Abstract

A novel self-absorption-free laser-induced breakdown spectroscopy (SAF-LIBS) technique is proposed to directly capture the optically thin spectral line by matching the measured doublet atomic lines intensity ratios with the theoretical one. To realize the experimental SAF-LIBS, the integration time, the fiber collection angle, and the delay time are optimized. The optically thin conditions are validated by comparing the linearity of Boltzmann plots with the traditional self-absorption (SA) correction method and evaluating the SA coefficients. The applicability and limitation of SAF-LIBS on element concentration and laser energy are also discussed. Univariate quantitative analysis results show that, compared with ordinary LIBS, the average absolute error of aluminum concentration has been reduced by an order of magnitude, which proves that this SAF-LIBS technique is qualified to realize accurate chemical composition measurements.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Resonance/non-resonance doublet-based self-absorption-free LIBS for quantitative analysis with a wide measurement range

J. J. Hou, L. Zhang, Y. Zhao, W. G. Ma, L. Dong, W. B. Yin, L. T. Xiao, and S. T. Jia
Opt. Express 27(3) 3409-3421 (2019)

Rapid selection of analytical lines for SAF-LIBS based on the doublet intensity ratios at the initial and final stages of plasma

J. J. Hou, L. Zhang, Y. Zhao, W. G. Ma, L. Dong, W. B. Yin, L. T. Xiao, and S. T. Jia
Opt. Express 27(22) 32184-32192 (2019)

Quantitative elemental analysis of steel using calibration-free laser-induced breakdown spectroscopy

M. L. Shah, A. K. Pulhani, G. P. Gupta, and B. M. Suri
Appl. Opt. 51(20) 4612-4621 (2012)

References

  • View by:
  • |
  • |
  • |

  1. L. Torrisi, F. Caridi, and L. Giuffrida, “Comparison of Pd plasmas Produced at 532nm and 1064nm by a Nd:YAG laser ablation,” Nucl. Instrum. Methods Phys. Res. B 268(13), 2285–2291 (2010).
    [Crossref]
  2. Y. Zhao, L. Zhang, S. X. Zhao, Y. F. Li, Y. Gong, L. Dong, W. G. Ma, W. B. Yin, S. C. Yao, J. D. Lu, L. T. Xiao, and S. T. Jia, “Review of methodological and experimental LIBS techniques for coal analysis and their application in power plants in China,” Front. Phys. 11(6), 217–230 (2016).
    [Crossref]
  3. M. Gaft, E. Dvir, H. Modiano, and U. Schone, “Laser induced breakdown spectroscopy machine for online ash analyses in coal,” Spectrochim. Acta B At. Spectrosc. 63(10), 1177–1182 (2008).
    [Crossref]
  4. Z. Wang, T. B. Yuan, S. L. Lui, Z. Y. Hou, X. W. Li, Z. Li, and W. D. Ni, “Major elements analysis in bituminous coals under different ambient gases by laser-induced breakdown spectroscopy with PLS modeling,” Front. Phys. 7(6), 708–713 (2012).
    [Crossref]
  5. Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. 9(4), 419–438 (2014).
    [Crossref]
  6. Z. Wang, L. Z. Li, L. West, Z. Li, and W. D. Ni, “A spectrum standardization approach for laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 68(2), 58–64 (2012).
    [Crossref]
  7. Z. Y. Hou, Z. Wang, T. B. Yuan, J. M. Liu, Z. Li, and W. D. Ni, “A hybrid quantification model and its application for coal analysis using laser induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31(3), 722–736 (2016).
    [Crossref]
  8. S. C. Yao, J. D. Lu, K. Chen, S. H. Pan, J. Y. Li, and M. R. Dong, “Study of laser-induced breakdown spectroscopy to discriminate pearlitic/ferritic from martensitic phases,” Appl. Surf. Sci. 257(7), 3103–3110 (2011).
    [Crossref]
  9. R. Hai, N. Farid, D. Y. Zhao, L. Zhang, J. H. Liu, H. B. Ding, J. Wu, and G. N. Luo, “Laser-induced breakdown spectroscopic characterization of impurity deposition on the first wall of a magnetic confined fusion device: experimental advanced superconducting tokamak,” Spectrochim. Acta B At. Spectrosc. 87(87), 147–152 (2013).
    [Crossref]
  10. H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and P. Matheron, “Correction of Self-Absorption Spectral Line and Ratios of Transition Probabilities for Homogenous and LTE Plasma,” J. Quant. Spectrosc. Radiat. Transf. 75(6), 747–763 (2002).
    [Crossref]
  11. H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and M. Ripert, “Correction of the Self-Absorption for Reversed Spectral Lines: Application to Two Resonance Lines of Neutral Aluminum,” J. Quant. Spectrosc. Radiat. Transf. 77(4), 365–372 (2003).
    [Crossref]
  12. F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of Self-Absorption of Manganese Emission Lines in Laser Induced Breakdown Spectroscopy Measurements,” Spectrochim. Acta B At. Spectrosc. 61(12), 1294–1303 (2006).
    [Crossref]
  13. N. Omenetto, J. D. Winefordner, and C. T. J. Alkemade, “An expression for the atomic fluorescence and thermal-emission intensity under conditions of near saturation and arbitrary self-absorption,” Spectrochim. Acta B At. Spectrosc. 30(9), 335–341 (1975).
    [Crossref]
  14. A. C. G. Mitchell and M. W. Zemansky, Resonance Radiation and Excited Atoms (Cambridge University, 1934).
  15. D. Bulajic, M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 57(2), 339–353 (2002).
    [Crossref]
  16. L. Sun and H. Yu, “Correction of self-absorption effect in calibration-free laser-induced breakdown spectroscopy by an internal reference method,” Talanta 79(2), 388–395 (2009).
    [Crossref] [PubMed]
  17. A. M. El Sherbini, Th. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 60(12), 1573–1579 (2005).
    [Crossref]
  18. S. A. M. Mansour, “Self-Absorption Effects on Electron Temperature-Measurements Utilizing Laser Induced Breakdown Spectroscopy (LIBS)-Techniques,” Opt. Photonics J. 5(3), 79–90 (2015).
    [Crossref]
  19. H. Y. Moon, K. K. Herrera, N. Omenetto, B. W. Smith, and J. D. Winefordner, “On the usefulness of a duplicating mirror to evaluate self-absorption effects in laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 64(7), 702–713 (2009).
    [Crossref]
  20. J. M. Li, L. B. Guo, C. M. Li, N. Zhao, X. Y. Yang, Z. Q. Hao, X. Y. Li, X. Y. Zeng, and Y. F. Lu, “Self-absorption reduction in laser-induced breakdown spectroscopy using laser-stimulated absorption,” Opt. Lett. 40(22), 5224–5226 (2015).
    [Crossref] [PubMed]
  21. N. Konjević, M. Ivković, and S. Jovićević, “Spectroscopic diagnostics of laser-induced plasmas,” Spectrochim. Acta B At. Spectrosc. 65(8), 593–602 (2010).
    [Crossref]
  22. C. A. D’angelo, M. Garcimuño, D. M. Díaz Pace, and G. Bertuccelli, “Plasma diagnostics from self-absorbed doublet lines in laser-induced breakdown spectroscopy,” J. Quant. Spectrosc. Radiat. Transf. 164, 89–96 (2015).
    [Crossref]
  23. M. L. Shah, A. K. Pulhani, B. M. Suri, and G. P. Gupta, “Time-resolved emission spectroscopic study of laser-induced steel plasmas,” Plasma Sci. Technol. 15(6), 546–551 (2013).
    [Crossref]
  24. A. Kramida and Y. Ralchenko, J. Reader, and NIST ASD Team, NIST Atomic Spectra Database (ver. 5.4), http://physics.nist.gov/asd (2017).
  25. B. Praher, V. Palleschi, R. Viskup, J. Heitz, and J. D. Pedarnig, “Calibration free laser-induced breakdown spectroscopy of oxide materials,” Spectrochim. Acta B At. Spectrosc. 65(8), 671–679 (2010).
    [Crossref]
  26. R. W. P. McWhirter, Plasma Diagnostic Techniques (Academic, 1965).
  27. P. Kepple and H. R. Griem, “Improved Stark Profile Calculations for Hydrogen Lines: Hα, Hβ, Hγ and Hδ,” Phys. Rev. 173(1), 317–325 (1968).
    [Crossref]

