Abstract

The next generation of infrared imaging systems requires control of fundamental electromagnetic processes – absorption, polarization, spectral bandwidth – at the pixel level to acquire desirable information about the environment with low system latency. Metamaterial absorbers have sparked interest in the infrared imaging community for their ability to enhance absorption of incoming radiation with color, polarization and/or phase information. However, most metamaterial-based sensors fail to focus incoming radiation into the active region of a ultra-thin detecting element, thus achieving poor detection metrics. Here our multifunctional metamaterial absorber is directly integrated with a novel mid-wave infrared (MWIR) and long-wave infrared (LWIR) detector with an ultra-thin (~λ/15) InAs/GaSb Type-II superlattice (T2SL) interband cascade detector. The deep sub-wavelength metamaterial detector architecture proposed and demonstrated here, thus significantly improves the detection quantum efficiency (QE) and absorption of incoming radiation in a regime typically dominated by Fabry-Perot etalons. Our work evinces the ability of multifunctional metamaterials to realize efficient wavelength selective detection across the infrared spectrum for enhanced multispectral infrared imaging applications.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical response of laser-doped silicon carbide for an uncooled midwave infrared detector

Geunsik Lim, Tariq Manzur, and Aravinda Kar
Appl. Opt. 50(17) 2640-2653 (2011)

Multifunctional metamaterial pyroelectric infrared detectors

Jonathan Y. Suen, Kebin Fan, John Montoya, Christopher Bingham, Vincent Stenger, Sri Sriram, and Willie J. Padilla
Optica 4(2) 276-279 (2017)

Voltage-tunable dual-band quantum dot infrared photodetectors for temperature sensing

Hong-Shi Ling, Shiang-Yu Wang, Wei-Cheng Hsu, and Chien-Ping Lee
Opt. Express 20(10) 10484-10489 (2012)

References

  • View by:
  • |
  • |
  • |

  1. A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105(9), 091101 (2009).
    [Crossref]
  2. A. Rogalski, “Recent progress in infrared detector technologies,” Infrared Phys. Technol. 54(3), 136–154 (2011).
    [Crossref]
  3. G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 010901 (2014).
    [Crossref] [PubMed]
  4. M. L. Althouse and C. I. Chang, “Chemical vapor detection with a multispectral thermal imager,” Opt. Eng. 30(11), 1725 (1991).
    [Crossref]
  5. S. Maimon and G. W. Wicks, “nBn detector, an infrared detector with reduced dark current and higher operating temperature,” Appl. Phys. Lett. 89(15), 151109 (2006).
    [Crossref]
  6. J. F. Klem, J. K. Kim, M. J. Cich, S. D. Hawkins, T. R. Fortune, and J. L. Rienstra, “Comparison of nBn and nBp mid-wave barrier infrared photodetectors,” Proc. SPIE 7608, 76081P (2010).
    [Crossref]
  7. J. B. Rodriguez, E. Plis, G. Bishop, Y. D. Sharma, H. Kim, L. R. Dawson, and S. Krishna, “nBn structure based on InAs/GaSb type-II strained layer superlattices,” Appl. Phys. Lett. 91(4), 043514 (2007).
    [Crossref]
  8. SirB. Rafol, S. Soibel, A. Khoshakhlagh, J. Nguyen, J. K. Liu, J. M. Mumolo, S. A. Keo, L. Hoglund, D. Z. Ting, and S. D. Gunapala, “Performance of a 1/4 VGA format long-wavelength infrared antimonides-based superlattice focal plane array,” IEEE J. Quantum Electron. 48(7), 878–884 (2012).
  9. I. Vurgaftman, C. L. Canedy, E. M. Jackson, J. A. Nolde, C. A. Affouda, E. H. Aifer, J. R. Meyer, A. Hood, A. J. Evans, and W. T. Tennant, “Analysis and performance of type-II superlattice detectors,” Opt. Eng. 50(6), 061007 (2011).
    [Crossref]
  10. B.-M. Nguyen, D. Hoffman, P.-Y. Delaunay, and M. Razeghi, “Background limited long wavelength infrared type-II InAs/GaSb superlattice photodiodes operating at 110K,” Phys. Lett. 91(12), 163511 (2007).
  11. O. Salihoglu, A. Muti, K. Kutluer, T. Tansel, R. Turan, Y. Ergun, and A. Aydinli, “N-structure for type-II superlattice photodetectors,” Appl. Phys. Lett. 101(7), 073505 (2012).
    [Crossref]
  12. N. Gautam, H. S. Kim, M. N. Kutty, E. Plis, L. R. Dawson, and S. Krishna, “Performance improvement of longwave infrared photodetector based on type-II InAs/GaSb superlattices using unipolar current blocking layers,” Appl. Phys. Lett. 96(23), 231107 (2010).
    [Crossref]
  13. J. V. Li, R. Q. Yang, C. J. Hill, and S. L. Chuang, “Interband cascade detectors with room temperature photovoltaic operation,” Appl. Phys. Lett. 86(10), 101102 (2005).
    [Crossref]
  14. R. Q. Yang, Z. Tian, Z. Cai, J. F. Klem, M. B. Johnson, and H. C. Liu, “Interband-cascade infrared photodetectors with superlattice absorbers,” J. Appl. Phys. 107(5), 054514 (2010).
    [Crossref]
  15. N. Gautam, S. Myers, A. Barve, B. Klein, E. Smith, D. Rhiger, L. Dawson, and S. Krishna, “High operating temperature interband cascade midwave detector based on type-II InAs/GaSb strained layer superlattice,” Appl. Phys. Lett. 101(2), 021106 (2012).
    [Crossref]
  16. W. Pusz, A. Kowalweski, P. Martyniuk, W. Gawron, E. Plis, S. Krishna, and A. Rogalksi, “Mid-wavelength infrared type-II InAs/GaSb superlattice interband cascade photodetectors,” Opt. Eng. 53(4), 043107 (2014).
    [Crossref]
  17. H. Lofti, L. Lei, L. Li, R. Q. Yang, J. C. Keay, M. B. Johnson, Y. Qiu, D. Lubyshev, J. M. Fastenau, and A. W. K. Liu, “High-temperature operation of interband cascade infrared photodetectors with cutoff wavelengths near 8um,” Opt. Eng. 54(6), 063103 (2015).
    [Crossref]
  18. Z.-B. Tian and S. Krishna, “Mid-infrared interband cascade photodetectors with different absorber designs,” IEEE J. Quantum Electron. 51(4), 4300105 (2015).
    [Crossref]
  19. Z.-B. Tian, S. Godoy, H.-S. Kim, T. Schuler-Sandy, J. Montoya, and S. Krishna, “High operating temperature interband cascade focal plane arrays,” Appl. Phys. Lett. 105(5), 051109 (2014).
    [Crossref]
  20. E. L. Dereniak and G. D. Boreman, Infrared Detectors and Systems (John Wiley, New York, 200–202 1996).
  21. L. G. Hipwood, C. L. Jones, C. D. Maxey, H. W. Lau, J. Fitzmaurice, R. A. Catchpole, and M. Ordish, “Three-color MOVPE MCT diodes,” Proc. SPIE 6206, 620612 (2006).
    [Crossref]
  22. A. Khoshakhlagh, J. B. Rodriguez, E. Plis, G. D. Bishop, Y. D. Sharma, H. S. Kim, L. R. Dawson, and S. Krishna, “Bias dependent dual band response from InAs/Ga(In)Sb type II strain layer super lattice detectors,” Appl. Phys. Lett. 91(26), 263504 (2007).
    [Crossref]
  23. N. Gautam, M. Naydenkov, S. Myers, A. V. Barve, E. Plis, T. Rotter, L. R. Dawson, and S. Krishna, “Three color infrared detector using InAs/GaSb superlattices with unipolor barriers,” Appl. Phys. Lett. 98(12), 121106 (2011).
    [Crossref]
  24. A. M. Hoang, A. Dehzangi, S. Adhikary, and M. Razeghi, “High performance bias-selectable three-color short-wave/mid-wave/long-wave infrared photodetectors based on type-II InAs/GaSb/AlSb superlattices,” Sci. Rep. 6(1), 24144 (2016).
    [Crossref] [PubMed]
  25. W. L. Wolfe and G. J. Zissis, The Infrared Handbook. Washington, DC: Office of Naval Research, Department of the Navy. (1978).
  26. S. Krishna, “The Infrared Retina,” J. Phys. D Appl. Phys. 42(23), 234005 (2009).
    [Crossref]
  27. C. C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(5), 1704–1709 (2010).
    [Crossref] [PubMed]
  28. J. A. Montoya, A. V. Barve, R. V. Shenoi, M. Naydenkov, H. Kim, Z. Ku, S. R. J. Brueck, S. Krishna, S. J. Lee, and S. K. Noh, “Backside illuminated infrared detectors with plasmonic resonators,” Proc. SPIE 7660, 76603P (2010).
    [Crossref]
  29. S.-J. Lee, Z. Ku, A. Barve, J. Montoya, W.-Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat. Commun. 2, 286 (2011).
    [Crossref] [PubMed]
  30. Y. L. Jing, Z. F. Li, Q. Li, X. S. Chen, P. P. Chen, H. Wang, M. Y. Li, N. Li, and W. Lu, “Pixel-level plasmonic microcavity infrared photodetector,” Sci. Rep. 6(1), 25849 (2016).
    [Crossref] [PubMed]
  31. S. C. Lee, S. Krishna, and S. R. J. Brueck, “Light direction-dependent plasmonic enhancement in quantum dot infrared photodetectors,” Appl. Phys. Lett. 97(2), 021112 (2010).
    [Crossref]
  32. S. C. Lee, S. Krishna, and S. R. J. Brueck, “Quantum dot infrared photodetector enhanced by surface plasma wave excitation,” Opt. Express 17(25), 23160–23168 (2009).
    [Crossref] [PubMed]
  33. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71(7), 811–818 (1981).
    [Crossref]
  34. B. K. Minhas, W. Fan, K. Agi, S. R. J. Brueck, and K. J. Malloy, “Metallic inductive and capacitive grids: theory and experiment,” J. Opt. Soc. Am. A 19(7), 1352–1359 (2002).
    [Crossref] [PubMed]
  35. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
    [Crossref] [PubMed]
  36. D. W. Peters, P. Davids, J. R. Wendt, A. A. Cruz-Cabrera, S. A. Kemme, and S. Samora, “Metamaterial-inspired high-absorption surfaces for thermal infrared applications,” Proc. SPIE 7609, 76091C (2010).
    [Crossref]
  37. D. W. Peters, P. Davids, J. K. Kim, D. Leonhardt, T. E. Beecham, S. W. Howell, T. Ohta, J. R. Wendt, and J. A. Montoya, “Application of plasmonic subwavelength structuring to enhance infrared detection,” Proc. SPIE 8994, 899419 (2014).
    [Crossref]
  38. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
    [Crossref] [PubMed]
  39. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [Crossref] [PubMed]
  40. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [Crossref] [PubMed]
  41. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  42. C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
    [PubMed]
  43. X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
    [Crossref] [PubMed]
  44. R. Tsu, L. Esaki, and B. A. Sai-Halasz, “A new semiconductor superlattice,” Appl. Phys. Lett. 30(12), 651–653 (1977).
    [Crossref]
  45. D. L. Smith and C. Mailhiot, “Theory of semiconductor superlattice electronic structure,” Rev. Mod. Phys. 62(1), 173–234 (1990).
    [Crossref]
  46. S. Law, D. C. Adams, A. M. Taylor, and D. Wasserman, “Mid-infrared designer metals,” Opt. Express 20(11), 12155–12165 (2012).
    [Crossref] [PubMed]
  47. S. Adachi, “Model dielectric constants of GaP, GaAs, GaSb, InP, InAs, and InSb,” Phys. Rev. B Condens. Matter 35(14), 7454–7463 (1987).
    [Crossref] [PubMed]
  48. Z.-B. Tian, E. Plis, R. Hinkey, and S. Krishna, “The influence of composition in InAs/GaSb type-II superlattices on their optical properties,” Electron. Lett. 50(23), 1733–1734 (2014).
    [Crossref]
  49. J. Montoya, S. Myers, and S. Krishna, inventor; STC.UNM, assignee. Wafer level integration of focal plane arrays having a flexible conductive layer to provide an optical aperture for each pixel. US patent 9,318,517 B1. April 19, 2016.

