Abstract

We demonstrate a frequency-doubling nonlinear-mirror (NLM) modelocked thin-disk laser. This modelocking technique, composed of an intracavity second harmonic crystal in combination with a dichroic output coupler, offers robust operation decoupled from cavity stability (as in semiconductor saturable absorber mirror (SESAM) modelocking) combined with an ultrafast saturable loss and high modulation depth (as in Kerr-lens modelocking (KLM)). With our NLM diode-pumped Yb:YAG thin-disk laser we achieve 21 W of average power at 323-fs pulse duration, which is an order of magnitude shorter than the previously obtained duration with the same technique in bulk lasers. Using these first results, we present a theoretical model for the NLM technique, which accurately predicts its loss modulation properties and the shortest achievable pulse duration without relying on any fitting parameters. Based on this simulation, we expect that the NLM technique will enable thin-disk lasers with average power of more than 100 W, with potentially sub-200 fs pulses. This could potentially solve the pulse duration limitations with SESAM modelocked Yb:YAG thin-disk lasers without imposing strong cavity stability constraints such as in KLM.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Frequency comb offset dynamics of SESAM modelocked thin disk lasers

Florian Emaury, Andreas Diebold, Alexander Klenner, Clara J. Saraceno, Stéphane Schilt, Thomas Südmeyer, and Ursula Keller
Opt. Express 23(17) 21836-21856 (2015)

Peak-power scaling of femtosecond Yb:Lu2O3 thin-disk lasers

I. J. Graumann, A. Diebold, C. G. E. Alfieri, F. Emaury, B. Deppe, M. Golling, D. Bauer, D. Sutter, C. Kränkel, C. J. Saraceno, C. R. Phillips, and U. Keller
Opt. Express 25(19) 22519-22536 (2017)

