Abstract

We report a high power transverse-mode-switchable fiber laser in a master oscillator power amplifier (MOPA) configuration. The output modes of a few-mode fiber amplifier can be actively controlled by the input polarization state of the fundamental mode seed laser using SPGD algorithm. A fast, stable and safety mode switching between LP01 and LP11 modes is achieved in the amplifier at output power of 500 W level.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-power transverse-mode-switchable all-fiber picosecond MOPA

Tong Liu, Shengping Chen, Xue Qi, and Jing Hou
Opt. Express 24(24) 27821-27827 (2016)

1016nm all fiber picosecond MOPA laser with 50W output

Xue Qi, Sheng-Ping Chen, Hai-Yue Sun, Bing-Ke Yang, and Jing Hou
Opt. Express 24(15) 16874-16883 (2016)

6.5  GHz linearly polarized kilowatt fiber amplifier based on active polarization control

Yanshan Wang, Yujun Feng, Xiaojun Wang, Hong Yan, Jue Peng, Wanjing Peng, Yinhong Sun, Yi Ma, and Chun Tang
Appl. Opt. 56(10) 2760-2765 (2017)

References

  • View by:
  • |
  • |
  • |

  1. W. Shi, Q. Fang, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Fiber lasers and their applications [Invited],” Appl. Opt. 53(28), 6554–6568 (2014).
    [Crossref] [PubMed]
  2. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27(11), 63–92 (2010).
    [Crossref]
  3. C. G. Carlson, P. D. Dragic, R. K. Price, J. J. Coleman, and G. R. Swenson, “A Narrow-Linewidth, Yb Fiber-Amplifier-Based Upper Atmospheric Dopper Temperature Lidar,” IEEE J. Sel. Top. Quantum Electron. 15(2), 451–461 (2009).
    [Crossref]
  4. R. Su, P. Zhou, X. Wang, Y. Ma, P. Ma, X. Xu, and Z. Liu, “High power narrow-linewidth nanosecond all-fiber lasers and their actively coherent beam combination [Invited],” IEEE J. Sel. Top. Quantum Electron. 20, 0903913 (2014).
  5. Z. Liu, P. Ma, R. Su, R. Tao, Y. Ma, X. Wang, and P. Zhou, “High-power coherent beam polarization combination of fiber lasers: progress and prospect [Invited],” J. Opt. Soc. Am. B 34(3), A7–A14 (2017).
    [Crossref]
  6. F. Stutzki, F. Jansen, C. Jauregui, J. Limpert, and A. Tünnermann, “2.4 mJ, 33 W Q-switched Tm-doped fiber laser with near diffraction-limited beam quality,” Opt. Lett. 38(2), 97–99 (2013).
    [Crossref] [PubMed]
  7. P. Ma, R. Tao, R. Su, X. Wang, P. Zhou, and Z. Liu, “1.89 kW all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality,” Opt. Express 24(4), 4187–4195 (2016).
    [Crossref] [PubMed]
  8. T. H. Loftus, A. Liu, P. R. Hoffman, A. M. Thomas, M. Norsen, R. Royse, and E. Honea, “522 W average power, spectrally beam-combined fiber laser with near-diffraction-limited beam quality,” Opt. Lett. 32(4), 349–351 (2007).
    [Crossref] [PubMed]
  9. M. Lei, Y. Qi, C. Liu, Y. Yang, Y. Zheng, and J. Zhou, “Mode controlling study on narrow-linewidth and high power all-fiber amplifier,” Proc. SPIE 9543, 95431L (2015).
    [Crossref]
  10. N. Sanner, N. Huot, E. Audouard, C. Larat, and J. P. Huignard, “Direct ultrafast laser micro-structuring of materials using programmable beam shaping,” Opt. Lasers Eng. 45(6), 737–741 (2007).
    [Crossref]
  11. H. Ye, C. Wan, K. Huang, T. Han, J. Teng, Y. S. Ping, and C. W. Qiu, “Creation of vectorial bottle-hollow beam using radially or azimuthally polarized light,” Opt. Lett. 39(3), 630–633 (2014).
    [Crossref] [PubMed]
  12. A. P. Porfirev and R. V. Skidanov, “Dark-hollow optical beams with a controllable shape for optical trapping in air,” Opt. Express 23(7), 8373–8382 (2015).
    [Crossref] [PubMed]
  13. S. Ngcobo, I. Litvin, L. Burger, and A. Forbes, “A digital laser for on-demand laser modes,” Nat. Commun. 4, 2289 (2013).
    [Crossref] [PubMed]
  14. A. Ishaaya, N. Davidson, and A. Friesem, “Very high-order pure Laguerre-Gaussian mode selection in a passive Q-switched Nd:YAG laser,” Opt. Express 13(13), 4952–4962 (2005).
    [Crossref] [PubMed]
  15. D. Lin and W. A. Clarkson, “Polarization-dependent transverse mode selection in an Yb-doped fiber laser,” Opt. Lett. 40(4), 498–501 (2015).
    [Crossref] [PubMed]
  16. D. Lin, J. M. O. Daniel, M. Gecevičius, M. Beresna, P. G. Kazansky, and W. A. Clarkson, “Cladding-pumped ytterbium-doped fiber laser with radially polarized output,” Opt. Lett. 39(18), 5359–5361 (2014).
    [Crossref] [PubMed]
  17. N. Andermahr and C. Fallnich, “Optically induced long-period fiber gratings for guided mode conversion in few-mode fibers,” Opt. Express 18(5), 4411–4416 (2010).
    [Crossref] [PubMed]
  18. J. M. O. Daniel and W. A. Clarkson, “Rapid, electronically controllable transverse mode selection in a multimode fiber laser,” Opt. Express 21(24), 29442–29448 (2013).
    [Crossref] [PubMed]
  19. J. M. O. Daniel, J. S. P. Chan, J. W. Kim, J. K. Sahu, M. Ibsen, and W. A. Clarkson, “Novel technique for mode selection in a multimode fiber laser,” Opt. Express 19(13), 12434–12439 (2011).
