Abstract

An analytic model is proposed to study the linearity performance of the silicon Mach-Zehnder optical modulator. According to the simulation results, we optimize the width of the silicon rib waveguide and the location of the PN junction to improve the linearity performance. The fabricated silicon Mach-Zehnder optical modulator has a spurious free dynamic range of 113.3 dB.Hz2/3 and 88.9 dB.Hz1/2 for the third-order intermodulation distortion and the second-order harmonic distortion. We also demonstrate the optical four-level pulse-amplitude-modulation (PAM-4) signal generation through the device. The generated optical PAM-4 signal is characterized at the rates up to 35 Gbaud. The BERs of the optical PAM-4 signals can reach 5.2╳10−6 at 20 Gbaud and 6.6╳10−5 at 32 Gbaud, which are much lower than the threshold of hard decision forward error correction (3.8 ╳10−3).

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Method to improve the linearity of the silicon Mach-Zehnder optical modulator by doping control

Jianfeng Ding, Sizhu Shao, Lei Zhang, Xin Fu, and Lin Yang
Opt. Express 24(21) 24641-24648 (2016)

Experimental parametric study of 128 Gb/s PAM-4 transmission system using a multi-electrode silicon photonic Mach Zehnder modulator

Alireza Samani, David Patel, Mathieu Chagnon, Eslam El-Fiky, Rui Li, Maxime Jacques, Nicolás Abadía, Venkat Veerasubramanian, and David V. Plant
Opt. Express 25(12) 13252-13262 (2017)