Dual-gain SESAM modelocked thin disk laser based on Yb:Lu2O3 and Yb:Sc2O3

Cinia Schriber, Florian Emaury, Andreas Diebold, Sandro Link, Matthias Golling, Kolja Beil, Christian Kränkel, Clara J. Saraceno, Thomas Südmeyer, and Ursula Keller
Opt. Express 22(16) 18979-18986 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. Ancona, S. Döring, C. Jauregui, F. Röser, J. Limpert, S. Nolte, and A. Tünnermann, “Femtosecond and picosecond laser drilling of metals at high repetition rates and average powers,” Opt. Lett. 34(21), 3304–3306 (2009).
    [Crossref] [PubMed]
  2. T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. E. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” Nat. Photonics 2(10), 599–604 (2008).
    [Crossref]
  3. T. Nubbemeyer, M. Kaumanns, M. Ueffing, M. Gorjan, A. Alismail, H. Fattahi, J. Brons, O. Pronin, H. G. Barros, Z. Major, T. Metzger, D. Sutter, and F. Krausz, “1 kW, 200 mJ picosecond thin-disk laser system,” Opt. Lett. 42(7), 1381–1384 (2017).
    [Crossref] [PubMed]
  4. M. Müller, M. Kienel, A. Klenke, T. Gottschall, E. Shestaev, M. Plötner, J. Limpert, and A. Tünnermann, “1 kW 1 mJ eight-channel ultrafast fiber laser,” Opt. Lett. 41(15), 3439–3442 (2016).
    [Crossref] [PubMed]
  5. P. Russbueldt, T. Mans, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “Compact diode-pumped 1.1 kW Yb:YAG Innoslab femtosecond amplifier,” Opt. Lett. 35(24), 4169–4171 (2010).
    [Crossref] [PubMed]
  6. F. Emaury, A. Diebold, C. J. Saraceno, and U. Keller, “Compact XUV Source at Megahertz Pulse Repetition Rate with a Low-Noise Ultrafast Thin Disk Oscillator,” Optica 23, 980–984 (2015).
    [Crossref]
  7. M. Gaponenko, F. Labaye, V. Wittwer, C. Paradis, N. Modsching, L. Merceron, A. Diebold, F. Emaury, I. Graumann, C. Phillips, C. J. Saraceno, C. Kränkel, U. Keller, and T. Sudmeyer, “Compact Megahertz Coherent XUV Generation by HHG inside an Ultrafast Thin Disk Laser,” in Nonlinear Optics, OSA Technical Digest (online) (Optical Society of America, 2017), paper NTh3A.1.
  8. S. Hädrich, M. Krebs, A. Hoffmann, A. Klenke, J. Rothhardt, J. Limpert, and A. Tünnermann, “Exploring new avenues in high repetition rate table-top coherent extreme ultraviolet sources,” Light Sci. Appl. 4(8), e320 (2015).
    [Crossref]
  9. C. J. Saraceno, F. Emaury, O. H. Heckl, C. R. E. Baer, M. Hoffmann, C. Schriber, M. Golling, T. Südmeyer, and U. Keller, “275 W average output power from a femtosecond thin disk oscillator operated in a vacuum environment,” Opt. Express 20(21), 23535–23541 (2012).
    [Crossref] [PubMed]
  10. C. J. Saraceno, F. Emaury, C. Schriber, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Ultrafast thin-disk laser with 80 μJ pulse energy and 242 W of average power,” Opt. Lett. 39(1), 9–12 (2014).
    [Crossref] [PubMed]
  11. A. Diebold, F. Emaury, C. Schriber, M. Golling, C. J. Saraceno, T. Südmeyer, and U. Keller, “SESAM mode-locked Yb:CaGdAlO4 thin disk laser with 62 fs pulse generation,” Opt. Lett. 38(19), 3842–3845 (2013).
    [Crossref] [PubMed]
  12. C. Schriber, L. Merceron, A. Diebold, F. Emaury, M. Golling, K. Beil, C. Kränkel, C. J. Saraceno, T. Südmeyer, and U. Keller, “Pushing SESAM modelocked thin-disk lasers to shortest pulse durations,” in Advanced Solid State Lasers, OSA Technical Digest (online) (Optical Society of America, 2014), paper AF1A.4.
  13. I. J. Graumann, A. Diebold, C. G. E. Alfieri, F. Emaury, B. Deppe, M. Golling, D. Bauer, D. Sutter, C. Kränkel, C. J. Saraceno, C. R. Phillips, and U. Keller, “Peak-power scaling of femtosecond Yb:Lu2O3 thin-disk lasers,” Opt. Express. submitted.
  14. C. G. E. Alfieri, A. Diebold, F. Emaury, E. Gini, C. J. Saraceno, and U. Keller, “Improved SESAMs for femtosecond pulse generation approaching the kW average power regime,” Opt. Express 24(24), 27587–27599 (2016).
    [Crossref] [PubMed]
  15. A. Diebold, T. Zengerle, C. G. E. Alfieri, C. Schriber, F. Emaury, M. Mangold, M. Hoffmann, C. J. Saraceno, M. Golling, D. Follman, G. D. Cole, M. Aspelmeyer, T. Südmeyer, and U. Keller, “Optimized SESAMs for kilowatt-level ultrafast lasers,” Opt. Express 24(10), 10512–10526 (2016).
    [Crossref] [PubMed]
  16. J. Brons, V. Pervak, E. Fedulova, D. Bauer, D. Sutter, V. Kalashnikov, A. Apolonskiy, O. Pronin, and F. Krausz, “Energy scaling of Kerr-lens mode-locked thin-disk oscillators,” Opt. Lett. 39(22), 6442–6445 (2014).
    [Crossref] [PubMed]
  17. J. Brons, V. Pervak, D. Bauer, D. Sutter, O. Pronin, and F. Krausz, “Powerful 100-fs-scale Kerr-lens mode-locked thin-disk oscillator,” Opt. Lett. 41(15), 3567–3570 (2016).
    [Crossref] [PubMed]
  18. J. Zhang, J. Brons, M. Seidel, D. Bauer, D. Sutter, V. Pervak, V. Kalashnikov, Z. Wei, A. Apolonski, F. Krausz, and O. Pronin, “Generation of 49-fs pulses directly from distributed Kerr-lens mode-locked Yb:YAG thin-disk oscillator,” in Advanced Solid State Lasers, OSA Technical Digest (online) (Optical Society of America, 2015), paper ATh4A.7.
  19. C. Paradis, N. Modsching, V. J. Wittwer, B. Deppe, C. Kränkel, and T. Südmeyer, “Generation of 35-fs pulses from a Kerr lens mode-locked Yb:Lu2O3 thin-disk laser,” Opt. Express 25(13), 14918–14925 (2017).
    [Crossref] [PubMed]
  20. B. Borchers, C. Schaefer, C. Fries, M. Larionov, and R. Knappe, “Nonlinear Polarization Rotation Mode-locking via Phase-mismatched Type I SHG of a Thin Disk Femtosecond Laser,” in Advanced Solid State Lasers, OSA Technical Digest (online) (Optical Society of America, 2015), paper ATh4A.9.
  21. K. A. Stankov and J. Jethwa, “A new mode-locking technique using a nonlinear mirror,” Opt. Commun. 66(1), 41–46 (1988).
    [Crossref]
  22. G. M. Thomas, T. Omatsu, and M. J. Damzen, “High-power neodymium-doped mixed vanadate bounce geometry laser, mode locked with nonlinear mirror,” Appl. Phys. B 108(1), 125–128 (2012).
    [Crossref]
  23. G. Cerullo, M. B. Danailov, S. D. Silvestri, P. Laporta, V. Magni, D. Segala, and S. Taccheo, “A diode‐pumped nonlinear mirror mode‐locked Nd:YAG laser,” Appl. Phys. Lett. 65(19), 2392–2394 (1994).
    [Crossref]
  24. K. A. Stankov, “25 ps pulses from a Nd:YAG laser mode locked by a frequency doubling β‐BaB2O4 crystal,” Appl. Phys. Lett. 58(20), 2203–2204 (1991).
    [Crossref]
  25. G. M. Thomas and M. J. Damzen, “30W Nd:GdVO4 oscillator modelocked with nonlinear mirror,” in 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC), 2011), pp. 1.
  26. G. Cerullo, V. Magni, and A. Monguzzi, “Group-velocity mismatch compensation in continuous-wave lasers mode locked by second-order nonlinearities,” Opt. Lett. 20(17), 1785–1787 (1995).
    [Crossref] [PubMed]
  27. H. Iliev, D. Chuchumishev, I. Buchvarov, and V. Petrov, “Passive mode-locking of a diode-pumped Nd:YVO4 laser by intracavity SHG in PPKTP,” Opt. Express 18(6), 5754–5762 (2010).
    [Crossref] [PubMed]
  28. K. A. Stankov, V. P. Tzolov, and M. G. Mirkov, “Frequency-doubling mode locker: the influence of group-velocity mismatch,” Opt. Lett. 16(14), 1119–1121 (1991).
    [Crossref] [PubMed]
  29. I. Buchvarov, G. Christov, and S. Saltiel, “Transient behaviour of frequency doubling mode-locker. Numerical analysis,” Opt. Commun. 107(3-4), 281–286 (1994).
    [Crossref]
  30. O. V. Chekhlov and V. A. Zaporozhchenko, “Mapping of the second-harmonic nonlinear mirror characteristics for laser mode locking and pulse shortening,” J. Opt. Soc. Am. B 15(1), 210–215 (1998).
    [Crossref]
  31. A. A. Mani, D. Lis, Y. Caudano, P. A. Thiry, and A. Peremans, “Optimal performances of a mode-locking technique: Theoretical and experimental investigations of the frequency-doubling nonlinear mirror,” Opt. Commun. 284(1), 398–404 (2011).
    [Crossref]
  32. R. Eckardt and J. Reintjes, “Phase matching limitations of high efficiency second harmonic generation,” IEEE J. Quantum Electron. 20(10), 1178–1187 (1984).
    [Crossref]
  33. F. X. Kärtner, I. D. Jung, and U. Keller, “Soliton Mode-Locking with Saturable Absorbers,” IEEE J. Sel. Top. Quant. 2(3), 540–556 (1996).
    [Crossref]
  34. K. Kato, “Second-harmonic generation to 2048 Å in b-BaB2O4,” IEEE J. Quantum Electron. 22(7), 1013–1014 (1986).
    [Crossref]
  35. R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26(5), 922–933 (1990).
    [Crossref]
  36. D. Bauer, I. Zawischa, D. H. Sutter, A. Killi, and T. Dekorsy, “Mode-locked Yb:YAG thin-disk oscillator with 41 µJ pulse energy at 145 W average infrared power and high power frequency conversion,” Opt. Express 20(9), 9698–9704 (2012).
    [Crossref] [PubMed]
  37. J. Rothhardt, S. Demmler, S. Hädrich, J. Limpert, and A. Tünnermann, “Octave-spanning OPCPA system delivering CEP-stable few-cycle pulses and 22 W of average power at 1 MHz repetition rate,” Opt. Express 20(10), 10870–10878 (2012).
    [Crossref] [PubMed]
  38. K. A. Stankov, V. P. Tzolov, and M. G. Mirkov, “Compensation of group-velocity mismatch in the frequency-doubling modelocker,” Appl. Phys. B 54(4), 303–306 (1992).
    [Crossref]
  39. J. Zhang, K. F. Mak, S. Gröbmeyer, D. Bauer, D. Sutter, V. Pervak, F. Krausz, and O. Pronin, “Generation of 220 fs, 20 W pulses at 2 µm from Kerr-lens mode-locked Ho:YAG thin-disk oscillator,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2017), paper SM1I.6.
    [Crossref]

2017 (2)

2016 (4)

2015 (2)

F. Emaury, A. Diebold, C. J. Saraceno, and U. Keller, “Compact XUV Source at Megahertz Pulse Repetition Rate with a Low-Noise Ultrafast Thin Disk Oscillator,” Optica 23, 980–984 (2015).
[Crossref]

S. Hädrich, M. Krebs, A. Hoffmann, A. Klenke, J. Rothhardt, J. Limpert, and A. Tünnermann, “Exploring new avenues in high repetition rate table-top coherent extreme ultraviolet sources,” Light Sci. Appl. 4(8), e320 (2015).
[Crossref]

2014 (2)

2013 (1)

2012 (4)

2011 (1)