2016 (2)

Y. Zhao, L. Zhang, S. X. Zhao, Y. F. Li, Y. Gong, L. Dong, W. G. Ma, W. B. Yin, S. C. Yao, J. D. Lu, L. T. Xiao, and S. T. Jia, “Review of methodological and experimental LIBS techniques for coal analysis and their application in power plants in China,” Front. Phys. 11(6), 217–230 (2016).
[Crossref]

Z. Y. Hou, Z. Wang, T. B. Yuan, J. M. Liu, Z. Li, and W. D. Ni, “A hybrid quantification model and its application for coal analysis using laser induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31(3), 722–736 (2016).
[Crossref]

2015 (3)

C. A. D’angelo, M. Garcimuño, D. M. Díaz Pace, and G. Bertuccelli, “Plasma diagnostics from self-absorbed doublet lines in laser-induced breakdown spectroscopy,” J. Quant. Spectrosc. Radiat. Transf. 164, 89–96 (2015).
[Crossref]

S. A. M. Mansour, “Self-Absorption Effects on Electron Temperature-Measurements Utilizing Laser Induced Breakdown Spectroscopy (LIBS)-Techniques,” Opt. Photonics J. 5(3), 79–90 (2015).
[Crossref]

J. M. Li, L. B. Guo, C. M. Li, N. Zhao, X. Y. Yang, Z. Q. Hao, X. Y. Li, X. Y. Zeng, and Y. F. Lu, “Self-absorption reduction in laser-induced breakdown spectroscopy using laser-stimulated absorption,” Opt. Lett. 40(22), 5224–5226 (2015).
[Crossref] [PubMed]

2014 (1)

Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. 9(4), 419–438 (2014).
[Crossref]

2013 (2)

R. Hai, N. Farid, D. Y. Zhao, L. Zhang, J. H. Liu, H. B. Ding, J. Wu, and G. N. Luo, “Laser-induced breakdown spectroscopic characterization of impurity deposition on the first wall of a magnetic confined fusion device: experimental advanced superconducting tokamak,” Spectrochim. Acta B At. Spectrosc. 87(87), 147–152 (2013).
[Crossref]

M. L. Shah, A. K. Pulhani, B. M. Suri, and G. P. Gupta, “Time-resolved emission spectroscopic study of laser-induced steel plasmas,” Plasma Sci. Technol. 15(6), 546–551 (2013).
[Crossref]

2012 (2)

Z. Wang, L. Z. Li, L. West, Z. Li, and W. D. Ni, “A spectrum standardization approach for laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 68(2), 58–64 (2012).
[Crossref]

Z. Wang, T. B. Yuan, S. L. Lui, Z. Y. Hou, X. W. Li, Z. Li, and W. D. Ni, “Major elements analysis in bituminous coals under different ambient gases by laser-induced breakdown spectroscopy with PLS modeling,” Front. Phys. 7(6), 708–713 (2012).
[Crossref]

2011 (1)

S. C. Yao, J. D. Lu, K. Chen, S. H. Pan, J. Y. Li, and M. R. Dong, “Study of laser-induced breakdown spectroscopy to discriminate pearlitic/ferritic from martensitic phases,” Appl. Surf. Sci. 257(7), 3103–3110 (2011).
[Crossref]

2010 (3)

L. Torrisi, F. Caridi, and L. Giuffrida, “Comparison of Pd plasmas Produced at 532nm and 1064nm by a Nd:YAG laser ablation,” Nucl. Instrum. Methods Phys. Res. B 268(13), 2285–2291 (2010).
[Crossref]

B. Praher, V. Palleschi, R. Viskup, J. Heitz, and J. D. Pedarnig, “Calibration free laser-induced breakdown spectroscopy of oxide materials,” Spectrochim. Acta B At. Spectrosc. 65(8), 671–679 (2010).
[Crossref]

N. Konjević, M. Ivković, and S. Jovićević, “Spectroscopic diagnostics of laser-induced plasmas,” Spectrochim. Acta B At. Spectrosc. 65(8), 593–602 (2010).
[Crossref]

2009 (2)

H. Y. Moon, K. K. Herrera, N. Omenetto, B. W. Smith, and J. D. Winefordner, “On the usefulness of a duplicating mirror to evaluate self-absorption effects in laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 64(7), 702–713 (2009).
[Crossref]

L. Sun and H. Yu, “Correction of self-absorption effect in calibration-free laser-induced breakdown spectroscopy by an internal reference method,” Talanta 79(2), 388–395 (2009).
[Crossref] [PubMed]

2008 (1)

M. Gaft, E. Dvir, H. Modiano, and U. Schone, “Laser induced breakdown spectroscopy machine for online ash analyses in coal,” Spectrochim. Acta B At. Spectrosc. 63(10), 1177–1182 (2008).
[Crossref]

2006 (1)

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of Self-Absorption of Manganese Emission Lines in Laser Induced Breakdown Spectroscopy Measurements,” Spectrochim. Acta B At. Spectrosc. 61(12), 1294–1303 (2006).
[Crossref]

2005 (1)

A. M. El Sherbini, Th. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 60(12), 1573–1579 (2005).
[Crossref]

2003 (1)

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and M. Ripert, “Correction of the Self-Absorption for Reversed Spectral Lines: Application to Two Resonance Lines of Neutral Aluminum,” J. Quant. Spectrosc. Radiat. Transf. 77(4), 365–372 (2003).
[Crossref]

2002 (2)

D. Bulajic, M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 57(2), 339–353 (2002).
[Crossref]

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and P. Matheron, “Correction of Self-Absorption Spectral Line and Ratios of Transition Probabilities for Homogenous and LTE Plasma,” J. Quant. Spectrosc. Radiat. Transf. 75(6), 747–763 (2002).
[Crossref]

1975 (1)

N. Omenetto, J. D. Winefordner, and C. T. J. Alkemade, “An expression for the atomic fluorescence and thermal-emission intensity under conditions of near saturation and arbitrary self-absorption,” Spectrochim. Acta B At. Spectrosc. 30(9), 335–341 (1975).
[Crossref]

1968 (1)

P. Kepple and H. R. Griem, “Improved Stark Profile Calculations for Hydrogen Lines: Hα, Hβ, Hγ and Hδ,” Phys. Rev. 173(1), 317–325 (1968).
[Crossref]

Alkemade, C. T. J.