Highly linear ring modulator from hybrid silicon and lithium niobate

Li Chen, Jiahong Chen, Jonathan Nagy, and Ronald M. Reano
Opt. Express 23(10) 13255-13264 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. E. Cunningham, D. Beckman, X. Zheng, D. Huang, T. Sze, and A. V. Krishnamoorthy, “PAM-4 signaling over VCSELs with 0.13 µm CMOS chip technology,” Opt. Express 14(25), 12028–12038 (2006).
    [Crossref] [PubMed]
  2. K. Szczerba, P. Westbergh, J. Karout, J. Gustavsson, Å. Haglund, M. Karlsson, P. Andrekson, E. Agrell, and A. Larsson, “30 Gbps 4-PAM transmission over 200 m of MMF using an 850 nm VCSEL,” Opt. Express 19(26), B203–B208 (2011).
    [Crossref] [PubMed]
  3. K. Goi, K. Oda, H. Kusaka, Y. Terada, K. Ogawa, T. Y. Liow, X. Tu, G. Q. Lo, and D. L. Kwong, “11-Gb/s 80-km transmission performance of zero-chirp silicon Mach-Zehnder modulator,” Opt. Express 20(26), B350–B356 (2012).
    [Crossref] [PubMed]
  4. K. Padmaraju, N. Ophir, Q. Xu, B. Schmidt, J. Shakya, S. Manipatruni, M. Lipson, and K. Bergman, “Error-free transmission of microring-modulated BPSK,” Opt. Express 20(8), 8681–8688 (2012).
    [Crossref] [PubMed]
  5. P. Dong, L. Chen, C. Xie, L. L. Buhl, and Y. K. Chen, “50-Gb/s silicon quadrature phase-shift keying modulator,” Opt. Express 20(19), 21181–21186 (2012).
    [Crossref] [PubMed]
  6. P. Dong, C. Xie, L. Chen, L. L. Buhl, and Y. K. Chen, “112-Gb/s monolithic PDM-QPSK modulator in silicon,” Opt. Express 20(26), B624–B629 (2012).
    [Crossref] [PubMed]
  7. K. Xu, L. G. Yang, J. Y. Sung, Y. M. Chen, Z. Z. Cheng, C. W. Chow, C. H. Yeh, and H. K. Tsang, “Compatibility of silicon Mach-Zehnder modulators for advanced modulation formats,” J. Lightwave Technol. 31(15), 2550–2554 (2013).
    [Crossref]
  8. D. Korn, R. Palmer, H. Yu, P. C. Schindler, L. Alloatti, M. Baier, R. Schmogrow, W. Bogaerts, S. K. Selvaraja, G. Lepage, M. Pantouvaki, J. M. D. Wouters, P. Verheyen, J. Van Campenhout, B. Chen, R. Baets, P. Absil, R. Dinu, C. Koos, W. Freude, and J. Leuthold, “Silicon-organic hybrid (SOH) IQ modulator using the linear electro-optic effect for transmitting 16QAM at 112 Gbit/s,” Opt. Express 21(11), 13219–13227 (2013).
    [Crossref] [PubMed]
  9. S. Yin, T. Chan, and W. I. Way, “100-km DWDM Transmission of 56-Gb/s PAM4 per λ via Tunable Laser and 10-Gb/s InP MZM,” IEEE Photonics Technol. Lett. 27(24), 2531–2534 (2015).
    [Crossref]
  10. C. Chen, X. Tang, and Z. Zhang, “Transmission of 56-Gb/s PAM-4 over 26-km single mode fiber using maximum likelihood sequence estimation,” in Optical Fiber Communication Conference (Optical Society of America,2015), paper Th4A.5.
    [Crossref]
  11. D. Patel, A. Samani, V. Veerasubramanian, S. Ghosh, and D. V. Plant, “Silicon photonic segmented modulator-based electro-optic DAC for 100 Gb/s PAM-4 generation,” IEEE Photonics Technol. Lett. 27(23), 2433–2436 (2015).
    [Crossref]
  12. R. Li, D. Patel, A. Samani, E. El-Fiky, Z. Xing, M. Morsy-Osman, and D. V. Plant, “Silicon Photonic Ring-Assisted MZI for 50 Gb/s DAC-Less and DSP-Free PAM-4 Transmission,” IEEE Photonics Technol. Lett. 29(12), 1046–1049 (2017).
    [Crossref]
  13. A. Samani, D. Patel, M. Chagnon, E. El-Fiky, R. Li, M. Jacques, N. Abadía, V. Veerasubramanian, and D. V. Plant, “Experimental parametric study of 128 Gb/s PAM-4 transmission system using a multi-electrode silicon photonic Mach Zehnder modulator,” Opt. Express 25(12), 13252–13262 (2017).
    [Crossref] [PubMed]
  14. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
    [Crossref] [PubMed]
  15. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
    [Crossref] [PubMed]
  16. S. S. Sui, Y. Z. Huang, M. Y. Tang, H. Z. Weng, Y. D. Yang, J. L. Xiao, and Y. Du, “Locally deformed-ring hybrid microlasers exhibiting stable unidirectional emission from a Si waveguide,” Opt. Lett. 41(17), 3928–3931 (2016).
    [Crossref] [PubMed]
  17. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
    [Crossref] [PubMed]
  18. P. Dong, L. Chen, and Y. K. Chen, “High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators,” Opt. Express 20(6), 6163–6169 (2012).
    [Crossref] [PubMed]
  19. M. Geng, L. Jia, L. Zhang, L. Yang, P. Chen, T. Wang, and Y. Liu, “Four-channel reconfigurable optical add-drop multiplexer based on photonic wire waveguide,” Opt. Express 17(7), 5502–5516 (2009).
    [Crossref] [PubMed]
  20. M. S. Dahlem, C. W. Holzwarth, A. Khilo, F. X. Kärtner, H. I. Smith, and E. P. Ippen, “Reconfigurable multi-channel second-order silicon microring-resonator filterbanks for on-chip WDM systems,” Opt. Express 19(1), 306–316 (2011).
    [Crossref] [PubMed]
  21. R. Ji, L. Yang, L. Zhang, Y. Tian, J. Ding, H. Chen, Y. Lu, P. Zhou, and W. Zhu, “Five-port optical router for photonic networks-on-chip,” Opt. Express 19(21), 20258–20268 (2011).
    [Crossref] [PubMed]
  22. N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless silicon router for optical networks-on-chip,” Opt. Express 16(20), 15915–15922 (2008).
    [Crossref] [PubMed]
  23. D. Ahn, C. Y. Hong, J. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, J. Michel, J. Chen, and F. X. Kärtner, “High performance, waveguide integrated Ge photodetectors,” Opt. Express 15(7), 3916–3921 (2007).
    [Crossref] [PubMed]
  24. Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. Kuo, H. Chen, W. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
    [Crossref]
  25. C. Li, C. Xue, Z. Liu, B. Cheng, C. Li, and Q. Wang, “High-bandwidth and high-responsivity top-illuminated germanium photodiodes for optical interconnection,” IEEE Trans. Electron Dev. 60(3), 1183–1187 (2013).
    [Crossref]
  26. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  27. S. Yu and T. Chu, “Electrical nonlinearity in silicon modulators based on reversed PN junctions,” Photon. Res. 5(2), 124–128 (2017).
    [Crossref]
  28. A. M. Gutierrez, A. Brimont, J. Herrera, M. Aamer, D. J. Thomson, F. Y. Gardes, G. T. Reed, J. Fedeli, and P. Sanchis, “Analytical model for calculating the nonlinear distortion in silicon-based electro-optic Mach–Zehnder modulators,” J. Lightwave Technol. 31(23), 3603–3613 (2013).
    [Crossref]
  29. A. Khilo, C. M. Sorace, and F. X. Kärtner, “Broadband linearized silicon modulator,” Opt. Express 19(5), 4485–4500 (2011).
    [Crossref] [PubMed]
  30. K. Kenji and T. Kitoh, Introduction to Optical Waveguide Analysis (John Wiley & Sons, Inc., 2001).
  31. L. Chrostowski and M. Hochberg, Silicon Photonics Design (Cambridge University Press, 2015).
  32. R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
    [Crossref]
  33. D. Neamen, Semiconductor Physics and Devices (McGraw-Hill, Inc., 2002).
  34. T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 307–315 (2010).
    [Crossref]
  35. T. Li, D. Wang, J. Zhang, Z. Zhou, F. Zhang, X. Wang, and H. Wu, “Demonstration of 6.25 Gbaud advanced modulation formats with subcarrier multiplexed technique on silicon Mach-Zehnder modulator,” Opt. Express 22(16), 19818–19823 (2014).
    [Crossref] [PubMed]
  36. Y. Zhou, L. Zhou, F. Su, X. Li, and J. Chen, “Linearity measurement and pulse amplitude modulation in a silicon single-drive push–pull Mach–Zehnder modulator,” J. Lightwave Technol. 34(14), 3323–3329 (2016).
    [Crossref]