    [Crossref] [PubMed]
  20. B. Sun, A. Wang, L. Xu, C. Gu, Y. Zhou, Z. Lin, H. Ming, and Q. Zhan, “Transverse mode switchable fiber laser through wavelength tuning,” Opt. Lett. 38(5), 667–669 (2013).
    [Crossref] [PubMed]
  21. T. Liu, S. P. Chen, and J. Hou, “Selective transverse mode operation of an all-fiber laser with a mode-selective fiber Bragg grating pair,” Opt. Lett. 41(24), 5692–5695 (2016).
    [Crossref] [PubMed]
  22. L. Li, M. Wang, T. Liu, J. Leng, P. Zhou, and J. Chen, “High-power, cladding-pumped all-fiber laser with selective transverse mode generation property,” Appl. Opt. 56(17), 4967–4970 (2017).
    [Crossref]
  23. N. Andermahr and C. Fallnich, “Interaction of transverse modes in a single-frequency few-mode fiber amplifier caused by local gain saturation,” Opt. Express 16(12), 8678–8684 (2008).
    [Crossref] [PubMed]
  24. B. Sun, A. Wang, L. Xu, C. Gu, Z. Lin, H. Ming, and Q. Zhan, “Low-threshold single-wavelength all-fiber laser generating cylindrical vector beams using a few-mode fiber Bragg grating,” Opt. Lett. 37(4), 464–466 (2012).
    [Crossref] [PubMed]
  25. X. Du, H. Zhang, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Spatial mode switchable fiber laser based on FM-FBG and random distributed feedback,” Laser Phys. 25(9), 095102 (2015).
    [Crossref]
  26. K. K. Bobkov, M. M. Bubnov, S. S. Aleshkina, and M. E. Likhachev, “The first experimental observation of long-term mode degradation in high peak power Yb-doped amplifiers,” Proc. SPIE 10083, 100830T (2017).
    [Crossref]
  27. C. Zhao, Y. Cai, F. Wang, X. Lu, and Y. Wang, “Generation of a high-quality partially coherent dark hollow beam with a multimode fiber,” Opt. Lett. 33(12), 1389–1391 (2008).
    [Crossref] [PubMed]
  28. L. Huang, J. Leng, P. Zhou, S. Guo, H. Lü, and X. Cheng, “Adaptive mode control of a few-mode fiber by real-time mode decomposition,” Opt. Express 23(21), 28082–28090 (2015).
    [Crossref] [PubMed]
  29. T. A. Birks, I. Gris-Sanchez, S. Yerolatsitis, S. G. Leon-Saval, and R. R. Thomson, “The photonic lantern,” Adv. Opt. Photonics 7(2), 107–167 (2015).
    [Crossref]
  30. J. Montoya, C. Aleshire, C. Hwang, N. K. Fontaine, A. Velázquez-Benítez, D. H. Martz, T. Y. Fan, and D. Ripin, “Photonic lantern adaptive spatial mode control in LMA fiber amplifiers,” Opt. Express 24(4), 3405–3413 (2016).
    [Crossref] [PubMed]
  31. S. Wittek, R. Bustos Ramirez, J. Alvarado Zacarias, Z. Sanjabi Eznaveh, J. Bradford, G. Lopez Galmiche, D. Zhang, W. Zhu, J. Antonio-Lopez, L. Shah, and R. Amezcua Correa, “Mode-selective amplification in a large mode area Yb-doped fiber using a photonic lantern,” Opt. Lett. 41(10), 2157–2160 (2016).
    [Crossref] [PubMed]
  32. T. Liu, S. Chen, X. Qi, and J. Hou, “High-power transverse-mode-switchable all-fiber picosecond MOPA,” Opt. Express 24(24), 27821–27827 (2016).
    [Crossref] [PubMed]
  33. S. Xu, Z. Yang, W. Zhang, X. Wei, Q. Qian, D. Chen, Q. Zhang, S. Shen, M. Peng, and J. Qiu, “400 mW ultrashort cavity low-noise single-frequency Yb3+-doped phosphate fiber laser,” Opt. Lett. 36(18), 3708–3710 (2011).
    [Crossref] [PubMed]
  34. C. Li, S. Xu, X. Huang, Y. Xiao, Z. Feng, C. Yang, K. Zhou, W. Lin, J. Gan, and Z. Yang, “All-optical frequency and intensity noise suppression of single-frequency fiber laser,” Opt. Lett. 40(9), 1964–1967 (2015).
    [Crossref] [PubMed]
  35. C. Zeringue, I. Dajani, S. Naderi, G. T. Moore, and C. Robin, “A theoretical study of transient stimulated Brillouin scattering in optical fibers seeded with phase-modulated light,” Opt. Express 20(19), 21196–21213 (2012).
    [Crossref] [PubMed]
  36. Z. Huang, C. Liu, J. Li, D. Zhang, H. Cheng, Y. Luo, Q. Hu, and M. Han, “Fiber polarization control based on a fast locating algorithm,” Appl. Opt. 52(27), 6663–6668 (2013).
    [Crossref] [PubMed]
  37. M. A. Vorontsov, G. W. Carhart, and J. C. Ricklin, “Adaptive phase-distortion correction based on parallel gradient-descent optimization,” Opt. Lett. 22(12), 907–909 (1997).
    [Crossref] [PubMed]
  38. P. Zhou, Z. Liu, X. Wang, Y. Ma, H. Ma, and X. Xu, “Coherent beam combination of two-dimensional high power fiber amplifier array using stochastic parallel gradient descent algorithm,” Appl. Phys. Lett. 94(23), 231106 (2009).
    [Crossref]
  39. Y. Wang, Y. Feng, X. Wang, H. Yan, J. Peng, W. Peng, Y. Sun, Y. Ma, and C. Tang, “6.5 GHz linearly polarized kilowatt fiber amplifier based on active polarization control,” Appl. Opt. 56, 2760–2765 (2017).
  40. J. M. O. Daniel, N. Simakov, P. C. Shardlow, and W. A. Clarkson, Effect of seed linewidth on few-moded fiber amplifiers, in 2014 Conference on Lasers and Electro, OSA Technical Digest (online) (Optical Society of America, 2014), paper STu2N.7.
    [Crossref]

