Abstract

In the first time, a simulation model with considering the recording dynamics of material is built and is used to simulate evolution of the grating strength of the recorded hologram in a coaxial volume holographic memory system. In addition, phase modulation by lens array in the reference is introduced and observed to perform better diffracted signal quality and higher shifting selectivity, in both simulation and experiment. The use of lens array is found to provide multiple advantages in volume holographic memory system. The new simulation model potentially can be used to precisely design the system to obtain higher diffracted signal quality, higher shifting selectivity, and reduction of M# consumption and increase of storage capacity.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Improved performance in coaxial holographic data recording

Kenji Tanaka, Masaaki Hara, Kazutatsu Tokuyama, Kazuyuki Hirooka, Koji Ishioka, Atsushi Fukumoto, and Kenjiro Watanabe
Opt. Express 15(24) 16196-16209 (2007)

Homodyne readout on dc-removed coaxial holographic data storage

Shin Yasuda, Yasuhiro Ogasawara, Jiro Minabe, Katsunori Kawano, and Kazuhiro Hayashi
Appl. Opt. 48(36) 6851-6861 (2009)

Point spread function of a collinear holographic storage system

Ching-Cherng Sun, Ye-Wei Yu, Shu-Ching Hsieh, Tun-Chien Teng, and Meng-Fen Tsai
Opt. Express 15(26) 18111-18118 (2007)

