Abstract

We demonstrate a linearly frequency-modulated laser from a laser diode (LD) pumped Nd:YVO4 laser. A fast frequency tuning of 2.40 THz/s with a tuning range of 6 GHz is achieved in LD pumped Nd:YVO4 1064 nm laser by using RbTiOPO4 (RTP) crystals as the frequency modulator. The continuous tuning range is more than 3 times the longitudinal mode spacing of the resonator. The maximum output power of frequency-modulated laser reaches 160 mW at 1064 nm. Linewidth of the single frequency laser is measured to be 190 kHz by a delay self-heterodyne interferometer. A deviation lower than 60 MHz is obtained during linear modulation.

© 2017 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Schröder, C. Lemmerz, O. Reitebuch, M. Wirth, C. Wührer, and R. Treichel, “Frequency jitter and spectral width of an injection-seeded Q-switched Nd:YAG laser for a Doppler wind lidar,” Appl. Phys. B 87(3), 437–444 (2007).
    [Crossref]
  2. S. M. Beck, J. R. Buck, W. F. Buell, R. P. Dickinson, D. A. Kozlowski, N. J. Marechal, and T. J. Wright, “Synthetic-aperture imaging laser radar: laboratory demonstration and signal processing,” Appl. Opt. 44(35), 7621–7629 (2005).
    [Crossref] [PubMed]
  3. J. Zheng, “Analysis of optical frequency-modulated continuous-wave interference,” Appl. Opt. 43(21), 4189–4198 (2004).
    [Crossref] [PubMed]
  4. Y. C. Li, Y. Q. Wang, C. Y. Liu, J. R. Yang, and Q. Ding, “Linear frequency modulation multi-beam laser heterodyne measurement for the glass thickness,” Appl. Phys. B 122(2), 1–5 (2016).
  5. M. Medhat, M. Sobee, H. M. Hussein, and O. Terra, “Distance measurement using frequency scanning interferometry with mode-hoped laser,” Opt. Laser Technol. 80, 209–213 (2016).
    [Crossref]
  6. W. R. Trutna and D. K. Donald, “Two-piece, piezoelectrically tuned, single-mode Nd:YAG ring laser,” Opt. Lett. 15(7), 369–371 (1990).
    [Crossref] [PubMed]
  7. P. A. Schulz and S. R. Henion, “Frequency-modulated Nd:YAG laser,” Opt. Lett. 16(8), 578–580 (1991).
    [Crossref] [PubMed]
  8. W. Wang, H. Lu, J. Su, and K. Peng, “Broadband tunable single-frequency Nd:YVO4/LBO green laser with high output power,” Appl. Opt. 52(11), 2279–2285 (2013).
    [Crossref] [PubMed]
  9. M. V. Okhapkin, M. N. Skvortsov, A. M. Belkin, and S. N. Bagayev, “Tunable single-frequency diode-pumped Nd:YAG ring laser at 946 nm,” Opt. Commun. 194(1), 207–211 (2001).
    [Crossref]
  10. I. Freitag, I. Kröpke, A. Tünnerman, and H. Welling, “Electrooptically fast tunable miniature diode-pumped Nd:YAG ring laser,” Opt. Commun. 101(5), 371–376 (1993).
    [Crossref]
  11. D. Radnatarov, S. Kobtsev, S. Khripunov, and V. Lunin, “240-GHz continuously frequency-tuneable Nd:YVO4/LBO laser with two intra-cavity locked etalons,” Opt. Express 23(21), 27322–27327 (2015).
    [Crossref] [PubMed]
  12. X. Xu, D. Chen, R. Fan, Y. Ma, R. Yan, and X. Li, “Linearly tunable single frequency Nd: YVO4 laser utilizing RTP as electro-optical element,” in Frontiers in Optics 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper LTh4I.7.
  13. Y. Zheng, H. Lu, Y. Li, K. Zhang, and K. Peng, “Broadband and rapid tuning of an all-solid-state single-frequency Nd:YVO4 laser,” Appl. Phys. B 90(3), 485–488 (2008).
    [Crossref]
  14. M. Roth, M. Tseitlin, and N. Angert, “Oxide crystals for electro-optic Q-switching of lasers,” Glass Phys. Chem. 31(1), 86–95 (2005).
    [Crossref]
  15. Z. Cong, Z. Liu, Z. Qin, X. Zhang, S. Wang, H. Rao, and Q. Fu, “RTP Q-switched single-longitudinal-mode Nd:YAG laser with a twisted-mode cavity,” Appl. Opt. 54(16), 5143–5146 (2015).
    [Crossref] [PubMed]
  16. H. Albrecht, C. Bonnin, Y. Gromfeld, and M. Herrmann, “Characterization of RbTiOPO4 crystal for non-linear and electro-optic applications,” Proc. SPIE 6100, 61001F (2006).
    [Crossref]
  17. P. Robrish, “Single-mode electro-optically tuned Nd:YVO4 laser,” Opt. Lett. 19(11), 813–815 (1994).
    [Crossref] [PubMed]
  18. J. Zheng, Optical Frequency-Modulated Continuous-Wave (FMCW) Interferometry, (Springer New York, 2005), Chap. 2.
  19. P. Horak and W. H. Loh, “On the delayed self-heterodyne interferometric technique for determining the linewidth of fiber lasers,” Opt. Express 14(9), 3923–3928 (2006).
    [Crossref] [PubMed]
  20. G. J. Kintz and T. Baer, “Single-frequency operation in solid-state laser materials with short absorption depths,” IEEE J. Quantum Electron. 26(9), 1457–1459 (1990).
    [Crossref]

