Abstract

The development of surface enhanced infrared absorption has been constrained by the limited field enhancement and narrow-band resonance of commonly used metal resonators. In this theoretical work, the design of a crescent resonator (CR) combined with graphene-enabled plasmon tuning is proposed to settle the drawbacks. The CR is similar to a split ring resonator (SRR), but exhibits a much improved field enhancement. The influence of graphene on the field enhancement of the CR has been systematically investigated. Coupling from localized plasmon of CR to propagating plasmon of graphene has been observed, and the constructive interference of the plasmon wave has led to not only better enhancement inside the gap but also usable enhancements all over the graphene film, which go beyond the localized nature of metal plasmons.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Surface plasmon resonance and field enhancement in #-shaped gold wires metamaterial

W. Q. Hu, E. J. Liang, P. Ding, G. W. Cai, and Q. Z. Xue
Opt. Express 17(24) 21843-21849 (2009)

Graphene plasmonics for surface enhancement near-infrared absorptivity

QingHui Pan, JiaRong Hong, GuoHua Zhang, Yong Shuai, and HePing Tan
Opt. Express 25(14) 16400-16408 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. B. Farmer, D. Rodrigo, T. Low, and P. Avouris, “Plasmon-plasmon hybridization and bandwidth enhancement in nanostructured graphene,” Nano Lett. 15(4), 2582–2587 (2015).
    [Crossref] [PubMed]
  2. X. Zhu, W. Wang, W. Yan, M. B. Larsen, P. Bøggild, T. G. Pedersen, S. Xiao, J. Zi, and N. A. Mortensen, “Plasmon-phonon coupling in large-area graphene dot and antidot arrays fabricated by nanosphere lithography,” Nano Lett. 14(5), 2907–2913 (2014).
    [Crossref] [PubMed]
  3. S. Yampolsky, D. A. Fishman, S. Dey, E. Hulkko, M. Banik, E. O. Potma, and V. A. Apkarian, “Seeing a single molecule vibrate through time-resolved coherent anti-stokes Raman scattering,” Nat. Photonics 8(8), 650–656 (2014).
    [Crossref]
  4. J. H. Joo, R. Merkle, J. H. Kim, and J. Maier, “Measuring electrical properties of thin film fuel cell electrodes by in situ infrared spectroscopy,” Adv. Mater. 24(48), 6507–6512 (2012).
    [Crossref] [PubMed]
  5. B. Liu, M. Köpf, A. N. Abbas, X. Wang, Q. Guo, Y. Jia, F. Xia, R. Weihrich, F. Bachhuber, F. Pielnhofer, H. Wang, R. Dhall, S. B. Cronin, M. Ge, X. Fang, T. Nilges, and C. Zhou, “Black arsenic-phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties,” Adv. Mater. 27(30), 4423–4429 (2015).
    [Crossref] [PubMed]
  6. X. G. Xu, M. Rang, I. M. Craig, and M. B. Raschke, “Pushing the sample-size limit of infrared vibrational nanospectroscopy: from monolayer toward single molecule sensitivity,” J. Phys. Chem. Lett. 3(13), 1836–1841 (2012).
    [Crossref] [PubMed]
  7. L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA),” Nano Lett. 15(2), 1272–1280 (2015).
    [Crossref] [PubMed]
  8. C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
    [Crossref] [PubMed]
  9. K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
    [Crossref] [PubMed]
  10. D. Wang, T. Yang, and K. B. Crozier, “Charge and current reservoirs for electric and magnetic field enhancement,” Opt. Express 18(10), 10388–10394 (2010).
    [Crossref] [PubMed]
  11. E. Cubukcu, S. Zhang, Y. S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95(4), 043113 (2009).
    [Crossref]
  12. T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104(45), 10549–10556 (2000).
    [Crossref]
  13. M. Abb, Y. Wang, N. Papasimakis, C. H. de Groot, and O. L. Muskens, “Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays,” Nano Lett. 14(1), 346–352 (2014).
    [Crossref] [PubMed]
  14. L. V. Brown, K. Zhao, N. King, H. Sobhani, P. Nordlander, and N. J. Halas, “Surface-enhanced infrared absorption using individual cross antennas tailored to chemical moieties,” J. Am. Chem. Soc. 135(9), 3688–3695 (2013).
    [Crossref] [PubMed]
  15. R. Bukasov and J. S. Shumaker-Parry, “Silver nanocrescents with infrared plasmonic properties as tunable substrates for surface enhanced infrared absorption spectroscopy,” Anal. Chem. 81(11), 4531–4535 (2009).
    [Crossref] [PubMed]
  16. S. Ke, B. Wang, H. Huang, H. Long, K. Wang, and P. Lu, “Plasmonic absorption enhancement in periodic cross-shaped graphene arrays,” Opt. Express 23(7), 8888–8900 (2015).
    [Crossref] [PubMed]
  17. M. D. He, G. Zhang, J. Q. Liu, J. B. Li, X. J. Wang, Z. R. Huang, L. Wang, and X. Chen, “Plasmon resonances in a stacked pair of graphene ribbon arrays with a lateral displacement,” Opt. Express 22(6), 6680–6690 (2014).
    [Crossref] [PubMed]
  18. Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
    [PubMed]
  19. J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
    [PubMed]
  20. D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
    [Crossref] [PubMed]
  21. H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7, 12334 (2016).
    [Crossref] [PubMed]
  22. D. B. Farmer, P. Avouris, Y. Li, T. F. Heinz, and S. J. Han, “Ultrasensitive plasmonic detection of molecules with graphene,” ACS Photonics 3(4), 553–557 (2016).
    [Crossref]
  23. K. Zhang, L. Zhang, F. L. Yap, P. Song, C. W. Qiu, and K. P. Loh, “Large-area graphene nanodot array for plasmon-enhanced infrared spectroscopy,” Small 12(10), 1302–1308 (2016).
    [Crossref] [PubMed]
  24. X. Ren, W. E. Sha, and W. C. Choy, “Tuning optical responses of metallic dipole nanoantenna using graphene,” Opt. Express 21(26), 31824–31829 (2013).
    [Crossref] [PubMed]
  25. B. Vasic and R. Gajic, “Graphene induced spectral tuning of metamaterial absorbers at mid-infrared fequencies,” Appl. Phys. Lett. 103(26), 261111 (2013).
    [Crossref]
  26. L. Zhaoyi and N. Yu, “Modulation of mid-infrared light using graphene-metal plasmonic antennas,” Appl. Phys. Lett. 102(13), 131108 (2013).
    [Crossref]
  27. N. K. Emani, T. F. Chung, X. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, “Electrically tunable damping of plasmonic resonances with graphene,” Nano Lett. 12(10), 5202–5206 (2012).
    [Crossref] [PubMed]
  28. J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y. R. Shen, and F. Wang, “Electrical control of optical plasmon resonance with graphene,” Nano Lett. 12(11), 5598–5602 (2012).
    [Crossref] [PubMed]
  29. N. K. Emani, T. F. Chung, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical modulation of fano resonance in plasmonic nanostructures using graphene,” Nano Lett. 14(1), 78–82 (2014).
    [Crossref] [PubMed]
  30. Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
    [Crossref] [PubMed]
  31. G. W. Hanson, “Dyadic green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 19912 (2008).
    [Crossref]
  32. Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008).
    [Crossref]