References

  • View by:
  • |
  • |
  • |

  1. T. Hoshizawa, K. Shimada, K. Fujita, and Y. Tada, “Practical angular-multiplexing holographic data storage system with 2 terabyte capacity and 1 gigabit transfer rate,” Jpn. J. Appl. Phys. 55(9S), 09SA06 (2016).
    [Crossref]
  2. L. Dhar, K. Curtis, and T. Fäcke, “Holographic data storage: Coming of age,” Nat. Photonics 2(7), 403–405 (2008).
    [Crossref]
  3. M. Gu, X. Li, and Y. Cao, “Optical storage arrays: a perspective for future big data storage,” Light Sci. Appl. 3(5), e177 (2014).
    [Crossref]
  4. E. N. Leith, A. Kozma, J. Upatnieks, J. Marks, and N. Massey, “Holographic data storage in three-dimensional media,” Appl. Opt. 5(8), 1303–1311 (1966).
    [Crossref] [PubMed]
  5. L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” IEEE 92(8), 1231–1280 (2004).
    [Crossref]
  6. H. Horimai, X. Tan, and J. Li, “Collinear holography,” Appl. Opt. 44(13), 2575–2579 (2005).
    [Crossref] [PubMed]
  7. K. Tanaka, H. Mori, M. Hara, K. Hirooka, A. Fukumoto, and K. Watanabe, “High density recording of 270 Gbits/inch2 in a coaxial holographic storage system,” Tech. Digest of ISOM 2007, MO–D–03.
  8. K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, Holographic Data Storage: From Theory to Practical Systems (Wiley, 2010).
  9. K. Anderson and K. Curtis, “Polytopic multiplexing,” Opt. Lett. 29(12), 1402–1404 (2004).
    [Crossref] [PubMed]
  10. R. Fujimura, T. Shimura, and K. Kuroda, “Multiplexing capability in polychromatic reconstruction with selective detection method,” Opt. Express 18(2), 1091–1098 (2010).
    [Crossref] [PubMed]
  11. T. Ochiai, D. Barada, T. Fukuda, Y. Hayasaki, K. Kuroda, and T. Yatagai, “Angular multiplex recording of data pages by dual-channel polarization holography,” Opt. Lett. 38(5), 748–750 (2013).
    [Crossref] [PubMed]
  12. J. Zang, G. Kang, P. Li, Y. Liu, F. Fan, Y. Hong, Y. Huang, X. Tan, A. Wu, T. Shimura, and K. Kuroda, “Dual-channel recording based on the null reconstruction effect of orthogonal linear polarization holography,” Opt. Lett. 42(7), 1377–1380 (2017).
    [Crossref] [PubMed]
  13. G. Barbastathis, M. Levene, and D. Psaltis, “Shift multiplexing with spherical reference waves,” Appl. Opt. 35(14), 2403–2417 (1996).
    [Crossref] [PubMed]
  14. H. Y. S. Li and D. Psaltis, “Three-dimensional holographic disks,” Appl. Opt. 33(17), 3764–3774 (1994).
    [Crossref] [PubMed]
  15. T. C. Teng, Y. W. Yu, and C. C. Sun, “Enlarging multiplexing capacity with reduced radial cross talk in volume holographic discs,” Opt. Express 14(8), 3187–3192 (2006).
    [Crossref] [PubMed]
  16. T. Nobukawa, Y. Wani, and T. Nomura, “Multiplexed recording with uncorrelated computer-generated reference patterns in coaxial holographic data storage,” Opt. Lett. 40(10), 2161–2164 (2015).
    [Crossref] [PubMed]
  17. C. Li, L. Cao, Z. Wang, and G. Jin, “Hybrid polarization-angle multiplexing for volume holography in gold nanoparticle-doped photopolymer,” Opt. Lett. 39(24), 6891–6894 (2014).
    [Crossref] [PubMed]
  18. J. Li, L. Cao, H. Gu, X. Tan, Q. He, and G. Jin, “Orthogonal-reference-pattern-modulated shift multiplexing for collinear holographic data storage,” Opt. Lett. 37(5), 936–938 (2012).
    [Crossref] [PubMed]
  19. L. Cao, J. Liu, J. Li, Q. He, and G. Jin, “Orthogonal reference pattern multiplexing for collinear holographic data storage,” Appl. Opt. 53(1), 1–8 (2014).
    [Crossref] [PubMed]
  20. C. C. Sun and W. C. Su, “Three-dimensional shifting selectivity of random phase encoding in volume holograms,” Appl. Opt. 40(8), 1253–1260 (2001).
    [Crossref] [PubMed]
  21. F. H. Mok, G. W. Burr, and D. Psaltis, “System metric for holographic memory systems,” Opt. Lett. 21(12), 896–898 (1996).
    [Crossref] [PubMed]
  22. L. P. Yu, W. Chan, Z. Bao, and S. X. F. Cao, “Synthesis and physical measurements of a photorefractive polymer,” J. Chem. Soc.-Chem. Comm. 7(23), 1735–1737 (1992).
    [Crossref]
  23. M. R. Ayres and R. R. McLeod, “Medium consumption in holographic memories,” Appl. Opt. 48(19), 3626–3637 (2009).
    [Crossref] [PubMed]
  24. S. S. Orlov, W. Phillips, E. Bjornson, Y. Takashima, P. Sundaram, L. Hesselink, R. Okas, D. Kwan, and R. Snyder, “High-transfer-rate high-capacity holographic disk data-storage system,” Appl. Opt. 43(25), 4902–4914 (2004).
    [Crossref] [PubMed]
  25. T. Nobukawa and T. Nomura, “Multilevel recording of complex amplitude data pages in a holographic data storage system using digital holography,” Opt. Express 24(18), 21001–21011 (2016).
    [Crossref] [PubMed]
  26. J. Joseph and D. A. Waldman, “Homogenized Fourier transform holographic data storage using phase spatial light modulators and methods for recovery of data from the phase image,” Appl. Opt. 45(25), 6374–6380 (2006).
    [Crossref] [PubMed]
  27. Y. W. Yu, C. Y. Chen, and C. C. Sun, “Increase of signal-to-noise ratio of a collinear holographic storage system with reference modulated by a ring lens array,” Opt. Lett. 35(8), 1130–1132 (2010).
    [Crossref] [PubMed]
  28. S. Yasuda, Y. Ogasawara, J. Minabe, K. Kawano, M. Furuki, K. Hayashi, K. Haga, and H. Yoshizawa, “Optical noise reduction by reconstructing positive and negative images from Fourier holograms in coaxial holographic storage systems,” Opt. Lett. 31(11), 1639–1641 (2006).
    [Crossref] [PubMed]
  29. K. Tanaka, M. Hara, K. Tokuyama, K. Hirooka, K. Ishioka, A. Fukumoto, and K. Watanabe, “Improved performance in coaxial holographic data recording,” Opt. Express 15(24), 16196–16209 (2007).
    [Crossref] [PubMed]
  30. Y. W. Yu, S. Xiao, C. Y. Cheng, and C. C. Sun, “One-shot and aberration-tolerable homodyne detection for holographic storage readout through double-frequency grating-based lateral shearing interferometry,” Opt. Express 24(10), 10412–10423 (2016).
    [Crossref] [PubMed]
  31. S. R. Lambourdiere, A. Fukumoto, K. Tanaka, and K. Watanabe, “Simulation of Holographic Data Storage for the Optical Collinear System,” Jpn. J. Appl. Phys. 45(2B), 1246–1252 (2006).
    [Crossref]
  32. K. Kuroda, Y. Matsuhashi, R. Fujimura, and T. Shimura, “Theory of polarization holography,” Opt. Rev. 18(5), 374–382 (2011).
    [Crossref]
  33. J. Wang, G. Kang, A. Wu, Y. Liu, J. Zang, P. Li, X. Tan, T. Shimura, and K. Kuroda, “Investigation of the extraordinary null reconstruction phenomenon in polarization volume hologram,” Opt. Express 24(2), 1641–1647 (2016).
    [Crossref] [PubMed]
  34. C. Li, L. Cao, Q. He, and G. Jin, “Holographic kinetics for mixed volume gratings in gold nanoparticles doped photopolymer,” Opt. Express 22(5), 5017–5028 (2014).
    [Crossref] [PubMed]
  35. B. A. Kowalski, A. C. Sullivan, M. D. Alim, and R. R. Mcleod, “Predictive modeling of two-component holographic photopolymers,” Proc. SPIE 10233, 10233N (2017).
  36. T. Shimura, S. Ichimura, R. Fujimura, K. Kuroda, X. Tan, and H. Horimai, “Analysis of a collinear holographic storage system: introduction of pixel spread function,” Opt. Lett. 31(9), 1208–1210 (2006).
    [Crossref] [PubMed]
  37. T. Shimura, Y. Ashizuka, M. Terada, R. Fujimura, K. Kuroda, “What Limits the Storage Density of the Collinear Holographic Memory.” Tech. Digest of ODS2007,TuD1.
    [Crossref]
  38. C. C. Sun, Y. W. Yu, S. C. Hsieh, T. C. Teng, and M. F. Tsai, “Point spread function of a collinear holographic storage system,” Opt. Express 15(26), 18111–18118 (2007).
    [Crossref] [PubMed]
  39. Y. W. Yu, T. C. Teng, S. C. Hsieh, C. Y. Cheng, and C. C. Sun, “Shifting selectivity of collinear volume Holographic storage,” Opt. Commun. 283(20), 3895–3900 (2010).
    [Crossref]
  40. C. C. Sun, “A simplified model for diffraction analysis of volume holograms,” Opt. Eng. 42(5), 1184–1185 (2003).
    [Crossref]
  41. S. H. Lin, Y. N. Hsiao, and K. Y. Hsu, “Preparation and Characterization of Irgacure 784 Doped Photopolymers for Holographic Data Storage at 532 nm,” J. Opt. A, Pure Appl. Opt. 11(2), 024012 (2009).
    [Crossref]
  42. K. Y. Hsu, S. H. Lin, Y. N. Hsiao, and W. T. Whang, “Experimental Characterization of Phenanthrenequinone- Doped Poly(methyl methacrylate) Photopolymer for Volume Holographic Storage,” Opt. Eng. 42(5), 1390–1396 (2003).
    [Crossref]
  43. J. Mumbru, I. Solomatine, D. Psaltis, S. H. Lin, K. Y. Hsu, W. Z. Chen, and W. T. Whang, “Comparison of the recording dynamics of phenanthrenequinone-doped poly (methyl methacrplate) materials,” Opt. Commun. 194(1-3), 103–108 (2001).
    [Crossref]

