Abstract

We numerically investigate the thermal radiation of one-dimensional deep subwavelength slits in the near infrared range. Using numerical calculations of single-slit and multi-slit structures, we find that high-level radiation efficiency can be achieved for a wide spectrum when ultra-thin intermediate layers are used, and it is less affected by structure parameters. The underlying mechanisms involve Surface Plasmon Polaritons resonance and Fabry-Perot interference at each slit and the interaction between adjacent slits. This structure helps understand and improve the design of thermal radiation control devices.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Near-field effect in the infrared range through periodic Germanium subwavelength arrays

Wei Dong, Toru Hirohata, Kazutoshi Nakajima, and Xiaoping Wang
Opt. Express 21(22) 26677-26687 (2013)

Near-field beam focusing by a single bare subwavelength metal slit with the high-index transmission space

Yan Guo, Bo Zhao, and Jianjun Yang
Opt. Express 21(12) 13949-13957 (2013)

Spatial quantizing a subwavelength slit to upgrade its optical properties

Yan Guo, Jianjun Yang, and Shengjiang Chang
Opt. Express 19(6) 5319-5326 (2011)

References

  • View by:
  • |
  • |
  • |

  1. L. Zhu, C. R. Otey, and S. Fan, “Negative differential thermal conductance through vacuum,” Appl. Phys. Lett. 100(4), 044104 (2012).
    [Crossref]
  2. Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444(7120), 740–743 (2006).
    [Crossref] [PubMed]
  3. T. Inoue, T. Asano, and S. Noda, “Near-field thermal radiation transfer between semiconductors based on thickness control and introduction of photonic crystals,” Phys. Rev. B 95(12), 125307 (2017).
    [Crossref]
  4. K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transf. 109(2), 305–316 (2008).
    [Crossref]
  5. M. Francoeur, R. Vaillon, and M. P. Menguc, “Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators,” IEEE Trans. Energ. Convers. 26(2), 686–698 (2011).
    [Crossref]
  6. D. Lu, A. Das, and W. Park, “Direct modeling of near field thermal radiation in a metamaterial,” Opt. Express 25(11), 12999–13009 (2017).
    [Crossref] [PubMed]
  7. M. H. Han and X. G. Liang, “Study on near-field radiative heat transfer of spherical particles,” J. Eng. Thermophys. 28(1), 107–109 (2007).
  8. Y. B. Chen, Z. M. Zhang, and P. J. Timans, “Radiative properties of patterned wafers with nanoscale linewidth,” ASME J. Heat Transfer 129(1), 71–78 (2007).
    [Crossref]
  9. A. Narayanaswamy and G. Chen, “Thermal emission control with one-dimensional metallodielectric photonic crystals,” Phys. Rev. B 70(12), 12501 (2004).
    [Crossref]
  10. H. Sai, Y. Kanamori, and H. Yugami, “Tuning of the thermal radiation spectrum in the near-infrared region by metallic surface microstructures,” J. Micromech. Microeng. 15(9), S243–S249 (2005).
    [Crossref]
  11. Y. Bai, Y. Jiang, and L. Liu, “Role of surface plasmon polaritons on the enhancement of the near-field thermal radiation from fishnet metamaterial,” J. Phys. D Appl. Phys. 47(44), 445307 (2014).
    [Crossref]
  12. B. A. Munk, Frequency Selective Surfaces Theory and Design (Wiley, 2000).
  13. J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
    [Crossref] [PubMed]
  14. C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93(21), 213905 (2004).
    [Crossref] [PubMed]
  15. S. Enoch, J. J. Simon, L. Escoubas, Z. Elalmy, F. Lemarquis, P. Torchio, and G. Albrand, “Simple layer-by-layer photonic crystal for the control of thermal emission,” Appl. Phys. Lett. 86(26), 261101 (2005).
    [Crossref]
  16. M. Florescu, H. Lee, A. J. Stimpson, and J. Dowling, “Thermal emission and absorption of radiation in finite inverted-opal photonic crystals,” Phys. Rev. A 72(3), 033821 (2005).
    [Crossref]
  17. D. L. C. Chan, M. Soljacić, and J. D. Joannopoulos, “Thermal emission and design in 2D-periodic metallic photonic crystal slabs,” Opt. Express 14(19), 8785–8796 (2006).
    [Crossref] [PubMed]
  18. J. T. K. Wan, “Tunable thermal emission at infrared frequencies via tungsten gratings,” Opt. Commun. 282(8), 1671–1675 (2009).
    [Crossref]
  19. E. D. Palik, Handbook of Optical Constants of Solids, Vol. 1 of Academic Press Handbook Series, (Academic, 1985).