2017 (4)

2016 (5)

2015 (7)

2014 (4)

2013 (5)

2012 (2)

2011 (2)

2010 (2)

N. Andermahr and C. Fallnich, “Optically induced long-period fiber gratings for guided mode conversion in few-mode fibers,” Opt. Express 18(5), 4411–4416 (2010).
[Crossref] [PubMed]

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27(11), 63–92 (2010).
[Crossref]

2009 (2)

C. G. Carlson, P. D. Dragic, R. K. Price, J. J. Coleman, and G. R. Swenson, “A Narrow-Linewidth, Yb Fiber-Amplifier-Based Upper Atmospheric Dopper Temperature Lidar,” IEEE J. Sel. Top. Quantum Electron. 15(2), 451–461 (2009).
[Crossref]

P. Zhou, Z. Liu, X. Wang, Y. Ma, H. Ma, and X. Xu, “Coherent beam combination of two-dimensional high power fiber amplifier array using stochastic parallel gradient descent algorithm,” Appl. Phys. Lett. 94(23), 231106 (2009).
[Crossref]

2008 (2)

2007 (2)

T. H. Loftus, A. Liu, P. R. Hoffman, A. M. Thomas, M. Norsen, R. Royse, and E. Honea, “522 W average power, spectrally beam-combined fiber laser with near-diffraction-limited beam quality,” Opt. Lett. 32(4), 349–351 (2007).
[Crossref] [PubMed]

N. Sanner, N. Huot, E. Audouard, C. Larat, and J. P. Huignard, “Direct ultrafast laser micro-structuring of materials using programmable beam shaping,” Opt. Lasers Eng. 45(6), 737–741 (2007).
[Crossref]

2005 (1)

1997 (1)

Aleshire, C.

Aleshkina, S. S.

K. K. Bobkov, M. M. Bubnov, S. S. Aleshkina, and M. E. Likhachev, “The first experimental observation of long-term mode degradation in high peak power Yb-doped amplifiers,” Proc. SPIE 10083, 100830T (2017).
[Crossref]

Alvarado Zacarias, J.

Amezcua Correa, R.

Andermahr, N.

Antonio-Lopez, J.

Audouard, E.

N. Sanner, N. Huot, E. Audouard, C. Larat, and J. P. Huignard, “Direct ultrafast laser micro-structuring of materials using programmable beam shaping,” Opt. Lasers Eng. 45(6), 737–741 (2007).
[Crossref]

Beresna, M.

Birks, T. A.

T. A. Birks, I. Gris-Sanchez, S. Yerolatsitis, S. G. Leon-Saval, and R. R. Thomson, “The photonic lantern,” Adv. Opt. Photonics 7(2), 107–167 (2015).
[Crossref]

Bobkov, K. K.

K. K. Bobkov, M. M. Bubnov, S. S. Aleshkina, and M. E. Likhachev, “The first experimental observation of long-term mode degradation in high peak power Yb-doped amplifiers,” Proc. SPIE 10083, 100830T (2017).
[Crossref]

Bradford, J.

Bubnov, M. M.

K. K. Bobkov, M. M. Bubnov, S. S. Aleshkina, and M. E. Likhachev, “The first experimental observation of long-term mode degradation in high peak power Yb-doped amplifiers,” Proc. SPIE 10083, 100830T (2017).
[Crossref]

Burger, L.

S. Ngcobo, I. Litvin, L. Burger, and A. Forbes, “A digital laser for on-demand laser modes,” Nat. Commun. 4, 2289 (2013).
[Crossref] [PubMed]

Bustos Ramirez, R.

Cai, Y.

Carhart, G. W.

Carlson, C. G.

C. G. Carlson, P. D. Dragic, R. K. Price, J. J. Coleman, and G. R. Swenson, “A Narrow-Linewidth, Yb Fiber-Amplifier-Based Upper Atmospheric Dopper Temperature Lidar,” IEEE J. Sel. Top. Quantum Electron. 15(2), 451–461 (2009).
[Crossref]

Chan, J. S. P.

Chen, D.

Chen, J.

Chen, S.

Chen, S. P.

Cheng, H.

Cheng, X.

Clarkson, W. A.

Coleman, J. J.

C. G. Carlson, P. D. Dragic, R. K. Price, J. J. Coleman, and G. R. Swenson, “A Narrow-Linewidth, Yb Fiber-Amplifier-Based Upper Atmospheric Dopper Temperature Lidar,” IEEE J. Sel. Top. Quantum Electron. 15(2), 451–461 (2009).
[Crossref]

Dajani, I.