2016 (2)

Y. C. Li, Y. Q. Wang, C. Y. Liu, J. R. Yang, and Q. Ding, “Linear frequency modulation multi-beam laser heterodyne measurement for the glass thickness,” Appl. Phys. B 122(2), 1–5 (2016).

M. Medhat, M. Sobee, H. M. Hussein, and O. Terra, “Distance measurement using frequency scanning interferometry with mode-hoped laser,” Opt. Laser Technol. 80, 209–213 (2016).
[Crossref]

2015 (2)

2013 (1)

2008 (1)

Y. Zheng, H. Lu, Y. Li, K. Zhang, and K. Peng, “Broadband and rapid tuning of an all-solid-state single-frequency Nd:YVO4 laser,” Appl. Phys. B 90(3), 485–488 (2008).
[Crossref]

2007 (1)

T. Schröder, C. Lemmerz, O. Reitebuch, M. Wirth, C. Wührer, and R. Treichel, “Frequency jitter and spectral width of an injection-seeded Q-switched Nd:YAG laser for a Doppler wind lidar,” Appl. Phys. B 87(3), 437–444 (2007).
[Crossref]

2006 (2)

H. Albrecht, C. Bonnin, Y. Gromfeld, and M. Herrmann, “Characterization of RbTiOPO4 crystal for non-linear and electro-optic applications,” Proc. SPIE 6100, 61001F (2006).
[Crossref]

P. Horak and W. H. Loh, “On the delayed self-heterodyne interferometric technique for determining the linewidth of fiber lasers,” Opt. Express 14(9), 3923–3928 (2006).
[Crossref] [PubMed]

2005 (2)

2004 (1)

2001 (1)

M. V. Okhapkin, M. N. Skvortsov, A. M. Belkin, and S. N. Bagayev, “Tunable single-frequency diode-pumped Nd:YAG ring laser at 946 nm,” Opt. Commun. 194(1), 207–211 (2001).
[Crossref]

1994 (1)

1993 (1)

I. Freitag, I. Kröpke, A. Tünnerman, and H. Welling, “Electrooptically fast tunable miniature diode-pumped Nd:YAG ring laser,” Opt. Commun. 101(5), 371–376 (1993).
[Crossref]

1991 (1)

1990 (2)

G. J. Kintz and T. Baer, “Single-frequency operation in solid-state laser materials with short absorption depths,” IEEE J. Quantum Electron. 26(9), 1457–1459 (1990).
[Crossref]

W. R. Trutna and D. K. Donald, “Two-piece, piezoelectrically tuned, single-mode Nd:YAG ring laser,” Opt. Lett. 15(7), 369–371 (1990).
[Crossref] [PubMed]

Albrecht, H.

