Abstract

In this paper, we demonstrate that forward bias (+0.9V) of a high-speed silicon (Si) optical Mach-Zehnder modulator (MZM) increases the radio-frequency (RF) link gain by 30 dB when compared to reverse bias operation (−8V). RF applications require tunable, narrowband electro-optic conversion with high gain to mitigate noise of the optical receiver and realize high RF spur-free dynamic range. Compared to reverse bias, the forward bias gain rolls off more rapidly but offers higher RF link gain improvement of more than 13.2 dB at 20 GHz. Furthermore, forward bias is shown to result in comparable spurious-free dynamic range (SFDR: 104.5 dB.Hz2/3). We demonstrate through an analytical dc transfer curve the existence of simultaneous high gain and OIP3 and verify the theoretical results with measurement under forward bias at a bias point of around +0.9 V.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Even-order harmonic cancellation for off-quadrature biased Mach-Zehnder modulator with improved RF metrics using dual wavelength inputs and dual outputs

Preetpaul S. Devgan, John F. Diehl, Vincent J. Urick, Christopher E. Sunderman, and Keith J. Williams
Opt. Express 17(11) 9028-9039 (2009)

Highly linear heterogeneous-integrated Mach-Zehnder interferometer modulators on Si

Chong Zhang, Paul A. Morton, Jacob B. Khurgin, Jon D. Peters, and John E. Bowers
Opt. Express 24(17) 19040-19047 (2016)

Slope efficiency and spurious-free dynamic range of silicon Mach-Zehnder modulator upon carrier depletion and injection effects

Xianshu Luo, Xiaoguang Tu, Junfeng Song, Lu Ding, Qing Fang, Tsung-Yang Liow, Mingbin Yu, and Guo-Qiang Lo
Opt. Express 21(14) 16570-16577 (2013)

References

  • View by:
  • |
  • |
  • |

  1. R. A. Soref, B. R. Bennett, and Brian R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
    [Crossref]
  2. S. J. Spector, M. W. Geis, G.R. Zhou, M. E. Grein, F. Gan, M.A. Popovic, J. U. Yoon, D. M. Lennon, E. P. Ippen, F. X. Kartner, and T. M. Lyszczarz, “CMOS compatible dual output silicon modulator for analog signal processing,” Opt. Express 16(15), 11027–11031 (2008).
    [Crossref] [PubMed]
  3. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon microring silicon modulators,” Opt. Express 15(2), 430–436 (2007).
    [Crossref] [PubMed]
  4. W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15(25), 17106–17113 (2007).
    [Crossref] [PubMed]
  5. G. R. Zhou, M. W. Geis, S. J. Spector, F. Gan, M. E. Grein, R. T. Schulein, J. S. Orcutt, J. U. Yoon, D. M. Lennon, T. M. Lyszczarz, E. P. Ippen, and F. X. Kartner, “Effect of carrier lifetime on forward-biased silicon Mach-Zehnder modulators,” Opt. Express 16(8), 5218–5226 (2008).
    [Crossref] [PubMed]
  6. S. J. Spector, C. M. Sorace, M. W. Geis, M. E. Grein, J. U. Yoon, T. M. Lyszczarz, E. P. Ippen, and F. X. Kartner, “Operation and Optimization of Silicon-Diode-Based Optical Modulators,” IEEE J. Quantum Electron. 16(1), 165–172 (2010).
    [Crossref]
  7. S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact PIN-Diode-Based Silicon Modulator Using Side-Wall-Grating Waveguide,” IEEE J. Quantum Electron. 19(6), 74–84 (2013).
    [Crossref]
  8. A. Ayazi, T. B. Jones, Y. Liu, A. E. J. Lim, and M. Hochberg, “Linearity of silicon ring modulators for analog optical links,” Opt. Express 20(12), 13115–13122 (2012).
    [Crossref] [PubMed]
  9. L. Chen, J. Chen, J. Nagy, and R. M. Reano, “Highly linear ring modulator from hybrid silicon and lithium niobate,” Opt. Express 23(10), 13255–13264 (2015).
    [Crossref] [PubMed]
  10. C. Zhang, P. A. Morton, J. B. Khurgin, J. D. Peters, and J. E. Bowers, “Ultralinear heterogeneously integrated ring assisted Mach Zehnder interferometer modulator on silicon,” Optica 3(12), 1483–1488 (2016).
    [Crossref]
  11. C. Zhang, P. A. Morton, J. B. Khurgin, J. D. Peters, and J. E. Bowers, “Highly linear heterogeneous-integrated Mach-Zehnder interferometer modulators on Si,” Opt. Express 24(17), 19040–19047 (2016).
    [Crossref] [PubMed]
  12. X. Xiao, H. Xu, X. Li, Z. Li, T. Chu, Y. Yu, and J. Yu, “High-speed, low loss silicon Mach Zehnder modulators with doping optimization,” Opt. Express 21(4), 4116–4125 (2013).
    [Crossref] [PubMed]
  13. A. Khilo, C. M. Sorace, and F. X. Kartner, “Broadband linearized silicon modulator,” Opt. Express 19(5), 4485–4500 (2011).
    [Crossref] [PubMed]
  14. M. Streshinsky, A. Ayazi, Z. Xuan, A. E. J. Lim, G. Q. Lo, T. B. Jones, and M. Hochberg, “Highly linear silicon traveling wave Mach-Zehnder carrier depletion modulator based on differential drive,” Opt. Express 21(3), 3818–3825 (2013).
    [Crossref] [PubMed]
  15. K. Solehmainen, M. Kapulainen, M. Harjanne, and T. Aalto, “Adiabatic and Multimode Interference Couplers on Silicon-on-Insulator,” IEEE Photon. Technol. Lett. 18(21), 2287–2289 (2006).
    [Crossref]