A. A. Mani, D. Lis, Y. Caudano, P. A. Thiry, and A. Peremans, “Optimal performances of a mode-locking technique: Theoretical and experimental investigations of the frequency-doubling nonlinear mirror,” Opt. Commun. 284(1), 398–404 (2011).
[Crossref]

2010 (2)

2009 (1)

2008 (1)

T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. E. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” Nat. Photonics 2(10), 599–604 (2008).
[Crossref]

1998 (1)

1996 (1)

F. X. Kärtner, I. D. Jung, and U. Keller, “Soliton Mode-Locking with Saturable Absorbers,” IEEE J. Sel. Top. Quant. 2(3), 540–556 (1996).
[Crossref]

1995 (1)

1994 (2)

I. Buchvarov, G. Christov, and S. Saltiel, “Transient behaviour of frequency doubling mode-locker. Numerical analysis,” Opt. Commun. 107(3-4), 281–286 (1994).
[Crossref]

G. Cerullo, M. B. Danailov, S. D. Silvestri, P. Laporta, V. Magni, D. Segala, and S. Taccheo, “A diode‐pumped nonlinear mirror mode‐locked Nd:YAG laser,” Appl. Phys. Lett. 65(19), 2392–2394 (1994).
[Crossref]

1992 (1)

K. A. Stankov, V. P. Tzolov, and M. G. Mirkov, “Compensation of group-velocity mismatch in the frequency-doubling modelocker,” Appl. Phys. B 54(4), 303–306 (1992).
[Crossref]

1991 (2)

K. A. Stankov, V. P. Tzolov, and M. G. Mirkov, “Frequency-doubling mode locker: the influence of group-velocity mismatch,” Opt. Lett. 16(14), 1119–1121 (1991).
[Crossref] [PubMed]

K. A. Stankov, “25 ps pulses from a Nd:YAG laser mode locked by a frequency doubling β‐BaB2O4 crystal,” Appl. Phys. Lett. 58(20), 2203–2204 (1991).
[Crossref]

1990 (1)

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26(5), 922–933 (1990).
[Crossref]

1988 (1)

K. A. Stankov and J. Jethwa, “A new mode-locking technique using a nonlinear mirror,” Opt. Commun. 66(1), 41–46 (1988).
[Crossref]

1986 (1)

K. Kato, “Second-harmonic generation to 2048 Å in b-BaB2O4,” IEEE J. Quantum Electron. 22(7), 1013–1014 (1986).
[Crossref]

1984 (1)

R. Eckardt and J. Reintjes, “Phase matching limitations of high efficiency second harmonic generation,” IEEE J. Quantum Electron. 20(10), 1178–1187 (1984).
[Crossref]

Alfieri, C. G. E.

Alismail, A.

Ancona, A.

Apolonskiy, A.

Aspelmeyer, M.

Baer, C. R. E.

Barros, H. G.

Bauer, D.

Brons, J.

Buchvarov, I.

H. Iliev, D. Chuchumishev, I. Buchvarov, and V. Petrov, “Passive mode-locking of a diode-pumped Nd:YVO4 laser by intracavity SHG in PPKTP,” Opt. Express 18(6), 5754–5762 (2010).
[Crossref] [PubMed]

I. Buchvarov, G. Christov, and S. Saltiel, “Transient behaviour of frequency doubling mode-locker. Numerical analysis,” Opt. Commun. 107(3-4), 281–286 (1994).
[Crossref]

Byer, R. L.

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26(5), 922–933 (1990).
[Crossref]

Caudano, Y.

A. A. Mani, D. Lis, Y. Caudano, P. A. Thiry, and A. Peremans, “Optimal performances of a mode-locking technique: Theoretical and experimental investigations of the frequency-doubling nonlinear mirror,” Opt. Commun. 284(1), 398–404 (2011).
[Crossref]

Cerullo, G.

G. Cerullo, V. Magni, and A. Monguzzi, “Group-velocity mismatch compensation in continuous-wave lasers mode locked by second-order nonlinearities,” Opt. Lett. 20(17), 1785–1787 (1995).
[Crossref] [PubMed]

G. Cerullo, M. B. Danailov, S. D. Silvestri, P. Laporta, V. Magni, D. Segala, and S. Taccheo, “A diode‐pumped nonlinear mirror mode‐locked Nd:YAG laser,” Appl. Phys. Lett. 65(19), 2392–2394 (1994).
[Crossref]

Chekhlov, O. V.

Christov, G.

I. Buchvarov, G. Christov, and S. Saltiel, “Transient behaviour of frequency doubling mode-locker. Numerical analysis,” Opt. Commun. 107(3-4), 281–286 (1994).
[Crossref]

Chuchumishev, D.

Cole, G. D.

Damzen, M. J.

G. M. Thomas, T. Omatsu, and M. J. Damzen, “High-power neodymium-doped mixed vanadate bounce geometry laser, mode locked with nonlinear mirror,” Appl. Phys. B 108(1), 125–128 (2012).
[Crossref]

G. M. Thomas and M. J. Damzen, “30W Nd:GdVO4 oscillator modelocked with nonlinear mirror,” in 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC), 2011), pp. 1.

Danailov, M. B.

G. Cerullo, M. B. Danailov, S. D. Silvestri, P. Laporta, V. Magni, D. Segala, and S. Taccheo, “A diode‐pumped nonlinear mirror mode‐locked Nd:YAG laser,” Appl. Phys. Lett. 65(19), 2392–2394 (1994).
[Crossref]

Dekorsy, T.

Demmler, S.

Deppe, B.

C. Paradis, N. Modsching, V. J. Wittwer, B. Deppe, C. Kränkel, and T. Südmeyer, “Generation of 35-fs pulses from a Kerr lens mode-locked Yb:Lu2O3 thin-disk laser,” Opt. Express 25(13), 14918–14925 (2017).
[Crossref] [PubMed]

I. J. Graumann, A. Diebold, C. G. E. Alfieri, F. Emaury, B. Deppe, M. Golling, D. Bauer, D. Sutter, C. Kränkel, C. J. Saraceno, C. R. Phillips, and U. Keller, “Peak-power scaling of femtosecond Yb:Lu2O3 thin-disk lasers,” Opt. Express. submitted.

Diebold, A.

Döring, S.

Eckardt, R.

R. Eckardt and J. Reintjes, “Phase matching limitations of high efficiency second harmonic generation,” IEEE J. Quantum Electron. 20(10), 1178–1187 (1984).
[Crossref]

Eckardt, R. C.

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26(5), 922–933 (1990).
[Crossref]

Emaury, F.