Daniel, J. M. O.

Davidson, N.

Dragic, P. D.

C. G. Carlson, P. D. Dragic, R. K. Price, J. J. Coleman, and G. R. Swenson, “A Narrow-Linewidth, Yb Fiber-Amplifier-Based Upper Atmospheric Dopper Temperature Lidar,” IEEE J. Sel. Top. Quantum Electron. 15(2), 451–461 (2009).
[Crossref]

Du, X.

X. Du, H. Zhang, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Spatial mode switchable fiber laser based on FM-FBG and random distributed feedback,” Laser Phys. 25(9), 095102 (2015).
[Crossref]

Fallnich, C.

Fan, T. Y.

Fang, Q.

Feng, Y.

Feng, Z.

Fontaine, N. K.

Forbes, A.

S. Ngcobo, I. Litvin, L. Burger, and A. Forbes, “A digital laser for on-demand laser modes,” Nat. Commun. 4, 2289 (2013).
[Crossref] [PubMed]

Friesem, A.

Gan, J.

Gecevicius, M.

Gris-Sanchez, I.

T. A. Birks, I. Gris-Sanchez, S. Yerolatsitis, S. G. Leon-Saval, and R. R. Thomson, “The photonic lantern,” Adv. Opt. Photonics 7(2), 107–167 (2015).
[Crossref]

Gu, C.

Guo, S.

Han, M.

Han, T.

Hoffman, P. R.

Honea, E.

Hou, J.

Hu, Q.

Huang, K.

Huang, L.

Huang, X.

Huang, Z.

Huignard, J. P.

N. Sanner, N. Huot, E. Audouard, C. Larat, and J. P. Huignard, “Direct ultrafast laser micro-structuring of materials using programmable beam shaping,” Opt. Lasers Eng. 45(6), 737–741 (2007).
[Crossref]

Huot, N.

N. Sanner, N. Huot, E. Audouard, C. Larat, and J. P. Huignard, “Direct ultrafast laser micro-structuring of materials using programmable beam shaping,” Opt. Lasers Eng. 45(6), 737–741 (2007).
[Crossref]

Hwang, C.

Ibsen, M.

Ishaaya, A.

Jansen, F.

Jauregui, C.

Kazansky, P. G.

Kim, J. W.

Larat, C.

N. Sanner, N. Huot, E. Audouard, C. Larat, and J. P. Huignard, “Direct ultrafast laser micro-structuring of materials using programmable beam shaping,” Opt. Lasers Eng. 45(6), 737–741 (2007).
[Crossref]

Lei, M.

M. Lei, Y. Qi, C. Liu, Y. Yang, Y. Zheng, and J. Zhou, “Mode controlling study on narrow-linewidth and high power all-fiber amplifier,” Proc. SPIE 9543, 95431L (2015).
[Crossref]

Leng, J.

Leon-Saval, S. G.

T. A. Birks, I. Gris-Sanchez, S. Yerolatsitis, S. G. Leon-Saval, and R. R. Thomson, “The photonic lantern,” Adv. Opt. Photonics 7(2), 107–167 (2015).
[Crossref]

Li, C.

Li, J.

Li, L.

Likhachev, M. E.

K. K. Bobkov, M. M. Bubnov, S. S. Aleshkina, and M. E. Likhachev, “The first experimental observation of long-term mode degradation in high peak power Yb-doped amplifiers,” Proc. SPIE 10083, 100830T (2017).
[Crossref]

Limpert, J.

Lin, D.

Lin, W.

Lin, Z.

Litvin, I.

S. Ngcobo, I. Litvin, L. Burger, and A. Forbes, “A digital laser for on-demand laser modes,” Nat. Commun. 4, 2289 (2013).
[Crossref] [PubMed]

Liu, A.

Liu, C.

M. Lei, Y. Qi, C. Liu, Y. Yang, Y. Zheng, and J. Zhou, “Mode controlling study on narrow-linewidth and high power all-fiber amplifier,” Proc. SPIE 9543, 95431L (2015).
[Crossref]

Z. Huang, C. Liu, J. Li, D. Zhang, H. Cheng, Y. Luo, Q. Hu, and M. Han, “Fiber polarization control based on a fast locating algorithm,” Appl. Opt. 52(27), 6663–6668 (2013).
[Crossref] [PubMed]

Liu, T.

Liu, Z.

Z. Liu, P. Ma, R. Su, R. Tao, Y. Ma, X. Wang, and P. Zhou, “High-power coherent beam polarization combination of fiber lasers: progress and prospect [Invited],” J. Opt. Soc. Am. B 34(3), A7–A14 (2017).
[Crossref]

P. Ma, R. Tao, R. Su, X. Wang, P. Zhou, and Z. Liu, “1.89 kW all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality,” Opt. Express 24(4), 4187–4195 (2016).
[Crossref] [PubMed]

X. Du, H. Zhang, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Spatial mode switchable fiber laser based on FM-FBG and random distributed feedback,” Laser Phys. 25(9), 095102 (2015).
[Crossref]

R. Su, P. Zhou, X. Wang, Y. Ma, P. Ma, X. Xu, and Z. Liu, “High power narrow-linewidth nanosecond all-fiber lasers and their actively coherent beam combination [Invited],” IEEE J. Sel. Top. Quantum Electron. 20, 0903913 (2014).

P. Zhou, Z. Liu, X. Wang, Y. Ma, H. Ma, and X. Xu, “Coherent beam combination of two-dimensional high power fiber amplifier array using stochastic parallel gradient descent algorithm,” Appl. Phys. Lett. 94(23), 231106 (2009).
[Crossref]

Loftus, T. H.