2017 (3)

2016 (2)

2015 (2)

S. Yin, T. Chan, and W. I. Way, “100-km DWDM Transmission of 56-Gb/s PAM4 per λ via Tunable Laser and 10-Gb/s InP MZM,” IEEE Photonics Technol. Lett. 27(24), 2531–2534 (2015).
[Crossref]

D. Patel, A. Samani, V. Veerasubramanian, S. Ghosh, and D. V. Plant, “Silicon photonic segmented modulator-based electro-optic DAC for 100 Gb/s PAM-4 generation,” IEEE Photonics Technol. Lett. 27(23), 2433–2436 (2015).
[Crossref]

2014 (1)

2013 (4)

2012 (5)

2011 (4)

2010 (1)

T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 307–315 (2010).
[Crossref]

2009 (3)

J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
[Crossref]

Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. Kuo, H. Chen, W. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

M. Geng, L. Jia, L. Zhang, L. Yang, P. Chen, T. Wang, and Y. Liu, “Four-channel reconfigurable optical add-drop multiplexer based on photonic wire waveguide,” Opt. Express 17(7), 5502–5516 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (1)

2006 (2)

2005 (1)

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[Crossref] [PubMed]

2004 (1)

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

1987 (1)

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

Aamer, M.

Abadía, N.

Absil, P.

Agrell, E.

Ahn, D.

Alloatti, L.

Andrekson, P.

Ang, K.-W.

T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 307–315 (2010).
[Crossref]

Baets, R.

Baier, M.

Beals, M.

Beckman, D.

Beling, A.

Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. Kuo, H. Chen, W. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Bennett, B.

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

Bergman, K.

Biberman, A.

Bogaerts, W.

Bowers, J. E.

Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. Kuo, H. Chen, W. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
[Crossref] [PubMed]

Brimont, A.

Buhl, L. L.

Campbell, J. C.

Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. Kuo, H. Chen, W. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Chagnon, M.

Chan, T.

S. Yin, T. Chan, and W. I. Way, “100-km DWDM Transmission of 56-Gb/s PAM4 per λ via Tunable Laser and 10-Gb/s InP MZM,” IEEE Photonics Technol. Lett. 27(24), 2531–2534 (2015).
[Crossref]

Chen, B.

Chen, C.

C. Chen, X. Tang, and Z. Zhang, “Transmission of 56-Gb/s PAM-4 over 26-km single mode fiber using maximum likelihood sequence estimation,” in Optical Fiber Communication Conference (Optical Society of America,2015), paper Th4A.5.
[Crossref]

Chen, H.

R. Ji, L. Yang, L. Zhang, Y. Tian, J. Ding, H. Chen, Y. Lu, P. Zhou, and W. Zhu, “Five-port optical router for photonic networks-on-chip,” Opt. Express 19(21), 20258–20268 (2011).
[Crossref] [PubMed]

Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. Kuo, H. Chen, W. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Chen, J.

Chen, L.

Chen, P.

Chen, Y. K.

Chen, Y. M.

Cheng, B.

C. Li, C. Xue, Z. Liu, B. Cheng, C. Li, and Q. Wang, “High-bandwidth and high-responsivity top-illuminated germanium photodiodes for optical interconnection,” IEEE Trans. Electron Dev. 60(3), 1183–1187 (2013).
[Crossref]

Cheng, Z. Z.

Chow, C. W.

Chu, T.

Cohen, O.

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
[Crossref] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[Crossref] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Cunningham, J. E.

Dahlem, M. S.

Ding, J.

Dinu, R.

Dong, P.

Du, Y.

El-Fiky, E.