2017 (2)

T. Inoue, T. Asano, and S. Noda, “Near-field thermal radiation transfer between semiconductors based on thickness control and introduction of photonic crystals,” Phys. Rev. B 95(12), 125307 (2017).
[Crossref]

D. Lu, A. Das, and W. Park, “Direct modeling of near field thermal radiation in a metamaterial,” Opt. Express 25(11), 12999–13009 (2017).
[Crossref] [PubMed]

2014 (1)

Y. Bai, Y. Jiang, and L. Liu, “Role of surface plasmon polaritons on the enhancement of the near-field thermal radiation from fishnet metamaterial,” J. Phys. D Appl. Phys. 47(44), 445307 (2014).
[Crossref]

2012 (1)

L. Zhu, C. R. Otey, and S. Fan, “Negative differential thermal conductance through vacuum,” Appl. Phys. Lett. 100(4), 044104 (2012).
[Crossref]

2011 (1)

M. Francoeur, R. Vaillon, and M. P. Menguc, “Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators,” IEEE Trans. Energ. Convers. 26(2), 686–698 (2011).
[Crossref]

2009 (1)

J. T. K. Wan, “Tunable thermal emission at infrared frequencies via tungsten gratings,” Opt. Commun. 282(8), 1671–1675 (2009).
[Crossref]

2008 (1)

K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transf. 109(2), 305–316 (2008).
[Crossref]

2007 (2)

M. H. Han and X. G. Liang, “Study on near-field radiative heat transfer of spherical particles,” J. Eng. Thermophys. 28(1), 107–109 (2007).

Y. B. Chen, Z. M. Zhang, and P. J. Timans, “Radiative properties of patterned wafers with nanoscale linewidth,” ASME J. Heat Transfer 129(1), 71–78 (2007).
[Crossref]

2006 (2)

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444(7120), 740–743 (2006).
[Crossref] [PubMed]

D. L. C. Chan, M. Soljacić, and J. D. Joannopoulos, “Thermal emission and design in 2D-periodic metallic photonic crystal slabs,” Opt. Express 14(19), 8785–8796 (2006).
[Crossref] [PubMed]

2005 (3)

H. Sai, Y. Kanamori, and H. Yugami, “Tuning of the thermal radiation spectrum in the near-infrared region by metallic surface microstructures,” J. Micromech. Microeng. 15(9), S243–S249 (2005).
[Crossref]

S. Enoch, J. J. Simon, L. Escoubas, Z. Elalmy, F. Lemarquis, P. Torchio, and G. Albrand, “Simple layer-by-layer photonic crystal for the control of thermal emission,” Appl. Phys. Lett. 86(26), 261101 (2005).
[Crossref]

M. Florescu, H. Lee, A. J. Stimpson, and J. Dowling, “Thermal emission and absorption of radiation in finite inverted-opal photonic crystals,” Phys. Rev. A 72(3), 033821 (2005).
[Crossref]

2004 (2)

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93(21), 213905 (2004).
[Crossref] [PubMed]

A. Narayanaswamy and G. Chen, “Thermal emission control with one-dimensional metallodielectric photonic crystals,” Phys. Rev. B 70(12), 12501 (2004).
[Crossref]

2002 (1)

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Albrand, G.