2016 (2)

A. M. Hoang, A. Dehzangi, S. Adhikary, and M. Razeghi, “High performance bias-selectable three-color short-wave/mid-wave/long-wave infrared photodetectors based on type-II InAs/GaSb/AlSb superlattices,” Sci. Rep. 6(1), 24144 (2016).
[Crossref] [PubMed]

Y. L. Jing, Z. F. Li, Q. Li, X. S. Chen, P. P. Chen, H. Wang, M. Y. Li, N. Li, and W. Lu, “Pixel-level plasmonic microcavity infrared photodetector,” Sci. Rep. 6(1), 25849 (2016).
[Crossref] [PubMed]

2015 (2)

H. Lofti, L. Lei, L. Li, R. Q. Yang, J. C. Keay, M. B. Johnson, Y. Qiu, D. Lubyshev, J. M. Fastenau, and A. W. K. Liu, “High-temperature operation of interband cascade infrared photodetectors with cutoff wavelengths near 8um,” Opt. Eng. 54(6), 063103 (2015).
[Crossref]

Z.-B. Tian and S. Krishna, “Mid-infrared interband cascade photodetectors with different absorber designs,” IEEE J. Quantum Electron. 51(4), 4300105 (2015).
[Crossref]

2014 (5)

Z.-B. Tian, S. Godoy, H.-S. Kim, T. Schuler-Sandy, J. Montoya, and S. Krishna, “High operating temperature interband cascade focal plane arrays,” Appl. Phys. Lett. 105(5), 051109 (2014).
[Crossref]

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 010901 (2014).
[Crossref] [PubMed]

W. Pusz, A. Kowalweski, P. Martyniuk, W. Gawron, E. Plis, S. Krishna, and A. Rogalksi, “Mid-wavelength infrared type-II InAs/GaSb superlattice interband cascade photodetectors,” Opt. Eng. 53(4), 043107 (2014).
[Crossref]

D. W. Peters, P. Davids, J. K. Kim, D. Leonhardt, T. E. Beecham, S. W. Howell, T. Ohta, J. R. Wendt, and J. A. Montoya, “Application of plasmonic subwavelength structuring to enhance infrared detection,” Proc. SPIE 8994, 899419 (2014).
[Crossref]

Z.-B. Tian, E. Plis, R. Hinkey, and S. Krishna, “The influence of composition in InAs/GaSb type-II superlattices on their optical properties,” Electron. Lett. 50(23), 1733–1734 (2014).
[Crossref]

2012 (5)

S. Law, D. C. Adams, A. M. Taylor, and D. Wasserman, “Mid-infrared designer metals,” Opt. Express 20(11), 12155–12165 (2012).
[Crossref] [PubMed]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

N. Gautam, S. Myers, A. Barve, B. Klein, E. Smith, D. Rhiger, L. Dawson, and S. Krishna, “High operating temperature interband cascade midwave detector based on type-II InAs/GaSb strained layer superlattice,” Appl. Phys. Lett. 101(2), 021106 (2012).
[Crossref]

SirB. Rafol, S. Soibel, A. Khoshakhlagh, J. Nguyen, J. K. Liu, J. M. Mumolo, S. A. Keo, L. Hoglund, D. Z. Ting, and S. D. Gunapala, “Performance of a 1/4 VGA format long-wavelength infrared antimonides-based superlattice focal plane array,” IEEE J. Quantum Electron. 48(7), 878–884 (2012).

O. Salihoglu, A. Muti, K. Kutluer, T. Tansel, R. Turan, Y. Ergun, and A. Aydinli, “N-structure for type-II superlattice photodetectors,” Appl. Phys. Lett. 101(7), 073505 (2012).
[Crossref]

2011 (4)

I. Vurgaftman, C. L. Canedy, E. M. Jackson, J. A. Nolde, C. A. Affouda, E. H. Aifer, J. R. Meyer, A. Hood, A. J. Evans, and W. T. Tennant, “Analysis and performance of type-II superlattice detectors,” Opt. Eng. 50(6), 061007 (2011).
[Crossref]

A. Rogalski, “Recent progress in infrared detector technologies,” Infrared Phys. Technol. 54(3), 136–154 (2011).
[Crossref]

N. Gautam, M. Naydenkov, S. Myers, A. V. Barve, E. Plis, T. Rotter, L. R. Dawson, and S. Krishna, “Three color infrared detector using InAs/GaSb superlattices with unipolor barriers,” Appl. Phys. Lett. 98(12), 121106 (2011).
[Crossref]

S.-J. Lee, Z. Ku, A. Barve, J. Montoya, W.-Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat. Commun. 2, 286 (2011).
[Crossref] [PubMed]

2010 (8)

D. W. Peters, P. Davids, J. R. Wendt, A. A. Cruz-Cabrera, S. A. Kemme, and S. Samora, “Metamaterial-inspired high-absorption surfaces for thermal infrared applications,” Proc. SPIE 7609, 76091C (2010).
[Crossref]

S. C. Lee, S. Krishna, and S. R. J. Brueck, “Light direction-dependent plasmonic enhancement in quantum dot infrared photodetectors,” Appl. Phys. Lett. 97(2), 021112 (2010).
[Crossref]

C. C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

J. A. Montoya, A. V. Barve, R. V. Shenoi, M. Naydenkov, H. Kim, Z. Ku, S. R. J. Brueck, S. Krishna, S. J. Lee, and S. K. Noh, “Backside illuminated infrared detectors with plasmonic resonators,” Proc. SPIE 7660, 76603P (2010).
[Crossref]

J. F. Klem, J. K. Kim, M. J. Cich, S. D. Hawkins, T. R. Fortune, and J. L. Rienstra, “Comparison of nBn and nBp mid-wave barrier infrared photodetectors,” Proc. SPIE 7608, 76081P (2010).
[Crossref]

N. Gautam, H. S. Kim, M. N. Kutty, E. Plis, L. R. Dawson, and S. Krishna, “Performance improvement of longwave infrared photodetector based on type-II InAs/GaSb superlattices using unipolar current blocking layers,” Appl. Phys. Lett. 96(23), 231107 (2010).
[Crossref]

R. Q. Yang, Z. Tian, Z. Cai, J. F. Klem, M. B. Johnson, and H. C. Liu, “Interband-cascade infrared photodetectors with superlattice absorbers,” J. Appl. Phys. 107(5), 054514 (2010).
[Crossref]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

2009 (3)

A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105(9), 091101 (2009).
[Crossref]

S. Krishna, “The Infrared Retina,” J. Phys. D Appl. Phys. 42(23), 234005 (2009).
[Crossref]

S. C. Lee, S. Krishna, and S. R. J. Brueck, “Quantum dot infrared photodetector enhanced by surface plasma wave excitation,” Opt. Express 17(25), 23160–23168 (2009).
[Crossref] [PubMed]

2008 (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

2007 (3)

A. Khoshakhlagh, J. B. Rodriguez, E. Plis, G. D. Bishop, Y. D. Sharma, H. S. Kim, L. R. Dawson, and S. Krishna, “Bias dependent dual band response from InAs/Ga(In)Sb type II strain layer super lattice detectors,” Appl. Phys. Lett. 91(26), 263504 (2007).
[Crossref]

J. B. Rodriguez, E. Plis, G. Bishop, Y. D. Sharma, H. Kim, L. R. Dawson, and S. Krishna, “nBn structure based on InAs/GaSb type-II strained layer superlattices,” Appl. Phys. Lett. 91(4), 043514 (2007).
[Crossref]

B.-M. Nguyen, D. Hoffman, P.-Y. Delaunay, and M. Razeghi, “Background limited long wavelength infrared type-II InAs/GaSb superlattice photodiodes operating at 110K,” Phys. Lett. 91(12), 163511 (2007).

2006 (3)

S. Maimon and G. W. Wicks, “nBn detector, an infrared detector with reduced dark current and higher operating temperature,” Appl. Phys. Lett. 89(15), 151109 (2006).
[Crossref]

L. G. Hipwood, C. L. Jones, C. D. Maxey, H. W. Lau, J. Fitzmaurice, R. A. Catchpole, and M. Ordish, “Three-color MOVPE MCT diodes,” Proc. SPIE 6206, 620612 (2006).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

2005 (1)

J. V. Li, R. Q. Yang, C. J. Hill, and S. L. Chuang, “Interband cascade detectors with room temperature photovoltaic operation,” Appl. Phys. Lett. 86(10), 101102 (2005).
[Crossref]

2002 (1)

2001 (1)

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

2000 (2)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

1991 (1)

M. L. Althouse and C. I. Chang, “Chemical vapor detection with a multispectral thermal imager,” Opt. Eng. 30(11), 1725 (1991).
[Crossref]

1990 (1)

D. L. Smith and C. Mailhiot, “Theory of semiconductor superlattice electronic structure,” Rev. Mod. Phys. 62(1), 173–234 (1990).
[Crossref]

1987 (1)

S. Adachi, “Model dielectric constants of GaP, GaAs, GaSb, InP, InAs, and InSb,” Phys. Rev. B Condens. Matter 35(14), 7454–7463 (1987).
[Crossref] [PubMed]

1981 (1)

1977 (1)

R. Tsu, L. Esaki, and B. A. Sai-Halasz, “A new semiconductor superlattice,” Appl. Phys. Lett. 30(12), 651–653 (1977).
[Crossref]

Adachi, S.

S. Adachi, “Model dielectric constants of GaP, GaAs, GaSb, InP, InAs, and InSb,” Phys. Rev. B Condens. Matter 35(14), 7454–7463 (1987).
[Crossref] [PubMed]

Adams, D. C.

Adhikary, S.

A. M. Hoang, A. Dehzangi, S. Adhikary, and M. Razeghi, “High performance bias-selectable three-color short-wave/mid-wave/long-wave infrared photodetectors based on type-II InAs/GaSb/AlSb superlattices,” Sci. Rep. 6(1), 24144 (2016).
[Crossref] [PubMed]

Affouda, C. A.

I. Vurgaftman, C. L. Canedy, E. M. Jackson, J. A. Nolde, C. A. Affouda, E. H. Aifer, J. R. Meyer, A. Hood, A. J. Evans, and W. T. Tennant, “Analysis and performance of type-II superlattice detectors,” Opt. Eng. 50(6), 061007 (2011).
[Crossref]

Agi, K.

Aifer, E. H.