2017 (2)

2016 (4)

2015 (1)

2014 (4)

2013 (1)

2012 (1)

2011 (1)

K. Kuroda, Y. Matsuhashi, R. Fujimura, and T. Shimura, “Theory of polarization holography,” Opt. Rev. 18(5), 374–382 (2011).
[Crossref]

2010 (3)

2009 (2)

S. H. Lin, Y. N. Hsiao, and K. Y. Hsu, “Preparation and Characterization of Irgacure 784 Doped Photopolymers for Holographic Data Storage at 532 nm,” J. Opt. A, Pure Appl. Opt. 11(2), 024012 (2009).
[Crossref]

M. R. Ayres and R. R. McLeod, “Medium consumption in holographic memories,” Appl. Opt. 48(19), 3626–3637 (2009).
[Crossref] [PubMed]

2008 (1)

L. Dhar, K. Curtis, and T. Fäcke, “Holographic data storage: Coming of age,” Nat. Photonics 2(7), 403–405 (2008).
[Crossref]

2007 (2)

2006 (5)

2005 (1)

2004 (3)

2003 (2)

K. Y. Hsu, S. H. Lin, Y. N. Hsiao, and W. T. Whang, “Experimental Characterization of Phenanthrenequinone- Doped Poly(methyl methacrylate) Photopolymer for Volume Holographic Storage,” Opt. Eng. 42(5), 1390–1396 (2003).
[Crossref]

C. C. Sun, “A simplified model for diffraction analysis of volume holograms,” Opt. Eng. 42(5), 1184–1185 (2003).
[Crossref]

2001 (2)

J. Mumbru, I. Solomatine, D. Psaltis, S. H. Lin, K. Y. Hsu, W. Z. Chen, and W. T. Whang, “Comparison of the recording dynamics of phenanthrenequinone-doped poly (methyl methacrplate) materials,” Opt. Commun. 194(1-3), 103–108 (2001).
[Crossref]

C. C. Sun and W. C. Su, “Three-dimensional shifting selectivity of random phase encoding in volume holograms,” Appl. Opt. 40(8), 1253–1260 (2001).
[Crossref] [PubMed]

1996 (2)

1994 (1)

1992 (1)

L. P. Yu, W. Chan, Z. Bao, and S. X. F. Cao, “Synthesis and physical measurements of a photorefractive polymer,” J. Chem. Soc.-Chem. Comm. 7(23), 1735–1737 (1992).
[Crossref]

1966 (1)

Alim, M. D.

B. A. Kowalski, A. C. Sullivan, M. D. Alim, and R. R. Mcleod, “Predictive modeling of two-component holographic photopolymers,” Proc. SPIE 10233, 10233N (2017).

Anderson, K.

Ayres, M. R.

Bao, Z.

L. P. Yu, W. Chan, Z. Bao, and S. X. F. Cao, “Synthesis and physical measurements of a photorefractive polymer,” J. Chem. Soc.-Chem. Comm. 7(23), 1735–1737 (1992).
[Crossref]

Barada, D.

Barbastathis, G.

Bashaw, M. C.

L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” IEEE 92(8), 1231–1280 (2004).
[Crossref]

Bjornson, E.

Burr, G. W.

Cao, L.

Cao, S. X. F.

L. P. Yu, W. Chan, Z. Bao, and S. X. F. Cao, “Synthesis and physical measurements of a photorefractive polymer,” J. Chem. Soc.-Chem. Comm. 7(23), 1735–1737 (1992).
[Crossref]

Cao, Y.

M. Gu, X. Li, and Y. Cao, “Optical storage arrays: a perspective for future big data storage,” Light Sci. Appl. 3(5), e177 (2014).
[Crossref]

Chan, W.

L. P. Yu, W. Chan, Z. Bao, and S. X. F. Cao, “Synthesis and physical measurements of a photorefractive polymer,” J. Chem. Soc.-Chem. Comm. 7(23), 1735–1737 (1992).
[Crossref]

Chen, C. Y.

Chen, W. Z.

J. Mumbru, I. Solomatine, D. Psaltis, S. H. Lin, K. Y. Hsu, W. Z. Chen, and W. T. Whang, “Comparison of the recording dynamics of phenanthrenequinone-doped poly (methyl methacrplate) materials,” Opt. Commun. 194(1-3), 103–108 (2001).
[Crossref]

Cheng, C. Y.

