Abstract

We investigate the Berry phase in the nanocrystal complex made of a metal nanoparticle and a slowly rotating semiconductor quantum dot under the radiation of a circularly polarized light. The Berry phase in the dynamic system is found to be more effective to manifest the interaction between the plasmon in the metal nanoparticle and the exciton in the quantum dot. The dependences of the Berry phase on the interparticle distance and the relative position are studied in the weak field condition. The methods to observe the Berry phase are also given.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Berry phase in an anti-PT symmetric metal-semiconductor complex system

Bo Lu, Xiao-Fei Liu, Yong-Pan Gao, Cong Cao, Tie-Jun Wang, and Chuan Wang
Opt. Express 27(16) 22237-22245 (2019)

Ultrafast optical switching in quantum dot-metallic nanoparticle hybrid systems

Wen-Xing Yang, Ai-Xi Chen, Ziwen Huang, and Ray-Kuang Lee
Opt. Express 23(10) 13032-13040 (2015)

References

  • View by:
  • |
  • |
  • |

  1. G. Bachelier and A. Mlayah, “Surface plasmon mediated Raman scattering in metal nanoparticles,” Phys. Rev. B 69, 205408 (2004).
    [Crossref]
  2. I. L. Rasskazov, S. V. Karpov, and V. A. Markel, “Surface plasmon polaritons in curved chains of metal nanoparticles,” Phys. Rev. B 90, 075405 (2014).
    [Crossref]
  3. P. J. Compaijen, V. A. Malyshev, and J. Knoester, “Surface-mediated light transmission in metal nanoparticle chains,” Phys. Rev. B 87, 205437 (2013).
    [Crossref]
  4. C. Schulhauser, D. Haft, R. J. Warburton, K. Karrai, A. O. Govorov, A. V. Kalameitsev, A. Chaplik, W. Schoenfeld, J. M. Garcia, and P. M. Petroff, “Magneto-optical properties of charged excitons in quantum dots,” Phys. Rev. B 66, 193303 (2002).
    [Crossref]
  5. V. N. Gladilin, S. N. Klimin, V. M. Fomin, and J. T. Devreese, “Optical properties of polaronic excitons in stacked quantum dots,” Phys. Rev. B 69, 155325 (2004).
    [Crossref]
  6. Z. Y. Jia, J. N. Li, H. W. Wu, C. Wang, T. Y. Chen, R. W. Peng, and M. Wang, “Dipole coupling and dual Fano resonances in a silicon nanodimer,” J. Appl. Phys. 119, 074302 (2016).
    [Crossref]
  7. Y. Zelinskyi, Y. Zhang, and V. May, “Photoinduced dynamics in a molecule metal nanoparticle complex: Mean-field approximation versus exact treatment of the interaction,” J. Chem. Phys. 138, 114704 (2013).
    [Crossref]
  8. S. M. Sadeghi, R. G. West, and A. Nejat, “Photo-induced suppression of plasmonic emission enhancement of CdSe/ZnS quantum dots,” Nanotechnology 22, 405202 (2011).
    [Crossref] [PubMed]
  9. J.-Y. Yan, “Strong exciton-plasmon interaction in semiconductor-insulator-metal nanowires,” Phys. Rev. B 86, 075438 (2012).
    [Crossref]
  10. M.-T. Cheng and Y.-Y. Song, “Fano resonance analysis in a pair of semiconductor quantum dots coupling to a metal nanowire,” Opt. Lett. 37, 978–980 (2012).
    [Crossref] [PubMed]
  11. G. P. Wiederrecht, G. A. Wurtz, and J. Hranisavljevic, “Coherent coupling of molecular excitons to electronic polarizations of noble metal nanoparticles,” Nano Lett. 4, 2121–2125 (2004).
    [Crossref]
  12. A. M. Kelley, “A molecular spectroscopic description of optical spectra of J-aggregated dyes on gold nanoparticles,” Nano Lett. 7, 3235–3240 (2007).
    [Crossref] [PubMed]
  13. W. Zhang and A. O. Govorov, “Quantum theory of the nonlinear Fano effect in hybrid metal-semiconductor nanostructures: The case of strong nonlinearity,” Phys. Rev. B 84, 081405 (2011).
    [Crossref]
  14. R. Artuso and G. Bryant, “Optical Response of Strongly Coupled Quantum Dot-Metal Nanoparticle Systems: Double Peaked Fano Structure and Bistability,” Nano Lett. 8, 2106–2111 (2008).
    [Crossref] [PubMed]
  15. S. G. Kosionis, A. F. Terzis, V. Yannopapas, and E. Paspalakis, “Nonlocal Effects in Energy Absorption of Coupled Quantum Dot-Metal Nanoparticle Systems,” J. Phys. Chem. C 116, 23663 (2012).
    [Crossref]
  16. R. A. Shah, N. F. Scherer, M. Pelton, and S. K. Gray, “Ultrafast reversal of a Fano resonance in a plasmon-exciton system,” Phys. Rev. B 88, 075411 (2013).
    [Crossref]
  17. X. Wu, S. K. Gray, and M. Pelton, “Quantum-dot-induced transparency in a nanoscale plasmonic resonator,” Opt. Express 18, 23633–23645 (2010).
    [Crossref] [PubMed]
  18. A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6, 984 (2006).
    [Crossref]
  19. S. M. Sadeghi, “The inhibition of optical excitations and enhancement of Rabi flopping in hybrid quantum dot-metallic nanoparticle systems,” Nanotechnology 20, 225401 (2009).
    [Crossref] [PubMed]
  20. S. M. Sadeghi and K. D. Patty, “Suppression of quantum decoherence via infrared-driven coherent exciton-plasmon coupling: Undamped field and Rabi oscillations,” Appl. Phys. Lett. 104, 083101 (2014).
    [Crossref]
  21. M.-T. Cheng, S.-D. Liu, H.-J. Zhou, Z.-H. Hao, and Q.-Q. Wang, “Coherent exciton-plasmon interaction in the hybrid semiconductor quantum dot and metal nanoparticle complex,” Opt. Lett. 32, 2125–2127 (2007).
    [Crossref] [PubMed]
  22. Y. He, C. Jiang, B. Chen, J.-J. Li, and K.-D. Zhu, “Optical determination of vacuum Rabi splitting in a semiconductor quantum dot induced by a metal nanoparticle,” Opt. Lett. 37, 2943–2945 (2012).
    [Crossref] [PubMed]
  23. M. A. Antón, F. Carreño, S. Melle, O. G. Calderón, E. Cabrera-Granado, and M. R. Singh, “Optical pumping of a single hole spin in a p-doped quantum dot coupled to a metallic nanoparticle,” Phys. Rev. B 87, 195303 (2013).
    [Crossref]
  24. A. O. Govorov, “Semiconductor-metal nanoparticle molecules in a magnetic field: Spin-plasmon and exciton-plasmon interactions,” Phys. Rev. B 82, 155322 (2010).
    [Crossref]
  25. J. T. Zhang, Y. Tang, K. Lee, and M. Ouyang, “Tailoring light-matter-spin interactions in colloidal hetero-nanostructures,” Nature (London) 466, 91 (2010).
    [Crossref]
  26. J.-B. Li, N.-C. Kim, M.-T. Cheng, L. Zhou, Z.-H. Hao, and Q.-Q. Wang, “Optical bistability and nonlinearity of coherently coupled exciton-plasmon systems,” Opt. Express 20, 1856–1861 (2012).
    [Crossref] [PubMed]
  27. R. D. Artuso, G. W. Bryant, A. Garcia-Etxarri, and J. Aizpurua, “Using local fields to tailor hybrid quantum-dot/metal nanoparticle systems,” Phys. Rev. B 83, 235406 (2011).
    [Crossref]
  28. J.-B. Li, S. Liang, S. Xiao, M.-D. He, N.-C. Kim, L.-Q. Chen, G.-H. Wu, Y.-X. Peng, X.-Y. Luo, and Z.-P. Guo, “Four-wave mixing signal enhancement and optical bistability of a hybrid metal nanoparticle-quantum dot molecule in a nanomechanical resonator,” Opt. Express 24, 2360–2369 (2016).
    [Crossref] [PubMed]
  29. A. V. Malyshev and V. A. Malyshev, “Optical bistability and hysteresis of a hybrid metal-semiconductor nanodimer,” Phys. Rev. B 84, 035314 (2011).
    [Crossref]
  30. B. S. Nugroho, A. A. Iskandar, V. A. Malyshev, and J. Knoester, “Bistable optical response of a nanoparticle heterodimer: Mechanism, phase diagram, and switching time,” J. Chem. Phys. 139, 014303 (2013).
    [Crossref] [PubMed]
  31. B. S. Nugroho, V. A. Malyshev, and J. Knoester, “Tailoring optical response of a hybrid comprising a quantum dimer emitter strongly coupled to a metallic nanoparticle,” Phys. Rev. B 92, 165432 (2015).
    [Crossref]
  32. M. A. Antón, F. Carreño, S. Melle, O. G. Calderón, E. Cabrera-Granado, J. Cox, and M. R. Singh, “Plasmonic effects in excitonic population transfer in a driven semiconductor-metal nanoparticle hybrid system,” Phys. Rev. B 86, 155305 (2012).
    [Crossref]
  33. E. Paspalakis, S. Evangelou, and A. F. Terzis, “Control of excitonic population inversion in a coupled semiconductor quantum dot-metal nanoparticle system,” Phys. Rev. B 87, 235302 (2013).
    [Crossref]
  34. S. M. Sadeghi, “Plasmonic metaresonances: Molecular resonances in quantum dot-metallic nanoparticle conjugates,” Phys. Rev. B 79, 233309 (2009).
    [Crossref]
  35. W.-X. Yang, A.-X. Chen, Z. Huang, and R.-K. Lee, “Ultrafast optical switching in quantum dot-metallic nanoparticle hybrid systems,” Optics Express 23, 13032 (2015).
    [Crossref] [PubMed]
  36. S. M. Sadeghi, W. J. Wing, and R. R. Gutha, “Undamped ultrafast pulsation of plasmonic fields via coherent exciton-plasmon coupling,” Nanotechnology 26, 085202 (2015).
    [Crossref] [PubMed]
  37. R.-C. Ge, C. Van Vlack, P. Yao, Jeff. F. Young, and S. Hughes, “Accessing quantum nanoplasmonics in a hybrid quantum dot-metal nanosystem: Mollow triplet of a quantum dot near a metal nanoparticle,” Phys. Rev. B 87, 205425 (2013).
    [Crossref]
  38. J. Hakami, L. Wang, and M. S. Zubairy, “Spectral properties of a strongly coupled quantum-dot-metal-nanoparticle system,” Phys. Rev. A 89, 053835 (2014).
    [Crossref]
  39. F. Carreño, M. A. Antón, V. Yannopapas, and E. Paspalakis, “Resonance fluorescence spectrum of a Λ-type quantum emitter close to a metallic nanoparticle,” Phys. Rev. A 94, 013834 (2016).
    [Crossref]
  40. F. Carreño, M. A. Antón, and F. Arrieta-Yáñez, “Resonance fluorescence spectrum of a p-doped quantum dot coupled to a metallic nanoparticle,” Phys. Rev. B 88, 195303 (2013).
    [Crossref]
  41. Y. Gu, L. Huang, O. J. F. Martin, and Q. Gong, “Resonance fluorescence of single molecules assisted by a plasmonic structure,” Phys. Rev. B 81, 193103 (2010).
    [Crossref]
  42. S. M. Sadeghi and R. G. West, “Coherent control of Forster energy transfer in nanoparticle molecules: energy nanogates and plasmonic heat pulses,” J. Phys.: Condens. Matter 23, 425302 (2011).
  43. T. Pons, I. Medintz, K. Sapsford, S. Higashiya, A. Grimes, D. English, and H. Mattoussi, “On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles,” Nano Lett. 7, 3157 (2007).
    [Crossref] [PubMed]
  44. C. A. Marocico and J. Knoester, “Effect of surface-plasmon polaritons on spontaneous emission and intermolecular energy-transfer rates in multilayered geometries,” Phys. Rev. A 84, 053824 (2011).
    [Crossref]
  45. J.-Y. Yan, W. Zhang, S.-Q. Duan, and X.-G. Zhao, “Plasmon-enhanced midinfrared generation from difference frequency in semiconductor quantum dots,” J. Appl. Phys. 103, 104314 (2008).
    [Crossref]
  46. R. D. Artuso and G. W. Bryant, “Quantum dot-quantum dot interactions mediated by a metal nanoparticle: Towards a fully quantum model,” Phys. Rev. B 87, 125423 (2013).
    [Crossref]
  47. L. Hayati, C. Lane, B. Barbiellini, A. Bansil, and H. Mosallaei, “Self-consistent scheme for optical response of large hybrid networks of semiconductor quantum dots and plasmonic metal nanoparticles,” Phys. Rev. B 93, 245411 (2016).
    [Crossref]
  48. A. Ridolfo, O. Di Stefano, N. Fina, R. Saija, and S. Savasta, “Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics,” Phys. Rev. Lett. 105, 263601 (2010).
    [Crossref]
  49. K. Kyhm, K.-C. Je, and R. A. Taylor, “Amplified all-optical polarization phase modulator assisted by a local surface plasmon in Au-hybrid CdSe quantum dots,” Opt. Express 20, 19735–19743 (2012).
    [Crossref] [PubMed]
  50. R. J. McMillan, L. Stella, and M. Grüning, “Projected equations of motion approach to hybrid quantum/classical dynamics in dielectric-metal composites,” Phys. Rev. B 94, 125312 (2016).
    [Crossref]
  51. R. D. Artuso and G. W. Bryant, “Strongly coupled quantum dot-metal nanoparticle systems: Exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effects,” Phys. Rev. B 82, 195419 (2010).
    [Crossref]
  52. D. Ratchford, F. Shafiei, S. Kim, S. K. Gray, and X. Li, “Manipulating coupling between a single semiconductor quantum dot and single gold nanoparticle,” Nano Lett. 11, 1049–1054 (2011).
    [Crossref] [PubMed]
  53. W. X. Yang, X. T. Xie, A. X. Chen, Z. Huang, and R. K. Lee, “Coherent control of high-order-harmonic generation via tunable plasmonic bichromatic near fields in a metal nanoparticle,” Phys. Rev. A 93, 053806 (2016).
    [Crossref]
  54. S. M. Sadeghi, W. J. Wing, and R. R. Gutha, “Control of plasmon fields via irreversible ultrafast dynamics caused by interaction of infrared laser pulses with quantum-dot-metallic-nanoparticle molecules,” Phys. Rev. A 92, 023808 (2015).
    [Crossref]
  55. A. Hatef, D. G. Schindel, and M. R. Singh, “Dipole-dipole interaction in a quantum dot and metallic nanorod hybrid system,” Appl. Phys. Lett. 99, 181106 (2011).
    [Crossref]
  56. M.-T. Cheng, S.-D. Liu, and Q.-Q. Wang, “Modulating emission polarization of semiconductor quantum dots through surface plasmon of metal nanorod,” Appl. Phys. Lett. 92, 162107 (2008).
    [Crossref]
  57. S. G. Kosionis, A. F. Terzis, S. M. Sadeghi, and E. Paspalakis, “Optical response of a quantum dot-metal nanoparticle hybrid interacting with a weak probe field,” J. Phys.: Condens. Matter 25, 045304 (2012).
  58. X. N. Liu, D. Z. Yao, H. M. Zhou, F. Chen, and G. G. Xiong, “Third-order nonlinear optical response in quantum dot-metal nanoparticle hybrid structures,” Appl. Phys. B 113, 603 (2013).
    [Crossref]
  59. A. Hatef, S. M. Sadeghi, and M. R. Singh, “Plasmonic electromagnetically induced transparency in metallic nanoparticle-quantum dot hybrid systems,” Nanotechnology 23, 065701 (2012).
    [Crossref] [PubMed]
  60. Y. He and K.-D. Zhu, “Strong coupling among semiconductor quantum dots induced by a metal nanoparticle,” Nano. Res. Lett. 7, 95 (2012).
    [Crossref]
  61. S. M. Sadeghi, “Gain without inversion in hybrid quantum dot-metallic nanoparticle systems,” Nanotechnology 21, 455401 (2010).
    [Crossref] [PubMed]
  62. M. E. Tasgin, “Metal nanoparticle plasmons operating within a quantum lifetime,” Nanoscale 5, 8616 (2013).
    [Crossref] [PubMed]
  63. Z. Lu and K.-D. Zhu, “Slow light in an artificial hybrid nanocrystal complex,” J. Phys. B 42, 015502 (2008).
    [Crossref]
  64. J.-B. Li, M.-D. He, and L.-Q. Chen, “Four-wave parametric amplification in semiconductor quantum dot-metallic nanoparticle hybrid molecules,” Opt. Express 22, 24734–24741 (2014).
    [Crossref] [PubMed]
  65. Y. He, J. J. Li, and K. D. Zhu, “A tunable optical response of a hybrid semiconductor quantum dot-metal nanoparticle complex in the presence of optical excitations,” J. Opt. Soc. Am. B 29, 997 (2012).
    [Crossref]
  66. Z. H. Xiao, L. Zheng, and H. Lin, “Photoinduced diffraction grating in hybrid artificial molecule,” Opt. Express 20, 1219–1229 (2012).
    [Crossref] [PubMed]
  67. S. M. Sadeghi, “Coherent control of metallic nanoparticles near fields: Nanopulse controllers and functional nanoamplifiers,” Phys. Rev. B 82, 035413 (2010).
    [Crossref]
  68. F. Carreño, M. A. Antón, S. Melle, O. G. Calderón, E. Cabrera-Granado, J. Cox, M. R. Singh, and A. Egatz-Gómez, “Plasmon-enhanced terahertz emission in self-assembled quantum dots by femtosecond pulses,” J. Appl. Phys. 115, 064304 (2014).
    [Crossref]
  69. H. Wang and K. D. Zhu, “Coherent optical spectroscopy of a hybrid nanocrystal complex embedded in a nanomechanical resonator,” Opt. Express 18, 16175–16182 (2010).
    [Crossref] [PubMed]
  70. H. J. Chen and K. D. Zhu, “Surface plasmon enhanced sensitive detection for possible signature of majorana fermions via a hybrid semiconductor quantum Dot-Metal nanoparticle system,” Sci. Rep. 5, 13518 (2015).
    [Crossref] [PubMed]
  71. E. Paspalakis, S. Evangelou, S. G. Kosionis, and A. F. Terzis, “Strongly modified four-wave mixing in a coupled semiconductor quantum dot-metal nanoparticle system,” J. Appl. Phys. 115, 083106 (2014).
    [Crossref]
  72. Z. Lu and K. Zhu, “Enhancing Kerr nonlinearity of a strongly coupled exciton-plasmon in hybrid nanocrystal molecules,” J. Phys. B 41, 185503 (2008).
    [Crossref]
  73. X. Feng, Y. Chen, and D. Hou, “Optical nonlinearity enhanced by metal nanoparticle in CdTe quantum dots,” Phys. B: Condens. Matter 406, 1702 (2011).
    [Crossref]
  74. W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: Hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97, 146804 (2006).
    [Crossref] [PubMed]
  75. J.-Y. Yan, W. Zhang, S. Duan, X.-G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects,” Phys. Rev. B 77, 165301 (2008).
    [Crossref]
  76. S. P. Tewari, “Berry’s phase in a two-level atom,” Phys. Rev. A 39, 6082 (1989).
    [Crossref]
  77. A. C. Aguiar Pinto, M. Moutinho, and M. T. Thomaz, “Berry’s phase in the two-level model,” Braz. J. Phys. 39, 326 (2009).
    [Crossref]
  78. M. T. Thomaz, A. C. Aguiar Pinto, and M. Moutinho, “Phases of the electronic two-level model under rotating wave approximation,” Phys. Scr. 86, 025001 (2012).
    [Crossref]
  79. F. Yang and R.-B. Liu, “Berry phases of quantum trajectories of optically excited electron-hole pairs in semiconductors under strong terahertz fields,” New J. Phys. 15, 115005 (2013).
    [Crossref]
  80. P. J. Leek, J. M. Fink, A. Blais, R. Bianchetti, M. Goppl, J. M. Gambetta, D. I. Schuster, L. Frunzio, R. J. Schoelkopf, and A. Wallraff, “Observation of Berry’s phase in a solid-state qubit,” Science 318, 1889 (2007).
    [Crossref] [PubMed]
  81. X. X. Yi, L. C. Wang, and T. Y. Zheng, “Berry phase in a composite system,” Phys. Rev. Lett. 92, 150406 (2004).
    [Crossref] [PubMed]
  82. P. V. Mironova, M. A. Efremov, and W. P. Schleich, “Berry phase in atom optics,” Phys. Rev. A 87, 013627 (2013).
    [Crossref]
  83. M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. R. Soc. London, Ser. A 392, 45 (1984).
    [Crossref]
  84. S. Joshi and S. R. Jain, “Geometric phase for neutrino propagation in magnetic field,” Phys. Lett. B 754, 135 (2016).
    [Crossref]
  85. E. D. Palik, Handbook of Optical Constant of Solids (Academic, 1985).
  86. M. Koch, J. Feldmann, G. von Plessen, E. O. Göbel, P. Thomas, and K. Köhler, “Quantum beats versus polarization interference: An experimental distinction,” Phys. Rev. Lett. 69, 3631 (1992).
    [Crossref] [PubMed]