I. Vurgaftman, C. L. Canedy, E. M. Jackson, J. A. Nolde, C. A. Affouda, E. H. Aifer, J. R. Meyer, A. Hood, A. J. Evans, and W. T. Tennant, “Analysis and performance of type-II superlattice detectors,” Opt. Eng. 50(6), 061007 (2011).
[Crossref]

Althouse, M. L.

M. L. Althouse and C. I. Chang, “Chemical vapor detection with a multispectral thermal imager,” Opt. Eng. 30(11), 1725 (1991).
[Crossref]

Antoszewski, J.

A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105(9), 091101 (2009).
[Crossref]

Aydinli, A.

O. Salihoglu, A. Muti, K. Kutluer, T. Tansel, R. Turan, Y. Ergun, and A. Aydinli, “N-structure for type-II superlattice photodetectors,” Appl. Phys. Lett. 101(7), 073505 (2012).
[Crossref]

Barve, A.

N. Gautam, S. Myers, A. Barve, B. Klein, E. Smith, D. Rhiger, L. Dawson, and S. Krishna, “High operating temperature interband cascade midwave detector based on type-II InAs/GaSb strained layer superlattice,” Appl. Phys. Lett. 101(2), 021106 (2012).
[Crossref]

S.-J. Lee, Z. Ku, A. Barve, J. Montoya, W.-Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat. Commun. 2, 286 (2011).
[Crossref] [PubMed]

Barve, A. V.

N. Gautam, M. Naydenkov, S. Myers, A. V. Barve, E. Plis, T. Rotter, L. R. Dawson, and S. Krishna, “Three color infrared detector using InAs/GaSb superlattices with unipolor barriers,” Appl. Phys. Lett. 98(12), 121106 (2011).
[Crossref]

J. A. Montoya, A. V. Barve, R. V. Shenoi, M. Naydenkov, H. Kim, Z. Ku, S. R. J. Brueck, S. Krishna, S. J. Lee, and S. K. Noh, “Backside illuminated infrared detectors with plasmonic resonators,” Proc. SPIE 7660, 76603P (2010).
[Crossref]

Beecham, T. E.

D. W. Peters, P. Davids, J. K. Kim, D. Leonhardt, T. E. Beecham, S. W. Howell, T. Ohta, J. R. Wendt, and J. A. Montoya, “Application of plasmonic subwavelength structuring to enhance infrared detection,” Proc. SPIE 8994, 899419 (2014).
[Crossref]

Bishop, G.

J. B. Rodriguez, E. Plis, G. Bishop, Y. D. Sharma, H. Kim, L. R. Dawson, and S. Krishna, “nBn structure based on InAs/GaSb type-II strained layer superlattices,” Appl. Phys. Lett. 91(4), 043514 (2007).
[Crossref]

Bishop, G. D.

A. Khoshakhlagh, J. B. Rodriguez, E. Plis, G. D. Bishop, Y. D. Sharma, H. S. Kim, L. R. Dawson, and S. Krishna, “Bias dependent dual band response from InAs/Ga(In)Sb type II strain layer super lattice detectors,” Appl. Phys. Lett. 91(26), 263504 (2007).
[Crossref]

Brueck, S. R. J.

S.-J. Lee, Z. Ku, A. Barve, J. Montoya, W.-Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat. Commun. 2, 286 (2011).
[Crossref] [PubMed]

J. A. Montoya, A. V. Barve, R. V. Shenoi, M. Naydenkov, H. Kim, Z. Ku, S. R. J. Brueck, S. Krishna, S. J. Lee, and S. K. Noh, “Backside illuminated infrared detectors with plasmonic resonators,” Proc. SPIE 7660, 76603P (2010).
[Crossref]

S. C. Lee, S. Krishna, and S. R. J. Brueck, “Light direction-dependent plasmonic enhancement in quantum dot infrared photodetectors,” Appl. Phys. Lett. 97(2), 021112 (2010).
[Crossref]

S. C. Lee, S. Krishna, and S. R. J. Brueck, “Quantum dot infrared photodetector enhanced by surface plasma wave excitation,” Opt. Express 17(25), 23160–23168 (2009).
[Crossref] [PubMed]

B. K. Minhas, W. Fan, K. Agi, S. R. J. Brueck, and K. J. Malloy, “Metallic inductive and capacitive grids: theory and experiment,” J. Opt. Soc. Am. A 19(7), 1352–1359 (2002).
[Crossref] [PubMed]

Bur, J. A.

C. C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

Cai, Z.

R. Q. Yang, Z. Tian, Z. Cai, J. F. Klem, M. B. Johnson, and H. C. Liu, “Interband-cascade infrared photodetectors with superlattice absorbers,” J. Appl. Phys. 107(5), 054514 (2010).
[Crossref]

Canedy, C. L.

I. Vurgaftman, C. L. Canedy, E. M. Jackson, J. A. Nolde, C. A. Affouda, E. H. Aifer, J. R. Meyer, A. Hood, A. J. Evans, and W. T. Tennant, “Analysis and performance of type-II superlattice detectors,” Opt. Eng. 50(6), 061007 (2011).
[Crossref]

Catchpole, R. A.

L. G. Hipwood, C. L. Jones, C. D. Maxey, H. W. Lau, J. Fitzmaurice, R. A. Catchpole, and M. Ordish, “Three-color MOVPE MCT diodes,” Proc. SPIE 6206, 620612 (2006).
[Crossref]

Chang, C. C.

C. C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

Chang, C. I.

M. L. Althouse and C. I. Chang, “Chemical vapor detection with a multispectral thermal imager,” Opt. Eng. 30(11), 1725 (1991).
[Crossref]

Chen, P. P.

Y. L. Jing, Z. F. Li, Q. Li, X. S. Chen, P. P. Chen, H. Wang, M. Y. Li, N. Li, and W. Lu, “Pixel-level plasmonic microcavity infrared photodetector,” Sci. Rep. 6(1), 25849 (2016).
[Crossref] [PubMed]

Chen, X. S.

Y. L. Jing, Z. F. Li, Q. Li, X. S. Chen, P. P. Chen, H. Wang, M. Y. Li, N. Li, and W. Lu, “Pixel-level plasmonic microcavity infrared photodetector,” Sci. Rep. 6(1), 25849 (2016).
[Crossref] [PubMed]

Chuang, S. L.

J. V. Li, R. Q. Yang, C. J. Hill, and S. L. Chuang, “Interband cascade detectors with room temperature photovoltaic operation,” Appl. Phys. Lett. 86(10), 101102 (2005).
[Crossref]

Cich, M. J.

J. F. Klem, J. K. Kim, M. J. Cich, S. D. Hawkins, T. R. Fortune, and J. L. Rienstra, “Comparison of nBn and nBp mid-wave barrier infrared photodetectors,” Proc. SPIE 7608, 76081P (2010).
[Crossref]

Cruz-Cabrera, A. A.

D. W. Peters, P. Davids, J. R. Wendt, A. A. Cruz-Cabrera, S. A. Kemme, and S. Samora, “Metamaterial-inspired high-absorption surfaces for thermal infrared applications,” Proc. SPIE 7609, 76091C (2010).
[Crossref]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Davids, P.

D. W. Peters, P. Davids, J. K. Kim, D. Leonhardt, T. E. Beecham, S. W. Howell, T. Ohta, J. R. Wendt, and J. A. Montoya, “Application of plasmonic subwavelength structuring to enhance infrared detection,” Proc. SPIE 8994, 899419 (2014).
[Crossref]

D. W. Peters, P. Davids, J. R. Wendt, A. A. Cruz-Cabrera, S. A. Kemme, and S. Samora, “Metamaterial-inspired high-absorption surfaces for thermal infrared applications,” Proc. SPIE 7609, 76091C (2010).
[Crossref]

Dawson, L.

N. Gautam, S. Myers, A. Barve, B. Klein, E. Smith, D. Rhiger, L. Dawson, and S. Krishna, “High operating temperature interband cascade midwave detector based on type-II InAs/GaSb strained layer superlattice,” Appl. Phys. Lett. 101(2), 021106 (2012).
[Crossref]

Dawson, L. R.

N. Gautam, M. Naydenkov, S. Myers, A. V. Barve, E. Plis, T. Rotter, L. R. Dawson, and S. Krishna, “Three color infrared detector using InAs/GaSb superlattices with unipolor barriers,” Appl. Phys. Lett. 98(12), 121106 (2011).
[Crossref]

N. Gautam, H. S. Kim, M. N. Kutty, E. Plis, L. R. Dawson, and S. Krishna, “Performance improvement of longwave infrared photodetector based on type-II InAs/GaSb superlattices using unipolar current blocking layers,” Appl. Phys. Lett. 96(23), 231107 (2010).
[Crossref]

J. B. Rodriguez, E. Plis, G. Bishop, Y. D. Sharma, H. Kim, L. R. Dawson, and S. Krishna, “nBn structure based on InAs/GaSb type-II strained layer superlattices,” Appl. Phys. Lett. 91(4), 043514 (2007).
[Crossref]

A. Khoshakhlagh, J. B. Rodriguez, E. Plis, G. D. Bishop, Y. D. Sharma, H. S. Kim, L. R. Dawson, and S. Krishna, “Bias dependent dual band response from InAs/Ga(In)Sb type II strain layer super lattice detectors,” Appl. Phys. Lett. 91(26), 263504 (2007).
[Crossref]

Dehzangi, A.

A. M. Hoang, A. Dehzangi, S. Adhikary, and M. Razeghi, “High performance bias-selectable three-color short-wave/mid-wave/long-wave infrared photodetectors based on type-II InAs/GaSb/AlSb superlattices,” Sci. Rep. 6(1), 24144 (2016).
[Crossref] [PubMed]

Delaunay, P.-Y.

B.-M. Nguyen, D. Hoffman, P.-Y. Delaunay, and M. Razeghi, “Background limited long wavelength infrared type-II InAs/GaSb superlattice photodiodes operating at 110K,” Phys. Lett. 91(12), 163511 (2007).

Ebbesen, T. W.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

Ergun, Y.

O. Salihoglu, A. Muti, K. Kutluer, T. Tansel, R. Turan, Y. Ergun, and A. Aydinli, “N-structure for type-II superlattice photodetectors,” Appl. Phys. Lett. 101(7), 073505 (2012).
[Crossref]

Esaki, L.

R. Tsu, L. Esaki, and B. A. Sai-Halasz, “A new semiconductor superlattice,” Appl. Phys. Lett. 30(12), 651–653 (1977).
[Crossref]

Evans, A. J.

I. Vurgaftman, C. L. Canedy, E. M. Jackson, J. A. Nolde, C. A. Affouda, E. H. Aifer, J. R. Meyer, A. Hood, A. J. Evans, and W. T. Tennant, “Analysis and performance of type-II superlattice detectors,” Opt. Eng. 50(6), 061007 (2011).
[Crossref]

Fan, W.

Faraone, L.

A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105(9), 091101 (2009).
[Crossref]

Fastenau, J. M.

H. Lofti, L. Lei, L. Li, R. Q. Yang, J. C. Keay, M. B. Johnson, Y. Qiu, D. Lubyshev, J. M. Fastenau, and A. W. K. Liu, “High-temperature operation of interband cascade infrared photodetectors with cutoff wavelengths near 8um,” Opt. Eng. 54(6), 063103 (2015).
[Crossref]

Fei, B.

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 010901 (2014).
[Crossref] [PubMed]

Fitzmaurice, J.