N. Omenetto, J. D. Winefordner, and C. T. J. Alkemade, “An expression for the atomic fluorescence and thermal-emission intensity under conditions of near saturation and arbitrary self-absorption,” Spectrochim. Acta B At. Spectrosc. 30(9), 335–341 (1975).
[Crossref]

Amamou, H.

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and M. Ripert, “Correction of the Self-Absorption for Reversed Spectral Lines: Application to Two Resonance Lines of Neutral Aluminum,” J. Quant. Spectrosc. Radiat. Transf. 77(4), 365–372 (2003).
[Crossref]

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and P. Matheron, “Correction of Self-Absorption Spectral Line and Ratios of Transition Probabilities for Homogenous and LTE Plasma,” J. Quant. Spectrosc. Radiat. Transf. 75(6), 747–763 (2002).
[Crossref]

Bertuccelli, G.

C. A. D’angelo, M. Garcimuño, D. M. Díaz Pace, and G. Bertuccelli, “Plasma diagnostics from self-absorbed doublet lines in laser-induced breakdown spectroscopy,” J. Quant. Spectrosc. Radiat. Transf. 164, 89–96 (2015).
[Crossref]

Bois, A.

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and M. Ripert, “Correction of the Self-Absorption for Reversed Spectral Lines: Application to Two Resonance Lines of Neutral Aluminum,” J. Quant. Spectrosc. Radiat. Transf. 77(4), 365–372 (2003).
[Crossref]

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and P. Matheron, “Correction of Self-Absorption Spectral Line and Ratios of Transition Probabilities for Homogenous and LTE Plasma,” J. Quant. Spectrosc. Radiat. Transf. 75(6), 747–763 (2002).
[Crossref]

Borges, F. O.

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of Self-Absorption of Manganese Emission Lines in Laser Induced Breakdown Spectroscopy Measurements,” Spectrochim. Acta B At. Spectrosc. 61(12), 1294–1303 (2006).
[Crossref]

Bredice, F.

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of Self-Absorption of Manganese Emission Lines in Laser Induced Breakdown Spectroscopy Measurements,” Spectrochim. Acta B At. Spectrosc. 61(12), 1294–1303 (2006).
[Crossref]

Bulajic, D.

D. Bulajic, M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 57(2), 339–353 (2002).
[Crossref]

Caridi, F.

L. Torrisi, F. Caridi, and L. Giuffrida, “Comparison of Pd plasmas Produced at 532nm and 1064nm by a Nd:YAG laser ablation,” Nucl. Instrum. Methods Phys. Res. B 268(13), 2285–2291 (2010).
[Crossref]

Chen, K.

S. C. Yao, J. D. Lu, K. Chen, S. H. Pan, J. Y. Li, and M. R. Dong, “Study of laser-induced breakdown spectroscopy to discriminate pearlitic/ferritic from martensitic phases,” Appl. Surf. Sci. 257(7), 3103–3110 (2011).
[Crossref]

Corsi, M.

D. Bulajic, M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 57(2), 339–353 (2002).
[Crossref]

Cristoforetti, G.

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of Self-Absorption of Manganese Emission Lines in Laser Induced Breakdown Spectroscopy Measurements,” Spectrochim. Acta B At. Spectrosc. 61(12), 1294–1303 (2006).
[Crossref]

A. M. El Sherbini, Th. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 60(12), 1573–1579 (2005).
[Crossref]

D. Bulajic, M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 57(2), 339–353 (2002).
[Crossref]

D’angelo, C. A.

C. A. D’angelo, M. Garcimuño, D. M. Díaz Pace, and G. Bertuccelli, “Plasma diagnostics from self-absorbed doublet lines in laser-induced breakdown spectroscopy,” J. Quant. Spectrosc. Radiat. Transf. 164, 89–96 (2015).
[Crossref]

Di Rocco, H. O.

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of Self-Absorption of Manganese Emission Lines in Laser Induced Breakdown Spectroscopy Measurements,” Spectrochim. Acta B At. Spectrosc. 61(12), 1294–1303 (2006).
[Crossref]

Díaz Pace, D. M.

C. A. D’angelo, M. Garcimuño, D. M. Díaz Pace, and G. Bertuccelli, “Plasma diagnostics from self-absorbed doublet lines in laser-induced breakdown spectroscopy,” J. Quant. Spectrosc. Radiat. Transf. 164, 89–96 (2015).
[Crossref]

Ding, H. B.

Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. 9(4), 419–438 (2014).
[Crossref]

R. Hai, N. Farid, D. Y. Zhao, L. Zhang, J. H. Liu, H. B. Ding, J. Wu, and G. N. Luo, “Laser-induced breakdown spectroscopic characterization of impurity deposition on the first wall of a magnetic confined fusion device: experimental advanced superconducting tokamak,” Spectrochim. Acta B At. Spectrosc. 87(87), 147–152 (2013).
[Crossref]

Dong, L.

Y. Zhao, L. Zhang, S. X. Zhao, Y. F. Li, Y. Gong, L. Dong, W. G. Ma, W. B. Yin, S. C. Yao, J. D. Lu, L. T. Xiao, and S. T. Jia, “Review of methodological and experimental LIBS techniques for coal analysis and their application in power plants in China,” Front. Phys. 11(6), 217–230 (2016).
[Crossref]

Dong, M. R.

S. C. Yao, J. D. Lu, K. Chen, S. H. Pan, J. Y. Li, and M. R. Dong, “Study of laser-induced breakdown spectroscopy to discriminate pearlitic/ferritic from martensitic phases,” Appl. Surf. Sci. 257(7), 3103–3110 (2011).
[Crossref]

Dvir, E.

M. Gaft, E. Dvir, H. Modiano, and U. Schone, “Laser induced breakdown spectroscopy machine for online ash analyses in coal,” Spectrochim. Acta B At. Spectrosc. 63(10), 1177–1182 (2008).
[Crossref]

El Sherbini, A. M.

A. M. El Sherbini, Th. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 60(12), 1573–1579 (2005).
[Crossref]

El Sherbini, Th. M.

A. M. El Sherbini, Th. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 60(12), 1573–1579 (2005).
[Crossref]

Farid, N.

R. Hai, N. Farid, D. Y. Zhao, L. Zhang, J. H. Liu, H. B. Ding, J. Wu, and G. N. Luo, “Laser-induced breakdown spectroscopic characterization of impurity deposition on the first wall of a magnetic confined fusion device: experimental advanced superconducting tokamak,” Spectrochim. Acta B At. Spectrosc. 87(87), 147–152 (2013).
[Crossref]

Ferhat, B.