2016 (3)

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7, 12334 (2016).
[Crossref] [PubMed]

D. B. Farmer, P. Avouris, Y. Li, T. F. Heinz, and S. J. Han, “Ultrasensitive plasmonic detection of molecules with graphene,” ACS Photonics 3(4), 553–557 (2016).
[Crossref]

K. Zhang, L. Zhang, F. L. Yap, P. Song, C. W. Qiu, and K. P. Loh, “Large-area graphene nanodot array for plasmon-enhanced infrared spectroscopy,” Small 12(10), 1302–1308 (2016).
[Crossref] [PubMed]

2015 (5)

B. Liu, M. Köpf, A. N. Abbas, X. Wang, Q. Guo, Y. Jia, F. Xia, R. Weihrich, F. Bachhuber, F. Pielnhofer, H. Wang, R. Dhall, S. B. Cronin, M. Ge, X. Fang, T. Nilges, and C. Zhou, “Black arsenic-phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties,” Adv. Mater. 27(30), 4423–4429 (2015).
[Crossref] [PubMed]

D. B. Farmer, D. Rodrigo, T. Low, and P. Avouris, “Plasmon-plasmon hybridization and bandwidth enhancement in nanostructured graphene,” Nano Lett. 15(4), 2582–2587 (2015).
[Crossref] [PubMed]

L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA),” Nano Lett. 15(2), 1272–1280 (2015).
[Crossref] [PubMed]

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

S. Ke, B. Wang, H. Huang, H. Long, K. Wang, and P. Lu, “Plasmonic absorption enhancement in periodic cross-shaped graphene arrays,” Opt. Express 23(7), 8888–8900 (2015).
[Crossref] [PubMed]

2014 (6)

M. D. He, G. Zhang, J. Q. Liu, J. B. Li, X. J. Wang, Z. R. Huang, L. Wang, and X. Chen, “Plasmon resonances in a stacked pair of graphene ribbon arrays with a lateral displacement,” Opt. Express 22(6), 6680–6690 (2014).
[Crossref] [PubMed]

N. K. Emani, T. F. Chung, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical modulation of fano resonance in plasmonic nanostructures using graphene,” Nano Lett. 14(1), 78–82 (2014).
[Crossref] [PubMed]

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

X. Zhu, W. Wang, W. Yan, M. B. Larsen, P. Bøggild, T. G. Pedersen, S. Xiao, J. Zi, and N. A. Mortensen, “Plasmon-phonon coupling in large-area graphene dot and antidot arrays fabricated by nanosphere lithography,” Nano Lett. 14(5), 2907–2913 (2014).
[Crossref] [PubMed]

S. Yampolsky, D. A. Fishman, S. Dey, E. Hulkko, M. Banik, E. O. Potma, and V. A. Apkarian, “Seeing a single molecule vibrate through time-resolved coherent anti-stokes Raman scattering,” Nat. Photonics 8(8), 650–656 (2014).
[Crossref]

M. Abb, Y. Wang, N. Papasimakis, C. H. de Groot, and O. L. Muskens, “Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays,” Nano Lett. 14(1), 346–352 (2014).
[Crossref] [PubMed]

2013 (5)

L. V. Brown, K. Zhao, N. King, H. Sobhani, P. Nordlander, and N. J. Halas, “Surface-enhanced infrared absorption using individual cross antennas tailored to chemical moieties,” J. Am. Chem. Soc. 135(9), 3688–3695 (2013).
[Crossref] [PubMed]

B. Vasic and R. Gajic, “Graphene induced spectral tuning of metamaterial absorbers at mid-infrared fequencies,” Appl. Phys. Lett. 103(26), 261111 (2013).
[Crossref]

L. Zhaoyi and N. Yu, “Modulation of mid-infrared light using graphene-metal plasmonic antennas,” Appl. Phys. Lett. 102(13), 131108 (2013).
[Crossref]

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

X. Ren, W. E. Sha, and W. C. Choy, “Tuning optical responses of metallic dipole nanoantenna using graphene,” Opt. Express 21(26), 31824–31829 (2013).
[Crossref] [PubMed]

2012 (7)

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

N. K. Emani, T. F. Chung, X. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, “Electrically tunable damping of plasmonic resonances with graphene,” Nano Lett. 12(10), 5202–5206 (2012).
[Crossref] [PubMed]

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y. R. Shen, and F. Wang, “Electrical control of optical plasmon resonance with graphene,” Nano Lett. 12(11), 5598–5602 (2012).
[Crossref] [PubMed]

X. G. Xu, M. Rang, I. M. Craig, and M. B. Raschke, “Pushing the sample-size limit of infrared vibrational nanospectroscopy: from monolayer toward single molecule sensitivity,” J. Phys. Chem. Lett. 3(13), 1836–1841 (2012).
[Crossref] [PubMed]

J. H. Joo, R. Merkle, J. H. Kim, and J. Maier, “Measuring electrical properties of thin film fuel cell electrodes by in situ infrared spectroscopy,” Adv. Mater. 24(48), 6507–6512 (2012).
[Crossref] [PubMed]

K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref] [PubMed]

2010 (1)

2009 (2)

E. Cubukcu, S. Zhang, Y. S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95(4), 043113 (2009).
[Crossref]

R. Bukasov and J. S. Shumaker-Parry, “Silver nanocrescents with infrared plasmonic properties as tunable substrates for surface enhanced infrared absorption spectroscopy,” Anal. Chem. 81(11), 4531–4535 (2009).
[Crossref] [PubMed]

2008 (2)

G. W. Hanson, “Dyadic green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 19912 (2008).
[Crossref]

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008).
[Crossref]

2000 (1)

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104(45), 10549–10556 (2000).
[Crossref]

Abb, M.

M. Abb, Y. Wang, N. Papasimakis, C. H. de Groot, and O. L. Muskens, “Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays,” Nano Lett. 14(1), 346–352 (2014).
[Crossref] [PubMed]

Abbas, A. N.

B. Liu, M. Köpf, A. N. Abbas, X. Wang, Q. Guo, Y. Jia, F. Xia, R. Weihrich, F. Bachhuber, F. Pielnhofer, H. Wang, R. Dhall, S. B. Cronin, M. Ge, X. Fang, T. Nilges, and C. Zhou, “Black arsenic-phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties,” Adv. Mater. 27(30), 4423–4429 (2015).
[Crossref] [PubMed]

Adato, R.