2016 (7)

Z. Y. Jia, J. N. Li, H. W. Wu, C. Wang, T. Y. Chen, R. W. Peng, and M. Wang, “Dipole coupling and dual Fano resonances in a silicon nanodimer,” J. Appl. Phys. 119, 074302 (2016).
[Crossref]

J.-B. Li, S. Liang, S. Xiao, M.-D. He, N.-C. Kim, L.-Q. Chen, G.-H. Wu, Y.-X. Peng, X.-Y. Luo, and Z.-P. Guo, “Four-wave mixing signal enhancement and optical bistability of a hybrid metal nanoparticle-quantum dot molecule in a nanomechanical resonator,” Opt. Express 24, 2360–2369 (2016).
[Crossref] [PubMed]

F. Carreño, M. A. Antón, V. Yannopapas, and E. Paspalakis, “Resonance fluorescence spectrum of a Λ-type quantum emitter close to a metallic nanoparticle,” Phys. Rev. A 94, 013834 (2016).
[Crossref]

L. Hayati, C. Lane, B. Barbiellini, A. Bansil, and H. Mosallaei, “Self-consistent scheme for optical response of large hybrid networks of semiconductor quantum dots and plasmonic metal nanoparticles,” Phys. Rev. B 93, 245411 (2016).
[Crossref]

R. J. McMillan, L. Stella, and M. Grüning, “Projected equations of motion approach to hybrid quantum/classical dynamics in dielectric-metal composites,” Phys. Rev. B 94, 125312 (2016).
[Crossref]

W. X. Yang, X. T. Xie, A. X. Chen, Z. Huang, and R. K. Lee, “Coherent control of high-order-harmonic generation via tunable plasmonic bichromatic near fields in a metal nanoparticle,” Phys. Rev. A 93, 053806 (2016).
[Crossref]

S. Joshi and S. R. Jain, “Geometric phase for neutrino propagation in magnetic field,” Phys. Lett. B 754, 135 (2016).
[Crossref]

2015 (5)

S. M. Sadeghi, W. J. Wing, and R. R. Gutha, “Control of plasmon fields via irreversible ultrafast dynamics caused by interaction of infrared laser pulses with quantum-dot-metallic-nanoparticle molecules,” Phys. Rev. A 92, 023808 (2015).
[Crossref]

H. J. Chen and K. D. Zhu, “Surface plasmon enhanced sensitive detection for possible signature of majorana fermions via a hybrid semiconductor quantum Dot-Metal nanoparticle system,” Sci. Rep. 5, 13518 (2015).
[Crossref] [PubMed]

B. S. Nugroho, V. A. Malyshev, and J. Knoester, “Tailoring optical response of a hybrid comprising a quantum dimer emitter strongly coupled to a metallic nanoparticle,” Phys. Rev. B 92, 165432 (2015).
[Crossref]

W.-X. Yang, A.-X. Chen, Z. Huang, and R.-K. Lee, “Ultrafast optical switching in quantum dot-metallic nanoparticle hybrid systems,” Optics Express 23, 13032 (2015).
[Crossref] [PubMed]

S. M. Sadeghi, W. J. Wing, and R. R. Gutha, “Undamped ultrafast pulsation of plasmonic fields via coherent exciton-plasmon coupling,” Nanotechnology 26, 085202 (2015).
[Crossref] [PubMed]

2014 (6)

J. Hakami, L. Wang, and M. S. Zubairy, “Spectral properties of a strongly coupled quantum-dot-metal-nanoparticle system,” Phys. Rev. A 89, 053835 (2014).
[Crossref]

I. L. Rasskazov, S. V. Karpov, and V. A. Markel, “Surface plasmon polaritons in curved chains of metal nanoparticles,” Phys. Rev. B 90, 075405 (2014).
[Crossref]

S. M. Sadeghi and K. D. Patty, “Suppression of quantum decoherence via infrared-driven coherent exciton-plasmon coupling: Undamped field and Rabi oscillations,” Appl. Phys. Lett. 104, 083101 (2014).
[Crossref]

E. Paspalakis, S. Evangelou, S. G. Kosionis, and A. F. Terzis, “Strongly modified four-wave mixing in a coupled semiconductor quantum dot-metal nanoparticle system,” J. Appl. Phys. 115, 083106 (2014).
[Crossref]

F. Carreño, M. A. Antón, S. Melle, O. G. Calderón, E. Cabrera-Granado, J. Cox, M. R. Singh, and A. Egatz-Gómez, “Plasmon-enhanced terahertz emission in self-assembled quantum dots by femtosecond pulses,” J. Appl. Phys. 115, 064304 (2014).
[Crossref]

J.-B. Li, M.-D. He, and L.-Q. Chen, “Four-wave parametric amplification in semiconductor quantum dot-metallic nanoparticle hybrid molecules,” Opt. Express 22, 24734–24741 (2014).
[Crossref] [PubMed]

2013 (13)

X. N. Liu, D. Z. Yao, H. M. Zhou, F. Chen, and G. G. Xiong, “Third-order nonlinear optical response in quantum dot-metal nanoparticle hybrid structures,” Appl. Phys. B 113, 603 (2013).
[Crossref]

M. E. Tasgin, “Metal nanoparticle plasmons operating within a quantum lifetime,” Nanoscale 5, 8616 (2013).
[Crossref] [PubMed]

R. D. Artuso and G. W. Bryant, “Quantum dot-quantum dot interactions mediated by a metal nanoparticle: Towards a fully quantum model,” Phys. Rev. B 87, 125423 (2013).
[Crossref]

F. Carreño, M. A. Antón, and F. Arrieta-Yáñez, “Resonance fluorescence spectrum of a p-doped quantum dot coupled to a metallic nanoparticle,” Phys. Rev. B 88, 195303 (2013).
[Crossref]

R. A. Shah, N. F. Scherer, M. Pelton, and S. K. Gray, “Ultrafast reversal of a Fano resonance in a plasmon-exciton system,” Phys. Rev. B 88, 075411 (2013).
[Crossref]

P. J. Compaijen, V. A. Malyshev, and J. Knoester, “Surface-mediated light transmission in metal nanoparticle chains,” Phys. Rev. B 87, 205437 (2013).
[Crossref]

Y. Zelinskyi, Y. Zhang, and V. May, “Photoinduced dynamics in a molecule metal nanoparticle complex: Mean-field approximation versus exact treatment of the interaction,” J. Chem. Phys. 138, 114704 (2013).
[Crossref]

B. S. Nugroho, A. A. Iskandar, V. A. Malyshev, and J. Knoester, “Bistable optical response of a nanoparticle heterodimer: Mechanism, phase diagram, and switching time,” J. Chem. Phys. 139, 014303 (2013).
[Crossref] [PubMed]

R.-C. Ge, C. Van Vlack, P. Yao, Jeff. F. Young, and S. Hughes, “Accessing quantum nanoplasmonics in a hybrid quantum dot-metal nanosystem: Mollow triplet of a quantum dot near a metal nanoparticle,” Phys. Rev. B 87, 205425 (2013).
[Crossref]