2016 (2)

2015 (1)

2013 (3)

2012 (1)

2011 (1)

2010 (1)

S. J. Spector, C. M. Sorace, M. W. Geis, M. E. Grein, J. U. Yoon, T. M. Lyszczarz, E. P. Ippen, and F. X. Kartner, “Operation and Optimization of Silicon-Diode-Based Optical Modulators,” IEEE J. Quantum Electron. 16(1), 165–172 (2010).
[Crossref]

2008 (2)

2007 (2)

2006 (1)

K. Solehmainen, M. Kapulainen, M. Harjanne, and T. Aalto, “Adiabatic and Multimode Interference Couplers on Silicon-on-Insulator,” IEEE Photon. Technol. Lett. 18(21), 2287–2289 (2006).
[Crossref]

1987 (1)

R. A. Soref, B. R. Bennett, and Brian R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

Aalto, T.

K. Solehmainen, M. Kapulainen, M. Harjanne, and T. Aalto, “Adiabatic and Multimode Interference Couplers on Silicon-on-Insulator,” IEEE Photon. Technol. Lett. 18(21), 2287–2289 (2006).
[Crossref]

Akagawa, T.

S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact PIN-Diode-Based Silicon Modulator Using Side-Wall-Grating Waveguide,” IEEE J. Quantum Electron. 19(6), 74–84 (2013).
[Crossref]

Akiyama, S.

S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact PIN-Diode-Based Silicon Modulator Using Side-Wall-Grating Waveguide,” IEEE J. Quantum Electron. 19(6), 74–84 (2013).
[Crossref]

Ayazi, A.

Baba, T.

S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact PIN-Diode-Based Silicon Modulator Using Side-Wall-Grating Waveguide,” IEEE J. Quantum Electron. 19(6), 74–84 (2013).
[Crossref]

Bennett, B. R.

R. A. Soref, B. R. Bennett, and Brian R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

Bennett, Brian R.

R. A. Soref, B. R. Bennett, and Brian R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

Bowers, J. E.

Chen, J.

Chen, L.

Chu, T.

Gan, F.

Geis, M. W.

Green, W. M. J.

Grein, M. E.

Harjanne, M.

K. Solehmainen, M. Kapulainen, M. Harjanne, and T. Aalto, “Adiabatic and Multimode Interference Couplers on Silicon-on-Insulator,” IEEE Photon. Technol. Lett. 18(21), 2287–2289 (2006).
[Crossref]

Hirayama, N.