S. Enoch, J. J. Simon, L. Escoubas, Z. Elalmy, F. Lemarquis, P. Torchio, and G. Albrand, “Simple layer-by-layer photonic crystal for the control of thermal emission,” Appl. Phys. Lett. 86(26), 261101 (2005).
[Crossref]

Asano, T.

T. Inoue, T. Asano, and S. Noda, “Near-field thermal radiation transfer between semiconductors based on thickness control and introduction of photonic crystals,” Phys. Rev. B 95(12), 125307 (2017).
[Crossref]

Bai, Y.

Y. Bai, Y. Jiang, and L. Liu, “Role of surface plasmon polaritons on the enhancement of the near-field thermal radiation from fishnet metamaterial,” J. Phys. D Appl. Phys. 47(44), 445307 (2014).
[Crossref]

Basu, S.

K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transf. 109(2), 305–316 (2008).
[Crossref]

Carminati, R.

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444(7120), 740–743 (2006).
[Crossref] [PubMed]

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Chan, D. L. C.

Chen, G.

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93(21), 213905 (2004).
[Crossref] [PubMed]

A. Narayanaswamy and G. Chen, “Thermal emission control with one-dimensional metallodielectric photonic crystals,” Phys. Rev. B 70(12), 12501 (2004).
[Crossref]

Chen, Y.

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444(7120), 740–743 (2006).
[Crossref] [PubMed]

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Chen, Y. B.

Y. B. Chen, Z. M. Zhang, and P. J. Timans, “Radiative properties of patterned wafers with nanoscale linewidth,” ASME J. Heat Transfer 129(1), 71–78 (2007).
[Crossref]

Das, A.

De Wilde, Y.

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444(7120), 740–743 (2006).
[Crossref] [PubMed]

Dowling, J.

M. Florescu, H. Lee, A. J. Stimpson, and J. Dowling, “Thermal emission and absorption of radiation in finite inverted-opal photonic crystals,” Phys. Rev. A 72(3), 033821 (2005).
[Crossref]

Elalmy, Z.

S. Enoch, J. J. Simon, L. Escoubas, Z. Elalmy, F. Lemarquis, P. Torchio, and G. Albrand, “Simple layer-by-layer photonic crystal for the control of thermal emission,” Appl. Phys. Lett. 86(26), 261101 (2005).
[Crossref]

Enoch, S.

S. Enoch, J. J. Simon, L. Escoubas, Z. Elalmy, F. Lemarquis, P. Torchio, and G. Albrand, “Simple layer-by-layer photonic crystal for the control of thermal emission,” Appl. Phys. Lett. 86(26), 261101 (2005).
[Crossref]

Escoubas, L.

S. Enoch, J. J. Simon, L. Escoubas, Z. Elalmy, F. Lemarquis, P. Torchio, and G. Albrand, “Simple layer-by-layer photonic crystal for the control of thermal emission,” Appl. Phys. Lett. 86(26), 261101 (2005).
[Crossref]

Fan, S.

L. Zhu, C. R. Otey, and S. Fan, “Negative differential thermal conductance through vacuum,” Appl. Phys. Lett. 100(4), 044104 (2012).
[Crossref]

Florescu, M.

M. Florescu, H. Lee, A. J. Stimpson, and J. Dowling, “Thermal emission and absorption of radiation in finite inverted-opal photonic crystals,” Phys. Rev. A 72(3), 033821 (2005).
[Crossref]

Formanek, F.

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444(7120), 740–743 (2006).
[Crossref] [PubMed]

Francoeur, M.

M. Francoeur, R. Vaillon, and M. P. Menguc, “Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators,” IEEE Trans. Energ. Convers. 26(2), 686–698 (2011).
[Crossref]

Gralak, B.

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444(7120), 740–743 (2006).
[Crossref] [PubMed]

Greffet, J. J.

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444(7120), 740–743 (2006).
[Crossref] [PubMed]

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Han, M. H.

M. H. Han and X. G. Liang, “Study on near-field radiative heat transfer of spherical particles,” J. Eng. Thermophys. 28(1), 107–109 (2007).

Inoue, T.