A. Samani, D. Patel, M. Chagnon, E. El-Fiky, R. Li, M. Jacques, N. Abadía, V. Veerasubramanian, and D. V. Plant, “Experimental parametric study of 128 Gb/s PAM-4 transmission system using a multi-electrode silicon photonic Mach Zehnder modulator,” Opt. Express 25(12), 13252–13262 (2017).
[Crossref] [PubMed]

R. Li, D. Patel, A. Samani, E. El-Fiky, Z. Xing, M. Morsy-Osman, and D. V. Plant, “Silicon Photonic Ring-Assisted MZI for 50 Gb/s DAC-Less and DSP-Free PAM-4 Transmission,” IEEE Photonics Technol. Lett. 29(12), 1046–1049 (2017).
[Crossref]

Fang, A.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[Crossref] [PubMed]

Fang, A. W.

Fang, Q.

T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 307–315 (2010).
[Crossref]

Fedeli, J.

Freude, W.

Gardes, F. Y.

Geng, M.

Ghosh, S.

D. Patel, A. Samani, V. Veerasubramanian, S. Ghosh, and D. V. Plant, “Silicon photonic segmented modulator-based electro-optic DAC for 100 Gb/s PAM-4 generation,” IEEE Photonics Technol. Lett. 27(23), 2433–2436 (2015).
[Crossref]

Giziewicz, W.

Goi, K.

Gustavsson, J.

Gutierrez, A. M.

Haglund, Å.

Hak, D.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[Crossref] [PubMed]

Herrera, J.

Holzwarth, C. W.

Hong, C. Y.

Huang, D.

Huang, Y. Z.

Ippen, E. P.

Jacques, M.

Ji, R.

Jia, L.

Jones, R.

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
[Crossref] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[Crossref] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Kang, Y.

Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. Kuo, H. Chen, W. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Karlsson, M.

Karout, J.

Kärtner, F. X.

Khilo, A.

Kimerling, L. C.

Koos, C.

Korn, D.

Krishnamoorthy, A. V.

Kuo, Y.

Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. Kuo, H. Chen, W. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Kusaka, H.

Kwong, D. L.

Kwong, D.-L.

T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 307–315 (2010).
[Crossref]

Larsson, A.

Lee, B. G.

Lepage, G.

Leuthold, J.

Li, C.

C. Li, C. Xue, Z. Liu, B. Cheng, C. Li, and Q. Wang, “High-bandwidth and high-responsivity top-illuminated germanium photodiodes for optical interconnection,” IEEE Trans. Electron Dev. 60(3), 1183–1187 (2013).
[Crossref]

C. Li, C. Xue, Z. Liu, B. Cheng, C. Li, and Q. Wang, “High-bandwidth and high-responsivity top-illuminated germanium photodiodes for optical interconnection,” IEEE Trans. Electron Dev. 60(3), 1183–1187 (2013).
[Crossref]

Li, R.

A. Samani, D. Patel, M. Chagnon, E. El-Fiky, R. Li, M. Jacques, N. Abadía, V. Veerasubramanian, and D. V. Plant, “Experimental parametric study of 128 Gb/s PAM-4 transmission system using a multi-electrode silicon photonic Mach Zehnder modulator,” Opt. Express 25(12), 13252–13262 (2017).
[Crossref] [PubMed]

R. Li, D. Patel, A. Samani, E. El-Fiky, Z. Xing, M. Morsy-Osman, and D. V. Plant, “Silicon Photonic Ring-Assisted MZI for 50 Gb/s DAC-Less and DSP-Free PAM-4 Transmission,” IEEE Photonics Technol. Lett. 29(12), 1046–1049 (2017).
[Crossref]

Li, T.

Li, X.

Liao, L.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Liow, T. Y.

Liow, T.-Y.

T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 307–315 (2010).
[Crossref]

Lipson, M.

Litski, S.

Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. Kuo, H. Chen, W. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Liu, A.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[Crossref] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Liu, H. D.

Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. Kuo, H. Chen, W. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Liu, J.

Liu, Y.

Liu, Z.

C. Li, C. Xue, Z. Liu, B. Cheng, C. Li, and Q. Wang, “High-bandwidth and high-responsivity top-illuminated germanium photodiodes for optical interconnection,” IEEE Trans. Electron Dev. 60(3), 1183–1187 (2013).
[Crossref]

Lo, G. Q.

Lo, G.-Q.

T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 307–315 (2010).
[Crossref]

Lu, Y.

Manipatruni, S.

McIntosh, D. C.

Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. Kuo, H. Chen, W. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Michel, J.

Morse, M.

Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. Kuo, H. Chen, W. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Morsy-Osman, M.

R. Li, D. Patel, A. Samani, E. El-Fiky, Z. Xing, M. Morsy-Osman, and D. V. Plant, “Silicon Photonic Ring-Assisted MZI for 50 Gb/s DAC-Less and DSP-Free PAM-4 Transmission,” IEEE Photonics Technol. Lett. 29(12), 1046–1049 (2017).
[Crossref]

Nicolaescu, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Oda, K.