Curtis, K.

L. Dhar, K. Curtis, and T. Fäcke, “Holographic data storage: Coming of age,” Nat. Photonics 2(7), 403–405 (2008).
[Crossref]

K. Anderson and K. Curtis, “Polytopic multiplexing,” Opt. Lett. 29(12), 1402–1404 (2004).
[Crossref] [PubMed]

Dhar, L.

L. Dhar, K. Curtis, and T. Fäcke, “Holographic data storage: Coming of age,” Nat. Photonics 2(7), 403–405 (2008).
[Crossref]

Fäcke, T.

L. Dhar, K. Curtis, and T. Fäcke, “Holographic data storage: Coming of age,” Nat. Photonics 2(7), 403–405 (2008).
[Crossref]

Fan, F.

Fujimura, R.

Fujita, K.

T. Hoshizawa, K. Shimada, K. Fujita, and Y. Tada, “Practical angular-multiplexing holographic data storage system with 2 terabyte capacity and 1 gigabit transfer rate,” Jpn. J. Appl. Phys. 55(9S), 09SA06 (2016).
[Crossref]

Fukuda, T.

Fukumoto, A.

K. Tanaka, M. Hara, K. Tokuyama, K. Hirooka, K. Ishioka, A. Fukumoto, and K. Watanabe, “Improved performance in coaxial holographic data recording,” Opt. Express 15(24), 16196–16209 (2007).
[Crossref] [PubMed]

S. R. Lambourdiere, A. Fukumoto, K. Tanaka, and K. Watanabe, “Simulation of Holographic Data Storage for the Optical Collinear System,” Jpn. J. Appl. Phys. 45(2B), 1246–1252 (2006).
[Crossref]

Furuki, M.

Gu, H.

Gu, M.

M. Gu, X. Li, and Y. Cao, “Optical storage arrays: a perspective for future big data storage,” Light Sci. Appl. 3(5), e177 (2014).
[Crossref]

Haga, K.

Hara, M.

Hayasaki, Y.

Hayashi, K.

He, Q.

Hesselink, L.

Hirooka, K.

Hong, Y.

Horimai, H.

Hoshizawa, T.

T. Hoshizawa, K. Shimada, K. Fujita, and Y. Tada, “Practical angular-multiplexing holographic data storage system with 2 terabyte capacity and 1 gigabit transfer rate,” Jpn. J. Appl. Phys. 55(9S), 09SA06 (2016).
[Crossref]

Hsiao, Y. N.

S. H. Lin, Y. N. Hsiao, and K. Y. Hsu, “Preparation and Characterization of Irgacure 784 Doped Photopolymers for Holographic Data Storage at 532 nm,” J. Opt. A, Pure Appl. Opt. 11(2), 024012 (2009).
[Crossref]

K. Y. Hsu, S. H. Lin, Y. N. Hsiao, and W. T. Whang, “Experimental Characterization of Phenanthrenequinone- Doped Poly(methyl methacrylate) Photopolymer for Volume Holographic Storage,” Opt. Eng. 42(5), 1390–1396 (2003).
[Crossref]

Hsieh, S. C.

Y. W. Yu, T. C. Teng, S. C. Hsieh, C. Y. Cheng, and C. C. Sun, “Shifting selectivity of collinear volume Holographic storage,” Opt. Commun. 283(20), 3895–3900 (2010).
[Crossref]

C. C. Sun, Y. W. Yu, S. C. Hsieh, T. C. Teng, and M. F. Tsai, “Point spread function of a collinear holographic storage system,” Opt. Express 15(26), 18111–18118 (2007).
[Crossref] [PubMed]

Hsu, K. Y.

S. H. Lin, Y. N. Hsiao, and K. Y. Hsu, “Preparation and Characterization of Irgacure 784 Doped Photopolymers for Holographic Data Storage at 532 nm,” J. Opt. A, Pure Appl. Opt. 11(2), 024012 (2009).
[Crossref]

K. Y. Hsu, S. H. Lin, Y. N. Hsiao, and W. T. Whang, “Experimental Characterization of Phenanthrenequinone- Doped Poly(methyl methacrylate) Photopolymer for Volume Holographic Storage,” Opt. Eng. 42(5), 1390–1396 (2003).
[Crossref]

J. Mumbru, I. Solomatine, D. Psaltis, S. H. Lin, K. Y. Hsu, W. Z. Chen, and W. T. Whang, “Comparison of the recording dynamics of phenanthrenequinone-doped poly (methyl methacrplate) materials,” Opt. Commun. 194(1-3), 103–108 (2001).
[Crossref]

Huang, Y.

Ichimura, S.

Ishioka, K.

Jin, G.

Joseph, J.

Kang, G.

Kawano, K.

Kowalski, B. A.

B. A. Kowalski, A. C. Sullivan, M. D. Alim, and R. R. Mcleod, “Predictive modeling of two-component holographic photopolymers,” Proc. SPIE 10233, 10233N (2017).

Kozma, A.

Kuroda, K.

Kwan, D.

Lambourdiere, S. R.

S. R. Lambourdiere, A. Fukumoto, K. Tanaka, and K. Watanabe, “Simulation of Holographic Data Storage for the Optical Collinear System,” Jpn. J. Appl. Phys. 45(2B), 1246–1252 (2006).
[Crossref]

Leith, E. N.