H. Albrecht, C. Bonnin, Y. Gromfeld, and M. Herrmann, “Characterization of RbTiOPO4 crystal for non-linear and electro-optic applications,” Proc. SPIE 6100, 61001F (2006).
[Crossref]

Angert, N.

M. Roth, M. Tseitlin, and N. Angert, “Oxide crystals for electro-optic Q-switching of lasers,” Glass Phys. Chem. 31(1), 86–95 (2005).
[Crossref]

Baer, T.

G. J. Kintz and T. Baer, “Single-frequency operation in solid-state laser materials with short absorption depths,” IEEE J. Quantum Electron. 26(9), 1457–1459 (1990).
[Crossref]

Bagayev, S. N.

M. V. Okhapkin, M. N. Skvortsov, A. M. Belkin, and S. N. Bagayev, “Tunable single-frequency diode-pumped Nd:YAG ring laser at 946 nm,” Opt. Commun. 194(1), 207–211 (2001).
[Crossref]

Beck, S. M.

Belkin, A. M.

M. V. Okhapkin, M. N. Skvortsov, A. M. Belkin, and S. N. Bagayev, “Tunable single-frequency diode-pumped Nd:YAG ring laser at 946 nm,” Opt. Commun. 194(1), 207–211 (2001).
[Crossref]

Bonnin, C.

H. Albrecht, C. Bonnin, Y. Gromfeld, and M. Herrmann, “Characterization of RbTiOPO4 crystal for non-linear and electro-optic applications,” Proc. SPIE 6100, 61001F (2006).
[Crossref]

Buck, J. R.

Buell, W. F.

Cong, Z.

Dickinson, R. P.

Ding, Q.

Y. C. Li, Y. Q. Wang, C. Y. Liu, J. R. Yang, and Q. Ding, “Linear frequency modulation multi-beam laser heterodyne measurement for the glass thickness,” Appl. Phys. B 122(2), 1–5 (2016).

Donald, D. K.

Freitag, I.

I. Freitag, I. Kröpke, A. Tünnerman, and H. Welling, “Electrooptically fast tunable miniature diode-pumped Nd:YAG ring laser,” Opt. Commun. 101(5), 371–376 (1993).
[Crossref]

Fu, Q.

Gromfeld, Y.

H. Albrecht, C. Bonnin, Y. Gromfeld, and M. Herrmann, “Characterization of RbTiOPO4 crystal for non-linear and electro-optic applications,” Proc. SPIE 6100, 61001F (2006).
[Crossref]

Henion, S. R.

Herrmann, M.

H. Albrecht, C. Bonnin, Y. Gromfeld, and M. Herrmann, “Characterization of RbTiOPO4 crystal for non-linear and electro-optic applications,” Proc. SPIE 6100, 61001F (2006).
[Crossref]

Horak, P.

Hussein, H. M.

M. Medhat, M. Sobee, H. M. Hussein, and O. Terra, “Distance measurement using frequency scanning interferometry with mode-hoped laser,” Opt. Laser Technol. 80, 209–213 (2016).
[Crossref]

Khripunov, S.

Kintz, G. J.

G. J. Kintz and T. Baer, “Single-frequency operation in solid-state laser materials with short absorption depths,” IEEE J. Quantum Electron. 26(9), 1457–1459 (1990).
[Crossref]

Kobtsev, S.

Kozlowski, D. A.

Kröpke, I.

I. Freitag, I. Kröpke, A. Tünnerman, and H. Welling, “Electrooptically fast tunable miniature diode-pumped Nd:YAG ring laser,” Opt. Commun. 101(5), 371–376 (1993).
[Crossref]

Lemmerz, C.

T. Schröder, C. Lemmerz, O. Reitebuch, M. Wirth, C. Wührer, and R. Treichel, “Frequency jitter and spectral width of an injection-seeded Q-switched Nd:YAG laser for a Doppler wind lidar,” Appl. Phys. B 87(3), 437–444 (2007).
[Crossref]

Li, Y.