C. G. E. Alfieri, A. Diebold, F. Emaury, E. Gini, C. J. Saraceno, and U. Keller, “Improved SESAMs for femtosecond pulse generation approaching the kW average power regime,” Opt. Express 24(24), 27587–27599 (2016).
[Crossref] [PubMed]

A. Diebold, T. Zengerle, C. G. E. Alfieri, C. Schriber, F. Emaury, M. Mangold, M. Hoffmann, C. J. Saraceno, M. Golling, D. Follman, G. D. Cole, M. Aspelmeyer, T. Südmeyer, and U. Keller, “Optimized SESAMs for kilowatt-level ultrafast lasers,” Opt. Express 24(10), 10512–10526 (2016).
[Crossref] [PubMed]

F. Emaury, A. Diebold, C. J. Saraceno, and U. Keller, “Compact XUV Source at Megahertz Pulse Repetition Rate with a Low-Noise Ultrafast Thin Disk Oscillator,” Optica 23, 980–984 (2015).
[Crossref]

C. J. Saraceno, F. Emaury, C. Schriber, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Ultrafast thin-disk laser with 80 μJ pulse energy and 242 W of average power,” Opt. Lett. 39(1), 9–12 (2014).
[Crossref] [PubMed]

A. Diebold, F. Emaury, C. Schriber, M. Golling, C. J. Saraceno, T. Südmeyer, and U. Keller, “SESAM mode-locked Yb:CaGdAlO4 thin disk laser with 62 fs pulse generation,” Opt. Lett. 38(19), 3842–3845 (2013).
[Crossref] [PubMed]

C. J. Saraceno, F. Emaury, O. H. Heckl, C. R. E. Baer, M. Hoffmann, C. Schriber, M. Golling, T. Südmeyer, and U. Keller, “275 W average output power from a femtosecond thin disk oscillator operated in a vacuum environment,” Opt. Express 20(21), 23535–23541 (2012).
[Crossref] [PubMed]

I. J. Graumann, A. Diebold, C. G. E. Alfieri, F. Emaury, B. Deppe, M. Golling, D. Bauer, D. Sutter, C. Kränkel, C. J. Saraceno, C. R. Phillips, and U. Keller, “Peak-power scaling of femtosecond Yb:Lu2O3 thin-disk lasers,” Opt. Express. submitted.

Fan, Y. X.

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26(5), 922–933 (1990).
[Crossref]

Fattahi, H.

Fedulova, E.

Follman, D.

Gingras, G.

T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. E. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” Nat. Photonics 2(10), 599–604 (2008).
[Crossref]

Gini, E.

Golling, M.

Gorjan, M.

Gottschall, T.

Graumann, I. J.

I. J. Graumann, A. Diebold, C. G. E. Alfieri, F. Emaury, B. Deppe, M. Golling, D. Bauer, D. Sutter, C. Kränkel, C. J. Saraceno, C. R. Phillips, and U. Keller, “Peak-power scaling of femtosecond Yb:Lu2O3 thin-disk lasers,” Opt. Express. submitted.

Hädrich, S.

S. Hädrich, M. Krebs, A. Hoffmann, A. Klenke, J. Rothhardt, J. Limpert, and A. Tünnermann, “Exploring new avenues in high repetition rate table-top coherent extreme ultraviolet sources,” Light Sci. Appl. 4(8), e320 (2015).
[Crossref]

J. Rothhardt, S. Demmler, S. Hädrich, J. Limpert, and A. Tünnermann, “Octave-spanning OPCPA system delivering CEP-stable few-cycle pulses and 22 W of average power at 1 MHz repetition rate,” Opt. Express 20(10), 10870–10878 (2012).
[Crossref] [PubMed]

Hashimoto, S.

T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. E. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” Nat. Photonics 2(10), 599–604 (2008).
[Crossref]

Heckl, O. H.

Hoffmann, A.

S. Hädrich, M. Krebs, A. Hoffmann, A. Klenke, J. Rothhardt, J. Limpert, and A. Tünnermann, “Exploring new avenues in high repetition rate table-top coherent extreme ultraviolet sources,” Light Sci. Appl. 4(8), e320 (2015).
[Crossref]

Hoffmann, H. D.

Hoffmann, M.

Iliev, H.

Jauregui, C.

Jethwa, J.

K. A. Stankov and J. Jethwa, “A new mode-locking technique using a nonlinear mirror,” Opt. Commun. 66(1), 41–46 (1988).
[Crossref]

Jung, I. D.

F. X. Kärtner, I. D. Jung, and U. Keller, “Soliton Mode-Locking with Saturable Absorbers,” IEEE J. Sel. Top. Quant. 2(3), 540–556 (1996).
[Crossref]

Kalashnikov, V.

Kärtner, F. X.

F. X. Kärtner, I. D. Jung, and U. Keller, “Soliton Mode-Locking with Saturable Absorbers,” IEEE J. Sel. Top. Quant. 2(3), 540–556 (1996).
[Crossref]

Kato, K.

K. Kato, “Second-harmonic generation to 2048 Å in b-BaB2O4,” IEEE J. Quantum Electron. 22(7), 1013–1014 (1986).
[Crossref]

Kaumanns, M.

Keller, U.

A. Diebold, T. Zengerle, C. G. E. Alfieri, C. Schriber, F. Emaury, M. Mangold, M. Hoffmann, C. J. Saraceno, M. Golling, D. Follman, G. D. Cole, M. Aspelmeyer, T. Südmeyer, and U. Keller, “Optimized SESAMs for kilowatt-level ultrafast lasers,” Opt. Express 24(10), 10512–10526 (2016).
[Crossref] [PubMed]

C. G. E. Alfieri, A. Diebold, F. Emaury, E. Gini, C. J. Saraceno, and U. Keller, “Improved SESAMs for femtosecond pulse generation approaching the kW average power regime,” Opt. Express 24(24), 27587–27599 (2016).
[Crossref] [PubMed]

F. Emaury, A. Diebold, C. J. Saraceno, and U. Keller, “Compact XUV Source at Megahertz Pulse Repetition Rate with a Low-Noise Ultrafast Thin Disk Oscillator,” Optica 23, 980–984 (2015).
[Crossref]

C. J. Saraceno, F. Emaury, C. Schriber, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Ultrafast thin-disk laser with 80 μJ pulse energy and 242 W of average power,” Opt. Lett. 39(1), 9–12 (2014).
[Crossref] [PubMed]

A. Diebold, F. Emaury, C. Schriber, M. Golling, C. J. Saraceno, T. Südmeyer, and U. Keller, “SESAM mode-locked Yb:CaGdAlO4 thin disk laser with 62 fs pulse generation,” Opt. Lett. 38(19), 3842–3845 (2013).
[Crossref] [PubMed]

C. J. Saraceno, F. Emaury, O. H. Heckl, C. R. E. Baer, M. Hoffmann, C. Schriber, M. Golling, T. Südmeyer, and U. Keller, “275 W average output power from a femtosecond thin disk oscillator operated in a vacuum environment,” Opt. Express 20(21), 23535–23541 (2012).
[Crossref] [PubMed]

T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. E. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” Nat. Photonics 2(10), 599–604 (2008).
[Crossref]

F. X. Kärtner, I. D. Jung, and U. Keller, “Soliton Mode-Locking with Saturable Absorbers,” IEEE J. Sel. Top. Quant. 2(3), 540–556 (1996).
[Crossref]

I. J. Graumann, A. Diebold, C. G. E. Alfieri, F. Emaury, B. Deppe, M. Golling, D. Bauer, D. Sutter, C. Kränkel, C. J. Saraceno, C. R. Phillips, and U. Keller, “Peak-power scaling of femtosecond Yb:Lu2O3 thin-disk lasers,” Opt. Express. submitted.

Kienel, M.