L. G. Hipwood, C. L. Jones, C. D. Maxey, H. W. Lau, J. Fitzmaurice, R. A. Catchpole, and M. Ordish, “Three-color MOVPE MCT diodes,” Proc. SPIE 6206, 620612 (2006).
[Crossref]

Fortune, T. R.

J. F. Klem, J. K. Kim, M. J. Cich, S. D. Hawkins, T. R. Fortune, and J. L. Rienstra, “Comparison of nBn and nBp mid-wave barrier infrared photodetectors,” Proc. SPIE 7608, 76081P (2010).
[Crossref]

García-Vidal, F. J.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

Gautam, N.

N. Gautam, S. Myers, A. Barve, B. Klein, E. Smith, D. Rhiger, L. Dawson, and S. Krishna, “High operating temperature interband cascade midwave detector based on type-II InAs/GaSb strained layer superlattice,” Appl. Phys. Lett. 101(2), 021106 (2012).
[Crossref]

N. Gautam, M. Naydenkov, S. Myers, A. V. Barve, E. Plis, T. Rotter, L. R. Dawson, and S. Krishna, “Three color infrared detector using InAs/GaSb superlattices with unipolor barriers,” Appl. Phys. Lett. 98(12), 121106 (2011).
[Crossref]

N. Gautam, H. S. Kim, M. N. Kutty, E. Plis, L. R. Dawson, and S. Krishna, “Performance improvement of longwave infrared photodetector based on type-II InAs/GaSb superlattices using unipolar current blocking layers,” Appl. Phys. Lett. 96(23), 231107 (2010).
[Crossref]

Gawron, W.

W. Pusz, A. Kowalweski, P. Martyniuk, W. Gawron, E. Plis, S. Krishna, and A. Rogalksi, “Mid-wavelength infrared type-II InAs/GaSb superlattice interband cascade photodetectors,” Opt. Eng. 53(4), 043107 (2014).
[Crossref]

Gaylord, T. K.

Godoy, S.

Z.-B. Tian, S. Godoy, H.-S. Kim, T. Schuler-Sandy, J. Montoya, and S. Krishna, “High operating temperature interband cascade focal plane arrays,” Appl. Phys. Lett. 105(5), 051109 (2014).
[Crossref]

Gunapala, S. D.

SirB. Rafol, S. Soibel, A. Khoshakhlagh, J. Nguyen, J. K. Liu, J. M. Mumolo, S. A. Keo, L. Hoglund, D. Z. Ting, and S. D. Gunapala, “Performance of a 1/4 VGA format long-wavelength infrared antimonides-based superlattice focal plane array,” IEEE J. Quantum Electron. 48(7), 878–884 (2012).

Hawkins, S. D.

J. F. Klem, J. K. Kim, M. J. Cich, S. D. Hawkins, T. R. Fortune, and J. L. Rienstra, “Comparison of nBn and nBp mid-wave barrier infrared photodetectors,” Proc. SPIE 7608, 76081P (2010).
[Crossref]

Hill, C. J.

J. V. Li, R. Q. Yang, C. J. Hill, and S. L. Chuang, “Interband cascade detectors with room temperature photovoltaic operation,” Appl. Phys. Lett. 86(10), 101102 (2005).
[Crossref]

Hinkey, R.

Z.-B. Tian, E. Plis, R. Hinkey, and S. Krishna, “The influence of composition in InAs/GaSb type-II superlattices on their optical properties,” Electron. Lett. 50(23), 1733–1734 (2014).
[Crossref]

Hipwood, L. G.

L. G. Hipwood, C. L. Jones, C. D. Maxey, H. W. Lau, J. Fitzmaurice, R. A. Catchpole, and M. Ordish, “Three-color MOVPE MCT diodes,” Proc. SPIE 6206, 620612 (2006).
[Crossref]

Hoang, A. M.

A. M. Hoang, A. Dehzangi, S. Adhikary, and M. Razeghi, “High performance bias-selectable three-color short-wave/mid-wave/long-wave infrared photodetectors based on type-II InAs/GaSb/AlSb superlattices,” Sci. Rep. 6(1), 24144 (2016).
[Crossref] [PubMed]

Hoffman, D.

B.-M. Nguyen, D. Hoffman, P.-Y. Delaunay, and M. Razeghi, “Background limited long wavelength infrared type-II InAs/GaSb superlattice photodiodes operating at 110K,” Phys. Lett. 91(12), 163511 (2007).

Hoglund, L.

SirB. Rafol, S. Soibel, A. Khoshakhlagh, J. Nguyen, J. K. Liu, J. M. Mumolo, S. A. Keo, L. Hoglund, D. Z. Ting, and S. D. Gunapala, “Performance of a 1/4 VGA format long-wavelength infrared antimonides-based superlattice focal plane array,” IEEE J. Quantum Electron. 48(7), 878–884 (2012).

Hood, A.

I. Vurgaftman, C. L. Canedy, E. M. Jackson, J. A. Nolde, C. A. Affouda, E. H. Aifer, J. R. Meyer, A. Hood, A. J. Evans, and W. T. Tennant, “Analysis and performance of type-II superlattice detectors,” Opt. Eng. 50(6), 061007 (2011).
[Crossref]

Howell, S. W.

D. W. Peters, P. Davids, J. K. Kim, D. Leonhardt, T. E. Beecham, S. W. Howell, T. Ohta, J. R. Wendt, and J. A. Montoya, “Application of plasmonic subwavelength structuring to enhance infrared detection,” Proc. SPIE 8994, 899419 (2014).
[Crossref]

Huang, D.

C. C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

Jackson, E. M.

I. Vurgaftman, C. L. Canedy, E. M. Jackson, J. A. Nolde, C. A. Affouda, E. H. Aifer, J. R. Meyer, A. Hood, A. J. Evans, and W. T. Tennant, “Analysis and performance of type-II superlattice detectors,” Opt. Eng. 50(6), 061007 (2011).
[Crossref]

Jang, W.-Y.

S.-J. Lee, Z. Ku, A. Barve, J. Montoya, W.-Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat. Commun. 2, 286 (2011).
[Crossref] [PubMed]

Jing, Y. L.

Y. L. Jing, Z. F. Li, Q. Li, X. S. Chen, P. P. Chen, H. Wang, M. Y. Li, N. Li, and W. Lu, “Pixel-level plasmonic microcavity infrared photodetector,” Sci. Rep. 6(1), 25849 (2016).
[Crossref] [PubMed]

Johnson, M. B.

H. Lofti, L. Lei, L. Li, R. Q. Yang, J. C. Keay, M. B. Johnson, Y. Qiu, D. Lubyshev, J. M. Fastenau, and A. W. K. Liu, “High-temperature operation of interband cascade infrared photodetectors with cutoff wavelengths near 8um,” Opt. Eng. 54(6), 063103 (2015).
[Crossref]

R. Q. Yang, Z. Tian, Z. Cai, J. F. Klem, M. B. Johnson, and H. C. Liu, “Interband-cascade infrared photodetectors with superlattice absorbers,” J. Appl. Phys. 107(5), 054514 (2010).
[Crossref]

Jones, C. L.

L. G. Hipwood, C. L. Jones, C. D. Maxey, H. W. Lau, J. Fitzmaurice, R. A. Catchpole, and M. Ordish, “Three-color MOVPE MCT diodes,” Proc. SPIE 6206, 620612 (2006).
[Crossref]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Keay, J. C.

H. Lofti, L. Lei, L. Li, R. Q. Yang, J. C. Keay, M. B. Johnson, Y. Qiu, D. Lubyshev, J. M. Fastenau, and A. W. K. Liu, “High-temperature operation of interband cascade infrared photodetectors with cutoff wavelengths near 8um,” Opt. Eng. 54(6), 063103 (2015).
[Crossref]

Kemme, S. A.

D. W. Peters, P. Davids, J. R. Wendt, A. A. Cruz-Cabrera, S. A. Kemme, and S. Samora, “Metamaterial-inspired high-absorption surfaces for thermal infrared applications,” Proc. SPIE 7609, 76091C (2010).
[Crossref]

Keo, S. A.

SirB. Rafol, S. Soibel, A. Khoshakhlagh, J. Nguyen, J. K. Liu, J. M. Mumolo, S. A. Keo, L. Hoglund, D. Z. Ting, and S. D. Gunapala, “Performance of a 1/4 VGA format long-wavelength infrared antimonides-based superlattice focal plane array,” IEEE J. Quantum Electron. 48(7), 878–884 (2012).

Khoshakhlagh, A.

SirB. Rafol, S. Soibel, A. Khoshakhlagh, J. Nguyen, J. K. Liu, J. M. Mumolo, S. A. Keo, L. Hoglund, D. Z. Ting, and S. D. Gunapala, “Performance of a 1/4 VGA format long-wavelength infrared antimonides-based superlattice focal plane array,” IEEE J. Quantum Electron. 48(7), 878–884 (2012).

A. Khoshakhlagh, J. B. Rodriguez, E. Plis, G. D. Bishop, Y. D. Sharma, H. S. Kim, L. R. Dawson, and S. Krishna, “Bias dependent dual band response from InAs/Ga(In)Sb type II strain layer super lattice detectors,” Appl. Phys. Lett. 91(26), 263504 (2007).
[Crossref]

Kim, H.

J. A. Montoya, A. V. Barve, R. V. Shenoi, M. Naydenkov, H. Kim, Z. Ku, S. R. J. Brueck, S. Krishna, S. J. Lee, and S. K. Noh, “Backside illuminated infrared detectors with plasmonic resonators,” Proc. SPIE 7660, 76603P (2010).
[Crossref]

J. B. Rodriguez, E. Plis, G. Bishop, Y. D. Sharma, H. Kim, L. R. Dawson, and S. Krishna, “nBn structure based on InAs/GaSb type-II strained layer superlattices,” Appl. Phys. Lett. 91(4), 043514 (2007).
[Crossref]

Kim, H. S.

N. Gautam, H. S. Kim, M. N. Kutty, E. Plis, L. R. Dawson, and S. Krishna, “Performance improvement of longwave infrared photodetector based on type-II InAs/GaSb superlattices using unipolar current blocking layers,” Appl. Phys. Lett. 96(23), 231107 (2010).
[Crossref]

A. Khoshakhlagh, J. B. Rodriguez, E. Plis, G. D. Bishop, Y. D. Sharma, H. S. Kim, L. R. Dawson, and S. Krishna, “Bias dependent dual band response from InAs/Ga(In)Sb type II strain layer super lattice detectors,” Appl. Phys. Lett. 91(26), 263504 (2007).
[Crossref]

Kim, H.-S.

Z.-B. Tian, S. Godoy, H.-S. Kim, T. Schuler-Sandy, J. Montoya, and S. Krishna, “High operating temperature interband cascade focal plane arrays,” Appl. Phys. Lett. 105(5), 051109 (2014).
[Crossref]

Kim, J. K.

D. W. Peters, P. Davids, J. K. Kim, D. Leonhardt, T. E. Beecham, S. W. Howell, T. Ohta, J. R. Wendt, and J. A. Montoya, “Application of plasmonic subwavelength structuring to enhance infrared detection,” Proc. SPIE 8994, 899419 (2014).
[Crossref]

J. F. Klem, J. K. Kim, M. J. Cich, S. D. Hawkins, T. R. Fortune, and J. L. Rienstra, “Comparison of nBn and nBp mid-wave barrier infrared photodetectors,” Proc. SPIE 7608, 76081P (2010).
[Crossref]

Kim, Y.-S.

C. C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

Klein, B.