Y. Zheng, H. Lu, Y. Li, K. Zhang, and K. Peng, “Broadband and rapid tuning of an all-solid-state single-frequency Nd:YVO4 laser,” Appl. Phys. B 90(3), 485–488 (2008).
[Crossref]

Li, Y. C.

Y. C. Li, Y. Q. Wang, C. Y. Liu, J. R. Yang, and Q. Ding, “Linear frequency modulation multi-beam laser heterodyne measurement for the glass thickness,” Appl. Phys. B 122(2), 1–5 (2016).

Liu, C. Y.

Y. C. Li, Y. Q. Wang, C. Y. Liu, J. R. Yang, and Q. Ding, “Linear frequency modulation multi-beam laser heterodyne measurement for the glass thickness,” Appl. Phys. B 122(2), 1–5 (2016).

Liu, Z.

Loh, W. H.

Lu, H.

W. Wang, H. Lu, J. Su, and K. Peng, “Broadband tunable single-frequency Nd:YVO4/LBO green laser with high output power,” Appl. Opt. 52(11), 2279–2285 (2013).
[Crossref] [PubMed]

Y. Zheng, H. Lu, Y. Li, K. Zhang, and K. Peng, “Broadband and rapid tuning of an all-solid-state single-frequency Nd:YVO4 laser,” Appl. Phys. B 90(3), 485–488 (2008).
[Crossref]

Lunin, V.

Marechal, N. J.

Medhat, M.

M. Medhat, M. Sobee, H. M. Hussein, and O. Terra, “Distance measurement using frequency scanning interferometry with mode-hoped laser,” Opt. Laser Technol. 80, 209–213 (2016).
[Crossref]

Okhapkin, M. V.

M. V. Okhapkin, M. N. Skvortsov, A. M. Belkin, and S. N. Bagayev, “Tunable single-frequency diode-pumped Nd:YAG ring laser at 946 nm,” Opt. Commun. 194(1), 207–211 (2001).
[Crossref]

Peng, K.

W. Wang, H. Lu, J. Su, and K. Peng, “Broadband tunable single-frequency Nd:YVO4/LBO green laser with high output power,” Appl. Opt. 52(11), 2279–2285 (2013).
[Crossref] [PubMed]

Y. Zheng, H. Lu, Y. Li, K. Zhang, and K. Peng, “Broadband and rapid tuning of an all-solid-state single-frequency Nd:YVO4 laser,” Appl. Phys. B 90(3), 485–488 (2008).
[Crossref]

Qin, Z.

Radnatarov, D.

Rao, H.

Reitebuch, O.

T. Schröder, C. Lemmerz, O. Reitebuch, M. Wirth, C. Wührer, and R. Treichel, “Frequency jitter and spectral width of an injection-seeded Q-switched Nd:YAG laser for a Doppler wind lidar,” Appl. Phys. B 87(3), 437–444 (2007).
[Crossref]

Robrish, P.

Roth, M.

M. Roth, M. Tseitlin, and N. Angert, “Oxide crystals for electro-optic Q-switching of lasers,” Glass Phys. Chem. 31(1), 86–95 (2005).
[Crossref]

Schröder, T.

T. Schröder, C. Lemmerz, O. Reitebuch, M. Wirth, C. Wührer, and R. Treichel, “Frequency jitter and spectral width of an injection-seeded Q-switched Nd:YAG laser for a Doppler wind lidar,” Appl. Phys. B 87(3), 437–444 (2007).
[Crossref]

Schulz, P. A.

Skvortsov, M. N.

M. V. Okhapkin, M. N. Skvortsov, A. M. Belkin, and S. N. Bagayev, “Tunable single-frequency diode-pumped Nd:YAG ring laser at 946 nm,” Opt. Commun. 194(1), 207–211 (2001).
[Crossref]

Sobee, M.

M. Medhat, M. Sobee, H. M. Hussein, and O. Terra, “Distance measurement using frequency scanning interferometry with mode-hoped laser,” Opt. Laser Technol. 80, 209–213 (2016).
[Crossref]

Su, J.

Terra, O.