T. Inoue, T. Asano, and S. Noda, “Near-field thermal radiation transfer between semiconductors based on thickness control and introduction of photonic crystals,” Phys. Rev. B 95(12), 125307 (2017).
[Crossref]

Jiang, Y.

Y. Bai, Y. Jiang, and L. Liu, “Role of surface plasmon polaritons on the enhancement of the near-field thermal radiation from fishnet metamaterial,” J. Phys. D Appl. Phys. 47(44), 445307 (2014).
[Crossref]

Joannopoulos, J. D.

D. L. C. Chan, M. Soljacić, and J. D. Joannopoulos, “Thermal emission and design in 2D-periodic metallic photonic crystal slabs,” Opt. Express 14(19), 8785–8796 (2006).
[Crossref] [PubMed]

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93(21), 213905 (2004).
[Crossref] [PubMed]

Joulain, K.

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444(7120), 740–743 (2006).
[Crossref] [PubMed]

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Kanamori, Y.

H. Sai, Y. Kanamori, and H. Yugami, “Tuning of the thermal radiation spectrum in the near-infrared region by metallic surface microstructures,” J. Micromech. Microeng. 15(9), S243–S249 (2005).
[Crossref]

King, W. P.

K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transf. 109(2), 305–316 (2008).
[Crossref]

Lee, H.

M. Florescu, H. Lee, A. J. Stimpson, and J. Dowling, “Thermal emission and absorption of radiation in finite inverted-opal photonic crystals,” Phys. Rev. A 72(3), 033821 (2005).
[Crossref]

Lemarquis, F.

S. Enoch, J. J. Simon, L. Escoubas, Z. Elalmy, F. Lemarquis, P. Torchio, and G. Albrand, “Simple layer-by-layer photonic crystal for the control of thermal emission,” Appl. Phys. Lett. 86(26), 261101 (2005).
[Crossref]

Lemoine, P. A.

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444(7120), 740–743 (2006).
[Crossref] [PubMed]

Liang, X. G.

M. H. Han and X. G. Liang, “Study on near-field radiative heat transfer of spherical particles,” J. Eng. Thermophys. 28(1), 107–109 (2007).

Liu, L.

Y. Bai, Y. Jiang, and L. Liu, “Role of surface plasmon polaritons on the enhancement of the near-field thermal radiation from fishnet metamaterial,” J. Phys. D Appl. Phys. 47(44), 445307 (2014).
[Crossref]

Lu, D.

Luo, C.

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93(21), 213905 (2004).
[Crossref] [PubMed]

Mainguy, S.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Menguc, M. P.

M. Francoeur, R. Vaillon, and M. P. Menguc, “Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators,” IEEE Trans. Energ. Convers. 26(2), 686–698 (2011).
[Crossref]

Mulet, J. P.

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444(7120), 740–743 (2006).
[Crossref] [PubMed]

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Narayanaswamy, A.

A. Narayanaswamy and G. Chen, “Thermal emission control with one-dimensional metallodielectric photonic crystals,” Phys. Rev. B 70(12), 12501 (2004).
[Crossref]

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93(21), 213905 (2004).
[Crossref] [PubMed]

Noda, S.

T. Inoue, T. Asano, and S. Noda, “Near-field thermal radiation transfer between semiconductors based on thickness control and introduction of photonic crystals,” Phys. Rev. B 95(12), 125307 (2017).
[Crossref]

Otey, C. R.

L. Zhu, C. R. Otey, and S. Fan, “Negative differential thermal conductance through vacuum,” Appl. Phys. Lett. 100(4), 044104 (2012).
[Crossref]

Park, K.

K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transf. 109(2), 305–316 (2008).
[Crossref]

Park, W.

Sai, H.

H. Sai, Y. Kanamori, and H. Yugami, “Tuning of the thermal radiation spectrum in the near-infrared region by metallic surface microstructures,” J. Micromech. Microeng. 15(9), S243–S249 (2005).
[Crossref]

Simon, J. J.