K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref] [PubMed]

Alonso-González, P.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Altug, H.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref] [PubMed]

Andreev, G. O.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Apkarian, V. A.

S. Yampolsky, D. A. Fishman, S. Dey, E. Hulkko, M. Banik, E. O. Potma, and V. A. Apkarian, “Seeing a single molecule vibrate through time-resolved coherent anti-stokes Raman scattering,” Nat. Photonics 8(8), 650–656 (2014).
[Crossref]

Avouris, P.

D. B. Farmer, P. Avouris, Y. Li, T. F. Heinz, and S. J. Han, “Ultrasensitive plasmonic detection of molecules with graphene,” ACS Photonics 3(4), 553–557 (2016).
[Crossref]

D. B. Farmer, D. Rodrigo, T. Low, and P. Avouris, “Plasmon-plasmon hybridization and bandwidth enhancement in nanostructured graphene,” Nano Lett. 15(4), 2582–2587 (2015).
[Crossref] [PubMed]

Bachhuber, F.

B. Liu, M. Köpf, A. N. Abbas, X. Wang, Q. Guo, Y. Jia, F. Xia, R. Weihrich, F. Bachhuber, F. Pielnhofer, H. Wang, R. Dhall, S. B. Cronin, M. Ge, X. Fang, T. Nilges, and C. Zhou, “Black arsenic-phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties,” Adv. Mater. 27(30), 4423–4429 (2015).
[Crossref] [PubMed]

Badioli, M.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Banik, M.

S. Yampolsky, D. A. Fishman, S. Dey, E. Hulkko, M. Banik, E. O. Potma, and V. A. Apkarian, “Seeing a single molecule vibrate through time-resolved coherent anti-stokes Raman scattering,” Nat. Photonics 8(8), 650–656 (2014).
[Crossref]

Bao, W.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Bartal, G.

E. Cubukcu, S. Zhang, Y. S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95(4), 043113 (2009).
[Crossref]

Basov, D. N.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008).
[Crossref]

Bøggild, P.

X. Zhu, W. Wang, W. Yan, M. B. Larsen, P. Bøggild, T. G. Pedersen, S. Xiao, J. Zi, and N. A. Mortensen, “Plasmon-phonon coupling in large-area graphene dot and antidot arrays fabricated by nanosphere lithography,” Nano Lett. 14(5), 2907–2913 (2014).
[Crossref] [PubMed]

Boltasseva, A.

N. K. Emani, T. F. Chung, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical modulation of fano resonance in plasmonic nanostructures using graphene,” Nano Lett. 14(1), 78–82 (2014).
[Crossref] [PubMed]

N. K. Emani, T. F. Chung, X. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, “Electrically tunable damping of plasmonic resonances with graphene,” Nano Lett. 12(10), 5202–5206 (2012).
[Crossref] [PubMed]

Brown, L. V.

L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA),” Nano Lett. 15(2), 1272–1280 (2015).
[Crossref] [PubMed]

L. V. Brown, K. Zhao, N. King, H. Sobhani, P. Nordlander, and N. J. Halas, “Surface-enhanced infrared absorption using individual cross antennas tailored to chemical moieties,” J. Am. Chem. Soc. 135(9), 3688–3695 (2013).
[Crossref] [PubMed]

Bukasov, R.

R. Bukasov and J. S. Shumaker-Parry, “Silver nanocrescents with infrared plasmonic properties as tunable substrates for surface enhanced infrared absorption spectroscopy,” Anal. Chem. 81(11), 4531–4535 (2009).
[Crossref] [PubMed]

Camara, N.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Capasso, F.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

Castro Neto, A. H.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Centeno, A.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Chen, J.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Chen, K.

K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref] [PubMed]

Chen, X.

Chen, Y. P.

N. K. Emani, T. F. Chung, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical modulation of fano resonance in plasmonic nanostructures using graphene,” Nano Lett. 14(1), 78–82 (2014).
[Crossref] [PubMed]

N. K. Emani, T. F. Chung, X. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, “Electrically tunable damping of plasmonic resonances with graphene,” Nano Lett. 12(10), 5202–5206 (2012).
[Crossref] [PubMed]

Cho, D. J.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y. R. Shen, and F. Wang, “Electrical control of optical plasmon resonance with graphene,” Nano Lett. 12(11), 5598–5602 (2012).
[Crossref] [PubMed]

Choy, W. C.

Chung, T. F.

N. K. Emani, T. F. Chung, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical modulation of fano resonance in plasmonic nanostructures using graphene,” Nano Lett. 14(1), 78–82 (2014).
[Crossref] [PubMed]

N. K. Emani, T. F. Chung, X. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, “Electrically tunable damping of plasmonic resonances with graphene,” Nano Lett. 12(10), 5202–5206 (2012).
[Crossref] [PubMed]

Craig, I. M.

X. G. Xu, M. Rang, I. M. Craig, and M. B. Raschke, “Pushing the sample-size limit of infrared vibrational nanospectroscopy: from monolayer toward single molecule sensitivity,” J. Phys. Chem. Lett. 3(13), 1836–1841 (2012).
[Crossref] [PubMed]

Cronin, S. B.

B. Liu, M. Köpf, A. N. Abbas, X. Wang, Q. Guo, Y. Jia, F. Xia, R. Weihrich, F. Bachhuber, F. Pielnhofer, H. Wang, R. Dhall, S. B. Cronin, M. Ge, X. Fang, T. Nilges, and C. Zhou, “Black arsenic-phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties,” Adv. Mater. 27(30), 4423–4429 (2015).
[Crossref] [PubMed]

Crozier, K. B.

Cubukcu, E.

E. Cubukcu, S. Zhang, Y. S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95(4), 043113 (2009).
[Crossref]

Dai, Q.

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7, 12334 (2016).
[Crossref] [PubMed]

de Groot, C. H.

M. Abb, Y. Wang, N. Papasimakis, C. H. de Groot, and O. L. Muskens, “Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays,” Nano Lett. 14(1), 346–352 (2014).
[Crossref] [PubMed]

Dey, S.

S. Yampolsky, D. A. Fishman, S. Dey, E. Hulkko, M. Banik, E. O. Potma, and V. A. Apkarian, “Seeing a single molecule vibrate through time-resolved coherent anti-stokes Raman scattering,” Nat. Photonics 8(8), 650–656 (2014).
[Crossref]

Dhall, R.

B. Liu, M. Köpf, A. N. Abbas, X. Wang, Q. Guo, Y. Jia, F. Xia, R. Weihrich, F. Bachhuber, F. Pielnhofer, H. Wang, R. Dhall, S. B. Cronin, M. Ge, X. Fang, T. Nilges, and C. Zhou, “Black arsenic-phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties,” Adv. Mater. 27(30), 4423–4429 (2015).
[Crossref] [PubMed]

Dominguez, G.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Elorza, A. Z.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Emani, N. K.