M. Medhat, M. Sobee, H. M. Hussein, and O. Terra, “Distance measurement using frequency scanning interferometry with mode-hoped laser,” Opt. Laser Technol. 80, 209–213 (2016).
[Crossref]

Treichel, R.

T. Schröder, C. Lemmerz, O. Reitebuch, M. Wirth, C. Wührer, and R. Treichel, “Frequency jitter and spectral width of an injection-seeded Q-switched Nd:YAG laser for a Doppler wind lidar,” Appl. Phys. B 87(3), 437–444 (2007).
[Crossref]

Trutna, W. R.

Tseitlin, M.

M. Roth, M. Tseitlin, and N. Angert, “Oxide crystals for electro-optic Q-switching of lasers,” Glass Phys. Chem. 31(1), 86–95 (2005).
[Crossref]

Tünnerman, A.

I. Freitag, I. Kröpke, A. Tünnerman, and H. Welling, “Electrooptically fast tunable miniature diode-pumped Nd:YAG ring laser,” Opt. Commun. 101(5), 371–376 (1993).
[Crossref]

Wang, S.

Wang, W.

Wang, Y. Q.

Y. C. Li, Y. Q. Wang, C. Y. Liu, J. R. Yang, and Q. Ding, “Linear frequency modulation multi-beam laser heterodyne measurement for the glass thickness,” Appl. Phys. B 122(2), 1–5 (2016).

Welling, H.

I. Freitag, I. Kröpke, A. Tünnerman, and H. Welling, “Electrooptically fast tunable miniature diode-pumped Nd:YAG ring laser,” Opt. Commun. 101(5), 371–376 (1993).
[Crossref]

Wirth, M.

T. Schröder, C. Lemmerz, O. Reitebuch, M. Wirth, C. Wührer, and R. Treichel, “Frequency jitter and spectral width of an injection-seeded Q-switched Nd:YAG laser for a Doppler wind lidar,” Appl. Phys. B 87(3), 437–444 (2007).
[Crossref]

Wright, T. J.

Wührer, C.

T. Schröder, C. Lemmerz, O. Reitebuch, M. Wirth, C. Wührer, and R. Treichel, “Frequency jitter and spectral width of an injection-seeded Q-switched Nd:YAG laser for a Doppler wind lidar,” Appl. Phys. B 87(3), 437–444 (2007).
[Crossref]

Yang, J. R.

Y. C. Li, Y. Q. Wang, C. Y. Liu, J. R. Yang, and Q. Ding, “Linear frequency modulation multi-beam laser heterodyne measurement for the glass thickness,” Appl. Phys. B 122(2), 1–5 (2016).

Zhang, K.

Y. Zheng, H. Lu, Y. Li, K. Zhang, and K. Peng, “Broadband and rapid tuning of an all-solid-state single-frequency Nd:YVO4 laser,” Appl. Phys. B 90(3), 485–488 (2008).
[Crossref]

Zhang, X.

Zheng, J.

Zheng, Y.

Y. Zheng, H. Lu, Y. Li, K. Zhang, and K. Peng, “Broadband and rapid tuning of an all-solid-state single-frequency Nd:YVO4 laser,” Appl. Phys. B 90(3), 485–488 (2008).
[Crossref]

Appl. Opt. (4)

Appl. Phys. B (3)

Y. Zheng, H. Lu, Y. Li, K. Zhang, and K. Peng, “Broadband and rapid tuning of an all-solid-state single-frequency Nd:YVO4 laser,” Appl. Phys. B 90(3), 485–488 (2008).
[Crossref]

T. Schröder, C. Lemmerz, O. Reitebuch, M. Wirth, C. Wührer, and R. Treichel, “Frequency jitter and spectral width of an injection-seeded Q-switched Nd:YAG laser for a Doppler wind lidar,” Appl. Phys. B 87(3), 437–444 (2007).
[Crossref]

Y. C. Li, Y. Q. Wang, C. Y. Liu, J. R. Yang, and Q. Ding, “Linear frequency modulation multi-beam laser heterodyne measurement for the glass thickness,” Appl. Phys. B 122(2), 1–5 (2016).