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and M. Ripert, “Correction of the Self-Absorption for Reversed Spectral Lines: Application to Two Resonance Lines of Neutral Aluminum,” J. Quant. Spectrosc. Radiat. Transf. 77(4), 365–372 (2003).
[Crossref]

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and P. Matheron, “Correction of Self-Absorption Spectral Line and Ratios of Transition Probabilities for Homogenous and LTE Plasma,” J. Quant. Spectrosc. Radiat. Transf. 75(6), 747–763 (2002).
[Crossref]

Gaft, M.

M. Gaft, E. Dvir, H. Modiano, and U. Schone, “Laser induced breakdown spectroscopy machine for online ash analyses in coal,” Spectrochim. Acta B At. Spectrosc. 63(10), 1177–1182 (2008).
[Crossref]

Garcimuño, M.

C. A. D’angelo, M. Garcimuño, D. M. Díaz Pace, and G. Bertuccelli, “Plasma diagnostics from self-absorbed doublet lines in laser-induced breakdown spectroscopy,” J. Quant. Spectrosc. Radiat. Transf. 164, 89–96 (2015).
[Crossref]

Giuffrida, L.

L. Torrisi, F. Caridi, and L. Giuffrida, “Comparison of Pd plasmas Produced at 532nm and 1064nm by a Nd:YAG laser ablation,” Nucl. Instrum. Methods Phys. Res. B 268(13), 2285–2291 (2010).
[Crossref]

Gong, Y.

Y. Zhao, L. Zhang, S. X. Zhao, Y. F. Li, Y. Gong, L. Dong, W. G. Ma, W. B. Yin, S. C. Yao, J. D. Lu, L. T. Xiao, and S. T. Jia, “Review of methodological and experimental LIBS techniques for coal analysis and their application in power plants in China,” Front. Phys. 11(6), 217–230 (2016).
[Crossref]

Griem, H. R.

P. Kepple and H. R. Griem, “Improved Stark Profile Calculations for Hydrogen Lines: Hα, Hβ, Hγ and Hδ,” Phys. Rev. 173(1), 317–325 (1968).
[Crossref]

Guo, L. B.

Gupta, G. P.

M. L. Shah, A. K. Pulhani, B. M. Suri, and G. P. Gupta, “Time-resolved emission spectroscopic study of laser-induced steel plasmas,” Plasma Sci. Technol. 15(6), 546–551 (2013).
[Crossref]

Hai, R.

R. Hai, N. Farid, D. Y. Zhao, L. Zhang, J. H. Liu, H. B. Ding, J. Wu, and G. N. Luo, “Laser-induced breakdown spectroscopic characterization of impurity deposition on the first wall of a magnetic confined fusion device: experimental advanced superconducting tokamak,” Spectrochim. Acta B At. Spectrosc. 87(87), 147–152 (2013).
[Crossref]

Hao, Z. Q.

Hegazy, H.

A. M. El Sherbini, Th. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 60(12), 1573–1579 (2005).
[Crossref]

Heitz, J.

B. Praher, V. Palleschi, R. Viskup, J. Heitz, and J. D. Pedarnig, “Calibration free laser-induced breakdown spectroscopy of oxide materials,” Spectrochim. Acta B At. Spectrosc. 65(8), 671–679 (2010).
[Crossref]

Herrera, K. K.

H. Y. Moon, K. K. Herrera, N. Omenetto, B. W. Smith, and J. D. Winefordner, “On the usefulness of a duplicating mirror to evaluate self-absorption effects in laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 64(7), 702–713 (2009).
[Crossref]

Hou, Z. Y.

Z. Y. Hou, Z. Wang, T. B. Yuan, J. M. Liu, Z. Li, and W. D. Ni, “A hybrid quantification model and its application for coal analysis using laser induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31(3), 722–736 (2016).
[Crossref]

Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. 9(4), 419–438 (2014).
[Crossref]

Z. Wang, T. B. Yuan, S. L. Lui, Z. Y. Hou, X. W. Li, Z. Li, and W. D. Ni, “Major elements analysis in bituminous coals under different ambient gases by laser-induced breakdown spectroscopy with PLS modeling,” Front. Phys. 7(6), 708–713 (2012).
[Crossref]

Ivkovic, M.

N. Konjević, M. Ivković, and S. Jovićević, “Spectroscopic diagnostics of laser-induced plasmas,” Spectrochim. Acta B At. Spectrosc. 65(8), 593–602 (2010).
[Crossref]

Jia, S. T.

Y. Zhao, L. Zhang, S. X. Zhao, Y. F. Li, Y. Gong, L. Dong, W. G. Ma, W. B. Yin, S. C. Yao, J. D. Lu, L. T. Xiao, and S. T. Jia, “Review of methodological and experimental LIBS techniques for coal analysis and their application in power plants in China,” Front. Phys. 11(6), 217–230 (2016).
[Crossref]

Jovicevic, S.

N. Konjević, M. Ivković, and S. Jovićević, “Spectroscopic diagnostics of laser-induced plasmas,” Spectrochim. Acta B At. Spectrosc. 65(8), 593–602 (2010).
[Crossref]

Kepple, P.

P. Kepple and H. R. Griem, “Improved Stark Profile Calculations for Hydrogen Lines: Hα, Hβ, Hγ and Hδ,” Phys. Rev. 173(1), 317–325 (1968).
[Crossref]

Konjevic, N.

N. Konjević, M. Ivković, and S. Jovićević, “Spectroscopic diagnostics of laser-induced plasmas,” Spectrochim. Acta B At. Spectrosc. 65(8), 593–602 (2010).
[Crossref]

Legnaioli, S.

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of Self-Absorption of Manganese Emission Lines in Laser Induced Breakdown Spectroscopy Measurements,” Spectrochim. Acta B At. Spectrosc. 61(12), 1294–1303 (2006).
[Crossref]

A. M. El Sherbini, Th. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 60(12), 1573–1579 (2005).
[Crossref]

D. Bulajic, M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 57(2), 339–353 (2002).
[Crossref]

Li, C. M.

Li, J. M.

Li, J. Y.

S. C. Yao, J. D. Lu, K. Chen, S. H. Pan, J. Y. Li, and M. R. Dong, “Study of laser-induced breakdown spectroscopy to discriminate pearlitic/ferritic from martensitic phases,” Appl. Surf. Sci. 257(7), 3103–3110 (2011).
[Crossref]

Li, L. Z.

Z. Wang, L. Z. Li, L. West, Z. Li, and W. D. Ni, “A spectrum standardization approach for laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 68(2), 58–64 (2012).
[Crossref]

Li, X. W.

Z. Wang, T. B. Yuan, S. L. Lui, Z. Y. Hou, X. W. Li, Z. Li, and W. D. Ni, “Major elements analysis in bituminous coals under different ambient gases by laser-induced breakdown spectroscopy with PLS modeling,” Front. Phys. 7(6), 708–713 (2012).
[Crossref]

Li, X. Y.