E. Paspalakis, S. Evangelou, and A. F. Terzis, “Control of excitonic population inversion in a coupled semiconductor quantum dot-metal nanoparticle system,” Phys. Rev. B 87, 235302 (2013).
[Crossref]

M. A. Antón, F. Carreño, S. Melle, O. G. Calderón, E. Cabrera-Granado, and M. R. Singh, “Optical pumping of a single hole spin in a p-doped quantum dot coupled to a metallic nanoparticle,” Phys. Rev. B 87, 195303 (2013).
[Crossref]

P. V. Mironova, M. A. Efremov, and W. P. Schleich, “Berry phase in atom optics,” Phys. Rev. A 87, 013627 (2013).
[Crossref]

F. Yang and R.-B. Liu, “Berry phases of quantum trajectories of optically excited electron-hole pairs in semiconductors under strong terahertz fields,” New J. Phys. 15, 115005 (2013).
[Crossref]

2012 (13)

M. T. Thomaz, A. C. Aguiar Pinto, and M. Moutinho, “Phases of the electronic two-level model under rotating wave approximation,” Phys. Scr. 86, 025001 (2012).
[Crossref]

Y. He, C. Jiang, B. Chen, J.-J. Li, and K.-D. Zhu, “Optical determination of vacuum Rabi splitting in a semiconductor quantum dot induced by a metal nanoparticle,” Opt. Lett. 37, 2943–2945 (2012).
[Crossref] [PubMed]

J.-B. Li, N.-C. Kim, M.-T. Cheng, L. Zhou, Z.-H. Hao, and Q.-Q. Wang, “Optical bistability and nonlinearity of coherently coupled exciton-plasmon systems,” Opt. Express 20, 1856–1861 (2012).
[Crossref] [PubMed]

M. A. Antón, F. Carreño, S. Melle, O. G. Calderón, E. Cabrera-Granado, J. Cox, and M. R. Singh, “Plasmonic effects in excitonic population transfer in a driven semiconductor-metal nanoparticle hybrid system,” Phys. Rev. B 86, 155305 (2012).
[Crossref]

J.-Y. Yan, “Strong exciton-plasmon interaction in semiconductor-insulator-metal nanowires,” Phys. Rev. B 86, 075438 (2012).
[Crossref]

M.-T. Cheng and Y.-Y. Song, “Fano resonance analysis in a pair of semiconductor quantum dots coupling to a metal nanowire,” Opt. Lett. 37, 978–980 (2012).
[Crossref] [PubMed]

S. G. Kosionis, A. F. Terzis, V. Yannopapas, and E. Paspalakis, “Nonlocal Effects in Energy Absorption of Coupled Quantum Dot-Metal Nanoparticle Systems,” J. Phys. Chem. C 116, 23663 (2012).
[Crossref]

K. Kyhm, K.-C. Je, and R. A. Taylor, “Amplified all-optical polarization phase modulator assisted by a local surface plasmon in Au-hybrid CdSe quantum dots,” Opt. Express 20, 19735–19743 (2012).
[Crossref] [PubMed]

S. G. Kosionis, A. F. Terzis, S. M. Sadeghi, and E. Paspalakis, “Optical response of a quantum dot-metal nanoparticle hybrid interacting with a weak probe field,” J. Phys.: Condens. Matter 25, 045304 (2012).

A. Hatef, S. M. Sadeghi, and M. R. Singh, “Plasmonic electromagnetically induced transparency in metallic nanoparticle-quantum dot hybrid systems,” Nanotechnology 23, 065701 (2012).
[Crossref] [PubMed]

Y. He and K.-D. Zhu, “Strong coupling among semiconductor quantum dots induced by a metal nanoparticle,” Nano. Res. Lett. 7, 95 (2012).
[Crossref]

Y. He, J. J. Li, and K. D. Zhu, “A tunable optical response of a hybrid semiconductor quantum dot-metal nanoparticle complex in the presence of optical excitations,” J. Opt. Soc. Am. B 29, 997 (2012).
[Crossref]

Z. H. Xiao, L. Zheng, and H. Lin, “Photoinduced diffraction grating in hybrid artificial molecule,” Opt. Express 20, 1219–1229 (2012).
[Crossref] [PubMed]

2011 (9)

D. Ratchford, F. Shafiei, S. Kim, S. K. Gray, and X. Li, “Manipulating coupling between a single semiconductor quantum dot and single gold nanoparticle,” Nano Lett. 11, 1049–1054 (2011).
[Crossref] [PubMed]

A. Hatef, D. G. Schindel, and M. R. Singh, “Dipole-dipole interaction in a quantum dot and metallic nanorod hybrid system,” Appl. Phys. Lett. 99, 181106 (2011).
[Crossref]

S. M. Sadeghi and R. G. West, “Coherent control of Forster energy transfer in nanoparticle molecules: energy nanogates and plasmonic heat pulses,” J. Phys.: Condens. Matter 23, 425302 (2011).

C. A. Marocico and J. Knoester, “Effect of surface-plasmon polaritons on spontaneous emission and intermolecular energy-transfer rates in multilayered geometries,” Phys. Rev. A 84, 053824 (2011).
[Crossref]

W. Zhang and A. O. Govorov, “Quantum theory of the nonlinear Fano effect in hybrid metal-semiconductor nanostructures: The case of strong nonlinearity,” Phys. Rev. B 84, 081405 (2011).
[Crossref]

S. M. Sadeghi, R. G. West, and A. Nejat, “Photo-induced suppression of plasmonic emission enhancement of CdSe/ZnS quantum dots,” Nanotechnology 22, 405202 (2011).
[Crossref] [PubMed]

R. D. Artuso, G. W. Bryant, A. Garcia-Etxarri, and J. Aizpurua, “Using local fields to tailor hybrid quantum-dot/metal nanoparticle systems,” Phys. Rev. B 83, 235406 (2011).
[Crossref]

A. V. Malyshev and V. A. Malyshev, “Optical bistability and hysteresis of a hybrid metal-semiconductor nanodimer,” Phys. Rev. B 84, 035314 (2011).
[Crossref]

X. Feng, Y. Chen, and D. Hou, “Optical nonlinearity enhanced by metal nanoparticle in CdTe quantum dots,” Phys. B: Condens. Matter 406, 1702 (2011).
[Crossref]

2010 (9)

A. O. Govorov, “Semiconductor-metal nanoparticle molecules in a magnetic field: Spin-plasmon and exciton-plasmon interactions,” Phys. Rev. B 82, 155322 (2010).
[Crossref]

J. T. Zhang, Y. Tang, K. Lee, and M. Ouyang, “Tailoring light-matter-spin interactions in colloidal hetero-nanostructures,” Nature (London) 466, 91 (2010).
[Crossref]

X. Wu, S. K. Gray, and M. Pelton, “Quantum-dot-induced transparency in a nanoscale plasmonic resonator,” Opt. Express 18, 23633–23645 (2010).
[Crossref] [PubMed]

A. Ridolfo, O. Di Stefano, N. Fina, R. Saija, and S. Savasta, “Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics,” Phys. Rev. Lett. 105, 263601 (2010).
[Crossref]

Y. Gu, L. Huang, O. J. F. Martin, and Q. Gong, “Resonance fluorescence of single molecules assisted by a plasmonic structure,” Phys. Rev. B 81, 193103 (2010).
[Crossref]

R. D. Artuso and G. W. Bryant, “Strongly coupled quantum dot-metal nanoparticle systems: Exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effects,” Phys. Rev. B 82, 195419 (2010).
[Crossref]

S. M. Sadeghi, “Gain without inversion in hybrid quantum dot-metallic nanoparticle systems,” Nanotechnology 21, 455401 (2010).
[Crossref] [PubMed]

S. M. Sadeghi, “Coherent control of metallic nanoparticles near fields: Nanopulse controllers and functional nanoamplifiers,” Phys. Rev. B 82, 035413 (2010).
[Crossref]

H. Wang and K. D. Zhu, “Coherent optical spectroscopy of a hybrid nanocrystal complex embedded in a nanomechanical resonator,” Opt. Express 18, 16175–16182 (2010).
[Crossref] [PubMed]

2009 (3)

S. M. Sadeghi, “The inhibition of optical excitations and enhancement of Rabi flopping in hybrid quantum dot-metallic nanoparticle systems,” Nanotechnology 20, 225401 (2009).
[Crossref] [PubMed]

S. M. Sadeghi, “Plasmonic metaresonances: Molecular resonances in quantum dot-metallic nanoparticle conjugates,” Phys. Rev. B 79, 233309 (2009).
[Crossref]

A. C. Aguiar Pinto, M. Moutinho, and M. T. Thomaz, “Berry’s phase in the two-level model,” Braz. J. Phys. 39, 326 (2009).
[Crossref]

2008 (6)

J.-Y. Yan, W. Zhang, S. Duan, X.-G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects,” Phys. Rev. B 77, 165301 (2008).
[Crossref]

R. Artuso and G. Bryant, “Optical Response of Strongly Coupled Quantum Dot-Metal Nanoparticle Systems: Double Peaked Fano Structure and Bistability,” Nano Lett. 8, 2106–2111 (2008).
[Crossref] [PubMed]

Z. Lu and K. Zhu, “Enhancing Kerr nonlinearity of a strongly coupled exciton-plasmon in hybrid nanocrystal molecules,” J. Phys. B 41, 185503 (2008).
[Crossref]

Z. Lu and K.-D. Zhu, “Slow light in an artificial hybrid nanocrystal complex,” J. Phys. B 42, 015502 (2008).
[Crossref]

M.-T. Cheng, S.-D. Liu, and Q.-Q. Wang, “Modulating emission polarization of semiconductor quantum dots through surface plasmon of metal nanorod,” Appl. Phys. Lett. 92, 162107 (2008).
[Crossref]

J.-Y. Yan, W. Zhang, S.-Q. Duan, and X.-G. Zhao, “Plasmon-enhanced midinfrared generation from difference frequency in semiconductor quantum dots,” J. Appl. Phys. 103, 104314 (2008).
[Crossref]

2007 (4)

T. Pons, I. Medintz, K. Sapsford, S. Higashiya, A. Grimes, D. English, and H. Mattoussi, “On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles,” Nano Lett. 7, 3157 (2007).
[Crossref] [PubMed]

A. M. Kelley, “A molecular spectroscopic description of optical spectra of J-aggregated dyes on gold nanoparticles,” Nano Lett. 7, 3235–3240 (2007).
[Crossref] [PubMed]

M.-T. Cheng, S.-D. Liu, H.-J. Zhou, Z.-H. Hao, and Q.-Q. Wang, “Coherent exciton-plasmon interaction in the hybrid semiconductor quantum dot and metal nanoparticle complex,” Opt. Lett. 32, 2125–2127 (2007).
[Crossref] [PubMed]

P. J. Leek, J. M. Fink, A. Blais, R. Bianchetti, M. Goppl, J. M. Gambetta, D. I. Schuster, L. Frunzio, R. J. Schoelkopf, and A. Wallraff, “Observation of Berry’s phase in a solid-state qubit,” Science 318, 1889 (2007).
[Crossref] [PubMed]

2006 (2)

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: Hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97, 146804 (2006).
[Crossref] [PubMed]

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6, 984 (2006).
[Crossref]

2004 (4)

G. P. Wiederrecht, G. A. Wurtz, and J. Hranisavljevic, “Coherent coupling of molecular excitons to electronic polarizations of noble metal nanoparticles,” Nano Lett. 4, 2121–2125 (2004).
[Crossref]

G. Bachelier and A. Mlayah, “Surface plasmon mediated Raman scattering in metal nanoparticles,” Phys. Rev. B 69, 205408 (2004).
[Crossref]

V. N. Gladilin, S. N. Klimin, V. M. Fomin, and J. T. Devreese, “Optical properties of polaronic excitons in stacked quantum dots,” Phys. Rev. B 69, 155325 (2004).
[Crossref]

X. X. Yi, L. C. Wang, and T. Y. Zheng, “Berry phase in a composite system,” Phys. Rev. Lett. 92, 150406 (2004).
[Crossref] [PubMed]

2002 (1)

C. Schulhauser, D. Haft, R. J. Warburton, K. Karrai, A. O. Govorov, A. V. Kalameitsev, A. Chaplik, W. Schoenfeld, J. M. Garcia, and P. M. Petroff, “Magneto-optical properties of charged excitons in quantum dots,” Phys. Rev. B 66, 193303 (2002).
[Crossref]

1992 (1)

M. Koch, J. Feldmann, G. von Plessen, E. O. Göbel, P. Thomas, and K. Köhler, “Quantum beats versus polarization interference: An experimental distinction,” Phys. Rev. Lett. 69, 3631 (1992).
[Crossref] [PubMed]

1989 (1)

S. P. Tewari, “Berry’s phase in a two-level atom,” Phys. Rev. A 39, 6082 (1989).
[Crossref]

1984 (1)

M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. R. Soc. London, Ser. A 392, 45 (1984).
[Crossref]

Aguiar Pinto, A. C.

M. T. Thomaz, A. C. Aguiar Pinto, and M. Moutinho, “Phases of the electronic two-level model under rotating wave approximation,” Phys. Scr. 86, 025001 (2012).
[Crossref]

A. C. Aguiar Pinto, M. Moutinho, and M. T. Thomaz, “Berry’s phase in the two-level model,” Braz. J. Phys. 39, 326 (2009).
[Crossref]

Aizpurua, J.

R. D. Artuso, G. W. Bryant, A. Garcia-Etxarri, and J. Aizpurua, “Using local fields to tailor hybrid quantum-dot/metal nanoparticle systems,” Phys. Rev. B 83, 235406 (2011).
[Crossref]

Antón, M. A.