S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact PIN-Diode-Based Silicon Modulator Using Side-Wall-Grating Waveguide,” IEEE J. Quantum Electron. 19(6), 74–84 (2013).
[Crossref]

Hochberg, M.

Horikawa, T.

S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact PIN-Diode-Based Silicon Modulator Using Side-Wall-Grating Waveguide,” IEEE J. Quantum Electron. 19(6), 74–84 (2013).
[Crossref]

Imai, M.

S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact PIN-Diode-Based Silicon Modulator Using Side-Wall-Grating Waveguide,” IEEE J. Quantum Electron. 19(6), 74–84 (2013).
[Crossref]

Ippen, E. P.

Jones, T. B.

Kapulainen, M.

K. Solehmainen, M. Kapulainen, M. Harjanne, and T. Aalto, “Adiabatic and Multimode Interference Couplers on Silicon-on-Insulator,” IEEE Photon. Technol. Lett. 18(21), 2287–2289 (2006).
[Crossref]

Kartner, F. X.

Khilo, A.

Khurgin, J. B.

Koshino, K.

S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact PIN-Diode-Based Silicon Modulator Using Side-Wall-Grating Waveguide,” IEEE J. Quantum Electron. 19(6), 74–84 (2013).
[Crossref]

Lennon, D. M.

Li, X.

Li, Z.

Lim, A. E. J.

Lipson, M.

Liu, Y.

Lo, G. Q.

Lyszczarz, T. M.

Manipatruni, S.

Morton, P. A.

Nagy, J.

Noguchi, Y.

S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact PIN-Diode-Based Silicon Modulator Using Side-Wall-Grating Waveguide,” IEEE J. Quantum Electron. 19(6), 74–84 (2013).
[Crossref]

Orcutt, J. S.

Peters, J. D.

Popovic, M.A.

Reano, R. M.

Rooks, M. J.

Schmidt, B.

Schulein, R. T.

Sekaric, L.

Seki, M.

S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact PIN-Diode-Based Silicon Modulator Using Side-Wall-Grating Waveguide,” IEEE J. Quantum Electron. 19(6), 74–84 (2013).
[Crossref]

Shakya, J.

Solehmainen, K.

K. Solehmainen, M. Kapulainen, M. Harjanne, and T. Aalto, “Adiabatic and Multimode Interference Couplers on Silicon-on-Insulator,” IEEE Photon. Technol. Lett. 18(21), 2287–2289 (2006).
[Crossref]

Sorace, C. M.

A. Khilo, C. M. Sorace, and F. X. Kartner, “Broadband linearized silicon modulator,” Opt. Express 19(5), 4485–4500 (2011).
[Crossref] [PubMed]

S. J. Spector, C. M. Sorace, M. W. Geis, M. E. Grein, J. U. Yoon, T. M. Lyszczarz, E. P. Ippen, and F. X. Kartner, “Operation and Optimization of Silicon-Diode-Based Optical Modulators,” IEEE J. Quantum Electron. 16(1), 165–172 (2010).
[Crossref]

Soref, R. A.

R. A. Soref, B. R. Bennett, and Brian R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

Spector, S. J.

Streshinsky, M.

Toyama, M.

S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact PIN-Diode-Based Silicon Modulator Using Side-Wall-Grating Waveguide,” IEEE J. Quantum Electron. 19(6), 74–84 (2013).
[Crossref]

Usuki, T.

S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact PIN-Diode-Based Silicon Modulator Using Side-Wall-Grating Waveguide,” IEEE J. Quantum Electron. 19(6), 74–84 (2013).
[Crossref]

Vlasov, Y. A.

Xiao, X.

Xu, H.

Xu, Q.

Xuan, Z.

Yoon, J. U.

Yu, J.

Yu, Y.

Zhang, C.

Zhou, G. R.

Zhou, G.R.