Li, Y. F.

Y. Zhao, L. Zhang, S. X. Zhao, Y. F. Li, Y. Gong, L. Dong, W. G. Ma, W. B. Yin, S. C. Yao, J. D. Lu, L. T. Xiao, and S. T. Jia, “Review of methodological and experimental LIBS techniques for coal analysis and their application in power plants in China,” Front. Phys. 11(6), 217–230 (2016).
[Crossref]

Li, Z.

Z. Y. Hou, Z. Wang, T. B. Yuan, J. M. Liu, Z. Li, and W. D. Ni, “A hybrid quantification model and its application for coal analysis using laser induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31(3), 722–736 (2016).
[Crossref]

Z. Wang, T. B. Yuan, S. L. Lui, Z. Y. Hou, X. W. Li, Z. Li, and W. D. Ni, “Major elements analysis in bituminous coals under different ambient gases by laser-induced breakdown spectroscopy with PLS modeling,” Front. Phys. 7(6), 708–713 (2012).
[Crossref]

Z. Wang, L. Z. Li, L. West, Z. Li, and W. D. Ni, “A spectrum standardization approach for laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 68(2), 58–64 (2012).
[Crossref]

Liu, J. H.

R. Hai, N. Farid, D. Y. Zhao, L. Zhang, J. H. Liu, H. B. Ding, J. Wu, and G. N. Luo, “Laser-induced breakdown spectroscopic characterization of impurity deposition on the first wall of a magnetic confined fusion device: experimental advanced superconducting tokamak,” Spectrochim. Acta B At. Spectrosc. 87(87), 147–152 (2013).
[Crossref]

Liu, J. M.

Z. Y. Hou, Z. Wang, T. B. Yuan, J. M. Liu, Z. Li, and W. D. Ni, “A hybrid quantification model and its application for coal analysis using laser induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31(3), 722–736 (2016).
[Crossref]

Lu, J. D.

Y. Zhao, L. Zhang, S. X. Zhao, Y. F. Li, Y. Gong, L. Dong, W. G. Ma, W. B. Yin, S. C. Yao, J. D. Lu, L. T. Xiao, and S. T. Jia, “Review of methodological and experimental LIBS techniques for coal analysis and their application in power plants in China,” Front. Phys. 11(6), 217–230 (2016).
[Crossref]

Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. 9(4), 419–438 (2014).
[Crossref]

S. C. Yao, J. D. Lu, K. Chen, S. H. Pan, J. Y. Li, and M. R. Dong, “Study of laser-induced breakdown spectroscopy to discriminate pearlitic/ferritic from martensitic phases,” Appl. Surf. Sci. 257(7), 3103–3110 (2011).
[Crossref]

Lu, Y. F.

Lui, S. L.

Z. Wang, T. B. Yuan, S. L. Lui, Z. Y. Hou, X. W. Li, Z. Li, and W. D. Ni, “Major elements analysis in bituminous coals under different ambient gases by laser-induced breakdown spectroscopy with PLS modeling,” Front. Phys. 7(6), 708–713 (2012).
[Crossref]

Luo, G. N.

R. Hai, N. Farid, D. Y. Zhao, L. Zhang, J. H. Liu, H. B. Ding, J. Wu, and G. N. Luo, “Laser-induced breakdown spectroscopic characterization of impurity deposition on the first wall of a magnetic confined fusion device: experimental advanced superconducting tokamak,” Spectrochim. Acta B At. Spectrosc. 87(87), 147–152 (2013).
[Crossref]

Ma, W. G.

Y. Zhao, L. Zhang, S. X. Zhao, Y. F. Li, Y. Gong, L. Dong, W. G. Ma, W. B. Yin, S. C. Yao, J. D. Lu, L. T. Xiao, and S. T. Jia, “Review of methodological and experimental LIBS techniques for coal analysis and their application in power plants in China,” Front. Phys. 11(6), 217–230 (2016).
[Crossref]

Mansour, S. A. M.

S. A. M. Mansour, “Self-Absorption Effects on Electron Temperature-Measurements Utilizing Laser Induced Breakdown Spectroscopy (LIBS)-Techniques,” Opt. Photonics J. 5(3), 79–90 (2015).
[Crossref]

Matheron, P.

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and P. Matheron, “Correction of Self-Absorption Spectral Line and Ratios of Transition Probabilities for Homogenous and LTE Plasma,” J. Quant. Spectrosc. Radiat. Transf. 75(6), 747–763 (2002).
[Crossref]

Modiano, H.

M. Gaft, E. Dvir, H. Modiano, and U. Schone, “Laser induced breakdown spectroscopy machine for online ash analyses in coal,” Spectrochim. Acta B At. Spectrosc. 63(10), 1177–1182 (2008).
[Crossref]

Moon, H. Y.

H. Y. Moon, K. K. Herrera, N. Omenetto, B. W. Smith, and J. D. Winefordner, “On the usefulness of a duplicating mirror to evaluate self-absorption effects in laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 64(7), 702–713 (2009).
[Crossref]

Ni, W. D.

Z. Y. Hou, Z. Wang, T. B. Yuan, J. M. Liu, Z. Li, and W. D. Ni, “A hybrid quantification model and its application for coal analysis using laser induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31(3), 722–736 (2016).
[Crossref]

Z. Wang, L. Z. Li, L. West, Z. Li, and W. D. Ni, “A spectrum standardization approach for laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 68(2), 58–64 (2012).
[Crossref]

Z. Wang, T. B. Yuan, S. L. Lui, Z. Y. Hou, X. W. Li, Z. Li, and W. D. Ni, “Major elements analysis in bituminous coals under different ambient gases by laser-induced breakdown spectroscopy with PLS modeling,” Front. Phys. 7(6), 708–713 (2012).
[Crossref]

Omenetto, N.

H. Y. Moon, K. K. Herrera, N. Omenetto, B. W. Smith, and J. D. Winefordner, “On the usefulness of a duplicating mirror to evaluate self-absorption effects in laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 64(7), 702–713 (2009).
[Crossref]

N. Omenetto, J. D. Winefordner, and C. T. J. Alkemade, “An expression for the atomic fluorescence and thermal-emission intensity under conditions of near saturation and arbitrary self-absorption,” Spectrochim. Acta B At. Spectrosc. 30(9), 335–341 (1975).
[Crossref]

Palleschi, V.

B. Praher, V. Palleschi, R. Viskup, J. Heitz, and J. D. Pedarnig, “Calibration free laser-induced breakdown spectroscopy of oxide materials,” Spectrochim. Acta B At. Spectrosc. 65(8), 671–679 (2010).
[Crossref]

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of Self-Absorption of Manganese Emission Lines in Laser Induced Breakdown Spectroscopy Measurements,” Spectrochim. Acta B At. Spectrosc. 61(12), 1294–1303 (2006).
[Crossref]

A. M. El Sherbini, Th. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 60(12), 1573–1579 (2005).
[Crossref]

D. Bulajic, M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 57(2), 339–353 (2002).
[Crossref]

Pan, S. H.