F. Carreño, M. A. Antón, V. Yannopapas, and E. Paspalakis, “Resonance fluorescence spectrum of a Λ-type quantum emitter close to a metallic nanoparticle,” Phys. Rev. A 94, 013834 (2016).
[Crossref]

F. Carreño, M. A. Antón, S. Melle, O. G. Calderón, E. Cabrera-Granado, J. Cox, M. R. Singh, and A. Egatz-Gómez, “Plasmon-enhanced terahertz emission in self-assembled quantum dots by femtosecond pulses,” J. Appl. Phys. 115, 064304 (2014).
[Crossref]

M. A. Antón, F. Carreño, S. Melle, O. G. Calderón, E. Cabrera-Granado, and M. R. Singh, “Optical pumping of a single hole spin in a p-doped quantum dot coupled to a metallic nanoparticle,” Phys. Rev. B 87, 195303 (2013).
[Crossref]

F. Carreño, M. A. Antón, and F. Arrieta-Yáñez, “Resonance fluorescence spectrum of a p-doped quantum dot coupled to a metallic nanoparticle,” Phys. Rev. B 88, 195303 (2013).
[Crossref]

M. A. Antón, F. Carreño, S. Melle, O. G. Calderón, E. Cabrera-Granado, J. Cox, and M. R. Singh, “Plasmonic effects in excitonic population transfer in a driven semiconductor-metal nanoparticle hybrid system,” Phys. Rev. B 86, 155305 (2012).
[Crossref]

Arrieta-Yáñez, F.

F. Carreño, M. A. Antón, and F. Arrieta-Yáñez, “Resonance fluorescence spectrum of a p-doped quantum dot coupled to a metallic nanoparticle,” Phys. Rev. B 88, 195303 (2013).
[Crossref]

Artuso, R.

R. Artuso and G. Bryant, “Optical Response of Strongly Coupled Quantum Dot-Metal Nanoparticle Systems: Double Peaked Fano Structure and Bistability,” Nano Lett. 8, 2106–2111 (2008).
[Crossref] [PubMed]

Artuso, R. D.

R. D. Artuso and G. W. Bryant, “Quantum dot-quantum dot interactions mediated by a metal nanoparticle: Towards a fully quantum model,” Phys. Rev. B 87, 125423 (2013).
[Crossref]

R. D. Artuso, G. W. Bryant, A. Garcia-Etxarri, and J. Aizpurua, “Using local fields to tailor hybrid quantum-dot/metal nanoparticle systems,” Phys. Rev. B 83, 235406 (2011).
[Crossref]

R. D. Artuso and G. W. Bryant, “Strongly coupled quantum dot-metal nanoparticle systems: Exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effects,” Phys. Rev. B 82, 195419 (2010).
[Crossref]

Bachelier, G.

G. Bachelier and A. Mlayah, “Surface plasmon mediated Raman scattering in metal nanoparticles,” Phys. Rev. B 69, 205408 (2004).
[Crossref]

Bansil, A.

L. Hayati, C. Lane, B. Barbiellini, A. Bansil, and H. Mosallaei, “Self-consistent scheme for optical response of large hybrid networks of semiconductor quantum dots and plasmonic metal nanoparticles,” Phys. Rev. B 93, 245411 (2016).
[Crossref]

Barbiellini, B.

L. Hayati, C. Lane, B. Barbiellini, A. Bansil, and H. Mosallaei, “Self-consistent scheme for optical response of large hybrid networks of semiconductor quantum dots and plasmonic metal nanoparticles,” Phys. Rev. B 93, 245411 (2016).
[Crossref]

Berry, M. V.

M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. R. Soc. London, Ser. A 392, 45 (1984).
[Crossref]

Bianchetti, R.

P. J. Leek, J. M. Fink, A. Blais, R. Bianchetti, M. Goppl, J. M. Gambetta, D. I. Schuster, L. Frunzio, R. J. Schoelkopf, and A. Wallraff, “Observation of Berry’s phase in a solid-state qubit,” Science 318, 1889 (2007).
[Crossref] [PubMed]

Blais, A.

P. J. Leek, J. M. Fink, A. Blais, R. Bianchetti, M. Goppl, J. M. Gambetta, D. I. Schuster, L. Frunzio, R. J. Schoelkopf, and A. Wallraff, “Observation of Berry’s phase in a solid-state qubit,” Science 318, 1889 (2007).
[Crossref] [PubMed]

Bryant, G.

R. Artuso and G. Bryant, “Optical Response of Strongly Coupled Quantum Dot-Metal Nanoparticle Systems: Double Peaked Fano Structure and Bistability,” Nano Lett. 8, 2106–2111 (2008).
[Crossref] [PubMed]

Bryant, G. W.

R. D. Artuso and G. W. Bryant, “Quantum dot-quantum dot interactions mediated by a metal nanoparticle: Towards a fully quantum model,” Phys. Rev. B 87, 125423 (2013).
[Crossref]

R. D. Artuso, G. W. Bryant, A. Garcia-Etxarri, and J. Aizpurua, “Using local fields to tailor hybrid quantum-dot/metal nanoparticle systems,” Phys. Rev. B 83, 235406 (2011).
[Crossref]

R. D. Artuso and G. W. Bryant, “Strongly coupled quantum dot-metal nanoparticle systems: Exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effects,” Phys. Rev. B 82, 195419 (2010).
[Crossref]

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6, 984 (2006).
[Crossref]

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: Hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97, 146804 (2006).
[Crossref] [PubMed]

Cabrera-Granado, E.

F. Carreño, M. A. Antón, S. Melle, O. G. Calderón, E. Cabrera-Granado, J. Cox, M. R. Singh, and A. Egatz-Gómez, “Plasmon-enhanced terahertz emission in self-assembled quantum dots by femtosecond pulses,” J. Appl. Phys. 115, 064304 (2014).
[Crossref]

M. A. Antón, F. Carreño, S. Melle, O. G. Calderón, E. Cabrera-Granado, and M. R. Singh, “Optical pumping of a single hole spin in a p-doped quantum dot coupled to a metallic nanoparticle,” Phys. Rev. B 87, 195303 (2013).
[Crossref]

M. A. Antón, F. Carreño, S. Melle, O. G. Calderón, E. Cabrera-Granado, J. Cox, and M. R. Singh, “Plasmonic effects in excitonic population transfer in a driven semiconductor-metal nanoparticle hybrid system,” Phys. Rev. B 86, 155305 (2012).
[Crossref]

Calderón, O. G.

F. Carreño, M. A. Antón, S. Melle, O. G. Calderón, E. Cabrera-Granado, J. Cox, M. R. Singh, and A. Egatz-Gómez, “Plasmon-enhanced terahertz emission in self-assembled quantum dots by femtosecond pulses,” J. Appl. Phys. 115, 064304 (2014).
[Crossref]

M. A. Antón, F. Carreño, S. Melle, O. G. Calderón, E. Cabrera-Granado, and M. R. Singh, “Optical pumping of a single hole spin in a p-doped quantum dot coupled to a metallic nanoparticle,” Phys. Rev. B 87, 195303 (2013).
[Crossref]

M. A. Antón, F. Carreño, S. Melle, O. G. Calderón, E. Cabrera-Granado, J. Cox, and M. R. Singh, “Plasmonic effects in excitonic population transfer in a driven semiconductor-metal nanoparticle hybrid system,” Phys. Rev. B 86, 155305 (2012).
[Crossref]

Carreño, F.

F. Carreño, M. A. Antón, V. Yannopapas, and E. Paspalakis, “Resonance fluorescence spectrum of a Λ-type quantum emitter close to a metallic nanoparticle,” Phys. Rev. A 94, 013834 (2016).
[Crossref]

F. Carreño, M. A. Antón, S. Melle, O. G. Calderón, E. Cabrera-Granado, J. Cox, M. R. Singh, and A. Egatz-Gómez, “Plasmon-enhanced terahertz emission in self-assembled quantum dots by femtosecond pulses,” J. Appl. Phys. 115, 064304 (2014).
[Crossref]

M. A. Antón, F. Carreño, S. Melle, O. G. Calderón, E. Cabrera-Granado, and M. R. Singh, “Optical pumping of a single hole spin in a p-doped quantum dot coupled to a metallic nanoparticle,” Phys. Rev. B 87, 195303 (2013).
[Crossref]

F. Carreño, M. A. Antón, and F. Arrieta-Yáñez, “Resonance fluorescence spectrum of a p-doped quantum dot coupled to a metallic nanoparticle,” Phys. Rev. B 88, 195303 (2013).
[Crossref]

M. A. Antón, F. Carreño, S. Melle, O. G. Calderón, E. Cabrera-Granado, J. Cox, and M. R. Singh, “Plasmonic effects in excitonic population transfer in a driven semiconductor-metal nanoparticle hybrid system,” Phys. Rev. B 86, 155305 (2012).
[Crossref]

Chaplik, A.

C. Schulhauser, D. Haft, R. J. Warburton, K. Karrai, A. O. Govorov, A. V. Kalameitsev, A. Chaplik, W. Schoenfeld, J. M. Garcia, and P. M. Petroff, “Magneto-optical properties of charged excitons in quantum dots,” Phys. Rev. B 66, 193303 (2002).
[Crossref]

Chen, A. X.

W. X. Yang, X. T. Xie, A. X. Chen, Z. Huang, and R. K. Lee, “Coherent control of high-order-harmonic generation via tunable plasmonic bichromatic near fields in a metal nanoparticle,” Phys. Rev. A 93, 053806 (2016).
[Crossref]

Chen, A.-X.

W.-X. Yang, A.-X. Chen, Z. Huang, and R.-K. Lee, “Ultrafast optical switching in quantum dot-metallic nanoparticle hybrid systems,” Optics Express 23, 13032 (2015).
[Crossref] [PubMed]

Chen, B.

Chen, F.

X. N. Liu, D. Z. Yao, H. M. Zhou, F. Chen, and G. G. Xiong, “Third-order nonlinear optical response in quantum dot-metal nanoparticle hybrid structures,” Appl. Phys. B 113, 603 (2013).
[Crossref]

Chen, H. J.

H. J. Chen and K. D. Zhu, “Surface plasmon enhanced sensitive detection for possible signature of majorana fermions via a hybrid semiconductor quantum Dot-Metal nanoparticle system,” Sci. Rep. 5, 13518 (2015).
[Crossref] [PubMed]

Chen, L.-Q.

Chen, T. Y.

Z. Y. Jia, J. N. Li, H. W. Wu, C. Wang, T. Y. Chen, R. W. Peng, and M. Wang, “Dipole coupling and dual Fano resonances in a silicon nanodimer,” J. Appl. Phys. 119, 074302 (2016).
[Crossref]

Chen, Y.

X. Feng, Y. Chen, and D. Hou, “Optical nonlinearity enhanced by metal nanoparticle in CdTe quantum dots,” Phys. B: Condens. Matter 406, 1702 (2011).
[Crossref]

Cheng, M.-T.

Compaijen, P. J.

P. J. Compaijen, V. A. Malyshev, and J. Knoester, “Surface-mediated light transmission in metal nanoparticle chains,” Phys. Rev. B 87, 205437 (2013).
[Crossref]

Cox, J.

F. Carreño, M. A. Antón, S. Melle, O. G. Calderón, E. Cabrera-Granado, J. Cox, M. R. Singh, and A. Egatz-Gómez, “Plasmon-enhanced terahertz emission in self-assembled quantum dots by femtosecond pulses,” J. Appl. Phys. 115, 064304 (2014).
[Crossref]

M. A. Antón, F. Carreño, S. Melle, O. G. Calderón, E. Cabrera-Granado, J. Cox, and M. R. Singh, “Plasmonic effects in excitonic population transfer in a driven semiconductor-metal nanoparticle hybrid system,” Phys. Rev. B 86, 155305 (2012).
[Crossref]

Devreese, J. T.

V. N. Gladilin, S. N. Klimin, V. M. Fomin, and J. T. Devreese, “Optical properties of polaronic excitons in stacked quantum dots,” Phys. Rev. B 69, 155325 (2004).
[Crossref]

Di Stefano, O.

A. Ridolfo, O. Di Stefano, N. Fina, R. Saija, and S. Savasta, “Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics,” Phys. Rev. Lett. 105, 263601 (2010).
[Crossref]

Duan, S.

J.-Y. Yan, W. Zhang, S. Duan, X.-G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects,” Phys. Rev. B 77, 165301 (2008).
[Crossref]

Duan, S.-Q.

J.-Y. Yan, W. Zhang, S.-Q. Duan, and X.-G. Zhao, “Plasmon-enhanced midinfrared generation from difference frequency in semiconductor quantum dots,” J. Appl. Phys. 103, 104314 (2008).
[Crossref]

Efremov, M. A.

P. V. Mironova, M. A. Efremov, and W. P. Schleich, “Berry phase in atom optics,” Phys. Rev. A 87, 013627 (2013).
[Crossref]

Egatz-Gómez, A.

F. Carreño, M. A. Antón, S. Melle, O. G. Calderón, E. Cabrera-Granado, J. Cox, M. R. Singh, and A. Egatz-Gómez, “Plasmon-enhanced terahertz emission in self-assembled quantum dots by femtosecond pulses,” J. Appl. Phys. 115, 064304 (2014).
[Crossref]

English, D.

T. Pons, I. Medintz, K. Sapsford, S. Higashiya, A. Grimes, D. English, and H. Mattoussi, “On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles,” Nano Lett. 7, 3157 (2007).
[Crossref] [PubMed]

Evangelou, S.

E. Paspalakis, S. Evangelou, S. G. Kosionis, and A. F. Terzis, “Strongly modified four-wave mixing in a coupled semiconductor quantum dot-metal nanoparticle system,” J. Appl. Phys. 115, 083106 (2014).
[Crossref]

E. Paspalakis, S. Evangelou, and A. F. Terzis, “Control of excitonic population inversion in a coupled semiconductor quantum dot-metal nanoparticle system,” Phys. Rev. B 87, 235302 (2013).
[Crossref]

Feldmann, J.

M. Koch, J. Feldmann, G. von Plessen, E. O. Göbel, P. Thomas, and K. Köhler, “Quantum beats versus polarization interference: An experimental distinction,” Phys. Rev. Lett. 69, 3631 (1992).
[Crossref] [PubMed]

Feng, X.

X. Feng, Y. Chen, and D. Hou, “Optical nonlinearity enhanced by metal nanoparticle in CdTe quantum dots,” Phys. B: Condens. Matter 406, 1702 (2011).
[Crossref]

Fina, N.

A. Ridolfo, O. Di Stefano, N. Fina, R. Saija, and S. Savasta, “Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics,” Phys. Rev. Lett. 105, 263601 (2010).
[Crossref]

Fink, J. M.

P. J. Leek, J. M. Fink, A. Blais, R. Bianchetti, M. Goppl, J. M. Gambetta, D. I. Schuster, L. Frunzio, R. J. Schoelkopf, and A. Wallraff, “Observation of Berry’s phase in a solid-state qubit,” Science 318, 1889 (2007).
[Crossref] [PubMed]

Fomin, V. M.