Lopez Galmiche, G.

Lu, X.

Lü, H.

Luo, Y.

Ma, H.

P. Zhou, Z. Liu, X. Wang, Y. Ma, H. Ma, and X. Xu, “Coherent beam combination of two-dimensional high power fiber amplifier array using stochastic parallel gradient descent algorithm,” Appl. Phys. Lett. 94(23), 231106 (2009).
[Crossref]

Ma, P.

Z. Liu, P. Ma, R. Su, R. Tao, Y. Ma, X. Wang, and P. Zhou, “High-power coherent beam polarization combination of fiber lasers: progress and prospect [Invited],” J. Opt. Soc. Am. B 34(3), A7–A14 (2017).
[Crossref]

P. Ma, R. Tao, R. Su, X. Wang, P. Zhou, and Z. Liu, “1.89 kW all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality,” Opt. Express 24(4), 4187–4195 (2016).
[Crossref] [PubMed]

X. Du, H. Zhang, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Spatial mode switchable fiber laser based on FM-FBG and random distributed feedback,” Laser Phys. 25(9), 095102 (2015).
[Crossref]

R. Su, P. Zhou, X. Wang, Y. Ma, P. Ma, X. Xu, and Z. Liu, “High power narrow-linewidth nanosecond all-fiber lasers and their actively coherent beam combination [Invited],” IEEE J. Sel. Top. Quantum Electron. 20, 0903913 (2014).

Ma, Y.

Z. Liu, P. Ma, R. Su, R. Tao, Y. Ma, X. Wang, and P. Zhou, “High-power coherent beam polarization combination of fiber lasers: progress and prospect [Invited],” J. Opt. Soc. Am. B 34(3), A7–A14 (2017).
[Crossref]

Y. Wang, Y. Feng, X. Wang, H. Yan, J. Peng, W. Peng, Y. Sun, Y. Ma, and C. Tang, “6.5 GHz linearly polarized kilowatt fiber amplifier based on active polarization control,” Appl. Opt. 56, 2760–2765 (2017).

R. Su, P. Zhou, X. Wang, Y. Ma, P. Ma, X. Xu, and Z. Liu, “High power narrow-linewidth nanosecond all-fiber lasers and their actively coherent beam combination [Invited],” IEEE J. Sel. Top. Quantum Electron. 20, 0903913 (2014).

P. Zhou, Z. Liu, X. Wang, Y. Ma, H. Ma, and X. Xu, “Coherent beam combination of two-dimensional high power fiber amplifier array using stochastic parallel gradient descent algorithm,” Appl. Phys. Lett. 94(23), 231106 (2009).
[Crossref]

Martz, D. H.

Ming, H.

Montoya, J.

Moore, G. T.

Naderi, S.

Ngcobo, S.

S. Ngcobo, I. Litvin, L. Burger, and A. Forbes, “A digital laser for on-demand laser modes,” Nat. Commun. 4, 2289 (2013).
[Crossref] [PubMed]

Nilsson, J.

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27(11), 63–92 (2010).
[Crossref]

Norsen, M.

Norwood, R. A.

Peng, J.

Peng, M.

Peng, W.

Peyghambarian, N.

Ping, Y. S.

Porfirev, A. P.

Price, R. K.

C. G. Carlson, P. D. Dragic, R. K. Price, J. J. Coleman, and G. R. Swenson, “A Narrow-Linewidth, Yb Fiber-Amplifier-Based Upper Atmospheric Dopper Temperature Lidar,” IEEE J. Sel. Top. Quantum Electron. 15(2), 451–461 (2009).
[Crossref]

Qi, X.

Qi, Y.

M. Lei, Y. Qi, C. Liu, Y. Yang, Y. Zheng, and J. Zhou, “Mode controlling study on narrow-linewidth and high power all-fiber amplifier,” Proc. SPIE 9543, 95431L (2015).
[Crossref]

Qian, Q.

Qiu, C. W.

Qiu, J.

Richardson, D. J.

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27(11), 63–92 (2010).
[Crossref]

Ricklin, J. C.

Ripin, D.

Robin, C.

Royse, R.

Sahu, J. K.

Sanjabi Eznaveh, Z.

Sanner, N.

N. Sanner, N. Huot, E. Audouard, C. Larat, and J. P. Huignard, “Direct ultrafast laser micro-structuring of materials using programmable beam shaping,” Opt. Lasers Eng. 45(6), 737–741 (2007).
[Crossref]

Shah, L.

Shen, S.

Shi, W.

Skidanov, R. V.

Stutzki, F.

Su, R.

Sun, B.

Sun, Y.

Swenson, G. R.

C. G. Carlson, P. D. Dragic, R. K. Price, J. J. Coleman, and G. R. Swenson, “A Narrow-Linewidth, Yb Fiber-Amplifier-Based Upper Atmospheric Dopper Temperature Lidar,” IEEE J. Sel. Top. Quantum Electron. 15(2), 451–461 (2009).
[Crossref]

Tang, C.

Tao, R.

Teng, J.

Thomas, A. M.

Thomson, R. R.

T. A. Birks, I. Gris-Sanchez, S. Yerolatsitis, S. G. Leon-Saval, and R. R. Thomson, “The photonic lantern,” Adv. Opt. Photonics 7(2), 107–167 (2015).
[Crossref]

Tünnermann, A.

Velázquez-Benítez, A.

Vorontsov, M. A.

Wan, C.

Wang, A.

Wang, F.

Wang, M.

Wang, X.