Killi, A.

Klenke, A.

M. Müller, M. Kienel, A. Klenke, T. Gottschall, E. Shestaev, M. Plötner, J. Limpert, and A. Tünnermann, “1 kW 1 mJ eight-channel ultrafast fiber laser,” Opt. Lett. 41(15), 3439–3442 (2016).
[Crossref] [PubMed]

S. Hädrich, M. Krebs, A. Hoffmann, A. Klenke, J. Rothhardt, J. Limpert, and A. Tünnermann, “Exploring new avenues in high repetition rate table-top coherent extreme ultraviolet sources,” Light Sci. Appl. 4(8), e320 (2015).
[Crossref]

Kränkel, C.

C. Paradis, N. Modsching, V. J. Wittwer, B. Deppe, C. Kränkel, and T. Südmeyer, “Generation of 35-fs pulses from a Kerr lens mode-locked Yb:Lu2O3 thin-disk laser,” Opt. Express 25(13), 14918–14925 (2017).
[Crossref] [PubMed]

I. J. Graumann, A. Diebold, C. G. E. Alfieri, F. Emaury, B. Deppe, M. Golling, D. Bauer, D. Sutter, C. Kränkel, C. J. Saraceno, C. R. Phillips, and U. Keller, “Peak-power scaling of femtosecond Yb:Lu2O3 thin-disk lasers,” Opt. Express. submitted.

Krausz, F.

Krebs, M.

S. Hädrich, M. Krebs, A. Hoffmann, A. Klenke, J. Rothhardt, J. Limpert, and A. Tünnermann, “Exploring new avenues in high repetition rate table-top coherent extreme ultraviolet sources,” Light Sci. Appl. 4(8), e320 (2015).
[Crossref]

Laporta, P.

G. Cerullo, M. B. Danailov, S. D. Silvestri, P. Laporta, V. Magni, D. Segala, and S. Taccheo, “A diode‐pumped nonlinear mirror mode‐locked Nd:YAG laser,” Appl. Phys. Lett. 65(19), 2392–2394 (1994).
[Crossref]

Limpert, J.

Lis, D.

A. A. Mani, D. Lis, Y. Caudano, P. A. Thiry, and A. Peremans, “Optimal performances of a mode-locking technique: Theoretical and experimental investigations of the frequency-doubling nonlinear mirror,” Opt. Commun. 284(1), 398–404 (2011).
[Crossref]

Magni, V.

G. Cerullo, V. Magni, and A. Monguzzi, “Group-velocity mismatch compensation in continuous-wave lasers mode locked by second-order nonlinearities,” Opt. Lett. 20(17), 1785–1787 (1995).
[Crossref] [PubMed]

G. Cerullo, M. B. Danailov, S. D. Silvestri, P. Laporta, V. Magni, D. Segala, and S. Taccheo, “A diode‐pumped nonlinear mirror mode‐locked Nd:YAG laser,” Appl. Phys. Lett. 65(19), 2392–2394 (1994).
[Crossref]

Major, Z.

Mangold, M.

Mani, A. A.

A. A. Mani, D. Lis, Y. Caudano, P. A. Thiry, and A. Peremans, “Optimal performances of a mode-locking technique: Theoretical and experimental investigations of the frequency-doubling nonlinear mirror,” Opt. Commun. 284(1), 398–404 (2011).
[Crossref]

Mans, T.

Marchese, S. V.

T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. E. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” Nat. Photonics 2(10), 599–604 (2008).
[Crossref]

Masuda, H.

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26(5), 922–933 (1990).
[Crossref]

Metzger, T.

Mirkov, M. G.

K. A. Stankov, V. P. Tzolov, and M. G. Mirkov, “Compensation of group-velocity mismatch in the frequency-doubling modelocker,” Appl. Phys. B 54(4), 303–306 (1992).
[Crossref]

K. A. Stankov, V. P. Tzolov, and M. G. Mirkov, “Frequency-doubling mode locker: the influence of group-velocity mismatch,” Opt. Lett. 16(14), 1119–1121 (1991).
[Crossref] [PubMed]

Modsching, N.

Monguzzi, A.

Müller, M.

Nolte, S.

Nubbemeyer, T.

Omatsu, T.

G. M. Thomas, T. Omatsu, and M. J. Damzen, “High-power neodymium-doped mixed vanadate bounce geometry laser, mode locked with nonlinear mirror,” Appl. Phys. B 108(1), 125–128 (2012).
[Crossref]

Paradis, C.

Peremans, A.

A. A. Mani, D. Lis, Y. Caudano, P. A. Thiry, and A. Peremans, “Optimal performances of a mode-locking technique: Theoretical and experimental investigations of the frequency-doubling nonlinear mirror,” Opt. Commun. 284(1), 398–404 (2011).
[Crossref]

Pervak, V.

Petrov, V.

Phillips, C. R.

I. J. Graumann, A. Diebold, C. G. E. Alfieri, F. Emaury, B. Deppe, M. Golling, D. Bauer, D. Sutter, C. Kränkel, C. J. Saraceno, C. R. Phillips, and U. Keller, “Peak-power scaling of femtosecond Yb:Lu2O3 thin-disk lasers,” Opt. Express. submitted.

Plötner, M.

Poprawe, R.

Pronin, O.

Reintjes, J.

R. Eckardt and J. Reintjes, “Phase matching limitations of high efficiency second harmonic generation,” IEEE J. Quantum Electron. 20(10), 1178–1187 (1984).
[Crossref]

Röser, F.

Rothhardt, J.

S. Hädrich, M. Krebs, A. Hoffmann, A. Klenke, J. Rothhardt, J. Limpert, and A. Tünnermann, “Exploring new avenues in high repetition rate table-top coherent extreme ultraviolet sources,” Light Sci. Appl. 4(8), e320 (2015).
[Crossref]

J. Rothhardt, S. Demmler, S. Hädrich, J. Limpert, and A. Tünnermann, “Octave-spanning OPCPA system delivering CEP-stable few-cycle pulses and 22 W of average power at 1 MHz repetition rate,” Opt. Express 20(10), 10870–10878 (2012).
[Crossref] [PubMed]

Russbueldt, P.

Saltiel, S.

I. Buchvarov, G. Christov, and S. Saltiel, “Transient behaviour of frequency doubling mode-locker. Numerical analysis,” Opt. Commun. 107(3-4), 281–286 (1994).
[Crossref]

Saraceno, C. J.