S. C. Yao, J. D. Lu, K. Chen, S. H. Pan, J. Y. Li, and M. R. Dong, “Study of laser-induced breakdown spectroscopy to discriminate pearlitic/ferritic from martensitic phases,” Appl. Surf. Sci. 257(7), 3103–3110 (2011).
[Crossref]

Pardini, L.

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of Self-Absorption of Manganese Emission Lines in Laser Induced Breakdown Spectroscopy Measurements,” Spectrochim. Acta B At. Spectrosc. 61(12), 1294–1303 (2006).
[Crossref]

A. M. El Sherbini, Th. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 60(12), 1573–1579 (2005).
[Crossref]

Pedarnig, J. D.

B. Praher, V. Palleschi, R. Viskup, J. Heitz, and J. D. Pedarnig, “Calibration free laser-induced breakdown spectroscopy of oxide materials,” Spectrochim. Acta B At. Spectrosc. 65(8), 671–679 (2010).
[Crossref]

Praher, B.

B. Praher, V. Palleschi, R. Viskup, J. Heitz, and J. D. Pedarnig, “Calibration free laser-induced breakdown spectroscopy of oxide materials,” Spectrochim. Acta B At. Spectrosc. 65(8), 671–679 (2010).
[Crossref]

Pulhani, A. K.

M. L. Shah, A. K. Pulhani, B. M. Suri, and G. P. Gupta, “Time-resolved emission spectroscopic study of laser-induced steel plasmas,” Plasma Sci. Technol. 15(6), 546–551 (2013).
[Crossref]

Redon, R.

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and M. Ripert, “Correction of the Self-Absorption for Reversed Spectral Lines: Application to Two Resonance Lines of Neutral Aluminum,” J. Quant. Spectrosc. Radiat. Transf. 77(4), 365–372 (2003).
[Crossref]

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and P. Matheron, “Correction of Self-Absorption Spectral Line and Ratios of Transition Probabilities for Homogenous and LTE Plasma,” J. Quant. Spectrosc. Radiat. Transf. 75(6), 747–763 (2002).
[Crossref]

Ripert, M.

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and M. Ripert, “Correction of the Self-Absorption for Reversed Spectral Lines: Application to Two Resonance Lines of Neutral Aluminum,” J. Quant. Spectrosc. Radiat. Transf. 77(4), 365–372 (2003).
[Crossref]

Rossetto, B.

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and M. Ripert, “Correction of the Self-Absorption for Reversed Spectral Lines: Application to Two Resonance Lines of Neutral Aluminum,” J. Quant. Spectrosc. Radiat. Transf. 77(4), 365–372 (2003).
[Crossref]

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and P. Matheron, “Correction of Self-Absorption Spectral Line and Ratios of Transition Probabilities for Homogenous and LTE Plasma,” J. Quant. Spectrosc. Radiat. Transf. 75(6), 747–763 (2002).
[Crossref]

Salvetti, A.

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of Self-Absorption of Manganese Emission Lines in Laser Induced Breakdown Spectroscopy Measurements,” Spectrochim. Acta B At. Spectrosc. 61(12), 1294–1303 (2006).
[Crossref]

A. M. El Sherbini, Th. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 60(12), 1573–1579 (2005).
[Crossref]

D. Bulajic, M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 57(2), 339–353 (2002).
[Crossref]

Schone, U.

M. Gaft, E. Dvir, H. Modiano, and U. Schone, “Laser induced breakdown spectroscopy machine for online ash analyses in coal,” Spectrochim. Acta B At. Spectrosc. 63(10), 1177–1182 (2008).
[Crossref]

Shah, M. L.

M. L. Shah, A. K. Pulhani, B. M. Suri, and G. P. Gupta, “Time-resolved emission spectroscopic study of laser-induced steel plasmas,” Plasma Sci. Technol. 15(6), 546–551 (2013).
[Crossref]

Smith, B. W.

H. Y. Moon, K. K. Herrera, N. Omenetto, B. W. Smith, and J. D. Winefordner, “On the usefulness of a duplicating mirror to evaluate self-absorption effects in laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 64(7), 702–713 (2009).
[Crossref]

Sobral, H.

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of Self-Absorption of Manganese Emission Lines in Laser Induced Breakdown Spectroscopy Measurements,” Spectrochim. Acta B At. Spectrosc. 61(12), 1294–1303 (2006).
[Crossref]

Sun, L.

L. Sun and H. Yu, “Correction of self-absorption effect in calibration-free laser-induced breakdown spectroscopy by an internal reference method,” Talanta 79(2), 388–395 (2009).
[Crossref] [PubMed]

Suri, B. M.

M. L. Shah, A. K. Pulhani, B. M. Suri, and G. P. Gupta, “Time-resolved emission spectroscopic study of laser-induced steel plasmas,” Plasma Sci. Technol. 15(6), 546–551 (2013).
[Crossref]

Tognoni, E.

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of Self-Absorption of Manganese Emission Lines in Laser Induced Breakdown Spectroscopy Measurements,” Spectrochim. Acta B At. Spectrosc. 61(12), 1294–1303 (2006).
[Crossref]

A. M. El Sherbini, Th. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 60(12), 1573–1579 (2005).
[Crossref]

D. Bulajic, M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 57(2), 339–353 (2002).
[Crossref]

Torrisi, L.

L. Torrisi, F. Caridi, and L. Giuffrida, “Comparison of Pd plasmas Produced at 532nm and 1064nm by a Nd:YAG laser ablation,” Nucl. Instrum. Methods Phys. Res. B 268(13), 2285–2291 (2010).
[Crossref]

Villagran-Muniz, M.

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of Self-Absorption of Manganese Emission Lines in Laser Induced Breakdown Spectroscopy Measurements,” Spectrochim. Acta B At. Spectrosc. 61(12), 1294–1303 (2006).
[Crossref]

Viskup, R.

B. Praher, V. Palleschi, R. Viskup, J. Heitz, and J. D. Pedarnig, “Calibration free laser-induced breakdown spectroscopy of oxide materials,” Spectrochim. Acta B At. Spectrosc. 65(8), 671–679 (2010).
[Crossref]

Wang, Z.

Z. Y. Hou, Z. Wang, T. B. Yuan, J. M. Liu, Z. Li, and W. D. Ni, “A hybrid quantification model and its application for coal analysis using laser induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31(3), 722–736 (2016).
[Crossref]

Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. 9(4), 419–438 (2014).
[Crossref]

Z. Wang, T. B. Yuan, S. L. Lui, Z. Y. Hou, X. W. Li, Z. Li, and W. D. Ni, “Major elements analysis in bituminous coals under different ambient gases by laser-induced breakdown spectroscopy with PLS modeling,” Front. Phys. 7(6), 708–713 (2012).
[Crossref]

Z. Wang, L. Z. Li, L. West, Z. Li, and W. D. Ni, “A spectrum standardization approach for laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 68(2), 58–64 (2012).
[Crossref]

West, L.