N. Gautam, S. Myers, A. Barve, B. Klein, E. Smith, D. Rhiger, L. Dawson, and S. Krishna, “High operating temperature interband cascade midwave detector based on type-II InAs/GaSb strained layer superlattice,” Appl. Phys. Lett. 101(2), 021106 (2012).
[Crossref]

Klem, J. F.

J. F. Klem, J. K. Kim, M. J. Cich, S. D. Hawkins, T. R. Fortune, and J. L. Rienstra, “Comparison of nBn and nBp mid-wave barrier infrared photodetectors,” Proc. SPIE 7608, 76081P (2010).
[Crossref]

R. Q. Yang, Z. Tian, Z. Cai, J. F. Klem, M. B. Johnson, and H. C. Liu, “Interband-cascade infrared photodetectors with superlattice absorbers,” J. Appl. Phys. 107(5), 054514 (2010).
[Crossref]

Kowalweski, A.

W. Pusz, A. Kowalweski, P. Martyniuk, W. Gawron, E. Plis, S. Krishna, and A. Rogalksi, “Mid-wavelength infrared type-II InAs/GaSb superlattice interband cascade photodetectors,” Opt. Eng. 53(4), 043107 (2014).
[Crossref]

Krishna, S.

Z.-B. Tian and S. Krishna, “Mid-infrared interband cascade photodetectors with different absorber designs,” IEEE J. Quantum Electron. 51(4), 4300105 (2015).
[Crossref]

Z.-B. Tian, S. Godoy, H.-S. Kim, T. Schuler-Sandy, J. Montoya, and S. Krishna, “High operating temperature interband cascade focal plane arrays,” Appl. Phys. Lett. 105(5), 051109 (2014).
[Crossref]

W. Pusz, A. Kowalweski, P. Martyniuk, W. Gawron, E. Plis, S. Krishna, and A. Rogalksi, “Mid-wavelength infrared type-II InAs/GaSb superlattice interband cascade photodetectors,” Opt. Eng. 53(4), 043107 (2014).
[Crossref]

Z.-B. Tian, E. Plis, R. Hinkey, and S. Krishna, “The influence of composition in InAs/GaSb type-II superlattices on their optical properties,” Electron. Lett. 50(23), 1733–1734 (2014).
[Crossref]

N. Gautam, S. Myers, A. Barve, B. Klein, E. Smith, D. Rhiger, L. Dawson, and S. Krishna, “High operating temperature interband cascade midwave detector based on type-II InAs/GaSb strained layer superlattice,” Appl. Phys. Lett. 101(2), 021106 (2012).
[Crossref]

N. Gautam, M. Naydenkov, S. Myers, A. V. Barve, E. Plis, T. Rotter, L. R. Dawson, and S. Krishna, “Three color infrared detector using InAs/GaSb superlattices with unipolor barriers,” Appl. Phys. Lett. 98(12), 121106 (2011).
[Crossref]

S.-J. Lee, Z. Ku, A. Barve, J. Montoya, W.-Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat. Commun. 2, 286 (2011).
[Crossref] [PubMed]

J. A. Montoya, A. V. Barve, R. V. Shenoi, M. Naydenkov, H. Kim, Z. Ku, S. R. J. Brueck, S. Krishna, S. J. Lee, and S. K. Noh, “Backside illuminated infrared detectors with plasmonic resonators,” Proc. SPIE 7660, 76603P (2010).
[Crossref]

S. C. Lee, S. Krishna, and S. R. J. Brueck, “Light direction-dependent plasmonic enhancement in quantum dot infrared photodetectors,” Appl. Phys. Lett. 97(2), 021112 (2010).
[Crossref]

C. C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

N. Gautam, H. S. Kim, M. N. Kutty, E. Plis, L. R. Dawson, and S. Krishna, “Performance improvement of longwave infrared photodetector based on type-II InAs/GaSb superlattices using unipolar current blocking layers,” Appl. Phys. Lett. 96(23), 231107 (2010).
[Crossref]

S. Krishna, “The Infrared Retina,” J. Phys. D Appl. Phys. 42(23), 234005 (2009).
[Crossref]

S. C. Lee, S. Krishna, and S. R. J. Brueck, “Quantum dot infrared photodetector enhanced by surface plasma wave excitation,” Opt. Express 17(25), 23160–23168 (2009).
[Crossref] [PubMed]

A. Khoshakhlagh, J. B. Rodriguez, E. Plis, G. D. Bishop, Y. D. Sharma, H. S. Kim, L. R. Dawson, and S. Krishna, “Bias dependent dual band response from InAs/Ga(In)Sb type II strain layer super lattice detectors,” Appl. Phys. Lett. 91(26), 263504 (2007).
[Crossref]

J. B. Rodriguez, E. Plis, G. Bishop, Y. D. Sharma, H. Kim, L. R. Dawson, and S. Krishna, “nBn structure based on InAs/GaSb type-II strained layer superlattices,” Appl. Phys. Lett. 91(4), 043514 (2007).
[Crossref]

Ku, Z.

S.-J. Lee, Z. Ku, A. Barve, J. Montoya, W.-Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat. Commun. 2, 286 (2011).
[Crossref] [PubMed]

J. A. Montoya, A. V. Barve, R. V. Shenoi, M. Naydenkov, H. Kim, Z. Ku, S. R. J. Brueck, S. Krishna, S. J. Lee, and S. K. Noh, “Backside illuminated infrared detectors with plasmonic resonators,” Proc. SPIE 7660, 76603P (2010).
[Crossref]

Kutluer, K.

O. Salihoglu, A. Muti, K. Kutluer, T. Tansel, R. Turan, Y. Ergun, and A. Aydinli, “N-structure for type-II superlattice photodetectors,” Appl. Phys. Lett. 101(7), 073505 (2012).
[Crossref]

Kutty, M. N.

N. Gautam, H. S. Kim, M. N. Kutty, E. Plis, L. R. Dawson, and S. Krishna, “Performance improvement of longwave infrared photodetector based on type-II InAs/GaSb superlattices using unipolar current blocking layers,” Appl. Phys. Lett. 96(23), 231107 (2010).
[Crossref]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Lau, H. W.

L. G. Hipwood, C. L. Jones, C. D. Maxey, H. W. Lau, J. Fitzmaurice, R. A. Catchpole, and M. Ordish, “Three-color MOVPE MCT diodes,” Proc. SPIE 6206, 620612 (2006).
[Crossref]

Law, S.

Lee, S. C.

S. C. Lee, S. Krishna, and S. R. J. Brueck, “Light direction-dependent plasmonic enhancement in quantum dot infrared photodetectors,” Appl. Phys. Lett. 97(2), 021112 (2010).
[Crossref]

S. C. Lee, S. Krishna, and S. R. J. Brueck, “Quantum dot infrared photodetector enhanced by surface plasma wave excitation,” Opt. Express 17(25), 23160–23168 (2009).
[Crossref] [PubMed]

Lee, S. J.

J. A. Montoya, A. V. Barve, R. V. Shenoi, M. Naydenkov, H. Kim, Z. Ku, S. R. J. Brueck, S. Krishna, S. J. Lee, and S. K. Noh, “Backside illuminated infrared detectors with plasmonic resonators,” Proc. SPIE 7660, 76603P (2010).
[Crossref]

Lee, S.-J.

S.-J. Lee, Z. Ku, A. Barve, J. Montoya, W.-Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat. Commun. 2, 286 (2011).
[Crossref] [PubMed]

Lei, L.

H. Lofti, L. Lei, L. Li, R. Q. Yang, J. C. Keay, M. B. Johnson, Y. Qiu, D. Lubyshev, J. M. Fastenau, and A. W. K. Liu, “High-temperature operation of interband cascade infrared photodetectors with cutoff wavelengths near 8um,” Opt. Eng. 54(6), 063103 (2015).
[Crossref]

Leonhardt, D.

D. W. Peters, P. Davids, J. K. Kim, D. Leonhardt, T. E. Beecham, S. W. Howell, T. Ohta, J. R. Wendt, and J. A. Montoya, “Application of plasmonic subwavelength structuring to enhance infrared detection,” Proc. SPIE 8994, 899419 (2014).
[Crossref]

Lezec, H. J.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

Li, J. V.

J. V. Li, R. Q. Yang, C. J. Hill, and S. L. Chuang, “Interband cascade detectors with room temperature photovoltaic operation,” Appl. Phys. Lett. 86(10), 101102 (2005).
[Crossref]

Li, L.

H. Lofti, L. Lei, L. Li, R. Q. Yang, J. C. Keay, M. B. Johnson, Y. Qiu, D. Lubyshev, J. M. Fastenau, and A. W. K. Liu, “High-temperature operation of interband cascade infrared photodetectors with cutoff wavelengths near 8um,” Opt. Eng. 54(6), 063103 (2015).
[Crossref]

Li, M. Y.

Y. L. Jing, Z. F. Li, Q. Li, X. S. Chen, P. P. Chen, H. Wang, M. Y. Li, N. Li, and W. Lu, “Pixel-level plasmonic microcavity infrared photodetector,” Sci. Rep. 6(1), 25849 (2016).
[Crossref] [PubMed]

Li, N.

Y. L. Jing, Z. F. Li, Q. Li, X. S. Chen, P. P. Chen, H. Wang, M. Y. Li, N. Li, and W. Lu, “Pixel-level plasmonic microcavity infrared photodetector,” Sci. Rep. 6(1), 25849 (2016).
[Crossref] [PubMed]

Li, Q.

Y. L. Jing, Z. F. Li, Q. Li, X. S. Chen, P. P. Chen, H. Wang, M. Y. Li, N. Li, and W. Lu, “Pixel-level plasmonic microcavity infrared photodetector,” Sci. Rep. 6(1), 25849 (2016).
[Crossref] [PubMed]

Li, Z. F.

Y. L. Jing, Z. F. Li, Q. Li, X. S. Chen, P. P. Chen, H. Wang, M. Y. Li, N. Li, and W. Lu, “Pixel-level plasmonic microcavity infrared photodetector,” Sci. Rep. 6(1), 25849 (2016).
[Crossref] [PubMed]

Lin, S.-Y.

C. C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

Liu, A. W. K.

H. Lofti, L. Lei, L. Li, R. Q. Yang, J. C. Keay, M. B. Johnson, Y. Qiu, D. Lubyshev, J. M. Fastenau, and A. W. K. Liu, “High-temperature operation of interband cascade infrared photodetectors with cutoff wavelengths near 8um,” Opt. Eng. 54(6), 063103 (2015).
[Crossref]

Liu, H. C.

R. Q. Yang, Z. Tian, Z. Cai, J. F. Klem, M. B. Johnson, and H. C. Liu, “Interband-cascade infrared photodetectors with superlattice absorbers,” J. Appl. Phys. 107(5), 054514 (2010).
[Crossref]

Liu, J. K.

SirB. Rafol, S. Soibel, A. Khoshakhlagh, J. Nguyen, J. K. Liu, J. M. Mumolo, S. A. Keo, L. Hoglund, D. Z. Ting, and S. D. Gunapala, “Performance of a 1/4 VGA format long-wavelength infrared antimonides-based superlattice focal plane array,” IEEE J. Quantum Electron. 48(7), 878–884 (2012).

Liu, X.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Lofti, H.

H. Lofti, L. Lei, L. Li, R. Q. Yang, J. C. Keay, M. B. Johnson, Y. Qiu, D. Lubyshev, J. M. Fastenau, and A. W. K. Liu, “High-temperature operation of interband cascade infrared photodetectors with cutoff wavelengths near 8um,” Opt. Eng. 54(6), 063103 (2015).
[Crossref]

Lu, G.