Glass Phys. Chem. (1)

M. Roth, M. Tseitlin, and N. Angert, “Oxide crystals for electro-optic Q-switching of lasers,” Glass Phys. Chem. 31(1), 86–95 (2005).
[Crossref]

IEEE J. Quantum Electron. (1)

G. J. Kintz and T. Baer, “Single-frequency operation in solid-state laser materials with short absorption depths,” IEEE J. Quantum Electron. 26(9), 1457–1459 (1990).
[Crossref]

Opt. Commun. (2)

M. V. Okhapkin, M. N. Skvortsov, A. M. Belkin, and S. N. Bagayev, “Tunable single-frequency diode-pumped Nd:YAG ring laser at 946 nm,” Opt. Commun. 194(1), 207–211 (2001).
[Crossref]

I. Freitag, I. Kröpke, A. Tünnerman, and H. Welling, “Electrooptically fast tunable miniature diode-pumped Nd:YAG ring laser,” Opt. Commun. 101(5), 371–376 (1993).
[Crossref]

Opt. Express (2)

Opt. Laser Technol. (1)

M. Medhat, M. Sobee, H. M. Hussein, and O. Terra, “Distance measurement using frequency scanning interferometry with mode-hoped laser,” Opt. Laser Technol. 80, 209–213 (2016).
[Crossref]

Opt. Lett. (3)

Proc. SPIE (1)

H. Albrecht, C. Bonnin, Y. Gromfeld, and M. Herrmann, “Characterization of RbTiOPO4 crystal for non-linear and electro-optic applications,” Proc. SPIE 6100, 61001F (2006).
[Crossref]

Other (2)

J. Zheng, Optical Frequency-Modulated Continuous-Wave (FMCW) Interferometry, (Springer New York, 2005), Chap. 2.

X. Xu, D. Chen, R. Fan, Y. Ma, R. Yan, and X. Li, “Linearly tunable single frequency Nd: YVO4 laser utilizing RTP as electro-optical element,” in Frontiers in Optics 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper LTh4I.7.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of LD end-pumped frequency-modulated Nd:YVO4 laser. LD, RE and RC respectively represent Laser diode, RTP etalon and RTP crystal.

Fig. 2
Fig. 2

Synchronized triangular-waveform voltages applied to the RE (black curve) and RC (red curve). Inset: nonlinear voltage variation around 0 kV in the rising period (as well as in the falling period).

Fig. 3
Fig. 3

Single frequency output (black curve) monitored by FPI. Red curve depicts saw-tooth scanning voltage applied to the FPI by its controller, its period is 13 ms. Time interval between neighboring single-frequency peaks is 5.2 ms, corresponding to 10 GHz FSR of the FPI.

Fig. 4
Fig. 4

Frequency modulation with a 6 GHz range. The red curve represents the scanning voltage to the FPI. The other curves display a repeated time shifting of 3.2 ms from black to green curve.

Fig. 5
Fig. 5

Detected beat signals and the calculated beat center. The black curve denotes beat cosine signals. The red curve depicts FFT (by the oscilloscope) of the beat signals. Frequency center of the beat signals is measured to be 4.5 MHz.

Fig. 6
Fig. 6

Beat signals of frequency modulated laser (black curve) and triangular-waveform voltage applied to the RE (red curve) in one period of 5 ms. Inset: magnified illustration of the beat signals around 250 μs.

Fig. 7
Fig. 7

Continuous and linear frequency modulation as a function of time (black curve). The red and pink curves respectively give the fitted results for the rising and falling parts of the first period. Inset: deviation between experimental and linearly fitted frequency modulation.

Fig. 8
Fig. 8

Measured M2 values and spatial beam profile of single frequency laser

Fig. 9
Fig. 9

Laser power variation as a function of time in 45 s. The output power is recorded at the 200 Hz tuning rate.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δν= νΔL L
Δ ν 1 = ν n z0 3 γ 33 l 1 U C 2 d 1 L
Δ v 2 = v n z0 2 γ 33 U E 2 d 2
Δ v 3 = v n z0 3 γ 33 l 2 U E 2 d 2 L