S. Enoch, J. J. Simon, L. Escoubas, Z. Elalmy, F. Lemarquis, P. Torchio, and G. Albrand, “Simple layer-by-layer photonic crystal for the control of thermal emission,” Appl. Phys. Lett. 86(26), 261101 (2005).
[Crossref]

Soljacic, M.

Stimpson, A. J.

M. Florescu, H. Lee, A. J. Stimpson, and J. Dowling, “Thermal emission and absorption of radiation in finite inverted-opal photonic crystals,” Phys. Rev. A 72(3), 033821 (2005).
[Crossref]

Timans, P. J.

Y. B. Chen, Z. M. Zhang, and P. J. Timans, “Radiative properties of patterned wafers with nanoscale linewidth,” ASME J. Heat Transfer 129(1), 71–78 (2007).
[Crossref]

Torchio, P.

S. Enoch, J. J. Simon, L. Escoubas, Z. Elalmy, F. Lemarquis, P. Torchio, and G. Albrand, “Simple layer-by-layer photonic crystal for the control of thermal emission,” Appl. Phys. Lett. 86(26), 261101 (2005).
[Crossref]

Vaillon, R.

M. Francoeur, R. Vaillon, and M. P. Menguc, “Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators,” IEEE Trans. Energ. Convers. 26(2), 686–698 (2011).
[Crossref]

Wan, J. T. K.

J. T. K. Wan, “Tunable thermal emission at infrared frequencies via tungsten gratings,” Opt. Commun. 282(8), 1671–1675 (2009).
[Crossref]

Yugami, H.

H. Sai, Y. Kanamori, and H. Yugami, “Tuning of the thermal radiation spectrum in the near-infrared region by metallic surface microstructures,” J. Micromech. Microeng. 15(9), S243–S249 (2005).
[Crossref]

Zhang, Z. M.

K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transf. 109(2), 305–316 (2008).
[Crossref]

Y. B. Chen, Z. M. Zhang, and P. J. Timans, “Radiative properties of patterned wafers with nanoscale linewidth,” ASME J. Heat Transfer 129(1), 71–78 (2007).
[Crossref]

Zhu, L.

L. Zhu, C. R. Otey, and S. Fan, “Negative differential thermal conductance through vacuum,” Appl. Phys. Lett. 100(4), 044104 (2012).
[Crossref]

Appl. Phys. Lett. (2)

S. Enoch, J. J. Simon, L. Escoubas, Z. Elalmy, F. Lemarquis, P. Torchio, and G. Albrand, “Simple layer-by-layer photonic crystal for the control of thermal emission,” Appl. Phys. Lett. 86(26), 261101 (2005).
[Crossref]

L. Zhu, C. R. Otey, and S. Fan, “Negative differential thermal conductance through vacuum,” Appl. Phys. Lett. 100(4), 044104 (2012).
[Crossref]

ASME J. Heat Transfer (1)

Y. B. Chen, Z. M. Zhang, and P. J. Timans, “Radiative properties of patterned wafers with nanoscale linewidth,” ASME J. Heat Transfer 129(1), 71–78 (2007).
[Crossref]

IEEE Trans. Energ. Convers. (1)

M. Francoeur, R. Vaillon, and M. P. Menguc, “Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators,” IEEE Trans. Energ. Convers. 26(2), 686–698 (2011).
[Crossref]

J. Eng. Thermophys. (1)

M. H. Han and X. G. Liang, “Study on near-field radiative heat transfer of spherical particles,” J. Eng. Thermophys. 28(1), 107–109 (2007).