Ogawa, K.

Ophir, N.

Padmaraju, K.

Palmer, R.

Paniccia, M.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[Crossref] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Paniccia, M. J.

Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. Kuo, H. Chen, W. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
[Crossref] [PubMed]

Pantouvaki, M.

Park, H.

Patel, D.

A. Samani, D. Patel, M. Chagnon, E. El-Fiky, R. Li, M. Jacques, N. Abadía, V. Veerasubramanian, and D. V. Plant, “Experimental parametric study of 128 Gb/s PAM-4 transmission system using a multi-electrode silicon photonic Mach Zehnder modulator,” Opt. Express 25(12), 13252–13262 (2017).
[Crossref] [PubMed]

R. Li, D. Patel, A. Samani, E. El-Fiky, Z. Xing, M. Morsy-Osman, and D. V. Plant, “Silicon Photonic Ring-Assisted MZI for 50 Gb/s DAC-Less and DSP-Free PAM-4 Transmission,” IEEE Photonics Technol. Lett. 29(12), 1046–1049 (2017).
[Crossref]

D. Patel, A. Samani, V. Veerasubramanian, S. Ghosh, and D. V. Plant, “Silicon photonic segmented modulator-based electro-optic DAC for 100 Gb/s PAM-4 generation,” IEEE Photonics Technol. Lett. 27(23), 2433–2436 (2015).
[Crossref]

Pauchard, A.

Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. Kuo, H. Chen, W. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Plant, D. V.

R. Li, D. Patel, A. Samani, E. El-Fiky, Z. Xing, M. Morsy-Osman, and D. V. Plant, “Silicon Photonic Ring-Assisted MZI for 50 Gb/s DAC-Less and DSP-Free PAM-4 Transmission,” IEEE Photonics Technol. Lett. 29(12), 1046–1049 (2017).
[Crossref]

A. Samani, D. Patel, M. Chagnon, E. El-Fiky, R. Li, M. Jacques, N. Abadía, V. Veerasubramanian, and D. V. Plant, “Experimental parametric study of 128 Gb/s PAM-4 transmission system using a multi-electrode silicon photonic Mach Zehnder modulator,” Opt. Express 25(12), 13252–13262 (2017).
[Crossref] [PubMed]

D. Patel, A. Samani, V. Veerasubramanian, S. Ghosh, and D. V. Plant, “Silicon photonic segmented modulator-based electro-optic DAC for 100 Gb/s PAM-4 generation,” IEEE Photonics Technol. Lett. 27(23), 2433–2436 (2015).
[Crossref]

Reed, G. T.

Rong, H.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[Crossref] [PubMed]

Rubin, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Samani, A.

A. Samani, D. Patel, M. Chagnon, E. El-Fiky, R. Li, M. Jacques, N. Abadía, V. Veerasubramanian, and D. V. Plant, “Experimental parametric study of 128 Gb/s PAM-4 transmission system using a multi-electrode silicon photonic Mach Zehnder modulator,” Opt. Express 25(12), 13252–13262 (2017).
[Crossref] [PubMed]

R. Li, D. Patel, A. Samani, E. El-Fiky, Z. Xing, M. Morsy-Osman, and D. V. Plant, “Silicon Photonic Ring-Assisted MZI for 50 Gb/s DAC-Less and DSP-Free PAM-4 Transmission,” IEEE Photonics Technol. Lett. 29(12), 1046–1049 (2017).
[Crossref]

D. Patel, A. Samani, V. Veerasubramanian, S. Ghosh, and D. V. Plant, “Silicon photonic segmented modulator-based electro-optic DAC for 100 Gb/s PAM-4 generation,” IEEE Photonics Technol. Lett. 27(23), 2433–2436 (2015).
[Crossref]

Samara-Rubio, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Sanchis, P.

Sarid, G.

Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. Kuo, H. Chen, W. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Schindler, P. C.

Schmidt, B.

Schmogrow, R.

Selvaraja, S. K.

Shakya, J.

Sherwood-Droz, N.

Smith, H. I.

Song, J.-F.

T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 307–315 (2010).
[Crossref]

Sorace, C. M.

Soref, R.

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

Su, F.

Sui, S. S.

Sung, J. Y.

Szczerba, K.

Sze, T.

Tang, M. Y.

Tang, X.

C. Chen, X. Tang, and Z. Zhang, “Transmission of 56-Gb/s PAM-4 over 26-km single mode fiber using maximum likelihood sequence estimation,” in Optical Fiber Communication Conference (Optical Society of America,2015), paper Th4A.5.
[Crossref]

Terada, Y.

Thomson, D. J.

Tian, Y.

Tsang, H. K.

Tu, X.

Van Campenhout, J.

Veerasubramanian, V.