N. K. Emani, T. F. Chung, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical modulation of fano resonance in plasmonic nanostructures using graphene,” Nano Lett. 14(1), 78–82 (2014).
[Crossref] [PubMed]

N. K. Emani, T. F. Chung, X. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, “Electrically tunable damping of plasmonic resonances with graphene,” Nano Lett. 12(10), 5202–5206 (2012).
[Crossref] [PubMed]

Etezadi, D.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Fang, X.

B. Liu, M. Köpf, A. N. Abbas, X. Wang, Q. Guo, Y. Jia, F. Xia, R. Weihrich, F. Bachhuber, F. Pielnhofer, H. Wang, R. Dhall, S. B. Cronin, M. Ge, X. Fang, T. Nilges, and C. Zhou, “Black arsenic-phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties,” Adv. Mater. 27(30), 4423–4429 (2015).
[Crossref] [PubMed]

Farmer, D. B.

D. B. Farmer, P. Avouris, Y. Li, T. F. Heinz, and S. J. Han, “Ultrasensitive plasmonic detection of molecules with graphene,” ACS Photonics 3(4), 553–557 (2016).
[Crossref]

D. B. Farmer, D. Rodrigo, T. Low, and P. Avouris, “Plasmon-plasmon hybridization and bandwidth enhancement in nanostructured graphene,” Nano Lett. 15(4), 2582–2587 (2015).
[Crossref] [PubMed]

Fei, Z.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Fishman, D. A.

S. Yampolsky, D. A. Fishman, S. Dey, E. Hulkko, M. Banik, E. O. Potma, and V. A. Apkarian, “Seeing a single molecule vibrate through time-resolved coherent anti-stokes Raman scattering,” Nat. Photonics 8(8), 650–656 (2014).
[Crossref]

Fogler, M. M.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Gajic, R.

B. Vasic and R. Gajic, “Graphene induced spectral tuning of metamaterial absorbers at mid-infrared fequencies,” Appl. Phys. Lett. 103(26), 261111 (2013).
[Crossref]

García de Abajo, F. J.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Ge, M.

B. Liu, M. Köpf, A. N. Abbas, X. Wang, Q. Guo, Y. Jia, F. Xia, R. Weihrich, F. Bachhuber, F. Pielnhofer, H. Wang, R. Dhall, S. B. Cronin, M. Ge, X. Fang, T. Nilges, and C. Zhou, “Black arsenic-phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties,” Adv. Mater. 27(30), 4423–4429 (2015).
[Crossref] [PubMed]

Genevet, P.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

Geng, B.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y. R. Shen, and F. Wang, “Electrical control of optical plasmon resonance with graphene,” Nano Lett. 12(11), 5598–5602 (2012).
[Crossref] [PubMed]

Gerbert, D.

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

Godignon, P.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Guo, Q.

B. Liu, M. Köpf, A. N. Abbas, X. Wang, Q. Guo, Y. Jia, F. Xia, R. Weihrich, F. Bachhuber, F. Pielnhofer, H. Wang, R. Dhall, S. B. Cronin, M. Ge, X. Fang, T. Nilges, and C. Zhou, “Black arsenic-phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties,” Adv. Mater. 27(30), 4423–4429 (2015).
[Crossref] [PubMed]

Halas, N. J.

L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA),” Nano Lett. 15(2), 1272–1280 (2015).
[Crossref] [PubMed]

L. V. Brown, K. Zhao, N. King, H. Sobhani, P. Nordlander, and N. J. Halas, “Surface-enhanced infrared absorption using individual cross antennas tailored to chemical moieties,” J. Am. Chem. Soc. 135(9), 3688–3695 (2013).
[Crossref] [PubMed]

Han, S. J.

D. B. Farmer, P. Avouris, Y. Li, T. F. Heinz, and S. J. Han, “Ultrasensitive plasmonic detection of molecules with graphene,” ACS Photonics 3(4), 553–557 (2016).
[Crossref]

Hanson, G. W.

G. W. Hanson, “Dyadic green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 19912 (2008).
[Crossref]

Hao, Z.

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008).
[Crossref]

Härtling, T.

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

Haynes, C. L.

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104(45), 10549–10556 (2000).
[Crossref]

He, M. D.

Heinz, T. F.

D. B. Farmer, P. Avouris, Y. Li, T. F. Heinz, and S. J. Han, “Ultrasensitive plasmonic detection of molecules with graphene,” ACS Photonics 3(4), 553–557 (2016).
[Crossref]

Henriksen, E. A.

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008).
[Crossref]

Hillenbrand, R.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Hu, D.

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7, 12334 (2016).
[Crossref] [PubMed]

Hu, H.

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7, 12334 (2016).
[Crossref] [PubMed]

Huang, H.

Huang, Z. R.

Huck, C.

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

Hulkko, E.

S. Yampolsky, D. A. Fishman, S. Dey, E. Hulkko, M. Banik, E. O. Potma, and V. A. Apkarian, “Seeing a single molecule vibrate through time-resolved coherent anti-stokes Raman scattering,” Nat. Photonics 8(8), 650–656 (2014).
[Crossref]

Huth, F.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Janner, D.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Jensen, T. R.

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104(45), 10549–10556 (2000).
[Crossref]

Jia, Y.

B. Liu, M. Köpf, A. N. Abbas, X. Wang, Q. Guo, Y. Jia, F. Xia, R. Weihrich, F. Bachhuber, F. Pielnhofer, H. Wang, R. Dhall, S. B. Cronin, M. Ge, X. Fang, T. Nilges, and C. Zhou, “Black arsenic-phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties,” Adv. Mater. 27(30), 4423–4429 (2015).
[Crossref] [PubMed]

Jiang, Z.

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008).
[Crossref]

Joo, J. H.

J. H. Joo, R. Merkle, J. H. Kim, and J. Maier, “Measuring electrical properties of thin film fuel cell electrodes by in situ infrared spectroscopy,” Adv. Mater. 24(48), 6507–6512 (2012).
[Crossref] [PubMed]

Kats, M. A.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

Katzmann, J.

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

Ke, S.

Keilmann, F.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Kildishev, A. V.

N. K. Emani, T. F. Chung, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical modulation of fano resonance in plasmonic nanostructures using graphene,” Nano Lett. 14(1), 78–82 (2014).
[Crossref] [PubMed]

N. K. Emani, T. F. Chung, X. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, “Electrically tunable damping of plasmonic resonances with graphene,” Nano Lett. 12(10), 5202–5206 (2012).
[Crossref] [PubMed]

Kim, J.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y. R. Shen, and F. Wang, “Electrical control of optical plasmon resonance with graphene,” Nano Lett. 12(11), 5598–5602 (2012).
[Crossref] [PubMed]

Kim, J. H.