Levene, M.

Li, C.

Li, H. Y. S.

Li, J.

Li, P.

Li, X.

M. Gu, X. Li, and Y. Cao, “Optical storage arrays: a perspective for future big data storage,” Light Sci. Appl. 3(5), e177 (2014).
[Crossref]

Lin, S. H.

S. H. Lin, Y. N. Hsiao, and K. Y. Hsu, “Preparation and Characterization of Irgacure 784 Doped Photopolymers for Holographic Data Storage at 532 nm,” J. Opt. A, Pure Appl. Opt. 11(2), 024012 (2009).
[Crossref]

K. Y. Hsu, S. H. Lin, Y. N. Hsiao, and W. T. Whang, “Experimental Characterization of Phenanthrenequinone- Doped Poly(methyl methacrylate) Photopolymer for Volume Holographic Storage,” Opt. Eng. 42(5), 1390–1396 (2003).
[Crossref]

J. Mumbru, I. Solomatine, D. Psaltis, S. H. Lin, K. Y. Hsu, W. Z. Chen, and W. T. Whang, “Comparison of the recording dynamics of phenanthrenequinone-doped poly (methyl methacrplate) materials,” Opt. Commun. 194(1-3), 103–108 (2001).
[Crossref]

Liu, J.

Liu, Y.

Marks, J.

Massey, N.

Matsuhashi, Y.

K. Kuroda, Y. Matsuhashi, R. Fujimura, and T. Shimura, “Theory of polarization holography,” Opt. Rev. 18(5), 374–382 (2011).
[Crossref]

Mcleod, R. R.

B. A. Kowalski, A. C. Sullivan, M. D. Alim, and R. R. Mcleod, “Predictive modeling of two-component holographic photopolymers,” Proc. SPIE 10233, 10233N (2017).

M. R. Ayres and R. R. McLeod, “Medium consumption in holographic memories,” Appl. Opt. 48(19), 3626–3637 (2009).
[Crossref] [PubMed]

Minabe, J.

Mok, F. H.

Mumbru, J.

J. Mumbru, I. Solomatine, D. Psaltis, S. H. Lin, K. Y. Hsu, W. Z. Chen, and W. T. Whang, “Comparison of the recording dynamics of phenanthrenequinone-doped poly (methyl methacrplate) materials,” Opt. Commun. 194(1-3), 103–108 (2001).
[Crossref]

Nobukawa, T.

Nomura, T.

Ochiai, T.

Ogasawara, Y.

Okas, R.

Orlov, S. S.

Phillips, W.

Psaltis, D.

Shimada, K.

T. Hoshizawa, K. Shimada, K. Fujita, and Y. Tada, “Practical angular-multiplexing holographic data storage system with 2 terabyte capacity and 1 gigabit transfer rate,” Jpn. J. Appl. Phys. 55(9S), 09SA06 (2016).
[Crossref]

Shimura, T.

Snyder, R.

Solomatine, I.

J. Mumbru, I. Solomatine, D. Psaltis, S. H. Lin, K. Y. Hsu, W. Z. Chen, and W. T. Whang, “Comparison of the recording dynamics of phenanthrenequinone-doped poly (methyl methacrplate) materials,” Opt. Commun. 194(1-3), 103–108 (2001).
[Crossref]

Su, W. C.

Sullivan, A. C.

B. A. Kowalski, A. C. Sullivan, M. D. Alim, and R. R. Mcleod, “Predictive modeling of two-component holographic photopolymers,” Proc. SPIE 10233, 10233N (2017).

Sun, C. C.

Sundaram, P.

Tada, Y.

T. Hoshizawa, K. Shimada, K. Fujita, and Y. Tada, “Practical angular-multiplexing holographic data storage system with 2 terabyte capacity and 1 gigabit transfer rate,” Jpn. J. Appl. Phys. 55(9S), 09SA06 (2016).
[Crossref]

Takashima, Y.

Tan, X.

Tanaka, K.

K. Tanaka, M. Hara, K. Tokuyama, K. Hirooka, K. Ishioka, A. Fukumoto, and K. Watanabe, “Improved performance in coaxial holographic data recording,” Opt. Express 15(24), 16196–16209 (2007).
[Crossref] [PubMed]

S. R. Lambourdiere, A. Fukumoto, K. Tanaka, and K. Watanabe, “Simulation of Holographic Data Storage for the Optical Collinear System,” Jpn. J. Appl. Phys. 45(2B), 1246–1252 (2006).
[Crossref]

Teng, T. C.

Tokuyama, K.

Tsai, M. F.

Upatnieks, J.

Waldman, D. A.

Wang, J.

Wang, Z.

Wani, Y.

Watanabe, K.

K. Tanaka, M. Hara, K. Tokuyama, K. Hirooka, K. Ishioka, A. Fukumoto, and K. Watanabe, “Improved performance in coaxial holographic data recording,” Opt. Express 15(24), 16196–16209 (2007).
[Crossref] [PubMed]

S. R. Lambourdiere, A. Fukumoto, K. Tanaka, and K. Watanabe, “Simulation of Holographic Data Storage for the Optical Collinear System,” Jpn. J. Appl. Phys. 45(2B), 1246–1252 (2006).
[Crossref]

Whang, W. T.