C. G. E. Alfieri, A. Diebold, F. Emaury, E. Gini, C. J. Saraceno, and U. Keller, “Improved SESAMs for femtosecond pulse generation approaching the kW average power regime,” Opt. Express 24(24), 27587–27599 (2016).
[Crossref] [PubMed]

A. Diebold, T. Zengerle, C. G. E. Alfieri, C. Schriber, F. Emaury, M. Mangold, M. Hoffmann, C. J. Saraceno, M. Golling, D. Follman, G. D. Cole, M. Aspelmeyer, T. Südmeyer, and U. Keller, “Optimized SESAMs for kilowatt-level ultrafast lasers,” Opt. Express 24(10), 10512–10526 (2016).
[Crossref] [PubMed]

F. Emaury, A. Diebold, C. J. Saraceno, and U. Keller, “Compact XUV Source at Megahertz Pulse Repetition Rate with a Low-Noise Ultrafast Thin Disk Oscillator,” Optica 23, 980–984 (2015).
[Crossref]

C. J. Saraceno, F. Emaury, C. Schriber, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Ultrafast thin-disk laser with 80 μJ pulse energy and 242 W of average power,” Opt. Lett. 39(1), 9–12 (2014).
[Crossref] [PubMed]

A. Diebold, F. Emaury, C. Schriber, M. Golling, C. J. Saraceno, T. Südmeyer, and U. Keller, “SESAM mode-locked Yb:CaGdAlO4 thin disk laser with 62 fs pulse generation,” Opt. Lett. 38(19), 3842–3845 (2013).
[Crossref] [PubMed]

C. J. Saraceno, F. Emaury, O. H. Heckl, C. R. E. Baer, M. Hoffmann, C. Schriber, M. Golling, T. Südmeyer, and U. Keller, “275 W average output power from a femtosecond thin disk oscillator operated in a vacuum environment,” Opt. Express 20(21), 23535–23541 (2012).
[Crossref] [PubMed]

I. J. Graumann, A. Diebold, C. G. E. Alfieri, F. Emaury, B. Deppe, M. Golling, D. Bauer, D. Sutter, C. Kränkel, C. J. Saraceno, C. R. Phillips, and U. Keller, “Peak-power scaling of femtosecond Yb:Lu2O3 thin-disk lasers,” Opt. Express. submitted.

Schriber, C.

Segala, D.

G. Cerullo, M. B. Danailov, S. D. Silvestri, P. Laporta, V. Magni, D. Segala, and S. Taccheo, “A diode‐pumped nonlinear mirror mode‐locked Nd:YAG laser,” Appl. Phys. Lett. 65(19), 2392–2394 (1994).
[Crossref]

Shestaev, E.

Silvestri, S. D.

G. Cerullo, M. B. Danailov, S. D. Silvestri, P. Laporta, V. Magni, D. Segala, and S. Taccheo, “A diode‐pumped nonlinear mirror mode‐locked Nd:YAG laser,” Appl. Phys. Lett. 65(19), 2392–2394 (1994).
[Crossref]

Stankov, K. A.

K. A. Stankov, V. P. Tzolov, and M. G. Mirkov, “Compensation of group-velocity mismatch in the frequency-doubling modelocker,” Appl. Phys. B 54(4), 303–306 (1992).
[Crossref]

K. A. Stankov, V. P. Tzolov, and M. G. Mirkov, “Frequency-doubling mode locker: the influence of group-velocity mismatch,” Opt. Lett. 16(14), 1119–1121 (1991).
[Crossref] [PubMed]

K. A. Stankov, “25 ps pulses from a Nd:YAG laser mode locked by a frequency doubling β‐BaB2O4 crystal,” Appl. Phys. Lett. 58(20), 2203–2204 (1991).
[Crossref]

K. A. Stankov and J. Jethwa, “A new mode-locking technique using a nonlinear mirror,” Opt. Commun. 66(1), 41–46 (1988).
[Crossref]

Südmeyer, T.

C. Paradis, N. Modsching, V. J. Wittwer, B. Deppe, C. Kränkel, and T. Südmeyer, “Generation of 35-fs pulses from a Kerr lens mode-locked Yb:Lu2O3 thin-disk laser,” Opt. Express 25(13), 14918–14925 (2017).
[Crossref] [PubMed]

A. Diebold, T. Zengerle, C. G. E. Alfieri, C. Schriber, F. Emaury, M. Mangold, M. Hoffmann, C. J. Saraceno, M. Golling, D. Follman, G. D. Cole, M. Aspelmeyer, T. Südmeyer, and U. Keller, “Optimized SESAMs for kilowatt-level ultrafast lasers,” Opt. Express 24(10), 10512–10526 (2016).
[Crossref] [PubMed]

C. J. Saraceno, F. Emaury, C. Schriber, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Ultrafast thin-disk laser with 80 μJ pulse energy and 242 W of average power,” Opt. Lett. 39(1), 9–12 (2014).
[Crossref] [PubMed]

A. Diebold, F. Emaury, C. Schriber, M. Golling, C. J. Saraceno, T. Südmeyer, and U. Keller, “SESAM mode-locked Yb:CaGdAlO4 thin disk laser with 62 fs pulse generation,” Opt. Lett. 38(19), 3842–3845 (2013).
[Crossref] [PubMed]

C. J. Saraceno, F. Emaury, O. H. Heckl, C. R. E. Baer, M. Hoffmann, C. Schriber, M. Golling, T. Südmeyer, and U. Keller, “275 W average output power from a femtosecond thin disk oscillator operated in a vacuum environment,” Opt. Express 20(21), 23535–23541 (2012).
[Crossref] [PubMed]

T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. E. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” Nat. Photonics 2(10), 599–604 (2008).
[Crossref]

Sutter, D.

Sutter, D. H.

Taccheo, S.

G. Cerullo, M. B. Danailov, S. D. Silvestri, P. Laporta, V. Magni, D. Segala, and S. Taccheo, “A diode‐pumped nonlinear mirror mode‐locked Nd:YAG laser,” Appl. Phys. Lett. 65(19), 2392–2394 (1994).
[Crossref]

Thiry, P. A.

A. A. Mani, D. Lis, Y. Caudano, P. A. Thiry, and A. Peremans, “Optimal performances of a mode-locking technique: Theoretical and experimental investigations of the frequency-doubling nonlinear mirror,” Opt. Commun. 284(1), 398–404 (2011).
[Crossref]

Thomas, G. M.

G. M. Thomas, T. Omatsu, and M. J. Damzen, “High-power neodymium-doped mixed vanadate bounce geometry laser, mode locked with nonlinear mirror,” Appl. Phys. B 108(1), 125–128 (2012).
[Crossref]

G. M. Thomas and M. J. Damzen, “30W Nd:GdVO4 oscillator modelocked with nonlinear mirror,” in 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC), 2011), pp. 1.

Tünnermann, A.

Tzolov, V. P.

K. A. Stankov, V. P. Tzolov, and M. G. Mirkov, “Compensation of group-velocity mismatch in the frequency-doubling modelocker,” Appl. Phys. B 54(4), 303–306 (1992).
[Crossref]

K. A. Stankov, V. P. Tzolov, and M. G. Mirkov, “Frequency-doubling mode locker: the influence of group-velocity mismatch,” Opt. Lett. 16(14), 1119–1121 (1991).
[Crossref] [PubMed]

Ueffing, M.

Weitenberg, J.

Wittwer, V. J.

Witzel, B.

T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. E. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” Nat. Photonics 2(10), 599–604 (2008).
[Crossref]

Zaporozhchenko, V. A.

Zawischa, I.

Zengerle, T.