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 010901 (2014).
[Crossref] [PubMed]

Lu, W.

Y. L. Jing, Z. F. Li, Q. Li, X. S. Chen, P. P. Chen, H. Wang, M. Y. Li, N. Li, and W. Lu, “Pixel-level plasmonic microcavity infrared photodetector,” Sci. Rep. 6(1), 25849 (2016).
[Crossref] [PubMed]

Lubyshev, D.

H. Lofti, L. Lei, L. Li, R. Q. Yang, J. C. Keay, M. B. Johnson, Y. Qiu, D. Lubyshev, J. M. Fastenau, and A. W. K. Liu, “High-temperature operation of interband cascade infrared photodetectors with cutoff wavelengths near 8um,” Opt. Eng. 54(6), 063103 (2015).
[Crossref]

Mailhiot, C.

D. L. Smith and C. Mailhiot, “Theory of semiconductor superlattice electronic structure,” Rev. Mod. Phys. 62(1), 173–234 (1990).
[Crossref]

Maimon, S.

S. Maimon and G. W. Wicks, “nBn detector, an infrared detector with reduced dark current and higher operating temperature,” Appl. Phys. Lett. 89(15), 151109 (2006).
[Crossref]

Malloy, K. J.

Martín-Moreno, L.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

Martyniuk, P.

W. Pusz, A. Kowalweski, P. Martyniuk, W. Gawron, E. Plis, S. Krishna, and A. Rogalksi, “Mid-wavelength infrared type-II InAs/GaSb superlattice interband cascade photodetectors,” Opt. Eng. 53(4), 043107 (2014).
[Crossref]

Maxey, C. D.

L. G. Hipwood, C. L. Jones, C. D. Maxey, H. W. Lau, J. Fitzmaurice, R. A. Catchpole, and M. Ordish, “Three-color MOVPE MCT diodes,” Proc. SPIE 6206, 620612 (2006).
[Crossref]

Meyer, J. R.

I. Vurgaftman, C. L. Canedy, E. M. Jackson, J. A. Nolde, C. A. Affouda, E. H. Aifer, J. R. Meyer, A. Hood, A. J. Evans, and W. T. Tennant, “Analysis and performance of type-II superlattice detectors,” Opt. Eng. 50(6), 061007 (2011).
[Crossref]

Minhas, B. K.

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Moharam, M. G.

Montoya, J.

Z.-B. Tian, S. Godoy, H.-S. Kim, T. Schuler-Sandy, J. Montoya, and S. Krishna, “High operating temperature interband cascade focal plane arrays,” Appl. Phys. Lett. 105(5), 051109 (2014).
[Crossref]

S.-J. Lee, Z. Ku, A. Barve, J. Montoya, W.-Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat. Commun. 2, 286 (2011).
[Crossref] [PubMed]

Montoya, J. A.

D. W. Peters, P. Davids, J. K. Kim, D. Leonhardt, T. E. Beecham, S. W. Howell, T. Ohta, J. R. Wendt, and J. A. Montoya, “Application of plasmonic subwavelength structuring to enhance infrared detection,” Proc. SPIE 8994, 899419 (2014).
[Crossref]

J. A. Montoya, A. V. Barve, R. V. Shenoi, M. Naydenkov, H. Kim, Z. Ku, S. R. J. Brueck, S. Krishna, S. J. Lee, and S. K. Noh, “Backside illuminated infrared detectors with plasmonic resonators,” Proc. SPIE 7660, 76603P (2010).
[Crossref]

Mumolo, J. M.

SirB. Rafol, S. Soibel, A. Khoshakhlagh, J. Nguyen, J. K. Liu, J. M. Mumolo, S. A. Keo, L. Hoglund, D. Z. Ting, and S. D. Gunapala, “Performance of a 1/4 VGA format long-wavelength infrared antimonides-based superlattice focal plane array,” IEEE J. Quantum Electron. 48(7), 878–884 (2012).

Muti, A.

O. Salihoglu, A. Muti, K. Kutluer, T. Tansel, R. Turan, Y. Ergun, and A. Aydinli, “N-structure for type-II superlattice photodetectors,” Appl. Phys. Lett. 101(7), 073505 (2012).
[Crossref]

Myers, S.

N. Gautam, S. Myers, A. Barve, B. Klein, E. Smith, D. Rhiger, L. Dawson, and S. Krishna, “High operating temperature interband cascade midwave detector based on type-II InAs/GaSb strained layer superlattice,” Appl. Phys. Lett. 101(2), 021106 (2012).
[Crossref]

N. Gautam, M. Naydenkov, S. Myers, A. V. Barve, E. Plis, T. Rotter, L. R. Dawson, and S. Krishna, “Three color infrared detector using InAs/GaSb superlattices with unipolor barriers,” Appl. Phys. Lett. 98(12), 121106 (2011).
[Crossref]

Naydenkov, M.

N. Gautam, M. Naydenkov, S. Myers, A. V. Barve, E. Plis, T. Rotter, L. R. Dawson, and S. Krishna, “Three color infrared detector using InAs/GaSb superlattices with unipolor barriers,” Appl. Phys. Lett. 98(12), 121106 (2011).
[Crossref]

J. A. Montoya, A. V. Barve, R. V. Shenoi, M. Naydenkov, H. Kim, Z. Ku, S. R. J. Brueck, S. Krishna, S. J. Lee, and S. K. Noh, “Backside illuminated infrared detectors with plasmonic resonators,” Proc. SPIE 7660, 76603P (2010).
[Crossref]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Nguyen, B.-M.

B.-M. Nguyen, D. Hoffman, P.-Y. Delaunay, and M. Razeghi, “Background limited long wavelength infrared type-II InAs/GaSb superlattice photodiodes operating at 110K,” Phys. Lett. 91(12), 163511 (2007).

Nguyen, J.

SirB. Rafol, S. Soibel, A. Khoshakhlagh, J. Nguyen, J. K. Liu, J. M. Mumolo, S. A. Keo, L. Hoglund, D. Z. Ting, and S. D. Gunapala, “Performance of a 1/4 VGA format long-wavelength infrared antimonides-based superlattice focal plane array,” IEEE J. Quantum Electron. 48(7), 878–884 (2012).

Noh, S. K.

S.-J. Lee, Z. Ku, A. Barve, J. Montoya, W.-Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat. Commun. 2, 286 (2011).
[Crossref] [PubMed]

J. A. Montoya, A. V. Barve, R. V. Shenoi, M. Naydenkov, H. Kim, Z. Ku, S. R. J. Brueck, S. Krishna, S. J. Lee, and S. K. Noh, “Backside illuminated infrared detectors with plasmonic resonators,” Proc. SPIE 7660, 76603P (2010).
[Crossref]

Nolde, J. A.

I. Vurgaftman, C. L. Canedy, E. M. Jackson, J. A. Nolde, C. A. Affouda, E. H. Aifer, J. R. Meyer, A. Hood, A. J. Evans, and W. T. Tennant, “Analysis and performance of type-II superlattice detectors,” Opt. Eng. 50(6), 061007 (2011).
[Crossref]

Ohta, T.

D. W. Peters, P. Davids, J. K. Kim, D. Leonhardt, T. E. Beecham, S. W. Howell, T. Ohta, J. R. Wendt, and J. A. Montoya, “Application of plasmonic subwavelength structuring to enhance infrared detection,” Proc. SPIE 8994, 899419 (2014).
[Crossref]

Ordish, M.

L. G. Hipwood, C. L. Jones, C. D. Maxey, H. W. Lau, J. Fitzmaurice, R. A. Catchpole, and M. Ordish, “Three-color MOVPE MCT diodes,” Proc. SPIE 6206, 620612 (2006).
[Crossref]

Padilla, W. J.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Pellerin, K. M.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Peters, D. W.

D. W. Peters, P. Davids, J. K. Kim, D. Leonhardt, T. E. Beecham, S. W. Howell, T. Ohta, J. R. Wendt, and J. A. Montoya, “Application of plasmonic subwavelength structuring to enhance infrared detection,” Proc. SPIE 8994, 899419 (2014).
[Crossref]

D. W. Peters, P. Davids, J. R. Wendt, A. A. Cruz-Cabrera, S. A. Kemme, and S. Samora, “Metamaterial-inspired high-absorption surfaces for thermal infrared applications,” Proc. SPIE 7609, 76091C (2010).
[Crossref]

Plis, E.

Z.-B. Tian, E. Plis, R. Hinkey, and S. Krishna, “The influence of composition in InAs/GaSb type-II superlattices on their optical properties,” Electron. Lett. 50(23), 1733–1734 (2014).
[Crossref]

W. Pusz, A. Kowalweski, P. Martyniuk, W. Gawron, E. Plis, S. Krishna, and A. Rogalksi, “Mid-wavelength infrared type-II InAs/GaSb superlattice interband cascade photodetectors,” Opt. Eng. 53(4), 043107 (2014).
[Crossref]

N. Gautam, M. Naydenkov, S. Myers, A. V. Barve, E. Plis, T. Rotter, L. R. Dawson, and S. Krishna, “Three color infrared detector using InAs/GaSb superlattices with unipolor barriers,” Appl. Phys. Lett. 98(12), 121106 (2011).
[Crossref]

N. Gautam, H. S. Kim, M. N. Kutty, E. Plis, L. R. Dawson, and S. Krishna, “Performance improvement of longwave infrared photodetector based on type-II InAs/GaSb superlattices using unipolar current blocking layers,” Appl. Phys. Lett. 96(23), 231107 (2010).
[Crossref]

J. B. Rodriguez, E. Plis, G. Bishop, Y. D. Sharma, H. Kim, L. R. Dawson, and S. Krishna, “nBn structure based on InAs/GaSb type-II strained layer superlattices,” Appl. Phys. Lett. 91(4), 043514 (2007).
[Crossref]

A. Khoshakhlagh, J. B. Rodriguez, E. Plis, G. D. Bishop, Y. D. Sharma, H. S. Kim, L. R. Dawson, and S. Krishna, “Bias dependent dual band response from InAs/Ga(In)Sb type II strain layer super lattice detectors,” Appl. Phys. Lett. 91(26), 263504 (2007).
[Crossref]

Pusz, W.

W. Pusz, A. Kowalweski, P. Martyniuk, W. Gawron, E. Plis, S. Krishna, and A. Rogalksi, “Mid-wavelength infrared type-II InAs/GaSb superlattice interband cascade photodetectors,” Opt. Eng. 53(4), 043107 (2014).
[Crossref]

Qiu, Y.

H. Lofti, L. Lei, L. Li, R. Q. Yang, J. C. Keay, M. B. Johnson, Y. Qiu, D. Lubyshev, J. M. Fastenau, and A. W. K. Liu, “High-temperature operation of interband cascade infrared photodetectors with cutoff wavelengths near 8um,” Opt. Eng. 54(6), 063103 (2015).
[Crossref]

Rafol, B.

SirB. Rafol, S. Soibel, A. Khoshakhlagh, J. Nguyen, J. K. Liu, J. M. Mumolo, S. A. Keo, L. Hoglund, D. Z. Ting, and S. D. Gunapala, “Performance of a 1/4 VGA format long-wavelength infrared antimonides-based superlattice focal plane array,” IEEE J. Quantum Electron. 48(7), 878–884 (2012).