IEEE J. Quantum Electron. (3)

R. A. Soref, B. R. Bennett, and Brian R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

S. J. Spector, C. M. Sorace, M. W. Geis, M. E. Grein, J. U. Yoon, T. M. Lyszczarz, E. P. Ippen, and F. X. Kartner, “Operation and Optimization of Silicon-Diode-Based Optical Modulators,” IEEE J. Quantum Electron. 16(1), 165–172 (2010).
[Crossref]

S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact PIN-Diode-Based Silicon Modulator Using Side-Wall-Grating Waveguide,” IEEE J. Quantum Electron. 19(6), 74–84 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (1)

K. Solehmainen, M. Kapulainen, M. Harjanne, and T. Aalto, “Adiabatic and Multimode Interference Couplers on Silicon-on-Insulator,” IEEE Photon. Technol. Lett. 18(21), 2287–2289 (2006).
[Crossref]

Opt. Express (10)

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon microring silicon modulators,” Opt. Express 15(2), 430–436 (2007).
[Crossref] [PubMed]

W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15(25), 17106–17113 (2007).
[Crossref] [PubMed]

G. R. Zhou, M. W. Geis, S. J. Spector, F. Gan, M. E. Grein, R. T. Schulein, J. S. Orcutt, J. U. Yoon, D. M. Lennon, T. M. Lyszczarz, E. P. Ippen, and F. X. Kartner, “Effect of carrier lifetime on forward-biased silicon Mach-Zehnder modulators,” Opt. Express 16(8), 5218–5226 (2008).
[Crossref] [PubMed]

S. J. Spector, M. W. Geis, G.R. Zhou, M. E. Grein, F. Gan, M.A. Popovic, J. U. Yoon, D. M. Lennon, E. P. Ippen, F. X. Kartner, and T. M. Lyszczarz, “CMOS compatible dual output silicon modulator for analog signal processing,” Opt. Express 16(15), 11027–11031 (2008).
[Crossref] [PubMed]

A. Khilo, C. M. Sorace, and F. X. Kartner, “Broadband linearized silicon modulator,” Opt. Express 19(5), 4485–4500 (2011).
[Crossref] [PubMed]

A. Ayazi, T. B. Jones, Y. Liu, A. E. J. Lim, and M. Hochberg, “Linearity of silicon ring modulators for analog optical links,” Opt. Express 20(12), 13115–13122 (2012).
[Crossref] [PubMed]

M. Streshinsky, A. Ayazi, Z. Xuan, A. E. J. Lim, G. Q. Lo, T. B. Jones, and M. Hochberg, “Highly linear silicon traveling wave Mach-Zehnder carrier depletion modulator based on differential drive,” Opt. Express 21(3), 3818–3825 (2013).
[Crossref] [PubMed]

X. Xiao, H. Xu, X. Li, Z. Li, T. Chu, Y. Yu, and J. Yu, “High-speed, low loss silicon Mach Zehnder modulators with doping optimization,” Opt. Express 21(4), 4116–4125 (2013).
[Crossref] [PubMed]

L. Chen, J. Chen, J. Nagy, and R. M. Reano, “Highly linear ring modulator from hybrid silicon and lithium niobate,” Opt. Express 23(10), 13255–13264 (2015).
[Crossref] [PubMed]

C. Zhang, P. A. Morton, J. B. Khurgin, J. D. Peters, and J. E. Bowers, “Highly linear heterogeneous-integrated Mach-Zehnder interferometer modulators on Si,” Opt. Express 24(17), 19040–19047 (2016).
[Crossref] [PubMed]

Optica (1)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Conceptual picture of modulator under test and measurement setup for DC transfer curve. EDFA: Erbium-doped Optical Fiber Amplifier.

Fig. 2
Fig. 2

Picture of the tested device from AIM Photonics, Rochester, NY, USA. Process Design Kit (PDK) 0.5a. Two optical inputs/outputs are on the same side of chip.

Fig. 3
Fig. 3

(a) Bias dependent (−10 to +3 V) DC transfer curves of MZM under four different heater voltage (0,4,8 and 10V). Results are shown for Optical output 1. (b) The zoom-in picture of transfer curves at forward bias regime.