J. H. Joo, R. Merkle, J. H. Kim, and J. Maier, “Measuring electrical properties of thin film fuel cell electrodes by in situ infrared spectroscopy,” Adv. Mater. 24(48), 6507–6512 (2012).
[Crossref] [PubMed]

Kim, K.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y. R. Shen, and F. Wang, “Electrical control of optical plasmon resonance with graphene,” Nano Lett. 12(11), 5598–5602 (2012).
[Crossref] [PubMed]

Kim, P.

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008).
[Crossref]

King, N.

L. V. Brown, K. Zhao, N. King, H. Sobhani, P. Nordlander, and N. J. Halas, “Surface-enhanced infrared absorption using individual cross antennas tailored to chemical moieties,” J. Am. Chem. Soc. 135(9), 3688–3695 (2013).
[Crossref] [PubMed]

Kong, J.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

Köpf, M.

B. Liu, M. Köpf, A. N. Abbas, X. Wang, Q. Guo, Y. Jia, F. Xia, R. Weihrich, F. Bachhuber, F. Pielnhofer, H. Wang, R. Dhall, S. B. Cronin, M. Ge, X. Fang, T. Nilges, and C. Zhou, “Black arsenic-phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties,” Adv. Mater. 27(30), 4423–4429 (2015).
[Crossref] [PubMed]

Koppens, F. H. L.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Larsen, M. B.

X. Zhu, W. Wang, W. Yan, M. B. Larsen, P. Bøggild, T. G. Pedersen, S. Xiao, J. Zi, and N. A. Mortensen, “Plasmon-phonon coupling in large-area graphene dot and antidot arrays fabricated by nanosphere lithography,” Nano Lett. 14(5), 2907–2913 (2014).
[Crossref] [PubMed]

Lau, C. N.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Li, J. B.

Li, Y.

D. B. Farmer, P. Avouris, Y. Li, T. F. Heinz, and S. J. Han, “Ultrasensitive plasmonic detection of molecules with graphene,” ACS Photonics 3(4), 553–557 (2016).
[Crossref]

Li, Z. Q.

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008).
[Crossref]

Limaj, O.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Liu, B.

B. Liu, M. Köpf, A. N. Abbas, X. Wang, Q. Guo, Y. Jia, F. Xia, R. Weihrich, F. Bachhuber, F. Pielnhofer, H. Wang, R. Dhall, S. B. Cronin, M. Ge, X. Fang, T. Nilges, and C. Zhou, “Black arsenic-phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties,” Adv. Mater. 27(30), 4423–4429 (2015).
[Crossref] [PubMed]

Liu, J. Q.

Liu, K.

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7, 12334 (2016).
[Crossref] [PubMed]

Liu, R.

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7, 12334 (2016).
[Crossref] [PubMed]

Loh, K. P.

K. Zhang, L. Zhang, F. L. Yap, P. Song, C. W. Qiu, and K. P. Loh, “Large-area graphene nanodot array for plasmon-enhanced infrared spectroscopy,” Small 12(10), 1302–1308 (2016).
[Crossref] [PubMed]

Long, H.

Low, T.

D. B. Farmer, D. Rodrigo, T. Low, and P. Avouris, “Plasmon-plasmon hybridization and bandwidth enhancement in nanostructured graphene,” Nano Lett. 15(4), 2582–2587 (2015).
[Crossref] [PubMed]

Lu, P.

Maier, J.

J. H. Joo, R. Merkle, J. H. Kim, and J. Maier, “Measuring electrical properties of thin film fuel cell electrodes by in situ infrared spectroscopy,” Adv. Mater. 24(48), 6507–6512 (2012).
[Crossref] [PubMed]

Malinsky, M. D.

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104(45), 10549–10556 (2000).
[Crossref]

Martin, M. C.

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008).
[Crossref]

McLeod, A. S.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Merkle, R.

J. H. Joo, R. Merkle, J. H. Kim, and J. Maier, “Measuring electrical properties of thin film fuel cell electrodes by in situ infrared spectroscopy,” Adv. Mater. 24(48), 6507–6512 (2012).
[Crossref] [PubMed]

Mortensen, N. A.

X. Zhu, W. Wang, W. Yan, M. B. Larsen, P. Bøggild, T. G. Pedersen, S. Xiao, J. Zi, and N. A. Mortensen, “Plasmon-phonon coupling in large-area graphene dot and antidot arrays fabricated by nanosphere lithography,” Nano Lett. 14(5), 2907–2913 (2014).
[Crossref] [PubMed]

Muskens, O. L.

M. Abb, Y. Wang, N. Papasimakis, C. H. de Groot, and O. L. Muskens, “Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays,” Nano Lett. 14(1), 346–352 (2014).
[Crossref] [PubMed]

Neubrech, F.

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

Ni, X.

N. K. Emani, T. F. Chung, X. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, “Electrically tunable damping of plasmonic resonances with graphene,” Nano Lett. 12(10), 5202–5206 (2012).
[Crossref] [PubMed]

Nilges, T.

B. Liu, M. Köpf, A. N. Abbas, X. Wang, Q. Guo, Y. Jia, F. Xia, R. Weihrich, F. Bachhuber, F. Pielnhofer, H. Wang, R. Dhall, S. B. Cronin, M. Ge, X. Fang, T. Nilges, and C. Zhou, “Black arsenic-phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties,” Adv. Mater. 27(30), 4423–4429 (2015).
[Crossref] [PubMed]

Nordlander, P.

L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA),” Nano Lett. 15(2), 1272–1280 (2015).
[Crossref] [PubMed]

L. V. Brown, K. Zhao, N. King, H. Sobhani, P. Nordlander, and N. J. Halas, “Surface-enhanced infrared absorption using individual cross antennas tailored to chemical moieties,” J. Am. Chem. Soc. 135(9), 3688–3695 (2013).
[Crossref] [PubMed]

Osmond, J.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Papasimakis, N.

M. Abb, Y. Wang, N. Papasimakis, C. H. de Groot, and O. L. Muskens, “Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays,” Nano Lett. 14(1), 346–352 (2014).
[Crossref] [PubMed]

Park, Y. S.

E. Cubukcu, S. Zhang, Y. S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95(4), 043113 (2009).
[Crossref]

Pedersen, T. G.

X. Zhu, W. Wang, W. Yan, M. B. Larsen, P. Bøggild, T. G. Pedersen, S. Xiao, J. Zi, and N. A. Mortensen, “Plasmon-phonon coupling in large-area graphene dot and antidot arrays fabricated by nanosphere lithography,” Nano Lett. 14(5), 2907–2913 (2014).
[Crossref] [PubMed]

Pesquera, A.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Pielnhofer, F.