Razeghi, M.

A. M. Hoang, A. Dehzangi, S. Adhikary, and M. Razeghi, “High performance bias-selectable three-color short-wave/mid-wave/long-wave infrared photodetectors based on type-II InAs/GaSb/AlSb superlattices,” Sci. Rep. 6(1), 24144 (2016).
[Crossref] [PubMed]

B.-M. Nguyen, D. Hoffman, P.-Y. Delaunay, and M. Razeghi, “Background limited long wavelength infrared type-II InAs/GaSb superlattice photodiodes operating at 110K,” Phys. Lett. 91(12), 163511 (2007).

Reisinger, A.

S.-J. Lee, Z. Ku, A. Barve, J. Montoya, W.-Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat. Commun. 2, 286 (2011).
[Crossref] [PubMed]

Rhiger, D.

N. Gautam, S. Myers, A. Barve, B. Klein, E. Smith, D. Rhiger, L. Dawson, and S. Krishna, “High operating temperature interband cascade midwave detector based on type-II InAs/GaSb strained layer superlattice,” Appl. Phys. Lett. 101(2), 021106 (2012).
[Crossref]

Rienstra, J. L.

J. F. Klem, J. K. Kim, M. J. Cich, S. D. Hawkins, T. R. Fortune, and J. L. Rienstra, “Comparison of nBn and nBp mid-wave barrier infrared photodetectors,” Proc. SPIE 7608, 76081P (2010).
[Crossref]

Rodriguez, J. B.

J. B. Rodriguez, E. Plis, G. Bishop, Y. D. Sharma, H. Kim, L. R. Dawson, and S. Krishna, “nBn structure based on InAs/GaSb type-II strained layer superlattices,” Appl. Phys. Lett. 91(4), 043514 (2007).
[Crossref]

A. Khoshakhlagh, J. B. Rodriguez, E. Plis, G. D. Bishop, Y. D. Sharma, H. S. Kim, L. R. Dawson, and S. Krishna, “Bias dependent dual band response from InAs/Ga(In)Sb type II strain layer super lattice detectors,” Appl. Phys. Lett. 91(26), 263504 (2007).
[Crossref]

Rogalksi, A.

W. Pusz, A. Kowalweski, P. Martyniuk, W. Gawron, E. Plis, S. Krishna, and A. Rogalksi, “Mid-wavelength infrared type-II InAs/GaSb superlattice interband cascade photodetectors,” Opt. Eng. 53(4), 043107 (2014).
[Crossref]

Rogalski, A.

A. Rogalski, “Recent progress in infrared detector technologies,” Infrared Phys. Technol. 54(3), 136–154 (2011).
[Crossref]

A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105(9), 091101 (2009).
[Crossref]

Rotter, T.

N. Gautam, M. Naydenkov, S. Myers, A. V. Barve, E. Plis, T. Rotter, L. R. Dawson, and S. Krishna, “Three color infrared detector using InAs/GaSb superlattices with unipolor barriers,” Appl. Phys. Lett. 98(12), 121106 (2011).
[Crossref]

Sai-Halasz, B. A.

R. Tsu, L. Esaki, and B. A. Sai-Halasz, “A new semiconductor superlattice,” Appl. Phys. Lett. 30(12), 651–653 (1977).
[Crossref]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Salihoglu, O.

O. Salihoglu, A. Muti, K. Kutluer, T. Tansel, R. Turan, Y. Ergun, and A. Aydinli, “N-structure for type-II superlattice photodetectors,” Appl. Phys. Lett. 101(7), 073505 (2012).
[Crossref]

Samora, S.

D. W. Peters, P. Davids, J. R. Wendt, A. A. Cruz-Cabrera, S. A. Kemme, and S. Samora, “Metamaterial-inspired high-absorption surfaces for thermal infrared applications,” Proc. SPIE 7609, 76091C (2010).
[Crossref]

Schuler-Sandy, T.

Z.-B. Tian, S. Godoy, H.-S. Kim, T. Schuler-Sandy, J. Montoya, and S. Krishna, “High operating temperature interband cascade focal plane arrays,” Appl. Phys. Lett. 105(5), 051109 (2014).
[Crossref]

Schultz, S.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Sharma, Y. D.

C. C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

A. Khoshakhlagh, J. B. Rodriguez, E. Plis, G. D. Bishop, Y. D. Sharma, H. S. Kim, L. R. Dawson, and S. Krishna, “Bias dependent dual band response from InAs/Ga(In)Sb type II strain layer super lattice detectors,” Appl. Phys. Lett. 91(26), 263504 (2007).
[Crossref]

J. B. Rodriguez, E. Plis, G. Bishop, Y. D. Sharma, H. Kim, L. R. Dawson, and S. Krishna, “nBn structure based on InAs/GaSb type-II strained layer superlattices,” Appl. Phys. Lett. 91(4), 043514 (2007).
[Crossref]

Shenoi, R. V.

J. A. Montoya, A. V. Barve, R. V. Shenoi, M. Naydenkov, H. Kim, Z. Ku, S. R. J. Brueck, S. Krishna, S. J. Lee, and S. K. Noh, “Backside illuminated infrared detectors with plasmonic resonators,” Proc. SPIE 7660, 76603P (2010).
[Crossref]

C. C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

Smith, D. L.

D. L. Smith and C. Mailhiot, “Theory of semiconductor superlattice electronic structure,” Rev. Mod. Phys. 62(1), 173–234 (1990).
[Crossref]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Smith, E.

N. Gautam, S. Myers, A. Barve, B. Klein, E. Smith, D. Rhiger, L. Dawson, and S. Krishna, “High operating temperature interband cascade midwave detector based on type-II InAs/GaSb strained layer superlattice,” Appl. Phys. Lett. 101(2), 021106 (2012).
[Crossref]

Soibel, S.

SirB. Rafol, S. Soibel, A. Khoshakhlagh, J. Nguyen, J. K. Liu, J. M. Mumolo, S. A. Keo, L. Hoglund, D. Z. Ting, and S. D. Gunapala, “Performance of a 1/4 VGA format long-wavelength infrared antimonides-based superlattice focal plane array,” IEEE J. Quantum Electron. 48(7), 878–884 (2012).

Starr, A. F.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Starr, T.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Sundaram, M.

S.-J. Lee, Z. Ku, A. Barve, J. Montoya, W.-Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat. Commun. 2, 286 (2011).
[Crossref] [PubMed]

Tansel, T.

O. Salihoglu, A. Muti, K. Kutluer, T. Tansel, R. Turan, Y. Ergun, and A. Aydinli, “N-structure for type-II superlattice photodetectors,” Appl. Phys. Lett. 101(7), 073505 (2012).
[Crossref]

Taylor, A. M.

Tennant, W. T.

I. Vurgaftman, C. L. Canedy, E. M. Jackson, J. A. Nolde, C. A. Affouda, E. H. Aifer, J. R. Meyer, A. Hood, A. J. Evans, and W. T. Tennant, “Analysis and performance of type-II superlattice detectors,” Opt. Eng. 50(6), 061007 (2011).
[Crossref]

Thio, T.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

Tian, Z.

R. Q. Yang, Z. Tian, Z. Cai, J. F. Klem, M. B. Johnson, and H. C. Liu, “Interband-cascade infrared photodetectors with superlattice absorbers,” J. Appl. Phys. 107(5), 054514 (2010).
[Crossref]

Tian, Z.-B.

Z.-B. Tian and S. Krishna, “Mid-infrared interband cascade photodetectors with different absorber designs,” IEEE J. Quantum Electron. 51(4), 4300105 (2015).
[Crossref]

Z.-B. Tian, S. Godoy, H.-S. Kim, T. Schuler-Sandy, J. Montoya, and S. Krishna, “High operating temperature interband cascade focal plane arrays,” Appl. Phys. Lett. 105(5), 051109 (2014).
[Crossref]

Z.-B. Tian, E. Plis, R. Hinkey, and S. Krishna, “The influence of composition in InAs/GaSb type-II superlattices on their optical properties,” Electron. Lett. 50(23), 1733–1734 (2014).
[Crossref]

Ting, D. Z.

SirB. Rafol, S. Soibel, A. Khoshakhlagh, J. Nguyen, J. K. Liu, J. M. Mumolo, S. A. Keo, L. Hoglund, D. Z. Ting, and S. D. Gunapala, “Performance of a 1/4 VGA format long-wavelength infrared antimonides-based superlattice focal plane array,” IEEE J. Quantum Electron. 48(7), 878–884 (2012).

Tsu, R.

R. Tsu, L. Esaki, and B. A. Sai-Halasz, “A new semiconductor superlattice,” Appl. Phys. Lett. 30(12), 651–653 (1977).
[Crossref]

Turan, R.

O. Salihoglu, A. Muti, K. Kutluer, T. Tansel, R. Turan, Y. Ergun, and A. Aydinli, “N-structure for type-II superlattice photodetectors,” Appl. Phys. Lett. 101(7), 073505 (2012).
[Crossref]

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Vurgaftman, I.

I. Vurgaftman, C. L. Canedy, E. M. Jackson, J. A. Nolde, C. A. Affouda, E. H. Aifer, J. R. Meyer, A. Hood, A. J. Evans, and W. T. Tennant, “Analysis and performance of type-II superlattice detectors,” Opt. Eng. 50(6), 061007 (2011).
[Crossref]

Wang, H.

Y. L. Jing, Z. F. Li, Q. Li, X. S. Chen, P. P. Chen, H. Wang, M. Y. Li, N. Li, and W. Lu, “Pixel-level plasmonic microcavity infrared photodetector,” Sci. Rep. 6(1), 25849 (2016).
[Crossref] [PubMed]

Wasserman, D.

Watts, C. M.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

Wendt, J. R.

D. W. Peters, P. Davids, J. K. Kim, D. Leonhardt, T. E. Beecham, S. W. Howell, T. Ohta, J. R. Wendt, and J. A. Montoya, “Application of plasmonic subwavelength structuring to enhance infrared detection,” Proc. SPIE 8994, 899419 (2014).
[Crossref]

D. W. Peters, P. Davids, J. R. Wendt, A. A. Cruz-Cabrera, S. A. Kemme, and S. Samora, “Metamaterial-inspired high-absorption surfaces for thermal infrared applications,” Proc. SPIE 7609, 76091C (2010).
[Crossref]

Wicks, G. W.

S. Maimon and G. W. Wicks, “nBn detector, an infrared detector with reduced dark current and higher operating temperature,” Appl. Phys. Lett. 89(15), 151109 (2006).
[Crossref]

Yang, R. Q.