Fig. 4
Fig. 4

(a–d) Output power (mW) as a function of the forward bias, applied to one of the MZM arms under four different heater voltage (0, 4, 8, and 10V). (e–h) First derivative of the forward biased MZM transfer curve (mW) under four different heater voltage (0, 4, 8, and 10V). (i–l) Third derivative of the forward biased MZM transfer curve (µW) under four different heater voltage (0, 4, 8, and 10V). Second arm is reverse biased at −1V for all cases and the small signal voltage amplitude is taken to be 0.01 V. Red Circles shows the position of maximum gain while the blue circles show the bias voltage where the Intermodulation Distortion is zero.

Fig. 5
Fig. 5

(a) Experimental setup for E-O responses measurement. (b) Experimental setup for two-tone measurement. EDFA: Erbium-doped Optical Fiber Amplifier

Fig. 6
Fig. 6

Measured bias dependent E-O frequency responses for forward biased +0.9V and −8V reverse biased MZM at 0V heater voltage. −3dB bandwidth for each curve is marked by a hollow black circle in the figure and the numeric value is listed in the legend.

Fig. 7
Fig. 7

Two-tone measurement results of MZM at (a) +0.9 V at 1GHz and (b) −8V at 1GHz. (c) +0.8 V at 10 GHz. The heater voltage is fixed at 0V. IMD3: Third-order intermodulation distortion. OIP3: Third-order intercept point. SFDR: Spurious-free dynamic range

Fig. 8
Fig. 8

(a) Two-tone measurement results of MZM at +0.6 V. The heater voltage is fixed at 0V. (b) The zoom-in picture when the input RF power is near OIP3. IMD3: Third-order intermodulation distortion. OIP3: Third-order intercept point. SFDR: Spurious-free dynamic range

Tables (1)

Tables Icon

Table 1 Vgain,max and VIMD=0 under Different Heater Voltages

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

P 1 , 2 = P i n | e i ( n e f f r e a l ( V ) i n e f f i m a g ( V ) ) 2 π L λ e i ϕ H ± e i ( n e f f r e a l ( V D C ) i n e f f i m a g ( V D C ) ) 2 π L λ 2 | 2
P 1 P i n = [ ( e α ( V ) L 2 e α ( V D C ) L 2 2 ) 2 + e ( α ( V ) L + α ( V D C ) L 2 ) ( cos ( ϕ ( V ) L ϕ ( V D C ) L + ϕ H 2 ) ) 2 ] T 1 ( V )
P 2 P i n = [ ( e α ( V ) L 2 e α ( V D C ) L 2 2 ) 2 + e ( α ( V ) L + α ( V D C ) L 2 ) ( sin ( ϕ ( V ) L ϕ ( V D C ) L + ϕ H 2 ) ) 2 ] T 2 ( V )
ϕ ( V ) = ϕ A V + ϕ B V 2 + ϕ C V 3 +
α ( V ) = α A + α B V + α C V 2 + α D V 3 +
T 1 ( V ) = T 1 | V = V D C + ( V V D C ) d T 1 d V | V = V D C + ( V V D C ) 2 2 ! d 2 T 1 d V 2 | V = V D C +
T 1 ( f 1 ) ( V ) = v 0 d T 1 d V | V = V D C + 3 8 v 0 3 d 3 T 1 d V 3 | V = V D C +
T 1 ( 2 f 2 f 1 ) ( V ) = 1 8 v 0 3 d 3 T 1 d V 3 | V = V D C +
P o u t R F ( V ) = ( T 1 ( V ) P i n R P D ) 2 R m o d R D
P ( f 1 ) o u t ( R F ) ( V ) = ( P i n v 0 d T 1 d V | V = V D C + P i n 3 8 v 0 3 d 3 T 1 d V 3 | V = V D C + ) 2 ( R P D ) 2 R m o d R D
P ( f 1 ) o u t ( R F ) ( V ) ( P i n v 0 d T 1 d V | V = V D C ) 2 ( R P D ) 2 R m o d R D
P ( 2 f 1 f 2 ) o u t ( R F ) ( V ) ( P i n 1 8 v 0 3 d 3 T 1 d V 3 | V = V D C ) 2 ( R P D ) 2 R m o d R D
I I P 3 ( d B m ) = 10 log 10 ( d P 1 d V | V = V D C d 3 P 1 d V 3 | V = V D C 8 R i n ) + 30

Metrics