Y. Wang, Y. Feng, X. Wang, H. Yan, J. Peng, W. Peng, Y. Sun, Y. Ma, and C. Tang, “6.5 GHz linearly polarized kilowatt fiber amplifier based on active polarization control,” Appl. Opt. 56, 2760–2765 (2017).

Z. Liu, P. Ma, R. Su, R. Tao, Y. Ma, X. Wang, and P. Zhou, “High-power coherent beam polarization combination of fiber lasers: progress and prospect [Invited],” J. Opt. Soc. Am. B 34(3), A7–A14 (2017).
[Crossref]

P. Ma, R. Tao, R. Su, X. Wang, P. Zhou, and Z. Liu, “1.89 kW all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality,” Opt. Express 24(4), 4187–4195 (2016).
[Crossref] [PubMed]

X. Du, H. Zhang, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Spatial mode switchable fiber laser based on FM-FBG and random distributed feedback,” Laser Phys. 25(9), 095102 (2015).
[Crossref]

R. Su, P. Zhou, X. Wang, Y. Ma, P. Ma, X. Xu, and Z. Liu, “High power narrow-linewidth nanosecond all-fiber lasers and their actively coherent beam combination [Invited],” IEEE J. Sel. Top. Quantum Electron. 20, 0903913 (2014).

P. Zhou, Z. Liu, X. Wang, Y. Ma, H. Ma, and X. Xu, “Coherent beam combination of two-dimensional high power fiber amplifier array using stochastic parallel gradient descent algorithm,” Appl. Phys. Lett. 94(23), 231106 (2009).
[Crossref]

Wang, Y.

Wei, X.

Wittek, S.

Xiao, Y.

Xu, L.

Xu, S.

Xu, X.

R. Su, P. Zhou, X. Wang, Y. Ma, P. Ma, X. Xu, and Z. Liu, “High power narrow-linewidth nanosecond all-fiber lasers and their actively coherent beam combination [Invited],” IEEE J. Sel. Top. Quantum Electron. 20, 0903913 (2014).

P. Zhou, Z. Liu, X. Wang, Y. Ma, H. Ma, and X. Xu, “Coherent beam combination of two-dimensional high power fiber amplifier array using stochastic parallel gradient descent algorithm,” Appl. Phys. Lett. 94(23), 231106 (2009).
[Crossref]

Yan, H.

Yang, C.

Yang, Y.

M. Lei, Y. Qi, C. Liu, Y. Yang, Y. Zheng, and J. Zhou, “Mode controlling study on narrow-linewidth and high power all-fiber amplifier,” Proc. SPIE 9543, 95431L (2015).
[Crossref]

Yang, Z.

Ye, H.

Yerolatsitis, S.

T. A. Birks, I. Gris-Sanchez, S. Yerolatsitis, S. G. Leon-Saval, and R. R. Thomson, “The photonic lantern,” Adv. Opt. Photonics 7(2), 107–167 (2015).
[Crossref]

Zeringue, C.

Zhan, Q.

Zhang, D.

Zhang, H.

X. Du, H. Zhang, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Spatial mode switchable fiber laser based on FM-FBG and random distributed feedback,” Laser Phys. 25(9), 095102 (2015).
[Crossref]

Zhang, Q.

Zhang, W.

Zhao, C.

Zheng, Y.

M. Lei, Y. Qi, C. Liu, Y. Yang, Y. Zheng, and J. Zhou, “Mode controlling study on narrow-linewidth and high power all-fiber amplifier,” Proc. SPIE 9543, 95431L (2015).
[Crossref]

Zhou, J.

M. Lei, Y. Qi, C. Liu, Y. Yang, Y. Zheng, and J. Zhou, “Mode controlling study on narrow-linewidth and high power all-fiber amplifier,” Proc. SPIE 9543, 95431L (2015).
[Crossref]

Zhou, K.

Zhou, P.

Z. Liu, P. Ma, R. Su, R. Tao, Y. Ma, X. Wang, and P. Zhou, “High-power coherent beam polarization combination of fiber lasers: progress and prospect [Invited],” J. Opt. Soc. Am. B 34(3), A7–A14 (2017).
[Crossref]

L. Li, M. Wang, T. Liu, J. Leng, P. Zhou, and J. Chen, “High-power, cladding-pumped all-fiber laser with selective transverse mode generation property,” Appl. Opt. 56(17), 4967–4970 (2017).
[Crossref]

P. Ma, R. Tao, R. Su, X. Wang, P. Zhou, and Z. Liu, “1.89 kW all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality,” Opt. Express 24(4), 4187–4195 (2016).
[Crossref] [PubMed]

L. Huang, J. Leng, P. Zhou, S. Guo, H. Lü, and X. Cheng, “Adaptive mode control of a few-mode fiber by real-time mode decomposition,” Opt. Express 23(21), 28082–28090 (2015).
[Crossref] [PubMed]

X. Du, H. Zhang, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Spatial mode switchable fiber laser based on FM-FBG and random distributed feedback,” Laser Phys. 25(9), 095102 (2015).
[Crossref]

R. Su, P. Zhou, X. Wang, Y. Ma, P. Ma, X. Xu, and Z. Liu, “High power narrow-linewidth nanosecond all-fiber lasers and their actively coherent beam combination [Invited],” IEEE J. Sel. Top. Quantum Electron. 20, 0903913 (2014).

P. Zhou, Z. Liu, X. Wang, Y. Ma, H. Ma, and X. Xu, “Coherent beam combination of two-dimensional high power fiber amplifier array using stochastic parallel gradient descent algorithm,” Appl. Phys. Lett. 94(23), 231106 (2009).
[Crossref]

Zhou, Y.

Zhu, W.

Zhu, X.