B. Liu, M. Köpf, A. N. Abbas, X. Wang, Q. Guo, Y. Jia, F. Xia, R. Weihrich, F. Bachhuber, F. Pielnhofer, H. Wang, R. Dhall, S. B. Cronin, M. Ge, X. Fang, T. Nilges, and C. Zhou, “Black arsenic-phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties,” Adv. Mater. 27(30), 4423–4429 (2015).
[Crossref] [PubMed]

Potma, E. O.

S. Yampolsky, D. A. Fishman, S. Dey, E. Hulkko, M. Banik, E. O. Potma, and V. A. Apkarian, “Seeing a single molecule vibrate through time-resolved coherent anti-stokes Raman scattering,” Nat. Photonics 8(8), 650–656 (2014).
[Crossref]

Pruneri, V.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Pucci, A.

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

Qiu, C. W.

K. Zhang, L. Zhang, F. L. Yap, P. Song, C. W. Qiu, and K. P. Loh, “Large-area graphene nanodot array for plasmon-enhanced infrared spectroscopy,” Small 12(10), 1302–1308 (2016).
[Crossref] [PubMed]

Rang, M.

X. G. Xu, M. Rang, I. M. Craig, and M. B. Raschke, “Pushing the sample-size limit of infrared vibrational nanospectroscopy: from monolayer toward single molecule sensitivity,” J. Phys. Chem. Lett. 3(13), 1836–1841 (2012).
[Crossref] [PubMed]

Raschke, M. B.

X. G. Xu, M. Rang, I. M. Craig, and M. B. Raschke, “Pushing the sample-size limit of infrared vibrational nanospectroscopy: from monolayer toward single molecule sensitivity,” J. Phys. Chem. Lett. 3(13), 1836–1841 (2012).
[Crossref] [PubMed]

Regan, W.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y. R. Shen, and F. Wang, “Electrical control of optical plasmon resonance with graphene,” Nano Lett. 12(11), 5598–5602 (2012).
[Crossref] [PubMed]

Ren, X.

Rodin, A. S.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Rodrigo, D.

D. B. Farmer, D. Rodrigo, T. Low, and P. Avouris, “Plasmon-plasmon hybridization and bandwidth enhancement in nanostructured graphene,” Nano Lett. 15(4), 2582–2587 (2015).
[Crossref] [PubMed]

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Sha, W. E.

Shalaev, V. M.

N. K. Emani, T. F. Chung, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical modulation of fano resonance in plasmonic nanostructures using graphene,” Nano Lett. 14(1), 78–82 (2014).
[Crossref] [PubMed]

Shen, Y. R.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y. R. Shen, and F. Wang, “Electrical control of optical plasmon resonance with graphene,” Nano Lett. 12(11), 5598–5602 (2012).
[Crossref] [PubMed]

Shi, S.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y. R. Shen, and F. Wang, “Electrical control of optical plasmon resonance with graphene,” Nano Lett. 12(11), 5598–5602 (2012).
[Crossref] [PubMed]

Shumaker-Parry, J. S.

R. Bukasov and J. S. Shumaker-Parry, “Silver nanocrescents with infrared plasmonic properties as tunable substrates for surface enhanced infrared absorption spectroscopy,” Anal. Chem. 81(11), 4531–4535 (2009).
[Crossref] [PubMed]

Sobhani, H.

L. V. Brown, K. Zhao, N. King, H. Sobhani, P. Nordlander, and N. J. Halas, “Surface-enhanced infrared absorption using individual cross antennas tailored to chemical moieties,” J. Am. Chem. Soc. 135(9), 3688–3695 (2013).
[Crossref] [PubMed]

Son, H.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y. R. Shen, and F. Wang, “Electrical control of optical plasmon resonance with graphene,” Nano Lett. 12(11), 5598–5602 (2012).
[Crossref] [PubMed]

Song, P.

K. Zhang, L. Zhang, F. L. Yap, P. Song, C. W. Qiu, and K. P. Loh, “Large-area graphene nanodot array for plasmon-enhanced infrared spectroscopy,” Small 12(10), 1302–1308 (2016).
[Crossref] [PubMed]

Song, Y.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

Spasenovic, M.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Stormer, H. L.

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008).
[Crossref]

Sun, Z.

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7, 12334 (2016).
[Crossref] [PubMed]

Thiemens, M.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Thongrattanasiri, S.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Toma, A.

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

Van Duyne, R. P.

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104(45), 10549–10556 (2000).
[Crossref]

Vasic, B.

B. Vasic and R. Gajic, “Graphene induced spectral tuning of metamaterial absorbers at mid-infrared fequencies,” Appl. Phys. Lett. 103(26), 261111 (2013).
[Crossref]

Vogt, J.

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

Wagner, M.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Wang, B.

Wang, D.

Wang, F.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y. R. Shen, and F. Wang, “Electrical control of optical plasmon resonance with graphene,” Nano Lett. 12(11), 5598–5602 (2012).
[Crossref] [PubMed]

Wang, H.

B. Liu, M. Köpf, A. N. Abbas, X. Wang, Q. Guo, Y. Jia, F. Xia, R. Weihrich, F. Bachhuber, F. Pielnhofer, H. Wang, R. Dhall, S. B. Cronin, M. Ge, X. Fang, T. Nilges, and C. Zhou, “Black arsenic-phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties,” Adv. Mater. 27(30), 4423–4429 (2015).
[Crossref] [PubMed]

Wang, K.

Wang, L.

Wang, W.

X. Zhu, W. Wang, W. Yan, M. B. Larsen, P. Bøggild, T. G. Pedersen, S. Xiao, J. Zi, and N. A. Mortensen, “Plasmon-phonon coupling in large-area graphene dot and antidot arrays fabricated by nanosphere lithography,” Nano Lett. 14(5), 2907–2913 (2014).
[Crossref] [PubMed]

Wang, X.

B. Liu, M. Köpf, A. N. Abbas, X. Wang, Q. Guo, Y. Jia, F. Xia, R. Weihrich, F. Bachhuber, F. Pielnhofer, H. Wang, R. Dhall, S. B. Cronin, M. Ge, X. Fang, T. Nilges, and C. Zhou, “Black arsenic-phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties,” Adv. Mater. 27(30), 4423–4429 (2015).
[Crossref] [PubMed]

Wang, X. J.

Wang, Y.

M. Abb, Y. Wang, N. Papasimakis, C. H. de Groot, and O. L. Muskens, “Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays,” Nano Lett. 14(1), 346–352 (2014).
[Crossref] [PubMed]

Weihrich, R.

B. Liu, M. Köpf, A. N. Abbas, X. Wang, Q. Guo, Y. Jia, F. Xia, R. Weihrich, F. Bachhuber, F. Pielnhofer, H. Wang, R. Dhall, S. B. Cronin, M. Ge, X. Fang, T. Nilges, and C. Zhou, “Black arsenic-phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties,” Adv. Mater. 27(30), 4423–4429 (2015).
[Crossref] [PubMed]

Xia, F.