V. N. Gladilin, S. N. Klimin, V. M. Fomin, and J. T. Devreese, “Optical properties of polaronic excitons in stacked quantum dots,” Phys. Rev. B 69, 155325 (2004).
[Crossref]

Frunzio, L.

P. J. Leek, J. M. Fink, A. Blais, R. Bianchetti, M. Goppl, J. M. Gambetta, D. I. Schuster, L. Frunzio, R. J. Schoelkopf, and A. Wallraff, “Observation of Berry’s phase in a solid-state qubit,” Science 318, 1889 (2007).
[Crossref] [PubMed]

Gambetta, J. M.

P. J. Leek, J. M. Fink, A. Blais, R. Bianchetti, M. Goppl, J. M. Gambetta, D. I. Schuster, L. Frunzio, R. J. Schoelkopf, and A. Wallraff, “Observation of Berry’s phase in a solid-state qubit,” Science 318, 1889 (2007).
[Crossref] [PubMed]

Garcia, J. M.

C. Schulhauser, D. Haft, R. J. Warburton, K. Karrai, A. O. Govorov, A. V. Kalameitsev, A. Chaplik, W. Schoenfeld, J. M. Garcia, and P. M. Petroff, “Magneto-optical properties of charged excitons in quantum dots,” Phys. Rev. B 66, 193303 (2002).
[Crossref]

Garcia-Etxarri, A.

R. D. Artuso, G. W. Bryant, A. Garcia-Etxarri, and J. Aizpurua, “Using local fields to tailor hybrid quantum-dot/metal nanoparticle systems,” Phys. Rev. B 83, 235406 (2011).
[Crossref]

Ge, R.-C.

R.-C. Ge, C. Van Vlack, P. Yao, Jeff. F. Young, and S. Hughes, “Accessing quantum nanoplasmonics in a hybrid quantum dot-metal nanosystem: Mollow triplet of a quantum dot near a metal nanoparticle,” Phys. Rev. B 87, 205425 (2013).
[Crossref]

Gladilin, V. N.

V. N. Gladilin, S. N. Klimin, V. M. Fomin, and J. T. Devreese, “Optical properties of polaronic excitons in stacked quantum dots,” Phys. Rev. B 69, 155325 (2004).
[Crossref]

Göbel, E. O.

M. Koch, J. Feldmann, G. von Plessen, E. O. Göbel, P. Thomas, and K. Köhler, “Quantum beats versus polarization interference: An experimental distinction,” Phys. Rev. Lett. 69, 3631 (1992).
[Crossref] [PubMed]

Gong, Q.

Y. Gu, L. Huang, O. J. F. Martin, and Q. Gong, “Resonance fluorescence of single molecules assisted by a plasmonic structure,” Phys. Rev. B 81, 193103 (2010).
[Crossref]

Goppl, M.

P. J. Leek, J. M. Fink, A. Blais, R. Bianchetti, M. Goppl, J. M. Gambetta, D. I. Schuster, L. Frunzio, R. J. Schoelkopf, and A. Wallraff, “Observation of Berry’s phase in a solid-state qubit,” Science 318, 1889 (2007).
[Crossref] [PubMed]

Govorov, A. O.

W. Zhang and A. O. Govorov, “Quantum theory of the nonlinear Fano effect in hybrid metal-semiconductor nanostructures: The case of strong nonlinearity,” Phys. Rev. B 84, 081405 (2011).
[Crossref]

A. O. Govorov, “Semiconductor-metal nanoparticle molecules in a magnetic field: Spin-plasmon and exciton-plasmon interactions,” Phys. Rev. B 82, 155322 (2010).
[Crossref]

J.-Y. Yan, W. Zhang, S. Duan, X.-G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects,” Phys. Rev. B 77, 165301 (2008).
[Crossref]

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: Hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97, 146804 (2006).
[Crossref] [PubMed]

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6, 984 (2006).
[Crossref]

C. Schulhauser, D. Haft, R. J. Warburton, K. Karrai, A. O. Govorov, A. V. Kalameitsev, A. Chaplik, W. Schoenfeld, J. M. Garcia, and P. M. Petroff, “Magneto-optical properties of charged excitons in quantum dots,” Phys. Rev. B 66, 193303 (2002).
[Crossref]

Gray, S. K.

R. A. Shah, N. F. Scherer, M. Pelton, and S. K. Gray, “Ultrafast reversal of a Fano resonance in a plasmon-exciton system,” Phys. Rev. B 88, 075411 (2013).
[Crossref]

D. Ratchford, F. Shafiei, S. Kim, S. K. Gray, and X. Li, “Manipulating coupling between a single semiconductor quantum dot and single gold nanoparticle,” Nano Lett. 11, 1049–1054 (2011).
[Crossref] [PubMed]

X. Wu, S. K. Gray, and M. Pelton, “Quantum-dot-induced transparency in a nanoscale plasmonic resonator,” Opt. Express 18, 23633–23645 (2010).
[Crossref] [PubMed]

Grimes, A.

T. Pons, I. Medintz, K. Sapsford, S. Higashiya, A. Grimes, D. English, and H. Mattoussi, “On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles,” Nano Lett. 7, 3157 (2007).
[Crossref] [PubMed]

Grüning, M.

R. J. McMillan, L. Stella, and M. Grüning, “Projected equations of motion approach to hybrid quantum/classical dynamics in dielectric-metal composites,” Phys. Rev. B 94, 125312 (2016).
[Crossref]

Gu, Y.

Y. Gu, L. Huang, O. J. F. Martin, and Q. Gong, “Resonance fluorescence of single molecules assisted by a plasmonic structure,” Phys. Rev. B 81, 193103 (2010).
[Crossref]

Guo, Z.-P.

Gutha, R. R.

S. M. Sadeghi, W. J. Wing, and R. R. Gutha, “Undamped ultrafast pulsation of plasmonic fields via coherent exciton-plasmon coupling,” Nanotechnology 26, 085202 (2015).
[Crossref] [PubMed]

S. M. Sadeghi, W. J. Wing, and R. R. Gutha, “Control of plasmon fields via irreversible ultrafast dynamics caused by interaction of infrared laser pulses with quantum-dot-metallic-nanoparticle molecules,” Phys. Rev. A 92, 023808 (2015).
[Crossref]

Haft, D.

C. Schulhauser, D. Haft, R. J. Warburton, K. Karrai, A. O. Govorov, A. V. Kalameitsev, A. Chaplik, W. Schoenfeld, J. M. Garcia, and P. M. Petroff, “Magneto-optical properties of charged excitons in quantum dots,” Phys. Rev. B 66, 193303 (2002).
[Crossref]

Hakami, J.

J. Hakami, L. Wang, and M. S. Zubairy, “Spectral properties of a strongly coupled quantum-dot-metal-nanoparticle system,” Phys. Rev. A 89, 053835 (2014).
[Crossref]

Hao, Z.-H.

Hatef, A.

A. Hatef, S. M. Sadeghi, and M. R. Singh, “Plasmonic electromagnetically induced transparency in metallic nanoparticle-quantum dot hybrid systems,” Nanotechnology 23, 065701 (2012).
[Crossref] [PubMed]

A. Hatef, D. G. Schindel, and M. R. Singh, “Dipole-dipole interaction in a quantum dot and metallic nanorod hybrid system,” Appl. Phys. Lett. 99, 181106 (2011).
[Crossref]

Hayati, L.

L. Hayati, C. Lane, B. Barbiellini, A. Bansil, and H. Mosallaei, “Self-consistent scheme for optical response of large hybrid networks of semiconductor quantum dots and plasmonic metal nanoparticles,” Phys. Rev. B 93, 245411 (2016).
[Crossref]

He, M.-D.

He, Y.

Higashiya, S.

T. Pons, I. Medintz, K. Sapsford, S. Higashiya, A. Grimes, D. English, and H. Mattoussi, “On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles,” Nano Lett. 7, 3157 (2007).
[Crossref] [PubMed]

Hou, D.

X. Feng, Y. Chen, and D. Hou, “Optical nonlinearity enhanced by metal nanoparticle in CdTe quantum dots,” Phys. B: Condens. Matter 406, 1702 (2011).
[Crossref]

Hranisavljevic, J.

G. P. Wiederrecht, G. A. Wurtz, and J. Hranisavljevic, “Coherent coupling of molecular excitons to electronic polarizations of noble metal nanoparticles,” Nano Lett. 4, 2121–2125 (2004).
[Crossref]

Huang, L.

Y. Gu, L. Huang, O. J. F. Martin, and Q. Gong, “Resonance fluorescence of single molecules assisted by a plasmonic structure,” Phys. Rev. B 81, 193103 (2010).
[Crossref]

Huang, Z.

W. X. Yang, X. T. Xie, A. X. Chen, Z. Huang, and R. K. Lee, “Coherent control of high-order-harmonic generation via tunable plasmonic bichromatic near fields in a metal nanoparticle,” Phys. Rev. A 93, 053806 (2016).
[Crossref]

W.-X. Yang, A.-X. Chen, Z. Huang, and R.-K. Lee, “Ultrafast optical switching in quantum dot-metallic nanoparticle hybrid systems,” Optics Express 23, 13032 (2015).
[Crossref] [PubMed]

Hughes, S.

R.-C. Ge, C. Van Vlack, P. Yao, Jeff. F. Young, and S. Hughes, “Accessing quantum nanoplasmonics in a hybrid quantum dot-metal nanosystem: Mollow triplet of a quantum dot near a metal nanoparticle,” Phys. Rev. B 87, 205425 (2013).
[Crossref]

Iskandar, A. A.

B. S. Nugroho, A. A. Iskandar, V. A. Malyshev, and J. Knoester, “Bistable optical response of a nanoparticle heterodimer: Mechanism, phase diagram, and switching time,” J. Chem. Phys. 139, 014303 (2013).
[Crossref] [PubMed]

Jain, S. R.

S. Joshi and S. R. Jain, “Geometric phase for neutrino propagation in magnetic field,” Phys. Lett. B 754, 135 (2016).
[Crossref]

Je, K.-C.

Jia, Z. Y.

Z. Y. Jia, J. N. Li, H. W. Wu, C. Wang, T. Y. Chen, R. W. Peng, and M. Wang, “Dipole coupling and dual Fano resonances in a silicon nanodimer,” J. Appl. Phys. 119, 074302 (2016).
[Crossref]

Jiang, C.

Joshi, S.

S. Joshi and S. R. Jain, “Geometric phase for neutrino propagation in magnetic field,” Phys. Lett. B 754, 135 (2016).
[Crossref]

Kalameitsev, A. V.

C. Schulhauser, D. Haft, R. J. Warburton, K. Karrai, A. O. Govorov, A. V. Kalameitsev, A. Chaplik, W. Schoenfeld, J. M. Garcia, and P. M. Petroff, “Magneto-optical properties of charged excitons in quantum dots,” Phys. Rev. B 66, 193303 (2002).
[Crossref]

Karpov, S. V.

I. L. Rasskazov, S. V. Karpov, and V. A. Markel, “Surface plasmon polaritons in curved chains of metal nanoparticles,” Phys. Rev. B 90, 075405 (2014).
[Crossref]

Karrai, K.

C. Schulhauser, D. Haft, R. J. Warburton, K. Karrai, A. O. Govorov, A. V. Kalameitsev, A. Chaplik, W. Schoenfeld, J. M. Garcia, and P. M. Petroff, “Magneto-optical properties of charged excitons in quantum dots,” Phys. Rev. B 66, 193303 (2002).
[Crossref]

Kelley, A. M.

A. M. Kelley, “A molecular spectroscopic description of optical spectra of J-aggregated dyes on gold nanoparticles,” Nano Lett. 7, 3235–3240 (2007).
[Crossref] [PubMed]

Kim, N.-C.

Kim, S.

D. Ratchford, F. Shafiei, S. Kim, S. K. Gray, and X. Li, “Manipulating coupling between a single semiconductor quantum dot and single gold nanoparticle,” Nano Lett. 11, 1049–1054 (2011).
[Crossref] [PubMed]

Klimin, S. N.

V. N. Gladilin, S. N. Klimin, V. M. Fomin, and J. T. Devreese, “Optical properties of polaronic excitons in stacked quantum dots,” Phys. Rev. B 69, 155325 (2004).
[Crossref]

Knoester, J.

B. S. Nugroho, V. A. Malyshev, and J. Knoester, “Tailoring optical response of a hybrid comprising a quantum dimer emitter strongly coupled to a metallic nanoparticle,” Phys. Rev. B 92, 165432 (2015).
[Crossref]

P. J. Compaijen, V. A. Malyshev, and J. Knoester, “Surface-mediated light transmission in metal nanoparticle chains,” Phys. Rev. B 87, 205437 (2013).
[Crossref]

B. S. Nugroho, A. A. Iskandar, V. A. Malyshev, and J. Knoester, “Bistable optical response of a nanoparticle heterodimer: Mechanism, phase diagram, and switching time,” J. Chem. Phys. 139, 014303 (2013).
[Crossref] [PubMed]

C. A. Marocico and J. Knoester, “Effect of surface-plasmon polaritons on spontaneous emission and intermolecular energy-transfer rates in multilayered geometries,” Phys. Rev. A 84, 053824 (2011).
[Crossref]

Koch, M.

M. Koch, J. Feldmann, G. von Plessen, E. O. Göbel, P. Thomas, and K. Köhler, “Quantum beats versus polarization interference: An experimental distinction,” Phys. Rev. Lett. 69, 3631 (1992).
[Crossref] [PubMed]

Köhler, K.

M. Koch, J. Feldmann, G. von Plessen, E. O. Göbel, P. Thomas, and K. Köhler, “Quantum beats versus polarization interference: An experimental distinction,” Phys. Rev. Lett. 69, 3631 (1992).
[Crossref] [PubMed]

Kosionis, S. G.

E. Paspalakis, S. Evangelou, S. G. Kosionis, and A. F. Terzis, “Strongly modified four-wave mixing in a coupled semiconductor quantum dot-metal nanoparticle system,” J. Appl. Phys. 115, 083106 (2014).
[Crossref]

S. G. Kosionis, A. F. Terzis, S. M. Sadeghi, and E. Paspalakis, “Optical response of a quantum dot-metal nanoparticle hybrid interacting with a weak probe field,” J. Phys.: Condens. Matter 25, 045304 (2012).