A. Samani, D. Patel, M. Chagnon, E. El-Fiky, R. Li, M. Jacques, N. Abadía, V. Veerasubramanian, and D. V. Plant, “Experimental parametric study of 128 Gb/s PAM-4 transmission system using a multi-electrode silicon photonic Mach Zehnder modulator,” Opt. Express 25(12), 13252–13262 (2017).
[Crossref] [PubMed]

D. Patel, A. Samani, V. Veerasubramanian, S. Ghosh, and D. V. Plant, “Silicon photonic segmented modulator-based electro-optic DAC for 100 Gb/s PAM-4 generation,” IEEE Photonics Technol. Lett. 27(23), 2433–2436 (2015).
[Crossref]

Verheyen, P.

Wang, D.

Wang, H.

Wang, Q.

C. Li, C. Xue, Z. Liu, B. Cheng, C. Li, and Q. Wang, “High-bandwidth and high-responsivity top-illuminated germanium photodiodes for optical interconnection,” IEEE Trans. Electron Dev. 60(3), 1183–1187 (2013).
[Crossref]

Wang, T.

Wang, X.

Way, W. I.

S. Yin, T. Chan, and W. I. Way, “100-km DWDM Transmission of 56-Gb/s PAM4 per λ via Tunable Laser and 10-Gb/s InP MZM,” IEEE Photonics Technol. Lett. 27(24), 2531–2534 (2015).
[Crossref]

Weng, H. Z.

Westbergh, P.

Wouters, J. M. D.

Wu, H.

Xiao, J. L.

Xie, C.

Xing, Z.

R. Li, D. Patel, A. Samani, E. El-Fiky, Z. Xing, M. Morsy-Osman, and D. V. Plant, “Silicon Photonic Ring-Assisted MZI for 50 Gb/s DAC-Less and DSP-Free PAM-4 Transmission,” IEEE Photonics Technol. Lett. 29(12), 1046–1049 (2017).
[Crossref]

Xiong, Y.-Z.

T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 307–315 (2010).
[Crossref]

Xu, K.

Xu, Q.

Xue, C.

C. Li, C. Xue, Z. Liu, B. Cheng, C. Li, and Q. Wang, “High-bandwidth and high-responsivity top-illuminated germanium photodiodes for optical interconnection,” IEEE Trans. Electron Dev. 60(3), 1183–1187 (2013).
[Crossref]

Yang, L.

Yang, L. G.

Yang, Y. D.

Yao, J.

Yeh, C. H.

Yin, S.

S. Yin, T. Chan, and W. I. Way, “100-km DWDM Transmission of 56-Gb/s PAM4 per λ via Tunable Laser and 10-Gb/s InP MZM,” IEEE Photonics Technol. Lett. 27(24), 2531–2534 (2015).
[Crossref]

Yu, H.

Yu, M.-B.

T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 307–315 (2010).
[Crossref]

Yu, S.

Zadka, M.

Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. Kuo, H. Chen, W. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Zaoui, W.

Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. Kuo, H. Chen, W. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Zhang, F.

Zhang, J.

Zhang, L.

Zhang, Z.

C. Chen, X. Tang, and Z. Zhang, “Transmission of 56-Gb/s PAM-4 over 26-km single mode fiber using maximum likelihood sequence estimation,” in Optical Fiber Communication Conference (Optical Society of America,2015), paper Th4A.5.
[Crossref]

Zheng, X.

Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. Kuo, H. Chen, W. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

J. E. Cunningham, D. Beckman, X. Zheng, D. Huang, T. Sze, and A. V. Krishnamoorthy, “PAM-4 signaling over VCSELs with 0.13 µm CMOS chip technology,” Opt. Express 14(25), 12028–12038 (2006).
[Crossref] [PubMed]

Zhou, L.

Zhou, P.

Zhou, Y.

Zhou, Z.

Zhu, W.

IEEE J. Quantum Electron. (1)

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 307–315 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (3)

D. Patel, A. Samani, V. Veerasubramanian, S. Ghosh, and D. V. Plant, “Silicon photonic segmented modulator-based electro-optic DAC for 100 Gb/s PAM-4 generation,” IEEE Photonics Technol. Lett. 27(23), 2433–2436 (2015).
[Crossref]

R. Li, D. Patel, A. Samani, E. El-Fiky, Z. Xing, M. Morsy-Osman, and D. V. Plant, “Silicon Photonic Ring-Assisted MZI for 50 Gb/s DAC-Less and DSP-Free PAM-4 Transmission,” IEEE Photonics Technol. Lett. 29(12), 1046–1049 (2017).
[Crossref]

S. Yin, T. Chan, and W. I. Way, “100-km DWDM Transmission of 56-Gb/s PAM4 per λ via Tunable Laser and 10-Gb/s InP MZM,” IEEE Photonics Technol. Lett. 27(24), 2531–2534 (2015).
[Crossref]

IEEE Trans. Electron Dev. (1)