B. Liu, M. Köpf, A. N. Abbas, X. Wang, Q. Guo, Y. Jia, F. Xia, R. Weihrich, F. Bachhuber, F. Pielnhofer, H. Wang, R. Dhall, S. B. Cronin, M. Ge, X. Fang, T. Nilges, and C. Zhou, “Black arsenic-phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties,” Adv. Mater. 27(30), 4423–4429 (2015).
[Crossref] [PubMed]

Xiao, S.

X. Zhu, W. Wang, W. Yan, M. B. Larsen, P. Bøggild, T. G. Pedersen, S. Xiao, J. Zi, and N. A. Mortensen, “Plasmon-phonon coupling in large-area graphene dot and antidot arrays fabricated by nanosphere lithography,” Nano Lett. 14(5), 2907–2913 (2014).
[Crossref] [PubMed]

Xu, X. G.

X. G. Xu, M. Rang, I. M. Craig, and M. B. Raschke, “Pushing the sample-size limit of infrared vibrational nanospectroscopy: from monolayer toward single molecule sensitivity,” J. Phys. Chem. Lett. 3(13), 1836–1841 (2012).
[Crossref] [PubMed]

Yampolsky, S.

S. Yampolsky, D. A. Fishman, S. Dey, E. Hulkko, M. Banik, E. O. Potma, and V. A. Apkarian, “Seeing a single molecule vibrate through time-resolved coherent anti-stokes Raman scattering,” Nat. Photonics 8(8), 650–656 (2014).
[Crossref]

Yan, W.

X. Zhu, W. Wang, W. Yan, M. B. Larsen, P. Bøggild, T. G. Pedersen, S. Xiao, J. Zi, and N. A. Mortensen, “Plasmon-phonon coupling in large-area graphene dot and antidot arrays fabricated by nanosphere lithography,” Nano Lett. 14(5), 2907–2913 (2014).
[Crossref] [PubMed]

Yang, T.

Yang, X.

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7, 12334 (2016).
[Crossref] [PubMed]

L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA),” Nano Lett. 15(2), 1272–1280 (2015).
[Crossref] [PubMed]

Yao, Y.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

Yap, F. L.

K. Zhang, L. Zhang, F. L. Yap, P. Song, C. W. Qiu, and K. P. Loh, “Large-area graphene nanodot array for plasmon-enhanced infrared spectroscopy,” Small 12(10), 1302–1308 (2016).
[Crossref] [PubMed]

Yu, N.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

L. Zhaoyi and N. Yu, “Modulation of mid-infrared light using graphene-metal plasmonic antennas,” Appl. Phys. Lett. 102(13), 131108 (2013).
[Crossref]

Zettl, A.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y. R. Shen, and F. Wang, “Electrical control of optical plasmon resonance with graphene,” Nano Lett. 12(11), 5598–5602 (2012).
[Crossref] [PubMed]

Zhai, F.

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7, 12334 (2016).
[Crossref] [PubMed]

Zhang, G.

Zhang, K.

K. Zhang, L. Zhang, F. L. Yap, P. Song, C. W. Qiu, and K. P. Loh, “Large-area graphene nanodot array for plasmon-enhanced infrared spectroscopy,” Small 12(10), 1302–1308 (2016).
[Crossref] [PubMed]

Zhang, L.

K. Zhang, L. Zhang, F. L. Yap, P. Song, C. W. Qiu, and K. P. Loh, “Large-area graphene nanodot array for plasmon-enhanced infrared spectroscopy,” Small 12(10), 1302–1308 (2016).
[Crossref] [PubMed]

Zhang, L. M.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Zhang, S.

E. Cubukcu, S. Zhang, Y. S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95(4), 043113 (2009).
[Crossref]

Zhang, X.

E. Cubukcu, S. Zhang, Y. S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95(4), 043113 (2009).
[Crossref]

Zhao, K.

L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA),” Nano Lett. 15(2), 1272–1280 (2015).
[Crossref] [PubMed]

L. V. Brown, K. Zhao, N. King, H. Sobhani, P. Nordlander, and N. J. Halas, “Surface-enhanced infrared absorption using individual cross antennas tailored to chemical moieties,” J. Am. Chem. Soc. 135(9), 3688–3695 (2013).
[Crossref] [PubMed]

Zhao, Z.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Zhaoyi, L.

L. Zhaoyi and N. Yu, “Modulation of mid-infrared light using graphene-metal plasmonic antennas,” Appl. Phys. Lett. 102(13), 131108 (2013).
[Crossref]

Zheng, B. Y.

L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA),” Nano Lett. 15(2), 1272–1280 (2015).
[Crossref] [PubMed]

Zhou, C.

B. Liu, M. Köpf, A. N. Abbas, X. Wang, Q. Guo, Y. Jia, F. Xia, R. Weihrich, F. Bachhuber, F. Pielnhofer, H. Wang, R. Dhall, S. B. Cronin, M. Ge, X. Fang, T. Nilges, and C. Zhou, “Black arsenic-phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties,” Adv. Mater. 27(30), 4423–4429 (2015).
[Crossref] [PubMed]

Zhu, X.

X. Zhu, W. Wang, W. Yan, M. B. Larsen, P. Bøggild, T. G. Pedersen, S. Xiao, J. Zi, and N. A. Mortensen, “Plasmon-phonon coupling in large-area graphene dot and antidot arrays fabricated by nanosphere lithography,” Nano Lett. 14(5), 2907–2913 (2014).
[Crossref] [PubMed]

Zi, J.

X. Zhu, W. Wang, W. Yan, M. B. Larsen, P. Bøggild, T. G. Pedersen, S. Xiao, J. Zi, and N. A. Mortensen, “Plasmon-phonon coupling in large-area graphene dot and antidot arrays fabricated by nanosphere lithography,” Nano Lett. 14(5), 2907–2913 (2014).
[Crossref] [PubMed]

ACS Nano (2)

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref] [PubMed]

ACS Photonics (1)

D. B. Farmer, P. Avouris, Y. Li, T. F. Heinz, and S. J. Han, “Ultrasensitive plasmonic detection of molecules with graphene,” ACS Photonics 3(4), 553–557 (2016).
[Crossref]

Adv. Mater. (2)

J. H. Joo, R. Merkle, J. H. Kim, and J. Maier, “Measuring electrical properties of thin film fuel cell electrodes by in situ infrared spectroscopy,” Adv. Mater. 24(48), 6507–6512 (2012).
[Crossref] [PubMed]

B. Liu, M. Köpf, A. N. Abbas, X. Wang, Q. Guo, Y. Jia, F. Xia, R. Weihrich, F. Bachhuber, F. Pielnhofer, H. Wang, R. Dhall, S. B. Cronin, M. Ge, X. Fang, T. Nilges, and C. Zhou, “Black arsenic-phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties,” Adv. Mater. 27(30), 4423–4429 (2015).
[Crossref] [PubMed]