K. Y. Hsu, S. H. Lin, Y. N. Hsiao, and W. T. Whang, “Experimental Characterization of Phenanthrenequinone- Doped Poly(methyl methacrylate) Photopolymer for Volume Holographic Storage,” Opt. Eng. 42(5), 1390–1396 (2003).
[Crossref]

J. Mumbru, I. Solomatine, D. Psaltis, S. H. Lin, K. Y. Hsu, W. Z. Chen, and W. T. Whang, “Comparison of the recording dynamics of phenanthrenequinone-doped poly (methyl methacrplate) materials,” Opt. Commun. 194(1-3), 103–108 (2001).
[Crossref]

Wu, A.

Xiao, S.

Yasuda, S.

Yatagai, T.

Yoshizawa, H.

Yu, L. P.

L. P. Yu, W. Chan, Z. Bao, and S. X. F. Cao, “Synthesis and physical measurements of a photorefractive polymer,” J. Chem. Soc.-Chem. Comm. 7(23), 1735–1737 (1992).
[Crossref]

Yu, Y. W.

Zang, J.

Appl. Opt. (9)

E. N. Leith, A. Kozma, J. Upatnieks, J. Marks, and N. Massey, “Holographic data storage in three-dimensional media,” Appl. Opt. 5(8), 1303–1311 (1966).
[Crossref] [PubMed]

H. Y. S. Li and D. Psaltis, “Three-dimensional holographic disks,” Appl. Opt. 33(17), 3764–3774 (1994).
[Crossref] [PubMed]

G. Barbastathis, M. Levene, and D. Psaltis, “Shift multiplexing with spherical reference waves,” Appl. Opt. 35(14), 2403–2417 (1996).
[Crossref] [PubMed]

C. C. Sun and W. C. Su, “Three-dimensional shifting selectivity of random phase encoding in volume holograms,” Appl. Opt. 40(8), 1253–1260 (2001).
[Crossref] [PubMed]

S. S. Orlov, W. Phillips, E. Bjornson, Y. Takashima, P. Sundaram, L. Hesselink, R. Okas, D. Kwan, and R. Snyder, “High-transfer-rate high-capacity holographic disk data-storage system,” Appl. Opt. 43(25), 4902–4914 (2004).
[Crossref] [PubMed]

H. Horimai, X. Tan, and J. Li, “Collinear holography,” Appl. Opt. 44(13), 2575–2579 (2005).
[Crossref] [PubMed]

M. R. Ayres and R. R. McLeod, “Medium consumption in holographic memories,” Appl. Opt. 48(19), 3626–3637 (2009).
[Crossref] [PubMed]

L. Cao, J. Liu, J. Li, Q. He, and G. Jin, “Orthogonal reference pattern multiplexing for collinear holographic data storage,” Appl. Opt. 53(1), 1–8 (2014).
[Crossref] [PubMed]

J. Joseph and D. A. Waldman, “Homogenized Fourier transform holographic data storage using phase spatial light modulators and methods for recovery of data from the phase image,” Appl. Opt. 45(25), 6374–6380 (2006).
[Crossref] [PubMed]

IEEE (1)

L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” IEEE 92(8), 1231–1280 (2004).
[Crossref]

J. Chem. Soc.-Chem. Comm. (1)

L. P. Yu, W. Chan, Z. Bao, and S. X. F. Cao, “Synthesis and physical measurements of a photorefractive polymer,” J. Chem. Soc.-Chem. Comm. 7(23), 1735–1737 (1992).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

S. H. Lin, Y. N. Hsiao, and K. Y. Hsu, “Preparation and Characterization of Irgacure 784 Doped Photopolymers for Holographic Data Storage at 532 nm,” J. Opt. A, Pure Appl. Opt. 11(2), 024012 (2009).
[Crossref]

Jpn. J. Appl. Phys. (2)

S. R. Lambourdiere, A. Fukumoto, K. Tanaka, and K. Watanabe, “Simulation of Holographic Data Storage for the Optical Collinear System,” Jpn. J. Appl. Phys. 45(2B), 1246–1252 (2006).
[Crossref]

T. Hoshizawa, K. Shimada, K. Fujita, and Y. Tada, “Practical angular-multiplexing holographic data storage system with 2 terabyte capacity and 1 gigabit transfer rate,” Jpn. J. Appl. Phys. 55(9S), 09SA06 (2016).
[Crossref]

Light Sci. Appl. (1)

M. Gu, X. Li, and Y. Cao, “Optical storage arrays: a perspective for future big data storage,” Light Sci. Appl. 3(5), e177 (2014).
[Crossref]

Nat. Photonics (1)

L. Dhar, K. Curtis, and T. Fäcke, “Holographic data storage: Coming of age,” Nat. Photonics 2(7), 403–405 (2008).
[Crossref]

Opt. Commun. (2)

Y. W. Yu, T. C. Teng, S. C. Hsieh, C. Y. Cheng, and C. C. Sun, “Shifting selectivity of collinear volume Holographic storage,” Opt. Commun. 283(20), 3895–3900 (2010).
[Crossref]

J. Mumbru, I. Solomatine, D. Psaltis, S. H. Lin, K. Y. Hsu, W. Z. Chen, and W. T. Whang, “Comparison of the recording dynamics of phenanthrenequinone-doped poly (methyl methacrplate) materials,” Opt. Commun. 194(1-3), 103–108 (2001).
[Crossref]

Opt. Eng. (2)

C. C. Sun, “A simplified model for diffraction analysis of volume holograms,” Opt. Eng. 42(5), 1184–1185 (2003).
[Crossref]