Appl. Phys. B (2)

G. M. Thomas, T. Omatsu, and M. J. Damzen, “High-power neodymium-doped mixed vanadate bounce geometry laser, mode locked with nonlinear mirror,” Appl. Phys. B 108(1), 125–128 (2012).
[Crossref]

K. A. Stankov, V. P. Tzolov, and M. G. Mirkov, “Compensation of group-velocity mismatch in the frequency-doubling modelocker,” Appl. Phys. B 54(4), 303–306 (1992).
[Crossref]

Appl. Phys. Lett. (2)

G. Cerullo, M. B. Danailov, S. D. Silvestri, P. Laporta, V. Magni, D. Segala, and S. Taccheo, “A diode‐pumped nonlinear mirror mode‐locked Nd:YAG laser,” Appl. Phys. Lett. 65(19), 2392–2394 (1994).
[Crossref]

K. A. Stankov, “25 ps pulses from a Nd:YAG laser mode locked by a frequency doubling β‐BaB2O4 crystal,” Appl. Phys. Lett. 58(20), 2203–2204 (1991).
[Crossref]

IEEE J. Quantum Electron. (3)

R. Eckardt and J. Reintjes, “Phase matching limitations of high efficiency second harmonic generation,” IEEE J. Quantum Electron. 20(10), 1178–1187 (1984).
[Crossref]

K. Kato, “Second-harmonic generation to 2048 Å in b-BaB2O4,” IEEE J. Quantum Electron. 22(7), 1013–1014 (1986).
[Crossref]

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26(5), 922–933 (1990).
[Crossref]

IEEE J. Sel. Top. Quant. (1)

F. X. Kärtner, I. D. Jung, and U. Keller, “Soliton Mode-Locking with Saturable Absorbers,” IEEE J. Sel. Top. Quant. 2(3), 540–556 (1996).
[Crossref]

J. Opt. Soc. Am. B (1)

Light Sci. Appl. (1)

S. Hädrich, M. Krebs, A. Hoffmann, A. Klenke, J. Rothhardt, J. Limpert, and A. Tünnermann, “Exploring new avenues in high repetition rate table-top coherent extreme ultraviolet sources,” Light Sci. Appl. 4(8), e320 (2015).
[Crossref]

Nat. Photonics (1)

T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. E. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” Nat. Photonics 2(10), 599–604 (2008).
[Crossref]

Opt. Commun. (3)

I. Buchvarov, G. Christov, and S. Saltiel, “Transient behaviour of frequency doubling mode-locker. Numerical analysis,” Opt. Commun. 107(3-4), 281–286 (1994).
[Crossref]

A. A. Mani, D. Lis, Y. Caudano, P. A. Thiry, and A. Peremans, “Optimal performances of a mode-locking technique: Theoretical and experimental investigations of the frequency-doubling nonlinear mirror,” Opt. Commun. 284(1), 398–404 (2011).
[Crossref]

K. A. Stankov and J. Jethwa, “A new mode-locking technique using a nonlinear mirror,” Opt. Commun. 66(1), 41–46 (1988).
[Crossref]

Opt. Express (7)

C. Paradis, N. Modsching, V. J. Wittwer, B. Deppe, C. Kränkel, and T. Südmeyer, “Generation of 35-fs pulses from a Kerr lens mode-locked Yb:Lu2O3 thin-disk laser,” Opt. Express 25(13), 14918–14925 (2017).
[Crossref] [PubMed]

H. Iliev, D. Chuchumishev, I. Buchvarov, and V. Petrov, “Passive mode-locking of a diode-pumped Nd:YVO4 laser by intracavity SHG in PPKTP,” Opt. Express 18(6), 5754–5762 (2010).
[Crossref] [PubMed]

D. Bauer, I. Zawischa, D. H. Sutter, A. Killi, and T. Dekorsy, “Mode-locked Yb:YAG thin-disk oscillator with 41 µJ pulse energy at 145 W average infrared power and high power frequency conversion,” Opt. Express 20(9), 9698–9704 (2012).
[Crossref] [PubMed]

J. Rothhardt, S. Demmler, S. Hädrich, J. Limpert, and A. Tünnermann, “Octave-spanning OPCPA system delivering CEP-stable few-cycle pulses and 22 W of average power at 1 MHz repetition rate,” Opt. Express 20(10), 10870–10878 (2012).
[Crossref] [PubMed]

C. J. Saraceno, F. Emaury, O. H. Heckl, C. R. E. Baer, M. Hoffmann, C. Schriber, M. Golling, T. Südmeyer, and U. Keller, “275 W average output power from a femtosecond thin disk oscillator operated in a vacuum environment,” Opt. Express 20(21), 23535–23541 (2012).
[Crossref] [PubMed]

A. Diebold, T. Zengerle, C. G. E. Alfieri, C. Schriber, F. Emaury, M. Mangold, M. Hoffmann, C. J. Saraceno, M. Golling, D. Follman, G. D. Cole, M. Aspelmeyer, T. Südmeyer, and U. Keller, “Optimized SESAMs for kilowatt-level ultrafast lasers,” Opt. Express 24(10), 10512–10526 (2016).
[Crossref] [PubMed]

C. G. E. Alfieri, A. Diebold, F. Emaury, E. Gini, C. J. Saraceno, and U. Keller, “Improved SESAMs for femtosecond pulse generation approaching the kW average power regime,” Opt. Express 24(24), 27587–27599 (2016).
[Crossref] [PubMed]

Opt. Lett. (10)

T. Nubbemeyer, M. Kaumanns, M. Ueffing, M. Gorjan, A. Alismail, H. Fattahi, J. Brons, O. Pronin, H. G. Barros, Z. Major, T. Metzger, D. Sutter, and F. Krausz, “1 kW, 200 mJ picosecond thin-disk laser system,” Opt. Lett. 42(7), 1381–1384 (2017).
[Crossref] [PubMed]

M. Müller, M. Kienel, A. Klenke, T. Gottschall, E. Shestaev, M. Plötner, J. Limpert, and A. Tünnermann, “1 kW 1 mJ eight-channel ultrafast fiber laser,” Opt. Lett. 41(15), 3439–3442 (2016).
[Crossref] [PubMed]

J. Brons, V. Pervak, D. Bauer, D. Sutter, O. Pronin, and F. Krausz, “Powerful 100-fs-scale Kerr-lens mode-locked thin-disk oscillator,” Opt. Lett. 41(15), 3567–3570 (2016).
[Crossref] [PubMed]

A. Diebold, F. Emaury, C. Schriber, M. Golling, C. J. Saraceno, T. Südmeyer, and U. Keller, “SESAM mode-locked Yb:CaGdAlO4 thin disk laser with 62 fs pulse generation,” Opt. Lett. 38(19), 3842–3845 (2013).
[Crossref] [PubMed]

C. J. Saraceno, F. Emaury, C. Schriber, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Ultrafast thin-disk laser with 80 μJ pulse energy and 242 W of average power,” Opt. Lett. 39(1), 9–12 (2014).
[Crossref] [PubMed]

J. Brons, V. Pervak, E. Fedulova, D. Bauer, D. Sutter, V. Kalashnikov, A. Apolonskiy, O. Pronin, and F. Krausz, “Energy scaling of Kerr-lens mode-locked thin-disk oscillators,” Opt. Lett. 39(22), 6442–6445 (2014).
[Crossref] [PubMed]