C. Li, C. Xue, Z. Liu, B. Cheng, C. Li, and Q. Wang, “High-bandwidth and high-responsivity top-illuminated germanium photodiodes for optical interconnection,” IEEE Trans. Electron Dev. 60(3), 1183–1187 (2013).
[Crossref]

J. Lightwave Technol. (4)

Nat. Photonics (1)

Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. Kuo, H. Chen, W. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Nature (2)

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[Crossref] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Opt. Express (17)

M. Geng, L. Jia, L. Zhang, L. Yang, P. Chen, T. Wang, and Y. Liu, “Four-channel reconfigurable optical add-drop multiplexer based on photonic wire waveguide,” Opt. Express 17(7), 5502–5516 (2009).
[Crossref] [PubMed]

M. S. Dahlem, C. W. Holzwarth, A. Khilo, F. X. Kärtner, H. I. Smith, and E. P. Ippen, “Reconfigurable multi-channel second-order silicon microring-resonator filterbanks for on-chip WDM systems,” Opt. Express 19(1), 306–316 (2011).
[Crossref] [PubMed]

A. Khilo, C. M. Sorace, and F. X. Kärtner, “Broadband linearized silicon modulator,” Opt. Express 19(5), 4485–4500 (2011).
[Crossref] [PubMed]

R. Ji, L. Yang, L. Zhang, Y. Tian, J. Ding, H. Chen, Y. Lu, P. Zhou, and W. Zhu, “Five-port optical router for photonic networks-on-chip,” Opt. Express 19(21), 20258–20268 (2011).
[Crossref] [PubMed]

K. Szczerba, P. Westbergh, J. Karout, J. Gustavsson, Å. Haglund, M. Karlsson, P. Andrekson, E. Agrell, and A. Larsson, “30 Gbps 4-PAM transmission over 200 m of MMF using an 850 nm VCSEL,” Opt. Express 19(26), B203–B208 (2011).
[Crossref] [PubMed]

P. Dong, L. Chen, and Y. K. Chen, “High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators,” Opt. Express 20(6), 6163–6169 (2012).
[Crossref] [PubMed]

K. Padmaraju, N. Ophir, Q. Xu, B. Schmidt, J. Shakya, S. Manipatruni, M. Lipson, and K. Bergman, “Error-free transmission of microring-modulated BPSK,” Opt. Express 20(8), 8681–8688 (2012).
[Crossref] [PubMed]

P. Dong, L. Chen, C. Xie, L. L. Buhl, and Y. K. Chen, “50-Gb/s silicon quadrature phase-shift keying modulator,” Opt. Express 20(19), 21181–21186 (2012).
[Crossref] [PubMed]

K. Goi, K. Oda, H. Kusaka, Y. Terada, K. Ogawa, T. Y. Liow, X. Tu, G. Q. Lo, and D. L. Kwong, “11-Gb/s 80-km transmission performance of zero-chirp silicon Mach-Zehnder modulator,” Opt. Express 20(26), B350–B356 (2012).
[Crossref] [PubMed]

P. Dong, C. Xie, L. Chen, L. L. Buhl, and Y. K. Chen, “112-Gb/s monolithic PDM-QPSK modulator in silicon,” Opt. Express 20(26), B624–B629 (2012).
[Crossref] [PubMed]

D. Korn, R. Palmer, H. Yu, P. C. Schindler, L. Alloatti, M. Baier, R. Schmogrow, W. Bogaerts, S. K. Selvaraja, G. Lepage, M. Pantouvaki, J. M. D. Wouters, P. Verheyen, J. Van Campenhout, B. Chen, R. Baets, P. Absil, R. Dinu, C. Koos, W. Freude, and J. Leuthold, “Silicon-organic hybrid (SOH) IQ modulator using the linear electro-optic effect for transmitting 16QAM at 112 Gbit/s,” Opt. Express 21(11), 13219–13227 (2013).
[Crossref] [PubMed]

A. Samani, D. Patel, M. Chagnon, E. El-Fiky, R. Li, M. Jacques, N. Abadía, V. Veerasubramanian, and D. V. Plant, “Experimental parametric study of 128 Gb/s PAM-4 transmission system using a multi-electrode silicon photonic Mach Zehnder modulator,” Opt. Express 25(12), 13252–13262 (2017).
[Crossref] [PubMed]

T. Li, D. Wang, J. Zhang, Z. Zhou, F. Zhang, X. Wang, and H. Wu, “Demonstration of 6.25 Gbaud advanced modulation formats with subcarrier multiplexed technique on silicon Mach-Zehnder modulator,” Opt. Express 22(16), 19818–19823 (2014).
[Crossref] [PubMed]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
[Crossref] [PubMed]