K. Y. Hsu, S. H. Lin, Y. N. Hsiao, and W. T. Whang, “Experimental Characterization of Phenanthrenequinone- Doped Poly(methyl methacrylate) Photopolymer for Volume Holographic Storage,” Opt. Eng. 42(5), 1390–1396 (2003).
[Crossref]

Opt. Express (8)

C. Li, L. Cao, Q. He, and G. Jin, “Holographic kinetics for mixed volume gratings in gold nanoparticles doped photopolymer,” Opt. Express 22(5), 5017–5028 (2014).
[Crossref] [PubMed]

J. Wang, G. Kang, A. Wu, Y. Liu, J. Zang, P. Li, X. Tan, T. Shimura, and K. Kuroda, “Investigation of the extraordinary null reconstruction phenomenon in polarization volume hologram,” Opt. Express 24(2), 1641–1647 (2016).
[Crossref] [PubMed]

Y. W. Yu, S. Xiao, C. Y. Cheng, and C. C. Sun, “One-shot and aberration-tolerable homodyne detection for holographic storage readout through double-frequency grating-based lateral shearing interferometry,” Opt. Express 24(10), 10412–10423 (2016).
[Crossref] [PubMed]

T. Nobukawa and T. Nomura, “Multilevel recording of complex amplitude data pages in a holographic data storage system using digital holography,” Opt. Express 24(18), 21001–21011 (2016).
[Crossref] [PubMed]

R. Fujimura, T. Shimura, and K. Kuroda, “Multiplexing capability in polychromatic reconstruction with selective detection method,” Opt. Express 18(2), 1091–1098 (2010).
[Crossref] [PubMed]

T. C. Teng, Y. W. Yu, and C. C. Sun, “Enlarging multiplexing capacity with reduced radial cross talk in volume holographic discs,” Opt. Express 14(8), 3187–3192 (2006).
[Crossref] [PubMed]

K. Tanaka, M. Hara, K. Tokuyama, K. Hirooka, K. Ishioka, A. Fukumoto, and K. Watanabe, “Improved performance in coaxial holographic data recording,” Opt. Express 15(24), 16196–16209 (2007).
[Crossref] [PubMed]

C. C. Sun, Y. W. Yu, S. C. Hsieh, T. C. Teng, and M. F. Tsai, “Point spread function of a collinear holographic storage system,” Opt. Express 15(26), 18111–18118 (2007).
[Crossref] [PubMed]

Opt. Lett. (10)

S. Yasuda, Y. Ogasawara, J. Minabe, K. Kawano, M. Furuki, K. Hayashi, K. Haga, and H. Yoshizawa, “Optical noise reduction by reconstructing positive and negative images from Fourier holograms in coaxial holographic storage systems,” Opt. Lett. 31(11), 1639–1641 (2006).
[Crossref] [PubMed]

T. Shimura, S. Ichimura, R. Fujimura, K. Kuroda, X. Tan, and H. Horimai, “Analysis of a collinear holographic storage system: introduction of pixel spread function,” Opt. Lett. 31(9), 1208–1210 (2006).
[Crossref] [PubMed]

Y. W. Yu, C. Y. Chen, and C. C. Sun, “Increase of signal-to-noise ratio of a collinear holographic storage system with reference modulated by a ring lens array,” Opt. Lett. 35(8), 1130–1132 (2010).
[Crossref] [PubMed]

J. Li, L. Cao, H. Gu, X. Tan, Q. He, and G. Jin, “Orthogonal-reference-pattern-modulated shift multiplexing for collinear holographic data storage,” Opt. Lett. 37(5), 936–938 (2012).
[Crossref] [PubMed]

T. Ochiai, D. Barada, T. Fukuda, Y. Hayasaki, K. Kuroda, and T. Yatagai, “Angular multiplex recording of data pages by dual-channel polarization holography,” Opt. Lett. 38(5), 748–750 (2013).
[Crossref] [PubMed]

J. Zang, G. Kang, P. Li, Y. Liu, F. Fan, Y. Hong, Y. Huang, X. Tan, A. Wu, T. Shimura, and K. Kuroda, “Dual-channel recording based on the null reconstruction effect of orthogonal linear polarization holography,” Opt. Lett. 42(7), 1377–1380 (2017).
[Crossref] [PubMed]

C. Li, L. Cao, Z. Wang, and G. Jin, “Hybrid polarization-angle multiplexing for volume holography in gold nanoparticle-doped photopolymer,” Opt. Lett. 39(24), 6891–6894 (2014).
[Crossref] [PubMed]

T. Nobukawa, Y. Wani, and T. Nomura, “Multiplexed recording with uncorrelated computer-generated reference patterns in coaxial holographic data storage,” Opt. Lett. 40(10), 2161–2164 (2015).
[Crossref] [PubMed]

K. Anderson and K. Curtis, “Polytopic multiplexing,” Opt. Lett. 29(12), 1402–1404 (2004).
[Crossref] [PubMed]

F. H. Mok, G. W. Burr, and D. Psaltis, “System metric for holographic memory systems,” Opt. Lett. 21(12), 896–898 (1996).
[Crossref] [PubMed]

Opt. Rev. (1)

K. Kuroda, Y. Matsuhashi, R. Fujimura, and T. Shimura, “Theory of polarization holography,” Opt. Rev. 18(5), 374–382 (2011).
[Crossref]

Proc. SPIE (1)

B. A. Kowalski, A. C. Sullivan, M. D. Alim, and R. R. Mcleod, “Predictive modeling of two-component holographic photopolymers,” Proc. SPIE 10233, 10233N (2017).