Adv. Opt. Photonics (1)

T. A. Birks, I. Gris-Sanchez, S. Yerolatsitis, S. G. Leon-Saval, and R. R. Thomson, “The photonic lantern,” Adv. Opt. Photonics 7(2), 107–167 (2015).
[Crossref]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

P. Zhou, Z. Liu, X. Wang, Y. Ma, H. Ma, and X. Xu, “Coherent beam combination of two-dimensional high power fiber amplifier array using stochastic parallel gradient descent algorithm,” Appl. Phys. Lett. 94(23), 231106 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

C. G. Carlson, P. D. Dragic, R. K. Price, J. J. Coleman, and G. R. Swenson, “A Narrow-Linewidth, Yb Fiber-Amplifier-Based Upper Atmospheric Dopper Temperature Lidar,” IEEE J. Sel. Top. Quantum Electron. 15(2), 451–461 (2009).
[Crossref]

R. Su, P. Zhou, X. Wang, Y. Ma, P. Ma, X. Xu, and Z. Liu, “High power narrow-linewidth nanosecond all-fiber lasers and their actively coherent beam combination [Invited],” IEEE J. Sel. Top. Quantum Electron. 20, 0903913 (2014).

J. Opt. Soc. Am. B (2)

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27(11), 63–92 (2010).
[Crossref]

Z. Liu, P. Ma, R. Su, R. Tao, Y. Ma, X. Wang, and P. Zhou, “High-power coherent beam polarization combination of fiber lasers: progress and prospect [Invited],” J. Opt. Soc. Am. B 34(3), A7–A14 (2017).
[Crossref]

Laser Phys. (1)

X. Du, H. Zhang, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Spatial mode switchable fiber laser based on FM-FBG and random distributed feedback,” Laser Phys. 25(9), 095102 (2015).
[Crossref]

Nat. Commun. (1)

S. Ngcobo, I. Litvin, L. Burger, and A. Forbes, “A digital laser for on-demand laser modes,” Nat. Commun. 4, 2289 (2013).
[Crossref] [PubMed]

Opt. Express (11)

A. Ishaaya, N. Davidson, and A. Friesem, “Very high-order pure Laguerre-Gaussian mode selection in a passive Q-switched Nd:YAG laser,” Opt. Express 13(13), 4952–4962 (2005).
[Crossref] [PubMed]

N. Andermahr and C. Fallnich, “Optically induced long-period fiber gratings for guided mode conversion in few-mode fibers,” Opt. Express 18(5), 4411–4416 (2010).
[Crossref] [PubMed]

J. M. O. Daniel, J. S. P. Chan, J. W. Kim, J. K. Sahu, M. Ibsen, and W. A. Clarkson, “Novel technique for mode selection in a multimode fiber laser,” Opt. Express 19(13), 12434–12439 (2011).
[Crossref] [PubMed]

A. P. Porfirev and R. V. Skidanov, “Dark-hollow optical beams with a controllable shape for optical trapping in air,” Opt. Express 23(7), 8373–8382 (2015).
[Crossref] [PubMed]

L. Huang, J. Leng, P. Zhou, S. Guo, H. Lü, and X. Cheng, “Adaptive mode control of a few-mode fiber by real-time mode decomposition,” Opt. Express 23(21), 28082–28090 (2015).
[Crossref] [PubMed]

J. Montoya, C. Aleshire, C. Hwang, N. K. Fontaine, A. Velázquez-Benítez, D. H. Martz, T. Y. Fan, and D. Ripin, “Photonic lantern adaptive spatial mode control in LMA fiber amplifiers,” Opt. Express 24(4), 3405–3413 (2016).
[Crossref] [PubMed]

P. Ma, R. Tao, R. Su, X. Wang, P. Zhou, and Z. Liu, “1.89 kW all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality,” Opt. Express 24(4), 4187–4195 (2016).
[Crossref] [PubMed]

J. M. O. Daniel and W. A. Clarkson, “Rapid, electronically controllable transverse mode selection in a multimode fiber laser,” Opt. Express 21(24), 29442–29448 (2013).
[Crossref] [PubMed]

N. Andermahr and C. Fallnich, “Interaction of transverse modes in a single-frequency few-mode fiber amplifier caused by local gain saturation,” Opt. Express 16(12), 8678–8684 (2008).
[Crossref] [PubMed]

C. Zeringue, I. Dajani, S. Naderi, G. T. Moore, and C. Robin, “A theoretical study of transient stimulated Brillouin scattering in optical fibers seeded with phase-modulated light,” Opt. Express 20(19), 21196–21213 (2012).
[Crossref] [PubMed]

T. Liu, S. Chen, X. Qi, and J. Hou, “High-power transverse-mode-switchable all-fiber picosecond MOPA,” Opt. Express 24(24), 27821–27827 (2016).
[Crossref] [PubMed]

Opt. Lasers Eng. (1)

N. Sanner, N. Huot, E. Audouard, C. Larat, and J. P. Huignard, “Direct ultrafast laser micro-structuring of materials using programmable beam shaping,” Opt. Lasers Eng. 45(6), 737–741 (2007).
[Crossref]

Opt. Lett. (13)

S. Xu, Z. Yang, W. Zhang, X. Wei, Q. Qian, D. Chen, Q. Zhang, S. Shen, M. Peng, and J. Qiu, “400 mW ultrashort cavity low-noise single-frequency Yb3+-doped phosphate fiber laser,” Opt. Lett. 36(18), 3708–3710 (2011).
[Crossref] [PubMed]