S. G. Kosionis, A. F. Terzis, V. Yannopapas, and E. Paspalakis, “Nonlocal Effects in Energy Absorption of Coupled Quantum Dot-Metal Nanoparticle Systems,” J. Phys. Chem. C 116, 23663 (2012).
[Crossref]

Kotov, N. A.

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6, 984 (2006).
[Crossref]

Kyhm, K.

Lane, C.

L. Hayati, C. Lane, B. Barbiellini, A. Bansil, and H. Mosallaei, “Self-consistent scheme for optical response of large hybrid networks of semiconductor quantum dots and plasmonic metal nanoparticles,” Phys. Rev. B 93, 245411 (2016).
[Crossref]

Lee, J.

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6, 984 (2006).
[Crossref]

Lee, K.

J. T. Zhang, Y. Tang, K. Lee, and M. Ouyang, “Tailoring light-matter-spin interactions in colloidal hetero-nanostructures,” Nature (London) 466, 91 (2010).
[Crossref]

Lee, R. K.

W. X. Yang, X. T. Xie, A. X. Chen, Z. Huang, and R. K. Lee, “Coherent control of high-order-harmonic generation via tunable plasmonic bichromatic near fields in a metal nanoparticle,” Phys. Rev. A 93, 053806 (2016).
[Crossref]

Lee, R.-K.

W.-X. Yang, A.-X. Chen, Z. Huang, and R.-K. Lee, “Ultrafast optical switching in quantum dot-metallic nanoparticle hybrid systems,” Optics Express 23, 13032 (2015).
[Crossref] [PubMed]

Leek, P. J.

P. J. Leek, J. M. Fink, A. Blais, R. Bianchetti, M. Goppl, J. M. Gambetta, D. I. Schuster, L. Frunzio, R. J. Schoelkopf, and A. Wallraff, “Observation of Berry’s phase in a solid-state qubit,” Science 318, 1889 (2007).
[Crossref] [PubMed]

Li, J. J.

Li, J. N.

Z. Y. Jia, J. N. Li, H. W. Wu, C. Wang, T. Y. Chen, R. W. Peng, and M. Wang, “Dipole coupling and dual Fano resonances in a silicon nanodimer,” J. Appl. Phys. 119, 074302 (2016).
[Crossref]

Li, J.-B.

Li, J.-J.

Li, X.

D. Ratchford, F. Shafiei, S. Kim, S. K. Gray, and X. Li, “Manipulating coupling between a single semiconductor quantum dot and single gold nanoparticle,” Nano Lett. 11, 1049–1054 (2011).
[Crossref] [PubMed]

Liang, S.

Lin, H.

Liu, R.-B.

F. Yang and R.-B. Liu, “Berry phases of quantum trajectories of optically excited electron-hole pairs in semiconductors under strong terahertz fields,” New J. Phys. 15, 115005 (2013).
[Crossref]

Liu, S.-D.

M.-T. Cheng, S.-D. Liu, and Q.-Q. Wang, “Modulating emission polarization of semiconductor quantum dots through surface plasmon of metal nanorod,” Appl. Phys. Lett. 92, 162107 (2008).
[Crossref]

M.-T. Cheng, S.-D. Liu, H.-J. Zhou, Z.-H. Hao, and Q.-Q. Wang, “Coherent exciton-plasmon interaction in the hybrid semiconductor quantum dot and metal nanoparticle complex,” Opt. Lett. 32, 2125–2127 (2007).
[Crossref] [PubMed]

Liu, X. N.

X. N. Liu, D. Z. Yao, H. M. Zhou, F. Chen, and G. G. Xiong, “Third-order nonlinear optical response in quantum dot-metal nanoparticle hybrid structures,” Appl. Phys. B 113, 603 (2013).
[Crossref]

Lu, Z.

Z. Lu and K.-D. Zhu, “Slow light in an artificial hybrid nanocrystal complex,” J. Phys. B 42, 015502 (2008).
[Crossref]

Z. Lu and K. Zhu, “Enhancing Kerr nonlinearity of a strongly coupled exciton-plasmon in hybrid nanocrystal molecules,” J. Phys. B 41, 185503 (2008).
[Crossref]

Luo, X.-Y.

Malyshev, A. V.

A. V. Malyshev and V. A. Malyshev, “Optical bistability and hysteresis of a hybrid metal-semiconductor nanodimer,” Phys. Rev. B 84, 035314 (2011).
[Crossref]

Malyshev, V. A.

B. S. Nugroho, V. A. Malyshev, and J. Knoester, “Tailoring optical response of a hybrid comprising a quantum dimer emitter strongly coupled to a metallic nanoparticle,” Phys. Rev. B 92, 165432 (2015).
[Crossref]

B. S. Nugroho, A. A. Iskandar, V. A. Malyshev, and J. Knoester, “Bistable optical response of a nanoparticle heterodimer: Mechanism, phase diagram, and switching time,” J. Chem. Phys. 139, 014303 (2013).
[Crossref] [PubMed]

P. J. Compaijen, V. A. Malyshev, and J. Knoester, “Surface-mediated light transmission in metal nanoparticle chains,” Phys. Rev. B 87, 205437 (2013).
[Crossref]

A. V. Malyshev and V. A. Malyshev, “Optical bistability and hysteresis of a hybrid metal-semiconductor nanodimer,” Phys. Rev. B 84, 035314 (2011).
[Crossref]

Markel, V. A.

I. L. Rasskazov, S. V. Karpov, and V. A. Markel, “Surface plasmon polaritons in curved chains of metal nanoparticles,” Phys. Rev. B 90, 075405 (2014).
[Crossref]

Marocico, C. A.

C. A. Marocico and J. Knoester, “Effect of surface-plasmon polaritons on spontaneous emission and intermolecular energy-transfer rates in multilayered geometries,” Phys. Rev. A 84, 053824 (2011).
[Crossref]

Martin, O. J. F.

Y. Gu, L. Huang, O. J. F. Martin, and Q. Gong, “Resonance fluorescence of single molecules assisted by a plasmonic structure,” Phys. Rev. B 81, 193103 (2010).
[Crossref]

Mattoussi, H.

T. Pons, I. Medintz, K. Sapsford, S. Higashiya, A. Grimes, D. English, and H. Mattoussi, “On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles,” Nano Lett. 7, 3157 (2007).
[Crossref] [PubMed]

May, V.

Y. Zelinskyi, Y. Zhang, and V. May, “Photoinduced dynamics in a molecule metal nanoparticle complex: Mean-field approximation versus exact treatment of the interaction,” J. Chem. Phys. 138, 114704 (2013).
[Crossref]

McMillan, R. J.

R. J. McMillan, L. Stella, and M. Grüning, “Projected equations of motion approach to hybrid quantum/classical dynamics in dielectric-metal composites,” Phys. Rev. B 94, 125312 (2016).
[Crossref]

Medintz, I.

T. Pons, I. Medintz, K. Sapsford, S. Higashiya, A. Grimes, D. English, and H. Mattoussi, “On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles,” Nano Lett. 7, 3157 (2007).
[Crossref] [PubMed]

Melle, S.

F. Carreño, M. A. Antón, S. Melle, O. G. Calderón, E. Cabrera-Granado, J. Cox, M. R. Singh, and A. Egatz-Gómez, “Plasmon-enhanced terahertz emission in self-assembled quantum dots by femtosecond pulses,” J. Appl. Phys. 115, 064304 (2014).
[Crossref]

M. A. Antón, F. Carreño, S. Melle, O. G. Calderón, E. Cabrera-Granado, and M. R. Singh, “Optical pumping of a single hole spin in a p-doped quantum dot coupled to a metallic nanoparticle,” Phys. Rev. B 87, 195303 (2013).
[Crossref]

M. A. Antón, F. Carreño, S. Melle, O. G. Calderón, E. Cabrera-Granado, J. Cox, and M. R. Singh, “Plasmonic effects in excitonic population transfer in a driven semiconductor-metal nanoparticle hybrid system,” Phys. Rev. B 86, 155305 (2012).
[Crossref]

Mironova, P. V.

P. V. Mironova, M. A. Efremov, and W. P. Schleich, “Berry phase in atom optics,” Phys. Rev. A 87, 013627 (2013).
[Crossref]

Mlayah, A.

G. Bachelier and A. Mlayah, “Surface plasmon mediated Raman scattering in metal nanoparticles,” Phys. Rev. B 69, 205408 (2004).
[Crossref]

Mosallaei, H.

L. Hayati, C. Lane, B. Barbiellini, A. Bansil, and H. Mosallaei, “Self-consistent scheme for optical response of large hybrid networks of semiconductor quantum dots and plasmonic metal nanoparticles,” Phys. Rev. B 93, 245411 (2016).
[Crossref]

Moutinho, M.

M. T. Thomaz, A. C. Aguiar Pinto, and M. Moutinho, “Phases of the electronic two-level model under rotating wave approximation,” Phys. Scr. 86, 025001 (2012).
[Crossref]

A. C. Aguiar Pinto, M. Moutinho, and M. T. Thomaz, “Berry’s phase in the two-level model,” Braz. J. Phys. 39, 326 (2009).
[Crossref]

Naik, R. R.

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6, 984 (2006).
[Crossref]

Nejat, A.

S. M. Sadeghi, R. G. West, and A. Nejat, “Photo-induced suppression of plasmonic emission enhancement of CdSe/ZnS quantum dots,” Nanotechnology 22, 405202 (2011).
[Crossref] [PubMed]

Nugroho, B. S.

B. S. Nugroho, V. A. Malyshev, and J. Knoester, “Tailoring optical response of a hybrid comprising a quantum dimer emitter strongly coupled to a metallic nanoparticle,” Phys. Rev. B 92, 165432 (2015).
[Crossref]

B. S. Nugroho, A. A. Iskandar, V. A. Malyshev, and J. Knoester, “Bistable optical response of a nanoparticle heterodimer: Mechanism, phase diagram, and switching time,” J. Chem. Phys. 139, 014303 (2013).
[Crossref] [PubMed]

Ouyang, M.

J. T. Zhang, Y. Tang, K. Lee, and M. Ouyang, “Tailoring light-matter-spin interactions in colloidal hetero-nanostructures,” Nature (London) 466, 91 (2010).
[Crossref]

Palik, E. D.

E. D. Palik, Handbook of Optical Constant of Solids (Academic, 1985).

Paspalakis, E.

F. Carreño, M. A. Antón, V. Yannopapas, and E. Paspalakis, “Resonance fluorescence spectrum of a Λ-type quantum emitter close to a metallic nanoparticle,” Phys. Rev. A 94, 013834 (2016).
[Crossref]

E. Paspalakis, S. Evangelou, S. G. Kosionis, and A. F. Terzis, “Strongly modified four-wave mixing in a coupled semiconductor quantum dot-metal nanoparticle system,” J. Appl. Phys. 115, 083106 (2014).
[Crossref]

E. Paspalakis, S. Evangelou, and A. F. Terzis, “Control of excitonic population inversion in a coupled semiconductor quantum dot-metal nanoparticle system,” Phys. Rev. B 87, 235302 (2013).
[Crossref]

S. G. Kosionis, A. F. Terzis, V. Yannopapas, and E. Paspalakis, “Nonlocal Effects in Energy Absorption of Coupled Quantum Dot-Metal Nanoparticle Systems,” J. Phys. Chem. C 116, 23663 (2012).
[Crossref]

S. G. Kosionis, A. F. Terzis, S. M. Sadeghi, and E. Paspalakis, “Optical response of a quantum dot-metal nanoparticle hybrid interacting with a weak probe field,” J. Phys.: Condens. Matter 25, 045304 (2012).

Patty, K. D.

S. M. Sadeghi and K. D. Patty, “Suppression of quantum decoherence via infrared-driven coherent exciton-plasmon coupling: Undamped field and Rabi oscillations,” Appl. Phys. Lett. 104, 083101 (2014).
[Crossref]

Pelton, M.

R. A. Shah, N. F. Scherer, M. Pelton, and S. K. Gray, “Ultrafast reversal of a Fano resonance in a plasmon-exciton system,” Phys. Rev. B 88, 075411 (2013).
[Crossref]

X. Wu, S. K. Gray, and M. Pelton, “Quantum-dot-induced transparency in a nanoscale plasmonic resonator,” Opt. Express 18, 23633–23645 (2010).
[Crossref] [PubMed]

Peng, R. W.

Z. Y. Jia, J. N. Li, H. W. Wu, C. Wang, T. Y. Chen, R. W. Peng, and M. Wang, “Dipole coupling and dual Fano resonances in a silicon nanodimer,” J. Appl. Phys. 119, 074302 (2016).
[Crossref]

Peng, Y.-X.

Petroff, P. M.

C. Schulhauser, D. Haft, R. J. Warburton, K. Karrai, A. O. Govorov, A. V. Kalameitsev, A. Chaplik, W. Schoenfeld, J. M. Garcia, and P. M. Petroff, “Magneto-optical properties of charged excitons in quantum dots,” Phys. Rev. B 66, 193303 (2002).
[Crossref]

Pons, T.

T. Pons, I. Medintz, K. Sapsford, S. Higashiya, A. Grimes, D. English, and H. Mattoussi, “On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles,” Nano Lett. 7, 3157 (2007).
[Crossref] [PubMed]

Rasskazov, I. L.

I. L. Rasskazov, S. V. Karpov, and V. A. Markel, “Surface plasmon polaritons in curved chains of metal nanoparticles,” Phys. Rev. B 90, 075405 (2014).
[Crossref]

Ratchford, D.

D. Ratchford, F. Shafiei, S. Kim, S. K. Gray, and X. Li, “Manipulating coupling between a single semiconductor quantum dot and single gold nanoparticle,” Nano Lett. 11, 1049–1054 (2011).
[Crossref] [PubMed]

Ridolfo, A.

A. Ridolfo, O. Di Stefano, N. Fina, R. Saija, and S. Savasta, “Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics,” Phys. Rev. Lett. 105, 263601 (2010).
[Crossref]

Sadeghi, S. M.