P. Russbueldt, T. Mans, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “Compact diode-pumped 1.1 kW Yb:YAG Innoslab femtosecond amplifier,” Opt. Lett. 35(24), 4169–4171 (2010).
[Crossref] [PubMed]

A. Ancona, S. Döring, C. Jauregui, F. Röser, J. Limpert, S. Nolte, and A. Tünnermann, “Femtosecond and picosecond laser drilling of metals at high repetition rates and average powers,” Opt. Lett. 34(21), 3304–3306 (2009).
[Crossref] [PubMed]

K. A. Stankov, V. P. Tzolov, and M. G. Mirkov, “Frequency-doubling mode locker: the influence of group-velocity mismatch,” Opt. Lett. 16(14), 1119–1121 (1991).
[Crossref] [PubMed]

G. Cerullo, V. Magni, and A. Monguzzi, “Group-velocity mismatch compensation in continuous-wave lasers mode locked by second-order nonlinearities,” Opt. Lett. 20(17), 1785–1787 (1995).
[Crossref] [PubMed]

Optica (1)

F. Emaury, A. Diebold, C. J. Saraceno, and U. Keller, “Compact XUV Source at Megahertz Pulse Repetition Rate with a Low-Noise Ultrafast Thin Disk Oscillator,” Optica 23, 980–984 (2015).
[Crossref]

Other (7)

M. Gaponenko, F. Labaye, V. Wittwer, C. Paradis, N. Modsching, L. Merceron, A. Diebold, F. Emaury, I. Graumann, C. Phillips, C. J. Saraceno, C. Kränkel, U. Keller, and T. Sudmeyer, “Compact Megahertz Coherent XUV Generation by HHG inside an Ultrafast Thin Disk Laser,” in Nonlinear Optics, OSA Technical Digest (online) (Optical Society of America, 2017), paper NTh3A.1.

C. Schriber, L. Merceron, A. Diebold, F. Emaury, M. Golling, K. Beil, C. Kränkel, C. J. Saraceno, T. Südmeyer, and U. Keller, “Pushing SESAM modelocked thin-disk lasers to shortest pulse durations,” in Advanced Solid State Lasers, OSA Technical Digest (online) (Optical Society of America, 2014), paper AF1A.4.

I. J. Graumann, A. Diebold, C. G. E. Alfieri, F. Emaury, B. Deppe, M. Golling, D. Bauer, D. Sutter, C. Kränkel, C. J. Saraceno, C. R. Phillips, and U. Keller, “Peak-power scaling of femtosecond Yb:Lu2O3 thin-disk lasers,” Opt. Express. submitted.

J. Zhang, J. Brons, M. Seidel, D. Bauer, D. Sutter, V. Pervak, V. Kalashnikov, Z. Wei, A. Apolonski, F. Krausz, and O. Pronin, “Generation of 49-fs pulses directly from distributed Kerr-lens mode-locked Yb:YAG thin-disk oscillator,” in Advanced Solid State Lasers, OSA Technical Digest (online) (Optical Society of America, 2015), paper ATh4A.7.

B. Borchers, C. Schaefer, C. Fries, M. Larionov, and R. Knappe, “Nonlinear Polarization Rotation Mode-locking via Phase-mismatched Type I SHG of a Thin Disk Femtosecond Laser,” in Advanced Solid State Lasers, OSA Technical Digest (online) (Optical Society of America, 2015), paper ATh4A.9.

G. M. Thomas and M. J. Damzen, “30W Nd:GdVO4 oscillator modelocked with nonlinear mirror,” in 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC), 2011), pp. 1.

J. Zhang, K. F. Mak, S. Gröbmeyer, D. Bauer, D. Sutter, V. Pervak, F. Krausz, and O. Pronin, “Generation of 220 fs, 20 W pulses at 2 µm from Kerr-lens mode-locked Ho:YAG thin-disk oscillator,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2017), paper SM1I.6.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Pulse duration and average power of NLM modelocked lasers. (b) Pulse duration and pulse energy of modelocked Yb:YAG TDLs. The symbols specify the modelocking technique: square for SESAM, circle for KLM, cross for NPR and star for NLM. In the presented results, we reduce the pulse durations achieved with the NLM modelocking technique by an order of magnitude, down to sub-350 fs, at output powers approaching 30 W, which is comparable to pulse durations achieved by state-of-the-art thin-disk oscillators.

Fig. 2
Fig. 2

(a) Schematic representation of the nonlinear-mirror modelocking (NLM) technique. (b) Evolution of the pulse energy inside the χ(2) crystal. Solid and dashed lines refer, respectively, to the forward and backward pass in the crystal. (OC – output coupler, SHG – second harmonic generation, FW – fundamental wave, SH – second harmonic)

Fig. 3
Fig. 3

(a) Schematic representation of the laser cavity. (b) Evolution of the 1/e2 mode radius. Vertical dashed lines indicate the position of crystals, OC, and end mirror. Labels indicate the curvature of concave mirrors. Inset (c): zoom of mode radius near the OC. (GTIs – dispersive mirrors, BP – Brewster plate)

Fig. 4
Fig. 4

Diagnostics for the configuration with the highest peak power (SP configuration, total GDD from the mirrors −5900fs2 yielding 323 fs pulse duration and 21 W average power). We acquire the diagnostics on the output beam of the laser. (a) optical spectrum, (b) autocorrelation trace, (c) M2 measure, (d) radio frequency (RF) trace showing the RF comb, (e) RF trace showing the peak at the repetition rate (Res BW = resolution bandwidth), (f) sampling scope trace, in the inset a zoom on a single pulse with a different span. The ripple in the sampling oscilloscope trace is due to the detector. The 1/e2 beam radius in the M2 measurement is calculated using the second momentum width (D4σ). The autocorrelation trace and the optical spectrum are fitted with a sech2 function (red dashed line). (RBW – Resolution bandwidth)

Fig. 5
Fig. 5

Characterization of pulse duration (a) and output power (b) versus the pump power. Circles correspond to configurations optimized for short pulses (SP), i.e., Δk = 0; squares to configurations optimized for high power (HP), i.e., the SHG process is slightly detuned from perfect phase matching. (c) Saturable loss effect of the nonlinear mirror. The solid line is the prediction of our model. Solid points: same data shown in in (a) and (b); dashed points: additional data points for the same laser configuration. (GDD – Group delay dispersion)

Fig. 6
Fig. 6

Analysis of the performance of the NLM as a function of the output pulse duration τt and of the peak intensity on the BBO crystal Ipk. (a) Saturable reflectivity behaviour: effective reflectivity as a function of Ipk for different τt, (b) pulse shortening factor κ = τr/τi as a function of τt for different Ipk.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

R nl ( I pk , τ i )= P r / P i
T nl ( I pk , τ i )= P t / P i
κ( I pk , τ i )= τ r / τ i .
E FW (t,z) z i β FW 2 2 E FW t 2 =i d eff ω FW c n FW E FW * (t,z) E SH (t,z)exp( iΔkz ) E SH (t,z) z +( 1 v g ( ω SH ) 1 v g ( ω FW ) ) E SH (t,z) t i β SH 2 2 E SH t 2 =i d eff ω FW c n SH E FW 2 ( t,z )exp( iΔkz )

Metrics