B. Sun, A. Wang, L. Xu, C. Gu, Z. Lin, H. Ming, and Q. Zhan, “Low-threshold single-wavelength all-fiber laser generating cylindrical vector beams using a few-mode fiber Bragg grating,” Opt. Lett. 37(4), 464–466 (2012).
[Crossref] [PubMed]

T. H. Loftus, A. Liu, P. R. Hoffman, A. M. Thomas, M. Norsen, R. Royse, and E. Honea, “522 W average power, spectrally beam-combined fiber laser with near-diffraction-limited beam quality,” Opt. Lett. 32(4), 349–351 (2007).
[Crossref] [PubMed]

M. A. Vorontsov, G. W. Carhart, and J. C. Ricklin, “Adaptive phase-distortion correction based on parallel gradient-descent optimization,” Opt. Lett. 22(12), 907–909 (1997).
[Crossref] [PubMed]

F. Stutzki, F. Jansen, C. Jauregui, J. Limpert, and A. Tünnermann, “2.4 mJ, 33 W Q-switched Tm-doped fiber laser with near diffraction-limited beam quality,” Opt. Lett. 38(2), 97–99 (2013).
[Crossref] [PubMed]

B. Sun, A. Wang, L. Xu, C. Gu, Y. Zhou, Z. Lin, H. Ming, and Q. Zhan, “Transverse mode switchable fiber laser through wavelength tuning,” Opt. Lett. 38(5), 667–669 (2013).
[Crossref] [PubMed]

C. Zhao, Y. Cai, F. Wang, X. Lu, and Y. Wang, “Generation of a high-quality partially coherent dark hollow beam with a multimode fiber,” Opt. Lett. 33(12), 1389–1391 (2008).
[Crossref] [PubMed]

H. Ye, C. Wan, K. Huang, T. Han, J. Teng, Y. S. Ping, and C. W. Qiu, “Creation of vectorial bottle-hollow beam using radially or azimuthally polarized light,” Opt. Lett. 39(3), 630–633 (2014).
[Crossref] [PubMed]

D. Lin, J. M. O. Daniel, M. Gecevičius, M. Beresna, P. G. Kazansky, and W. A. Clarkson, “Cladding-pumped ytterbium-doped fiber laser with radially polarized output,” Opt. Lett. 39(18), 5359–5361 (2014).
[Crossref] [PubMed]

S. Wittek, R. Bustos Ramirez, J. Alvarado Zacarias, Z. Sanjabi Eznaveh, J. Bradford, G. Lopez Galmiche, D. Zhang, W. Zhu, J. Antonio-Lopez, L. Shah, and R. Amezcua Correa, “Mode-selective amplification in a large mode area Yb-doped fiber using a photonic lantern,” Opt. Lett. 41(10), 2157–2160 (2016).
[Crossref] [PubMed]

C. Li, S. Xu, X. Huang, Y. Xiao, Z. Feng, C. Yang, K. Zhou, W. Lin, J. Gan, and Z. Yang, “All-optical frequency and intensity noise suppression of single-frequency fiber laser,” Opt. Lett. 40(9), 1964–1967 (2015).
[Crossref] [PubMed]

D. Lin and W. A. Clarkson, “Polarization-dependent transverse mode selection in an Yb-doped fiber laser,” Opt. Lett. 40(4), 498–501 (2015).
[Crossref] [PubMed]

T. Liu, S. P. Chen, and J. Hou, “Selective transverse mode operation of an all-fiber laser with a mode-selective fiber Bragg grating pair,” Opt. Lett. 41(24), 5692–5695 (2016).
[Crossref] [PubMed]

Proc. SPIE (2)

M. Lei, Y. Qi, C. Liu, Y. Yang, Y. Zheng, and J. Zhou, “Mode controlling study on narrow-linewidth and high power all-fiber amplifier,” Proc. SPIE 9543, 95431L (2015).
[Crossref]

K. K. Bobkov, M. M. Bubnov, S. S. Aleshkina, and M. E. Likhachev, “The first experimental observation of long-term mode degradation in high peak power Yb-doped amplifiers,” Proc. SPIE 10083, 100830T (2017).
[Crossref]

Other (1)

J. M. O. Daniel, N. Simakov, P. C. Shardlow, and W. A. Clarkson, Effect of seed linewidth on few-moded fiber amplifiers, in 2014 Conference on Lasers and Electro, OSA Technical Digest (online) (Optical Society of America, 2014), paper STu2N.7.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

A schematic of the experimental setup of the active polarization control system. P-M, phase modulator; CO, collimator; PBS, polarization beam splitter; M1/M2, mirror; S, sampler; PD, photo detector; CCD1/CCD2, infrared camera, P1/P2, power meter.

Fig. 2
Fig. 2

(a) Normalized intensity in the pinhole during the polarization control of the preamplifier. (b) Typical far field intensity pattern detected by the infrared camera.

Fig. 3
Fig. 3

Typical far field intensity pattern detected by (a, b) CCD1 and (c, d) CCD2 during the polarization control of the main amplifier.

Fig. 4
Fig. 4

Experimental setup of the active mode control system. P-M, phase modulator; CO, collimator; M1/M2, mirror; S, sampler; PD, photo detector; CCD, infrared camera, LQM, laser quality monitor; HPW, half-wavelength plate; PBS, polarization beam splitter; P1/P2, power meter.

Fig. 5
Fig. 5

Normalized intensity in the pinhole during the mode control.

Fig. 6
Fig. 6

Far field intensity patterns of the output laser beams with (a-d) random disturbing and (e, f) mode control.

Fig. 7
Fig. 7

(a) Output power and (b) degree of polarization of the laser beam from the amplifier in active mode control.

Metrics