Z. Wang, L. Z. Li, L. West, Z. Li, and W. D. Ni, “A spectrum standardization approach for laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 68(2), 58–64 (2012).
[Crossref]

Winefordner, J. D.

H. Y. Moon, K. K. Herrera, N. Omenetto, B. W. Smith, and J. D. Winefordner, “On the usefulness of a duplicating mirror to evaluate self-absorption effects in laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 64(7), 702–713 (2009).
[Crossref]

N. Omenetto, J. D. Winefordner, and C. T. J. Alkemade, “An expression for the atomic fluorescence and thermal-emission intensity under conditions of near saturation and arbitrary self-absorption,” Spectrochim. Acta B At. Spectrosc. 30(9), 335–341 (1975).
[Crossref]

Wu, J.

R. Hai, N. Farid, D. Y. Zhao, L. Zhang, J. H. Liu, H. B. Ding, J. Wu, and G. N. Luo, “Laser-induced breakdown spectroscopic characterization of impurity deposition on the first wall of a magnetic confined fusion device: experimental advanced superconducting tokamak,” Spectrochim. Acta B At. Spectrosc. 87(87), 147–152 (2013).
[Crossref]

Xiao, L. T.

Y. Zhao, L. Zhang, S. X. Zhao, Y. F. Li, Y. Gong, L. Dong, W. G. Ma, W. B. Yin, S. C. Yao, J. D. Lu, L. T. Xiao, and S. T. Jia, “Review of methodological and experimental LIBS techniques for coal analysis and their application in power plants in China,” Front. Phys. 11(6), 217–230 (2016).
[Crossref]

Yang, X. Y.

Yao, S. C.

Y. Zhao, L. Zhang, S. X. Zhao, Y. F. Li, Y. Gong, L. Dong, W. G. Ma, W. B. Yin, S. C. Yao, J. D. Lu, L. T. Xiao, and S. T. Jia, “Review of methodological and experimental LIBS techniques for coal analysis and their application in power plants in China,” Front. Phys. 11(6), 217–230 (2016).
[Crossref]

S. C. Yao, J. D. Lu, K. Chen, S. H. Pan, J. Y. Li, and M. R. Dong, “Study of laser-induced breakdown spectroscopy to discriminate pearlitic/ferritic from martensitic phases,” Appl. Surf. Sci. 257(7), 3103–3110 (2011).
[Crossref]

Yin, W. B.

Y. Zhao, L. Zhang, S. X. Zhao, Y. F. Li, Y. Gong, L. Dong, W. G. Ma, W. B. Yin, S. C. Yao, J. D. Lu, L. T. Xiao, and S. T. Jia, “Review of methodological and experimental LIBS techniques for coal analysis and their application in power plants in China,” Front. Phys. 11(6), 217–230 (2016).
[Crossref]

Yu, H.

L. Sun and H. Yu, “Correction of self-absorption effect in calibration-free laser-induced breakdown spectroscopy by an internal reference method,” Talanta 79(2), 388–395 (2009).
[Crossref] [PubMed]

Yuan, T. B.

Z. Y. Hou, Z. Wang, T. B. Yuan, J. M. Liu, Z. Li, and W. D. Ni, “A hybrid quantification model and its application for coal analysis using laser induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31(3), 722–736 (2016).
[Crossref]

Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. 9(4), 419–438 (2014).
[Crossref]

Z. Wang, T. B. Yuan, S. L. Lui, Z. Y. Hou, X. W. Li, Z. Li, and W. D. Ni, “Major elements analysis in bituminous coals under different ambient gases by laser-induced breakdown spectroscopy with PLS modeling,” Front. Phys. 7(6), 708–713 (2012).
[Crossref]

Zeng, X. Y.

Zhang, L.

Y. Zhao, L. Zhang, S. X. Zhao, Y. F. Li, Y. Gong, L. Dong, W. G. Ma, W. B. Yin, S. C. Yao, J. D. Lu, L. T. Xiao, and S. T. Jia, “Review of methodological and experimental LIBS techniques for coal analysis and their application in power plants in China,” Front. Phys. 11(6), 217–230 (2016).
[Crossref]

R. Hai, N. Farid, D. Y. Zhao, L. Zhang, J. H. Liu, H. B. Ding, J. Wu, and G. N. Luo, “Laser-induced breakdown spectroscopic characterization of impurity deposition on the first wall of a magnetic confined fusion device: experimental advanced superconducting tokamak,” Spectrochim. Acta B At. Spectrosc. 87(87), 147–152 (2013).
[Crossref]

Zhao, D. Y.

R. Hai, N. Farid, D. Y. Zhao, L. Zhang, J. H. Liu, H. B. Ding, J. Wu, and G. N. Luo, “Laser-induced breakdown spectroscopic characterization of impurity deposition on the first wall of a magnetic confined fusion device: experimental advanced superconducting tokamak,” Spectrochim. Acta B At. Spectrosc. 87(87), 147–152 (2013).
[Crossref]

Zhao, N.

Zhao, S. X.

Y. Zhao, L. Zhang, S. X. Zhao, Y. F. Li, Y. Gong, L. Dong, W. G. Ma, W. B. Yin, S. C. Yao, J. D. Lu, L. T. Xiao, and S. T. Jia, “Review of methodological and experimental LIBS techniques for coal analysis and their application in power plants in China,” Front. Phys. 11(6), 217–230 (2016).
[Crossref]

Zhao, Y.

Y. Zhao, L. Zhang, S. X. Zhao, Y. F. Li, Y. Gong, L. Dong, W. G. Ma, W. B. Yin, S. C. Yao, J. D. Lu, L. T. Xiao, and S. T. Jia, “Review of methodological and experimental LIBS techniques for coal analysis and their application in power plants in China,” Front. Phys. 11(6), 217–230 (2016).
[Crossref]

Zhou, W. D.

Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. 9(4), 419–438 (2014).
[Crossref]

Appl. Surf. Sci. (1)

S. C. Yao, J. D. Lu, K. Chen, S. H. Pan, J. Y. Li, and M. R. Dong, “Study of laser-induced breakdown spectroscopy to discriminate pearlitic/ferritic from martensitic phases,” Appl. Surf. Sci. 257(7), 3103–3110 (2011).
[Crossref]

Front. Phys. (3)

Y. Zhao, L. Zhang, S. X. Zhao, Y. F. Li, Y. Gong, L. Dong, W. G. Ma, W. B. Yin, S. C. Yao, J. D. Lu, L. T. Xiao, and S. T. Jia, “Review of methodological and experimental LIBS techniques for coal analysis and their application in power plants in China,” Front. Phys. 11(6), 217–230 (2016).
[Crossref]

Z. Wang, T. B. Yuan, S. L. Lui, Z. Y. Hou, X. W. Li, Z. Li, and W. D. Ni, “Major elements analysis in bituminous coals under different ambient gases by laser-induced breakdown spectroscopy with PLS modeling,” Front. Phys. 7(6), 708–713 (2012).
[Crossref]

Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. 9(4), 419–438 (2014).
[Crossref]

