polymer (SEO250) using two-photon polymerization using ARMPM with 1560nm laser source. (b) SHG image of the University of Arizona logo written on positive photoresist using three-photon polymerization with 1040nm laser.

Fig. 7
Fig. 7

ARMPM image of the unstained human ovary biopsy tissue (a). Red color represents the SHG from collagen fibers, and green color illustrates the THG and 3PEF from red blood cells and lipids. (b) Zoomed in image depicts the fluorescent signal from the red blood cells, and SHG from the collagen structure around the blood vessel.

Tables (1)

Tables Icon

Table 1 Design specifications and component details.

Metrics