S. M. Sadeghi, W. J. Wing, and R. R. Gutha, “Undamped ultrafast pulsation of plasmonic fields via coherent exciton-plasmon coupling,” Nanotechnology 26, 085202 (2015).
[Crossref] [PubMed]

S. M. Sadeghi, W. J. Wing, and R. R. Gutha, “Control of plasmon fields via irreversible ultrafast dynamics caused by interaction of infrared laser pulses with quantum-dot-metallic-nanoparticle molecules,” Phys. Rev. A 92, 023808 (2015).
[Crossref]

S. M. Sadeghi and K. D. Patty, “Suppression of quantum decoherence via infrared-driven coherent exciton-plasmon coupling: Undamped field and Rabi oscillations,” Appl. Phys. Lett. 104, 083101 (2014).
[Crossref]

S. G. Kosionis, A. F. Terzis, S. M. Sadeghi, and E. Paspalakis, “Optical response of a quantum dot-metal nanoparticle hybrid interacting with a weak probe field,” J. Phys.: Condens. Matter 25, 045304 (2012).

A. Hatef, S. M. Sadeghi, and M. R. Singh, “Plasmonic electromagnetically induced transparency in metallic nanoparticle-quantum dot hybrid systems,” Nanotechnology 23, 065701 (2012).
[Crossref] [PubMed]

S. M. Sadeghi, R. G. West, and A. Nejat, “Photo-induced suppression of plasmonic emission enhancement of CdSe/ZnS quantum dots,” Nanotechnology 22, 405202 (2011).
[Crossref] [PubMed]

S. M. Sadeghi and R. G. West, “Coherent control of Forster energy transfer in nanoparticle molecules: energy nanogates and plasmonic heat pulses,” J. Phys.: Condens. Matter 23, 425302 (2011).

S. M. Sadeghi, “Gain without inversion in hybrid quantum dot-metallic nanoparticle systems,” Nanotechnology 21, 455401 (2010).
[Crossref] [PubMed]

S. M. Sadeghi, “Coherent control of metallic nanoparticles near fields: Nanopulse controllers and functional nanoamplifiers,” Phys. Rev. B 82, 035413 (2010).
[Crossref]

S. M. Sadeghi, “Plasmonic metaresonances: Molecular resonances in quantum dot-metallic nanoparticle conjugates,” Phys. Rev. B 79, 233309 (2009).
[Crossref]

S. M. Sadeghi, “The inhibition of optical excitations and enhancement of Rabi flopping in hybrid quantum dot-metallic nanoparticle systems,” Nanotechnology 20, 225401 (2009).
[Crossref] [PubMed]

Saija, R.

A. Ridolfo, O. Di Stefano, N. Fina, R. Saija, and S. Savasta, “Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics,” Phys. Rev. Lett. 105, 263601 (2010).
[Crossref]

Sapsford, K.

T. Pons, I. Medintz, K. Sapsford, S. Higashiya, A. Grimes, D. English, and H. Mattoussi, “On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles,” Nano Lett. 7, 3157 (2007).
[Crossref] [PubMed]

Savasta, S.

A. Ridolfo, O. Di Stefano, N. Fina, R. Saija, and S. Savasta, “Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics,” Phys. Rev. Lett. 105, 263601 (2010).
[Crossref]

Scherer, N. F.

R. A. Shah, N. F. Scherer, M. Pelton, and S. K. Gray, “Ultrafast reversal of a Fano resonance in a plasmon-exciton system,” Phys. Rev. B 88, 075411 (2013).
[Crossref]

Schindel, D. G.

A. Hatef, D. G. Schindel, and M. R. Singh, “Dipole-dipole interaction in a quantum dot and metallic nanorod hybrid system,” Appl. Phys. Lett. 99, 181106 (2011).
[Crossref]

Schleich, W. P.

P. V. Mironova, M. A. Efremov, and W. P. Schleich, “Berry phase in atom optics,” Phys. Rev. A 87, 013627 (2013).
[Crossref]

Schoelkopf, R. J.

P. J. Leek, J. M. Fink, A. Blais, R. Bianchetti, M. Goppl, J. M. Gambetta, D. I. Schuster, L. Frunzio, R. J. Schoelkopf, and A. Wallraff, “Observation of Berry’s phase in a solid-state qubit,” Science 318, 1889 (2007).
[Crossref] [PubMed]

Schoenfeld, W.

C. Schulhauser, D. Haft, R. J. Warburton, K. Karrai, A. O. Govorov, A. V. Kalameitsev, A. Chaplik, W. Schoenfeld, J. M. Garcia, and P. M. Petroff, “Magneto-optical properties of charged excitons in quantum dots,” Phys. Rev. B 66, 193303 (2002).
[Crossref]

Schulhauser, C.

C. Schulhauser, D. Haft, R. J. Warburton, K. Karrai, A. O. Govorov, A. V. Kalameitsev, A. Chaplik, W. Schoenfeld, J. M. Garcia, and P. M. Petroff, “Magneto-optical properties of charged excitons in quantum dots,” Phys. Rev. B 66, 193303 (2002).
[Crossref]

Schuster, D. I.

P. J. Leek, J. M. Fink, A. Blais, R. Bianchetti, M. Goppl, J. M. Gambetta, D. I. Schuster, L. Frunzio, R. J. Schoelkopf, and A. Wallraff, “Observation of Berry’s phase in a solid-state qubit,” Science 318, 1889 (2007).
[Crossref] [PubMed]

Shafiei, F.

D. Ratchford, F. Shafiei, S. Kim, S. K. Gray, and X. Li, “Manipulating coupling between a single semiconductor quantum dot and single gold nanoparticle,” Nano Lett. 11, 1049–1054 (2011).
[Crossref] [PubMed]

Shah, R. A.

R. A. Shah, N. F. Scherer, M. Pelton, and S. K. Gray, “Ultrafast reversal of a Fano resonance in a plasmon-exciton system,” Phys. Rev. B 88, 075411 (2013).
[Crossref]

Singh, M. R.

F. Carreño, M. A. Antón, S. Melle, O. G. Calderón, E. Cabrera-Granado, J. Cox, M. R. Singh, and A. Egatz-Gómez, “Plasmon-enhanced terahertz emission in self-assembled quantum dots by femtosecond pulses,” J. Appl. Phys. 115, 064304 (2014).
[Crossref]

M. A. Antón, F. Carreño, S. Melle, O. G. Calderón, E. Cabrera-Granado, and M. R. Singh, “Optical pumping of a single hole spin in a p-doped quantum dot coupled to a metallic nanoparticle,” Phys. Rev. B 87, 195303 (2013).
[Crossref]

A. Hatef, S. M. Sadeghi, and M. R. Singh, “Plasmonic electromagnetically induced transparency in metallic nanoparticle-quantum dot hybrid systems,” Nanotechnology 23, 065701 (2012).
[Crossref] [PubMed]

M. A. Antón, F. Carreño, S. Melle, O. G. Calderón, E. Cabrera-Granado, J. Cox, and M. R. Singh, “Plasmonic effects in excitonic population transfer in a driven semiconductor-metal nanoparticle hybrid system,” Phys. Rev. B 86, 155305 (2012).
[Crossref]

A. Hatef, D. G. Schindel, and M. R. Singh, “Dipole-dipole interaction in a quantum dot and metallic nanorod hybrid system,” Appl. Phys. Lett. 99, 181106 (2011).
[Crossref]

Skeini, T.

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6, 984 (2006).
[Crossref]

Slocik, J. M.

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6, 984 (2006).
[Crossref]

Song, Y.-Y.

Stella, L.

R. J. McMillan, L. Stella, and M. Grüning, “Projected equations of motion approach to hybrid quantum/classical dynamics in dielectric-metal composites,” Phys. Rev. B 94, 125312 (2016).
[Crossref]

Tang, Y.

J. T. Zhang, Y. Tang, K. Lee, and M. Ouyang, “Tailoring light-matter-spin interactions in colloidal hetero-nanostructures,” Nature (London) 466, 91 (2010).
[Crossref]

Tasgin, M. E.

M. E. Tasgin, “Metal nanoparticle plasmons operating within a quantum lifetime,” Nanoscale 5, 8616 (2013).
[Crossref] [PubMed]

Taylor, R. A.

Terzis, A. F.

E. Paspalakis, S. Evangelou, S. G. Kosionis, and A. F. Terzis, “Strongly modified four-wave mixing in a coupled semiconductor quantum dot-metal nanoparticle system,” J. Appl. Phys. 115, 083106 (2014).
[Crossref]

E. Paspalakis, S. Evangelou, and A. F. Terzis, “Control of excitonic population inversion in a coupled semiconductor quantum dot-metal nanoparticle system,” Phys. Rev. B 87, 235302 (2013).
[Crossref]

S. G. Kosionis, A. F. Terzis, V. Yannopapas, and E. Paspalakis, “Nonlocal Effects in Energy Absorption of Coupled Quantum Dot-Metal Nanoparticle Systems,” J. Phys. Chem. C 116, 23663 (2012).
[Crossref]

S. G. Kosionis, A. F. Terzis, S. M. Sadeghi, and E. Paspalakis, “Optical response of a quantum dot-metal nanoparticle hybrid interacting with a weak probe field,” J. Phys.: Condens. Matter 25, 045304 (2012).

Tewari, S. P.

S. P. Tewari, “Berry’s phase in a two-level atom,” Phys. Rev. A 39, 6082 (1989).
[Crossref]

Thomas, P.

M. Koch, J. Feldmann, G. von Plessen, E. O. Göbel, P. Thomas, and K. Köhler, “Quantum beats versus polarization interference: An experimental distinction,” Phys. Rev. Lett. 69, 3631 (1992).
[Crossref] [PubMed]

Thomaz, M. T.

M. T. Thomaz, A. C. Aguiar Pinto, and M. Moutinho, “Phases of the electronic two-level model under rotating wave approximation,” Phys. Scr. 86, 025001 (2012).
[Crossref]

A. C. Aguiar Pinto, M. Moutinho, and M. T. Thomaz, “Berry’s phase in the two-level model,” Braz. J. Phys. 39, 326 (2009).
[Crossref]

Van Vlack, C.

R.-C. Ge, C. Van Vlack, P. Yao, Jeff. F. Young, and S. Hughes, “Accessing quantum nanoplasmonics in a hybrid quantum dot-metal nanosystem: Mollow triplet of a quantum dot near a metal nanoparticle,” Phys. Rev. B 87, 205425 (2013).
[Crossref]

von Plessen, G.

M. Koch, J. Feldmann, G. von Plessen, E. O. Göbel, P. Thomas, and K. Köhler, “Quantum beats versus polarization interference: An experimental distinction,” Phys. Rev. Lett. 69, 3631 (1992).
[Crossref] [PubMed]

Wallraff, A.

P. J. Leek, J. M. Fink, A. Blais, R. Bianchetti, M. Goppl, J. M. Gambetta, D. I. Schuster, L. Frunzio, R. J. Schoelkopf, and A. Wallraff, “Observation of Berry’s phase in a solid-state qubit,” Science 318, 1889 (2007).
[Crossref] [PubMed]

Wang, C.

Z. Y. Jia, J. N. Li, H. W. Wu, C. Wang, T. Y. Chen, R. W. Peng, and M. Wang, “Dipole coupling and dual Fano resonances in a silicon nanodimer,” J. Appl. Phys. 119, 074302 (2016).
[Crossref]

Wang, H.

Wang, L.

J. Hakami, L. Wang, and M. S. Zubairy, “Spectral properties of a strongly coupled quantum-dot-metal-nanoparticle system,” Phys. Rev. A 89, 053835 (2014).
[Crossref]

Wang, L. C.

X. X. Yi, L. C. Wang, and T. Y. Zheng, “Berry phase in a composite system,” Phys. Rev. Lett. 92, 150406 (2004).
[Crossref] [PubMed]

Wang, M.

Z. Y. Jia, J. N. Li, H. W. Wu, C. Wang, T. Y. Chen, R. W. Peng, and M. Wang, “Dipole coupling and dual Fano resonances in a silicon nanodimer,” J. Appl. Phys. 119, 074302 (2016).
[Crossref]

Wang, Q.-Q.

Warburton, R. J.

C. Schulhauser, D. Haft, R. J. Warburton, K. Karrai, A. O. Govorov, A. V. Kalameitsev, A. Chaplik, W. Schoenfeld, J. M. Garcia, and P. M. Petroff, “Magneto-optical properties of charged excitons in quantum dots,” Phys. Rev. B 66, 193303 (2002).
[Crossref]

West, R. G.

S. M. Sadeghi, R. G. West, and A. Nejat, “Photo-induced suppression of plasmonic emission enhancement of CdSe/ZnS quantum dots,” Nanotechnology 22, 405202 (2011).
[Crossref] [PubMed]

S. M. Sadeghi and R. G. West, “Coherent control of Forster energy transfer in nanoparticle molecules: energy nanogates and plasmonic heat pulses,” J. Phys.: Condens. Matter 23, 425302 (2011).

Wiederrecht, G. P.

G. P. Wiederrecht, G. A. Wurtz, and J. Hranisavljevic, “Coherent coupling of molecular excitons to electronic polarizations of noble metal nanoparticles,” Nano Lett. 4, 2121–2125 (2004).
[Crossref]

Wing, W. J.

S. M. Sadeghi, W. J. Wing, and R. R. Gutha, “Undamped ultrafast pulsation of plasmonic fields via coherent exciton-plasmon coupling,” Nanotechnology 26, 085202 (2015).
[Crossref] [PubMed]

S. M. Sadeghi, W. J. Wing, and R. R. Gutha, “Control of plasmon fields via irreversible ultrafast dynamics caused by interaction of infrared laser pulses with quantum-dot-metallic-nanoparticle molecules,” Phys. Rev. A 92, 023808 (2015).
[Crossref]

Wu, G.-H.

Wu, H. W.

Z. Y. Jia, J. N. Li, H. W. Wu, C. Wang, T. Y. Chen, R. W. Peng, and M. Wang, “Dipole coupling and dual Fano resonances in a silicon nanodimer,” J. Appl. Phys. 119, 074302 (2016).
[Crossref]

Wu, X.

Wurtz, G. A.

G. P. Wiederrecht, G. A. Wurtz, and J. Hranisavljevic, “Coherent coupling of molecular excitons to electronic polarizations of noble metal nanoparticles,” Nano Lett. 4, 2121–2125 (2004).
[Crossref]

Xiao, S.