H. Lofti, L. Lei, L. Li, R. Q. Yang, J. C. Keay, M. B. Johnson, Y. Qiu, D. Lubyshev, J. M. Fastenau, and A. W. K. Liu, “High-temperature operation of interband cascade infrared photodetectors with cutoff wavelengths near 8um,” Opt. Eng. 54(6), 063103 (2015).
[Crossref]

R. Q. Yang, Z. Tian, Z. Cai, J. F. Klem, M. B. Johnson, and H. C. Liu, “Interband-cascade infrared photodetectors with superlattice absorbers,” J. Appl. Phys. 107(5), 054514 (2010).
[Crossref]

J. V. Li, R. Q. Yang, C. J. Hill, and S. L. Chuang, “Interband cascade detectors with room temperature photovoltaic operation,” Appl. Phys. Lett. 86(10), 101102 (2005).
[Crossref]

Adv. Mater. (1)

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

Appl. Phys. Lett. (11)

R. Tsu, L. Esaki, and B. A. Sai-Halasz, “A new semiconductor superlattice,” Appl. Phys. Lett. 30(12), 651–653 (1977).
[Crossref]

S. Maimon and G. W. Wicks, “nBn detector, an infrared detector with reduced dark current and higher operating temperature,” Appl. Phys. Lett. 89(15), 151109 (2006).
[Crossref]

J. B. Rodriguez, E. Plis, G. Bishop, Y. D. Sharma, H. Kim, L. R. Dawson, and S. Krishna, “nBn structure based on InAs/GaSb type-II strained layer superlattices,” Appl. Phys. Lett. 91(4), 043514 (2007).
[Crossref]

O. Salihoglu, A. Muti, K. Kutluer, T. Tansel, R. Turan, Y. Ergun, and A. Aydinli, “N-structure for type-II superlattice photodetectors,” Appl. Phys. Lett. 101(7), 073505 (2012).
[Crossref]

N. Gautam, H. S. Kim, M. N. Kutty, E. Plis, L. R. Dawson, and S. Krishna, “Performance improvement of longwave infrared photodetector based on type-II InAs/GaSb superlattices using unipolar current blocking layers,” Appl. Phys. Lett. 96(23), 231107 (2010).
[Crossref]

J. V. Li, R. Q. Yang, C. J. Hill, and S. L. Chuang, “Interband cascade detectors with room temperature photovoltaic operation,” Appl. Phys. Lett. 86(10), 101102 (2005).
[Crossref]

N. Gautam, S. Myers, A. Barve, B. Klein, E. Smith, D. Rhiger, L. Dawson, and S. Krishna, “High operating temperature interband cascade midwave detector based on type-II InAs/GaSb strained layer superlattice,” Appl. Phys. Lett. 101(2), 021106 (2012).
[Crossref]

A. Khoshakhlagh, J. B. Rodriguez, E. Plis, G. D. Bishop, Y. D. Sharma, H. S. Kim, L. R. Dawson, and S. Krishna, “Bias dependent dual band response from InAs/Ga(In)Sb type II strain layer super lattice detectors,” Appl. Phys. Lett. 91(26), 263504 (2007).
[Crossref]

N. Gautam, M. Naydenkov, S. Myers, A. V. Barve, E. Plis, T. Rotter, L. R. Dawson, and S. Krishna, “Three color infrared detector using InAs/GaSb superlattices with unipolor barriers,” Appl. Phys. Lett. 98(12), 121106 (2011).
[Crossref]

Z.-B. Tian, S. Godoy, H.-S. Kim, T. Schuler-Sandy, J. Montoya, and S. Krishna, “High operating temperature interband cascade focal plane arrays,” Appl. Phys. Lett. 105(5), 051109 (2014).
[Crossref]

S. C. Lee, S. Krishna, and S. R. J. Brueck, “Light direction-dependent plasmonic enhancement in quantum dot infrared photodetectors,” Appl. Phys. Lett. 97(2), 021112 (2010).
[Crossref]

Electron. Lett. (1)

Z.-B. Tian, E. Plis, R. Hinkey, and S. Krishna, “The influence of composition in InAs/GaSb type-II superlattices on their optical properties,” Electron. Lett. 50(23), 1733–1734 (2014).
[Crossref]

IEEE J. Quantum Electron. (2)

Z.-B. Tian and S. Krishna, “Mid-infrared interband cascade photodetectors with different absorber designs,” IEEE J. Quantum Electron. 51(4), 4300105 (2015).
[Crossref]

SirB. Rafol, S. Soibel, A. Khoshakhlagh, J. Nguyen, J. K. Liu, J. M. Mumolo, S. A. Keo, L. Hoglund, D. Z. Ting, and S. D. Gunapala, “Performance of a 1/4 VGA format long-wavelength infrared antimonides-based superlattice focal plane array,” IEEE J. Quantum Electron. 48(7), 878–884 (2012).

Infrared Phys. Technol. (1)

A. Rogalski, “Recent progress in infrared detector technologies,” Infrared Phys. Technol. 54(3), 136–154 (2011).
[Crossref]

J. Appl. Phys. (2)

A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105(9), 091101 (2009).
[Crossref]

R. Q. Yang, Z. Tian, Z. Cai, J. F. Klem, M. B. Johnson, and H. C. Liu, “Interband-cascade infrared photodetectors with superlattice absorbers,” J. Appl. Phys. 107(5), 054514 (2010).
[Crossref]

J. Biomed. Opt. (1)

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 010901 (2014).
[Crossref] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Phys. D Appl. Phys. (1)

S. Krishna, “The Infrared Retina,” J. Phys. D Appl. Phys. 42(23), 234005 (2009).
[Crossref]

Nano Lett. (1)

C. C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

Nat. Commun. (1)

S.-J. Lee, Z. Ku, A. Barve, J. Montoya, W.-Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat. Commun. 2, 286 (2011).
[Crossref] [PubMed]

Opt. Eng. (4)

M. L. Althouse and C. I. Chang, “Chemical vapor detection with a multispectral thermal imager,” Opt. Eng. 30(11), 1725 (1991).
[Crossref]

I. Vurgaftman, C. L. Canedy, E. M. Jackson, J. A. Nolde, C. A. Affouda, E. H. Aifer, J. R. Meyer, A. Hood, A. J. Evans, and W. T. Tennant, “Analysis and performance of type-II superlattice detectors,” Opt. Eng. 50(6), 061007 (2011).
[Crossref]

W. Pusz, A. Kowalweski, P. Martyniuk, W. Gawron, E. Plis, S. Krishna, and A. Rogalksi, “Mid-wavelength infrared type-II InAs/GaSb superlattice interband cascade photodetectors,” Opt. Eng. 53(4), 043107 (2014).
[Crossref]

H. Lofti, L. Lei, L. Li, R. Q. Yang, J. C. Keay, M. B. Johnson, Y. Qiu, D. Lubyshev, J. M. Fastenau, and A. W. K. Liu, “High-temperature operation of interband cascade infrared photodetectors with cutoff wavelengths near 8um,” Opt. Eng. 54(6), 063103 (2015).
[Crossref]

Opt. Express (2)

Phys. Lett. (1)

B.-M. Nguyen, D. Hoffman, P.-Y. Delaunay, and M. Razeghi, “Background limited long wavelength infrared type-II InAs/GaSb superlattice photodiodes operating at 110K,” Phys. Lett. 91(12), 163511 (2007).

Phys. Rev. B Condens. Matter (1)

S. Adachi, “Model dielectric constants of GaP, GaAs, GaSb, InP, InAs, and InSb,” Phys. Rev. B Condens. Matter 35(14), 7454–7463 (1987).
[Crossref] [PubMed]

Phys. Rev. Lett. (5)

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

Proc. SPIE (5)

D. W. Peters, P. Davids, J. R. Wendt, A. A. Cruz-Cabrera, S. A. Kemme, and S. Samora, “Metamaterial-inspired high-absorption surfaces for thermal infrared applications,” Proc. SPIE 7609, 76091C (2010).
[Crossref]

D. W. Peters, P. Davids, J. K. Kim, D. Leonhardt, T. E. Beecham, S. W. Howell, T. Ohta, J. R. Wendt, and J. A. Montoya, “Application of plasmonic subwavelength structuring to enhance infrared detection,” Proc. SPIE 8994, 899419 (2014).
[Crossref]

J. A. Montoya, A. V. Barve, R. V. Shenoi, M. Naydenkov, H. Kim, Z. Ku, S. R. J. Brueck, S. Krishna, S. J. Lee, and S. K. Noh, “Backside illuminated infrared detectors with plasmonic resonators,” Proc. SPIE 7660, 76603P (2010).
[Crossref]

J. F. Klem, J. K. Kim, M. J. Cich, S. D. Hawkins, T. R. Fortune, and J. L. Rienstra, “Comparison of nBn and nBp mid-wave barrier infrared photodetectors,” Proc. SPIE 7608, 76081P (2010).
[Crossref]

L. G. Hipwood, C. L. Jones, C. D. Maxey, H. W. Lau, J. Fitzmaurice, R. A. Catchpole, and M. Ordish, “Three-color MOVPE MCT diodes,” Proc. SPIE 6206, 620612 (2006).
[Crossref]

Rev. Mod. Phys. (1)

D. L. Smith and C. Mailhiot, “Theory of semiconductor superlattice electronic structure,” Rev. Mod. Phys. 62(1), 173–234 (1990).
[Crossref]

Sci. Rep. (2)

A. M. Hoang, A. Dehzangi, S. Adhikary, and M. Razeghi, “High performance bias-selectable three-color short-wave/mid-wave/long-wave infrared photodetectors based on type-II InAs/GaSb/AlSb superlattices,” Sci. Rep. 6(1), 24144 (2016).
[Crossref] [PubMed]

Y. L. Jing, Z. F. Li, Q. Li, X. S. Chen, P. P. Chen, H. Wang, M. Y. Li, N. Li, and W. Lu, “Pixel-level plasmonic microcavity infrared photodetector,” Sci. Rep. 6(1), 25849 (2016).
[Crossref] [PubMed]

Science (1)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Other (3)

J. Montoya, S. Myers, and S. Krishna, inventor; STC.UNM, assignee. Wafer level integration of focal plane arrays having a flexible conductive layer to provide an optical aperture for each pixel. US patent 9,318,517 B1. April 19, 2016.

W. L. Wolfe and G. J. Zissis, The Infrared Handbook. Washington, DC: Office of Naval Research, Department of the Navy. (1978).

E. L. Dereniak and G. D. Boreman, Infrared Detectors and Systems (John Wiley, New York, 200–202 1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Metamaterial interband cascade detector bonded to a silicon fan-out chip with an indium bump and an illustration of the heterostructure of the interband cascade detector above a metallic ground plane and below a metallic array of squares for resonant quantum efficiency enhancement.

Fig. 2
Fig. 2

Numerical simulation (a), (b) and experimental measurement (c), (d) of the absorptance for the mid-wave (a), (c) and long-wave (b), (d) infrared metamaterial detector designs with the pitch for the individual metamaterial elements in each design kept constant (2.0 µm and 2.5 µm respectively) while the width of the square pattern was varied in 0.05 µm steps.

Fig. 3
Fig. 3

Experimental measurement of the quantum efficiency for the mid-wave and long-wave infrared metamaterial detector designs with the pitch for the individual metamaterial elements in each design kept constant (2.0 µm and 2.5 µm respectively) while the width of the square pattern was varied in 0.05 µm steps. Also shown are two reference detectors, the black (Fabry-Perot) and dashed gray (Substrate Pixel) curves, discussed in detail in the text.

Fig. 4
Fig. 4

Schematic representation of the fabrication process a large 400μm x 400μm substrate pixel.

Fig. 5
Fig. 5

Schematic representation of the fabrication procedure of the metamaterial detector pixel array.

Fig. 6
Fig. 6

Schematic representation of the fabrication procedure of the silicon fanout chip.

Fig. 7
Fig. 7

Schematic representation of the fabrication procedure for final device assembly.

Fig. 8
Fig. 8

Schematic representation of the e-beam lithography procedure for metamaterial patterning.

Tables (1)

Tables Icon

Table 1 Percentage of power absorbed in various portions of the metamaterial structure and detector efficiencies. Atotal, QE and EF are obtained from measurements. The use of models to determine the other efficiencies is discussed in the text.