J. E. Cunningham, D. Beckman, X. Zheng, D. Huang, T. Sze, and A. V. Krishnamoorthy, “PAM-4 signaling over VCSELs with 0.13 µm CMOS chip technology,” Opt. Express 14(25), 12028–12038 (2006).
[Crossref] [PubMed]

D. Ahn, C. Y. Hong, J. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, J. Michel, J. Chen, and F. X. Kärtner, “High performance, waveguide integrated Ge photodetectors,” Opt. Express 15(7), 3916–3921 (2007).
[Crossref] [PubMed]

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless silicon router for optical networks-on-chip,” Opt. Express 16(20), 15915–15922 (2008).
[Crossref] [PubMed]

Opt. Lett. (1)

Photon. Res. (1)

Other (4)

D. Neamen, Semiconductor Physics and Devices (McGraw-Hill, Inc., 2002).

K. Kenji and T. Kitoh, Introduction to Optical Waveguide Analysis (John Wiley & Sons, Inc., 2001).

L. Chrostowski and M. Hochberg, Silicon Photonics Design (Cambridge University Press, 2015).

C. Chen, X. Tang, and Z. Zhang, “Transmission of 56-Gb/s PAM-4 over 26-km single mode fiber using maximum likelihood sequence estimation,” in Optical Fiber Communication Conference (Optical Society of America,2015), paper Th4A.5.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic of the silicon Mach-Zehnder optical modulator, (b) cross section of the phase shifter and (c) micrograph of the device.
Fig. 2
Fig. 2 (a) Dependence of the propagation loss on the width of the silicon rib waveguide, (b) dependence of the maximum SFDRs for the SHD and the IMD3 on the width of the silicon rib waveguide and (c) dependence of the SFDRs for the SHD and the IMD3 on different locations of the PN junction when the width of the silicon rib waveguide is 400 nm.
Fig. 3
Fig. 3 Experiment setup for characterizing the transmission spectra, linearity performance and eye diagrams of the device. (TL: tunable laser; PC: polarization controller; ASE: amplified spontaneous emission; PPG: pulse pattern generator; PA: power attenuator; EC: electrical combiner; AMP: amplifier; DUT: device under test; DCA: digital communication analyzer; OSA: optical spectrum analyzer; LCA: lightwave component analyzer; EDFA: erbium-doped fiber amplifier; PD: photodetector; ESA: electrical signal analyzer; MS: microwave source; VOA: variable optical attenuator; RTO: real-time oscilloscope.)
Fig. 4
Fig. 4 (a) Static transmission spectra of the device under different conditions, (b) optical transmission at different bias voltages, (c) electro-optic response of the device under a reverse bias voltage of 2.5 V and (d) SFDRs for the IMD3 and the SHD of the device.
Fig. 5
Fig. 5 Eye diagrams of the applied electrical PAM-4 signals and the generated optical PAM-4 signals (1545 nm) at different baud rates.
Fig. 6
Fig. 6 32 Gbaud eye diagrams of the generated optical PAM-4 signals at different wavelengths.
Fig. 7
Fig. 7 BERs of the generated optical PAM-4 signals at different baud rates.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

| E x 0 | 2 = cos 2 ( k x x ) , | x | w / 2.
Δ n e f f = 1 n e f f 0 Δ n ( x ) n 0 ( x ) | E x 0 ( x ) | 2 d x | E x 0 ( x ) | 2 d x ,
Δ n ( x ) = Δ n e ( x ) + Δ n h ( x ) = 8.8 × 10 22 Δ N e ( x ) 8.5 × 10 18 [ Δ N h ( x ) ] 0.8 ,
X = A C d V b i a s ,
Δ n e f f = 1 n e f f 0 x ( V b i a s ) x { V b i a s + V s [ sin ( 2 π f 1 t ) + sin ( 2 π f 2 t ) ] } Δ n ( x ) n 0 ( x ) | E x 0 ( x ) | 2 d x | E x 0 ( x ) | 2 d x ,
Δ n e f f = B [ 2 k x ( C d { V b i a s + V s [ sin ( 2 π f 1 t ) + sin ( 2 π f 2 t ) ] } C d V b i a s ) + sin ( 2 k x x L 2 k x C d V b i a s ) sin ( 2 k x x L 2 k x C d { V b i a s + V s [ sin ( 2 π f 1 t ) + sin ( 2 π f 2 t ) ] } ) ] ,
O s ( t ) = 2 | E | 2 [ 1 + cos ( π 2 + Δ φ ) ] = C o n s t + | E | 2 2 sin ( Δ φ ) , C o n s t + | E | 2 [ 2 Δ φ ] = C o n s t + | E | 2 4 π Δ n e f f L λ
S H D = 1 T O s ( t ) sin ( 2 π 2 f 1 t ) d t ,
I M D 3 = 1 T O s ( t ) sin [ 2 π ( 2 f 1 f 2 ) t ] d t .

Metrics