J. Anal. At. Spectrom. (1)

Z. Y. Hou, Z. Wang, T. B. Yuan, J. M. Liu, Z. Li, and W. D. Ni, “A hybrid quantification model and its application for coal analysis using laser induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31(3), 722–736 (2016).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (3)

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and P. Matheron, “Correction of Self-Absorption Spectral Line and Ratios of Transition Probabilities for Homogenous and LTE Plasma,” J. Quant. Spectrosc. Radiat. Transf. 75(6), 747–763 (2002).
[Crossref]

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and M. Ripert, “Correction of the Self-Absorption for Reversed Spectral Lines: Application to Two Resonance Lines of Neutral Aluminum,” J. Quant. Spectrosc. Radiat. Transf. 77(4), 365–372 (2003).
[Crossref]

C. A. D’angelo, M. Garcimuño, D. M. Díaz Pace, and G. Bertuccelli, “Plasma diagnostics from self-absorbed doublet lines in laser-induced breakdown spectroscopy,” J. Quant. Spectrosc. Radiat. Transf. 164, 89–96 (2015).
[Crossref]

Nucl. Instrum. Methods Phys. Res. B (1)

L. Torrisi, F. Caridi, and L. Giuffrida, “Comparison of Pd plasmas Produced at 532nm and 1064nm by a Nd:YAG laser ablation,” Nucl. Instrum. Methods Phys. Res. B 268(13), 2285–2291 (2010).
[Crossref]

Opt. Lett. (1)

Opt. Photonics J. (1)

S. A. M. Mansour, “Self-Absorption Effects on Electron Temperature-Measurements Utilizing Laser Induced Breakdown Spectroscopy (LIBS)-Techniques,” Opt. Photonics J. 5(3), 79–90 (2015).
[Crossref]

Phys. Rev. (1)

P. Kepple and H. R. Griem, “Improved Stark Profile Calculations for Hydrogen Lines: Hα, Hβ, Hγ and Hδ,” Phys. Rev. 173(1), 317–325 (1968).
[Crossref]

Plasma Sci. Technol. (1)

M. L. Shah, A. K. Pulhani, B. M. Suri, and G. P. Gupta, “Time-resolved emission spectroscopic study of laser-induced steel plasmas,” Plasma Sci. Technol. 15(6), 546–551 (2013).
[Crossref]

Spectrochim. Acta B At. Spectrosc. (10)

N. Konjević, M. Ivković, and S. Jovićević, “Spectroscopic diagnostics of laser-induced plasmas,” Spectrochim. Acta B At. Spectrosc. 65(8), 593–602 (2010).
[Crossref]

A. M. El Sherbini, Th. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 60(12), 1573–1579 (2005).
[Crossref]

B. Praher, V. Palleschi, R. Viskup, J. Heitz, and J. D. Pedarnig, “Calibration free laser-induced breakdown spectroscopy of oxide materials,” Spectrochim. Acta B At. Spectrosc. 65(8), 671–679 (2010).
[Crossref]

H. Y. Moon, K. K. Herrera, N. Omenetto, B. W. Smith, and J. D. Winefordner, “On the usefulness of a duplicating mirror to evaluate self-absorption effects in laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 64(7), 702–713 (2009).
[Crossref]

D. Bulajic, M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 57(2), 339–353 (2002).
[Crossref]

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of Self-Absorption of Manganese Emission Lines in Laser Induced Breakdown Spectroscopy Measurements,” Spectrochim. Acta B At. Spectrosc. 61(12), 1294–1303 (2006).
[Crossref]

N. Omenetto, J. D. Winefordner, and C. T. J. Alkemade, “An expression for the atomic fluorescence and thermal-emission intensity under conditions of near saturation and arbitrary self-absorption,” Spectrochim. Acta B At. Spectrosc. 30(9), 335–341 (1975).
[Crossref]

R. Hai, N. Farid, D. Y. Zhao, L. Zhang, J. H. Liu, H. B. Ding, J. Wu, and G. N. Luo, “Laser-induced breakdown spectroscopic characterization of impurity deposition on the first wall of a magnetic confined fusion device: experimental advanced superconducting tokamak,” Spectrochim. Acta B At. Spectrosc. 87(87), 147–152 (2013).
[Crossref]

Z. Wang, L. Z. Li, L. West, Z. Li, and W. D. Ni, “A spectrum standardization approach for laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 68(2), 58–64 (2012).
[Crossref]

M. Gaft, E. Dvir, H. Modiano, and U. Schone, “Laser induced breakdown spectroscopy machine for online ash analyses in coal,” Spectrochim. Acta B At. Spectrosc. 63(10), 1177–1182 (2008).
[Crossref]

Talanta (1)

L. Sun and H. Yu, “Correction of self-absorption effect in calibration-free laser-induced breakdown spectroscopy by an internal reference method,” Talanta 79(2), 388–395 (2009).
[Crossref] [PubMed]

Other (3)

A. C. G. Mitchell and M. W. Zemansky, Resonance Radiation and Excited Atoms (Cambridge University, 1934).

R. W. P. McWhirter, Plasma Diagnostic Techniques (Academic, 1965).

A. Kramida and Y. Ralchenko, J. Reader, and NIST ASD Team, NIST Atomic Spectra Database (ver. 5.4), http://physics.nist.gov/asd (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Typical average spectrum of the tablet sample.
Fig. 2
Fig. 2 Temporal evolution of the intensity ratio of doublet Al (I) lines (a) and the tot values and spectral SNRs at different integration times (b).
Fig. 3
Fig. 3 Temporal evolution of the intensity ratio of two Al (I) lines (a) and the tot values and spectral SNRs at different fiber collection angles (b).
Fig. 4
Fig. 4 Temporal evolution of the intensity ratio of two Al (I) lines (a) and the tot values at different aluminum concentrations (b).
Fig. 5
Fig. 5 Temporal evolution of SA coefficient for Al (I) 396.15 nm line.
Fig. 6
Fig. 6 Comparison of Boltzmann plots using Al (I) lines at 308.21 nm, 309.27 nm, 394.40 nm, and 396.15 nm before SA correction, after SA correction, and at tot.
Fig. 7
Fig. 7 Calibration curves of aluminum (a) and comparison of the SAF-LIBS and the ordinary LIBS quantitative analysis results on aluminum concentrations (b).
Fig. 8
Fig. 8 The tot values for different laser energies.

Tables (1)

Tables Icon

Table 1 Spectroscopic parameters of the selected spectral lines.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I 1 I 2 = ( λ n m , Z λ k i , Z ) ( A k i , Z A n m , Z ) ( g k , Z g n , Z ) e x p ( E k , Z E n , Z k B T ) ,
S A = ( Δ λ 2 w S 1 n e ) 1 / α ,
n e = N e ( H α ) = 8.02 × 10 12 ( Δ λ H α 1 / 2 ) 3 / 2 c m 3 ,
I ¯ I ¯ 0 = + ( 1 e k ( λ ) l ) d λ + k ( λ ) l d λ = ( S A ) β ,

Metrics