Other (3)

T. Shimura, Y. Ashizuka, M. Terada, R. Fujimura, K. Kuroda, “What Limits the Storage Density of the Collinear Holographic Memory.” Tech. Digest of ODS2007,TuD1.
[Crossref]

K. Tanaka, H. Mori, M. Hara, K. Hirooka, A. Fukumoto, and K. Watanabe, “High density recording of 270 Gbits/inch2 in a coaxial holographic storage system,” Tech. Digest of ISOM 2007, MO–D–03.

K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, Holographic Data Storage: From Theory to Practical Systems (Wiley, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 The simplified optical model of the coaxial VHM system.
Fig. 2
Fig. 2 The measured diffraction efficiency of PQ/PMMA as a function of exposure energy.
Fig. 3
Fig. 3 The experiment setup, where the modulated phase of the lens array is imaged to the SLM. L: lens, PBS: polarized beam splitter, M: mirror, QWP: quarter wave plate, Obj: objective lens, PL: polarizer.
Fig. 4
Fig. 4 Simulation of the readout signal for (a) without lens array, and (b) with the lens array with focal length of 46.7mm.
Fig. 5
Fig. 5 Simulation of the diffracted signal based on Eq. (16) for different exposure time. (a) without lens array, (b) with the lens array with focal length of 46.7mm, and (c) with the lens array with focal length of 13.8mm.
Fig. 6
Fig. 6 The diffracted signals for different lens-arrays applied with the recording exposure time of (a) 3 sec. (simulation), (b) 3 sec. (experiment), (c) 60 sec. (simulation), and (d) 60 sec. (experiment).
Fig. 7
Fig. 7 In the case without lens array, the diffracted signals for different lateral displacement in (a) simulation, and (b) the corresponding experiment.
Fig. 8
Fig. 8 In the case of lens array reference, the diffracted signals for different lateral displacement in (a) simulation, and (b) the corresponding experiment.
Fig. 9
Fig. 9 The normalized selectivity in simulation (blue line) and the corresponding measurement (red &green lines) in the cases of (a) the general ring reference, (b) lens array reference with the focal length of 46.7mm, and (c) of 13.8mm.
Fig. 10
Fig. 10 The diffracted signals for different references with the medium thickness of (a) 0.5mm (simulation), (b) 0.5mm (experiment), (c) 1mm (simulation), and (d) 1mm (experiment).

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

η= M # 2 N 2 .
M#=NΔ n e L,
R(u,v,Δz)= e jk( 2f+Δz ) jλf { U R ( x,y ) e j πΔz λ f 2 ( x 2 + y 2 ) }| u λf v λf ,
S(u,v,Δz)= e jk( 2f+Δz ) jλf { U S ( x,y ) e j πΔz λ f 2 ( x 2 + y 2 ) }| u λf v λf ,
P(u,v,Δz)= e jk( 2f+Δz ) jλf { U P ( x,y ) e j πΔz λ f 2 ( x 2 + y 2 ) }| u λf v λf ,
tAI= | R+S | 2 .
tAI=RDM( | R+S | 2 ).
η= sin 2 [ 2πT λ Δn( E ) ],
Δn( E )= A 1 ×( 1 e E E τ1 ) A 2 ×( 1 e E E τ2 ),
U d (u,v,Δz)=P(u,v,Δz)RDM( | R(u,v,Δz)+S(u,v,Δz) | 2 ),
U " ( u 2 , v 2 ,Δz)= e jk(fΔz) jλ(fΔz) U d (u,v,Δz). e j k 2(fΔz) [ ( u 2 u ) 2 + ( v 2 v ) 2 ] dudv
U ' ( u 2 , v 2 ,Δz)= U " ( u 2 , v 2 ,Δz) e j k 2f ( u 2 2 + v 2 2 ) .
U l ( x 0 , y 0 ,Δz)= e jkf jλf U ' ( u 2 , v 2 ,Δz). e j k 2f [ ( x 0 u 2 ) 2 + ( y 0 v 2 ) 2 ] d u 2 d v 2
U l ( x 0 , y 0 ,Δz)= (λf) 2 e jπ 8 f 3 Δz( x 0 2 + y 0 2 ) λ f 2 { { e j πΔz λ f 2 ( x 0 2 + y 0 2 ) U p ( x 0 , y 0 ) }{ RDM [ | R(u,v,Δz) , +S(u,v,Δz)| 2 ] }| x 0 y 0 }
U det ( x 0 , y 0 )= (λf) 2 T/2 T/2 e j 8πf λ j πΔz λ f 2 ( x 0 2 + y 0 2 ) { { U p ( x 0 , y 0 ) e j πΔz λ f 2 ( x 0 2 + y 0 2 ) } . { RDM[ | R(u,v,Δz)+S(u,v,Δz) | 2 ] }| x 0 y 0 }dΔz
U det ( x 0 , y 0 )= (λf) 2 T/2 T/2 e j 8πf λ j πΔz λ f 2 ( x 0 2 + y 0 2 ) { { U p ( x 0 , y 0 ) e j πΔz λ f 2 ( x 0 2 + y 0 2 ) } { e j 4π λf (a x 0 +b y 0 ) { RDM[ | R(u,v,Δz)+S(u,v,Δz) | 2 ] }| x 0 y 0 } }dΔz.

Metrics