J. Micromech. Microeng. (1)

H. Sai, Y. Kanamori, and H. Yugami, “Tuning of the thermal radiation spectrum in the near-infrared region by metallic surface microstructures,” J. Micromech. Microeng. 15(9), S243–S249 (2005).
[Crossref]

J. Phys. D Appl. Phys. (1)

Y. Bai, Y. Jiang, and L. Liu, “Role of surface plasmon polaritons on the enhancement of the near-field thermal radiation from fishnet metamaterial,” J. Phys. D Appl. Phys. 47(44), 445307 (2014).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (1)

K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transf. 109(2), 305–316 (2008).
[Crossref]

Nature (2)

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444(7120), 740–743 (2006).
[Crossref] [PubMed]

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Opt. Commun. (1)

J. T. K. Wan, “Tunable thermal emission at infrared frequencies via tungsten gratings,” Opt. Commun. 282(8), 1671–1675 (2009).
[Crossref]

Opt. Express (2)

Phys. Rev. A (1)

M. Florescu, H. Lee, A. J. Stimpson, and J. Dowling, “Thermal emission and absorption of radiation in finite inverted-opal photonic crystals,” Phys. Rev. A 72(3), 033821 (2005).
[Crossref]

Phys. Rev. B (2)

A. Narayanaswamy and G. Chen, “Thermal emission control with one-dimensional metallodielectric photonic crystals,” Phys. Rev. B 70(12), 12501 (2004).
[Crossref]

T. Inoue, T. Asano, and S. Noda, “Near-field thermal radiation transfer between semiconductors based on thickness control and introduction of photonic crystals,” Phys. Rev. B 95(12), 125307 (2017).
[Crossref]

Phys. Rev. Lett. (1)

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93(21), 213905 (2004).
[Crossref] [PubMed]

Other (2)

B. A. Munk, Frequency Selective Surfaces Theory and Design (Wiley, 2000).

E. D. Palik, Handbook of Optical Constants of Solids, Vol. 1 of Academic Press Handbook Series, (Academic, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Thermal radiation of a single subwavelength slit with a variant depth d at w = 120 nm (a), and a variant width w for d = 600 nm (b). Inset in (a) shows schematic plot of a single subwavelength slit structure. T_line and R_line are the cross sections to calculate transmittivity and reflectivity with 150 nm distances away from the structure.

Fig. 2
Fig. 2

Thermal radiation of the three-slit structure for identical unit cell (w = 120 nm and d = 600 nm) but different intermediate thicknesses of the metal layer t, ranging from 2w to 0.5w (a). Inset shows schematic plot of multi-slit structure. Radiation spectra of structures for different numbers N of unit cells at t = 0.5w (b).

Fig. 3
Fig. 3

(a) Thermal radiation of a three-slit structure with different combinations but identical depth (d = 600 nm), wherein the thickness of the intermediate metal layer t is fixed at 60 nm. Inset shows schematic plot of this spectral multi-slit structure. Legend shows w distribution from left to right of the structure. (b) Thermal radiation of a three-slit structure with w = 150 nm, 120 nm, 150 nm and t = 60 nm, but different slit depth d, whose distribution from left to right is shown by legend. Inset shows radiation spectra of a single slit with symmetric and asymmetric edges.

Fig. 4
Fig. 4

Normalized modulus |Hz| of magnetic field propagated along the centerline of a single slit with w = 120 nm and d = 600 nm for three frequencies: f 1 =178.8THz (peak), f 2 =252.6THz (valley) and f 3 =396.6THz (peak) (a). Normalized modulus |Hz| of magnetic field propagated along the centerline of the middle slit of ultra-thin multi-slit structures with N = 3, w = 120 nm d = 600 nm and t = 0.5w for three frequencies: f 4 =183.1THz (peak), f 5 =300THz (valley) and f 6 =436.2THz (peak) (b). The corresponding magnetic field distributions are shown in (c)-(e).

Fig. 5
Fig. 5

Phase distributions of magnetic fields in the single slit (a) and (b) and ultra-thin multi-slit structure (c) and (d) with N = 1, N = 3, w = 120 nm, d = 600 nm, and t = 0.5w at frequencies of radiation peaks and valleys. The inset of (a) shows the phase distribution of three-slit structure under f1 illumination. The white dashed lines represent the metal blocks.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E(x,y,t)=cos[ ω c (t t 0 )]exp[ (t t 0 ) 2 / τ 2 ]exp(2ln2 x 2 / δ 2 +j 2π/λ y)

Metrics