Anal. Chem. (1)

R. Bukasov and J. S. Shumaker-Parry, “Silver nanocrescents with infrared plasmonic properties as tunable substrates for surface enhanced infrared absorption spectroscopy,” Anal. Chem. 81(11), 4531–4535 (2009).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

E. Cubukcu, S. Zhang, Y. S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95(4), 043113 (2009).
[Crossref]

B. Vasic and R. Gajic, “Graphene induced spectral tuning of metamaterial absorbers at mid-infrared fequencies,” Appl. Phys. Lett. 103(26), 261111 (2013).
[Crossref]

L. Zhaoyi and N. Yu, “Modulation of mid-infrared light using graphene-metal plasmonic antennas,” Appl. Phys. Lett. 102(13), 131108 (2013).
[Crossref]

J. Am. Chem. Soc. (1)

L. V. Brown, K. Zhao, N. King, H. Sobhani, P. Nordlander, and N. J. Halas, “Surface-enhanced infrared absorption using individual cross antennas tailored to chemical moieties,” J. Am. Chem. Soc. 135(9), 3688–3695 (2013).
[Crossref] [PubMed]

J. Appl. Phys. (1)

G. W. Hanson, “Dyadic green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 19912 (2008).
[Crossref]

J. Phys. Chem. B (1)

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104(45), 10549–10556 (2000).
[Crossref]

J. Phys. Chem. Lett. (1)

X. G. Xu, M. Rang, I. M. Craig, and M. B. Raschke, “Pushing the sample-size limit of infrared vibrational nanospectroscopy: from monolayer toward single molecule sensitivity,” J. Phys. Chem. Lett. 3(13), 1836–1841 (2012).
[Crossref] [PubMed]

Nano Lett. (8)

L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA),” Nano Lett. 15(2), 1272–1280 (2015).
[Crossref] [PubMed]

M. Abb, Y. Wang, N. Papasimakis, C. H. de Groot, and O. L. Muskens, “Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays,” Nano Lett. 14(1), 346–352 (2014).
[Crossref] [PubMed]

D. B. Farmer, D. Rodrigo, T. Low, and P. Avouris, “Plasmon-plasmon hybridization and bandwidth enhancement in nanostructured graphene,” Nano Lett. 15(4), 2582–2587 (2015).
[Crossref] [PubMed]

X. Zhu, W. Wang, W. Yan, M. B. Larsen, P. Bøggild, T. G. Pedersen, S. Xiao, J. Zi, and N. A. Mortensen, “Plasmon-phonon coupling in large-area graphene dot and antidot arrays fabricated by nanosphere lithography,” Nano Lett. 14(5), 2907–2913 (2014).
[Crossref] [PubMed]

N. K. Emani, T. F. Chung, X. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, “Electrically tunable damping of plasmonic resonances with graphene,” Nano Lett. 12(10), 5202–5206 (2012).
[Crossref] [PubMed]

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y. R. Shen, and F. Wang, “Electrical control of optical plasmon resonance with graphene,” Nano Lett. 12(11), 5598–5602 (2012).
[Crossref] [PubMed]

N. K. Emani, T. F. Chung, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical modulation of fano resonance in plasmonic nanostructures using graphene,” Nano Lett. 14(1), 78–82 (2014).
[Crossref] [PubMed]

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

Nat. Commun. (1)

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7, 12334 (2016).
[Crossref] [PubMed]

Nat. Photonics (1)

S. Yampolsky, D. A. Fishman, S. Dey, E. Hulkko, M. Banik, E. O. Potma, and V. A. Apkarian, “Seeing a single molecule vibrate through time-resolved coherent anti-stokes Raman scattering,” Nat. Photonics 8(8), 650–656 (2014).
[Crossref]

Nat. Phys. (1)

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008).
[Crossref]

Nature (2)

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Opt. Express (4)

Science (1)

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Small (1)

K. Zhang, L. Zhang, F. L. Yap, P. Song, C. W. Qiu, and K. P. Loh, “Large-area graphene nanodot array for plasmon-enhanced infrared spectroscopy,” Small 12(10), 1302–1308 (2016).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Proposed crescent resonator (a) on dielectric substrate and (b) with metal-insulator-metal configuration. (c) graphene loading for dynamic plasmon tuning and better field enhancement. These three structures are numerically analyzed in sequence.

Fig. 2
Fig. 2

(a) Absorption spectra of SRR. Charge density distribution of (b) dipole resonance mode at 7.7μm and (c) quadrupole resonance mode at 2.5μm.

Fig. 3
Fig. 3

(a) CR unit cell on a dielectric substrate. (b) Dependences of inner radius and field enhancement on the outer radius with fixed gap size of h = w = 30nm and resonance wavelength of 7.7μm. (c) Two dimensional field enhancement distribution of CR with (R, r) = (620nm, 425nm). (d) Field enhancement of CR at the center of the gap (on resonator-substrate interface) increases with increasing R. Current density distribution of CR with (e) (R, r) = (580nm, 425nm) and (f) (R, r) = (620nm, 425nm).

Fig. 4
Fig. 4

Charge density of CR at gap area increases with increasing outer radius R. (a) (R, r) = (460nm, 390nm), (b) (R, r) = (540nm, 415nm), (c) (R, r) = (620nm, 425nm).

Fig. 5
Fig. 5

(a) The field enhancement of nanorod resonator highly depends on its width with fixed length, which makes nanorod long and thin in infrared wavelength, and therefore the performance improvement has been constrained by fabrication process. (b) The field enhancement of CR is 40% higher than that of nanorod resonator, which has a length/width ratio of 70:1.

Fig. 6
Fig. 6

(a) Absorption spectra and (b) field enhancement of PA ((R, r) = (470nm, 370nm)), and CR without metal reflection layer ((R, r) = (500nm, 405nm)).

Fig. 7
Fig. 7

(a) The resonance peak of CR/graphene hybrid structure blue shifts with increasing graphene Fermi level. (b) Dependence of hybrid structure resonance wavelength on the Fermi level of graphene with different layer number.

Fig. 8
Fig. 8

(a) Two-dimensional field enhancement distribution in CR/graphene hybrid structure with graphene Fermi level of 0.2ev. (b) Usable field enhancements can be obtained both inside and outside the gap area (~11 fold with monolayer graphene) and the enhancement decreases with increasing graphene layer number. (c) CR/graphene hybrid structure exhibits 25% percent higher field enhancement at the gap area than CR without graphene. (d) The field enhancement of the hybrid structure decreases with increasing Fermi level, and is higher than that of bare CR in the range below 0.3ev.

Fig. 9
Fig. 9

Two-dimensional field enhancement distributions in CR/graphene hybrid structure with different graphene Fermi levels of (a) 0.3ev, (b) 0.4ev, and (c) 0.5ev.

Metrics