Xiao, Z. H.

Xie, X. T.

W. X. Yang, X. T. Xie, A. X. Chen, Z. Huang, and R. K. Lee, “Coherent control of high-order-harmonic generation via tunable plasmonic bichromatic near fields in a metal nanoparticle,” Phys. Rev. A 93, 053806 (2016).
[Crossref]

Xiong, G. G.

X. N. Liu, D. Z. Yao, H. M. Zhou, F. Chen, and G. G. Xiong, “Third-order nonlinear optical response in quantum dot-metal nanoparticle hybrid structures,” Appl. Phys. B 113, 603 (2013).
[Crossref]

Yan, J.-Y.

J.-Y. Yan, “Strong exciton-plasmon interaction in semiconductor-insulator-metal nanowires,” Phys. Rev. B 86, 075438 (2012).
[Crossref]

J.-Y. Yan, W. Zhang, S.-Q. Duan, and X.-G. Zhao, “Plasmon-enhanced midinfrared generation from difference frequency in semiconductor quantum dots,” J. Appl. Phys. 103, 104314 (2008).
[Crossref]

J.-Y. Yan, W. Zhang, S. Duan, X.-G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects,” Phys. Rev. B 77, 165301 (2008).
[Crossref]

Yang, F.

F. Yang and R.-B. Liu, “Berry phases of quantum trajectories of optically excited electron-hole pairs in semiconductors under strong terahertz fields,” New J. Phys. 15, 115005 (2013).
[Crossref]

Yang, W. X.

W. X. Yang, X. T. Xie, A. X. Chen, Z. Huang, and R. K. Lee, “Coherent control of high-order-harmonic generation via tunable plasmonic bichromatic near fields in a metal nanoparticle,” Phys. Rev. A 93, 053806 (2016).
[Crossref]

Yang, W.-X.

W.-X. Yang, A.-X. Chen, Z. Huang, and R.-K. Lee, “Ultrafast optical switching in quantum dot-metallic nanoparticle hybrid systems,” Optics Express 23, 13032 (2015).
[Crossref] [PubMed]

Yannopapas, V.

F. Carreño, M. A. Antón, V. Yannopapas, and E. Paspalakis, “Resonance fluorescence spectrum of a Λ-type quantum emitter close to a metallic nanoparticle,” Phys. Rev. A 94, 013834 (2016).
[Crossref]

S. G. Kosionis, A. F. Terzis, V. Yannopapas, and E. Paspalakis, “Nonlocal Effects in Energy Absorption of Coupled Quantum Dot-Metal Nanoparticle Systems,” J. Phys. Chem. C 116, 23663 (2012).
[Crossref]

Yao, D. Z.

X. N. Liu, D. Z. Yao, H. M. Zhou, F. Chen, and G. G. Xiong, “Third-order nonlinear optical response in quantum dot-metal nanoparticle hybrid structures,” Appl. Phys. B 113, 603 (2013).
[Crossref]

Yao, P.

R.-C. Ge, C. Van Vlack, P. Yao, Jeff. F. Young, and S. Hughes, “Accessing quantum nanoplasmonics in a hybrid quantum dot-metal nanosystem: Mollow triplet of a quantum dot near a metal nanoparticle,” Phys. Rev. B 87, 205425 (2013).
[Crossref]

Yi, X. X.

X. X. Yi, L. C. Wang, and T. Y. Zheng, “Berry phase in a composite system,” Phys. Rev. Lett. 92, 150406 (2004).
[Crossref] [PubMed]

Young, Jeff. F.

R.-C. Ge, C. Van Vlack, P. Yao, Jeff. F. Young, and S. Hughes, “Accessing quantum nanoplasmonics in a hybrid quantum dot-metal nanosystem: Mollow triplet of a quantum dot near a metal nanoparticle,” Phys. Rev. B 87, 205425 (2013).
[Crossref]

Zelinskyi, Y.

Y. Zelinskyi, Y. Zhang, and V. May, “Photoinduced dynamics in a molecule metal nanoparticle complex: Mean-field approximation versus exact treatment of the interaction,” J. Chem. Phys. 138, 114704 (2013).
[Crossref]

Zhang, J. T.

J. T. Zhang, Y. Tang, K. Lee, and M. Ouyang, “Tailoring light-matter-spin interactions in colloidal hetero-nanostructures,” Nature (London) 466, 91 (2010).
[Crossref]

Zhang, W.

W. Zhang and A. O. Govorov, “Quantum theory of the nonlinear Fano effect in hybrid metal-semiconductor nanostructures: The case of strong nonlinearity,” Phys. Rev. B 84, 081405 (2011).
[Crossref]

J.-Y. Yan, W. Zhang, S.-Q. Duan, and X.-G. Zhao, “Plasmon-enhanced midinfrared generation from difference frequency in semiconductor quantum dots,” J. Appl. Phys. 103, 104314 (2008).
[Crossref]

J.-Y. Yan, W. Zhang, S. Duan, X.-G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects,” Phys. Rev. B 77, 165301 (2008).
[Crossref]

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: Hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97, 146804 (2006).
[Crossref] [PubMed]

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6, 984 (2006).
[Crossref]

Zhang, Y.

Y. Zelinskyi, Y. Zhang, and V. May, “Photoinduced dynamics in a molecule metal nanoparticle complex: Mean-field approximation versus exact treatment of the interaction,” J. Chem. Phys. 138, 114704 (2013).
[Crossref]

Zhao, X.-G.

J.-Y. Yan, W. Zhang, S.-Q. Duan, and X.-G. Zhao, “Plasmon-enhanced midinfrared generation from difference frequency in semiconductor quantum dots,” J. Appl. Phys. 103, 104314 (2008).
[Crossref]

J.-Y. Yan, W. Zhang, S. Duan, X.-G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects,” Phys. Rev. B 77, 165301 (2008).
[Crossref]

Zheng, L.

Zheng, T. Y.

X. X. Yi, L. C. Wang, and T. Y. Zheng, “Berry phase in a composite system,” Phys. Rev. Lett. 92, 150406 (2004).
[Crossref] [PubMed]

Zhou, H. M.

X. N. Liu, D. Z. Yao, H. M. Zhou, F. Chen, and G. G. Xiong, “Third-order nonlinear optical response in quantum dot-metal nanoparticle hybrid structures,” Appl. Phys. B 113, 603 (2013).
[Crossref]

Zhou, H.-J.

Zhou, L.

Zhu, K.

Z. Lu and K. Zhu, “Enhancing Kerr nonlinearity of a strongly coupled exciton-plasmon in hybrid nanocrystal molecules,” J. Phys. B 41, 185503 (2008).
[Crossref]

Zhu, K. D.

Zhu, K.-D.

Y. He, C. Jiang, B. Chen, J.-J. Li, and K.-D. Zhu, “Optical determination of vacuum Rabi splitting in a semiconductor quantum dot induced by a metal nanoparticle,” Opt. Lett. 37, 2943–2945 (2012).
[Crossref] [PubMed]

Y. He and K.-D. Zhu, “Strong coupling among semiconductor quantum dots induced by a metal nanoparticle,” Nano. Res. Lett. 7, 95 (2012).
[Crossref]

Z. Lu and K.-D. Zhu, “Slow light in an artificial hybrid nanocrystal complex,” J. Phys. B 42, 015502 (2008).
[Crossref]

Zubairy, M. S.

J. Hakami, L. Wang, and M. S. Zubairy, “Spectral properties of a strongly coupled quantum-dot-metal-nanoparticle system,” Phys. Rev. A 89, 053835 (2014).
[Crossref]

Appl. Phys. B (1)

X. N. Liu, D. Z. Yao, H. M. Zhou, F. Chen, and G. G. Xiong, “Third-order nonlinear optical response in quantum dot-metal nanoparticle hybrid structures,” Appl. Phys. B 113, 603 (2013).
[Crossref]

Appl. Phys. Lett. (3)

A. Hatef, D. G. Schindel, and M. R. Singh, “Dipole-dipole interaction in a quantum dot and metallic nanorod hybrid system,” Appl. Phys. Lett. 99, 181106 (2011).
[Crossref]

M.-T. Cheng, S.-D. Liu, and Q.-Q. Wang, “Modulating emission polarization of semiconductor quantum dots through surface plasmon of metal nanorod,” Appl. Phys. Lett. 92, 162107 (2008).
[Crossref]

S. M. Sadeghi and K. D. Patty, “Suppression of quantum decoherence via infrared-driven coherent exciton-plasmon coupling: Undamped field and Rabi oscillations,” Appl. Phys. Lett. 104, 083101 (2014).
[Crossref]

Braz. J. Phys. (1)

A. C. Aguiar Pinto, M. Moutinho, and M. T. Thomaz, “Berry’s phase in the two-level model,” Braz. J. Phys. 39, 326 (2009).
[Crossref]

J. Appl. Phys. (4)

Z. Y. Jia, J. N. Li, H. W. Wu, C. Wang, T. Y. Chen, R. W. Peng, and M. Wang, “Dipole coupling and dual Fano resonances in a silicon nanodimer,” J. Appl. Phys. 119, 074302 (2016).
[Crossref]

J.-Y. Yan, W. Zhang, S.-Q. Duan, and X.-G. Zhao, “Plasmon-enhanced midinfrared generation from difference frequency in semiconductor quantum dots,” J. Appl. Phys. 103, 104314 (2008).
[Crossref]

E. Paspalakis, S. Evangelou, S. G. Kosionis, and A. F. Terzis, “Strongly modified four-wave mixing in a coupled semiconductor quantum dot-metal nanoparticle system,” J. Appl. Phys. 115, 083106 (2014).
[Crossref]

F. Carreño, M. A. Antón, S. Melle, O. G. Calderón, E. Cabrera-Granado, J. Cox, M. R. Singh, and A. Egatz-Gómez, “Plasmon-enhanced terahertz emission in self-assembled quantum dots by femtosecond pulses,” J. Appl. Phys. 115, 064304 (2014).
[Crossref]

J. Chem. Phys. (2)

Y. Zelinskyi, Y. Zhang, and V. May, “Photoinduced dynamics in a molecule metal nanoparticle complex: Mean-field approximation versus exact treatment of the interaction,” J. Chem. Phys. 138, 114704 (2013).
[Crossref]

B. S. Nugroho, A. A. Iskandar, V. A. Malyshev, and J. Knoester, “Bistable optical response of a nanoparticle heterodimer: Mechanism, phase diagram, and switching time,” J. Chem. Phys. 139, 014303 (2013).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

J. Phys. B (2)

Z. Lu and K.-D. Zhu, “Slow light in an artificial hybrid nanocrystal complex,” J. Phys. B 42, 015502 (2008).
[Crossref]

Z. Lu and K. Zhu, “Enhancing Kerr nonlinearity of a strongly coupled exciton-plasmon in hybrid nanocrystal molecules,” J. Phys. B 41, 185503 (2008).
[Crossref]

J. Phys. Chem. C (1)

S. G. Kosionis, A. F. Terzis, V. Yannopapas, and E. Paspalakis, “Nonlocal Effects in Energy Absorption of Coupled Quantum Dot-Metal Nanoparticle Systems,” J. Phys. Chem. C 116, 23663 (2012).
[Crossref]

J. Phys.: Condens. Matter (2)

S. G. Kosionis, A. F. Terzis, S. M. Sadeghi, and E. Paspalakis, “Optical response of a quantum dot-metal nanoparticle hybrid interacting with a weak probe field,” J. Phys.: Condens. Matter 25, 045304 (2012).

S. M. Sadeghi and R. G. West, “Coherent control of Forster energy transfer in nanoparticle molecules: energy nanogates and plasmonic heat pulses,” J. Phys.: Condens. Matter 23, 425302 (2011).

Nano Lett. (6)

T. Pons, I. Medintz, K. Sapsford, S. Higashiya, A. Grimes, D. English, and H. Mattoussi, “On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles,” Nano Lett. 7, 3157 (2007).
[Crossref] [PubMed]

D. Ratchford, F. Shafiei, S. Kim, S. K. Gray, and X. Li, “Manipulating coupling between a single semiconductor quantum dot and single gold nanoparticle,” Nano Lett. 11, 1049–1054 (2011).
[Crossref] [PubMed]

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6, 984 (2006).
[Crossref]

G. P. Wiederrecht, G. A. Wurtz, and J. Hranisavljevic, “Coherent coupling of molecular excitons to electronic polarizations of noble metal nanoparticles,” Nano Lett. 4, 2121–2125 (2004).
[Crossref]

A. M. Kelley, “A molecular spectroscopic description of optical spectra of J-aggregated dyes on gold nanoparticles,” Nano Lett. 7, 3235–3240 (2007).
[Crossref] [PubMed]

R. Artuso and G. Bryant, “Optical Response of Strongly Coupled Quantum Dot-Metal Nanoparticle Systems: Double Peaked Fano Structure and Bistability,” Nano Lett. 8, 2106–2111 (2008).
[Crossref] [PubMed]

Nano. Res. Lett. (1)

Y. He and K.-D. Zhu, “Strong coupling among semiconductor quantum dots induced by a metal nanoparticle,” Nano. Res. Lett. 7, 95 (2012).
[Crossref]

Nanoscale (1)

M. E. Tasgin, “Metal nanoparticle plasmons operating within a quantum lifetime,” Nanoscale 5, 8616 (2013).
[Crossref] [PubMed]

Nanotechnology (5)

S. M. Sadeghi, “Gain without inversion in hybrid quantum dot-metallic nanoparticle systems,” Nanotechnology 21, 455401 (2010).
[Crossref] [PubMed]

A. Hatef, S. M. Sadeghi, and M. R. Singh, “Plasmonic electromagnetically induced transparency in metallic nanoparticle-quantum dot hybrid systems,” Nanotechnology 23, 065701 (2012).
[Crossref] [PubMed]

S. M. Sadeghi, “The inhibition of optical excitations and enhancement of Rabi flopping in hybrid quantum dot-metallic nanoparticle systems,” Nanotechnology 20, 225401 (2009).
[Crossref] [PubMed]

S. M. Sadeghi, R. G. West, and A. Nejat, “Photo-induced suppression of plasmonic emission enhancement of CdSe/ZnS quantum dots,” Nanotechnology 22, 405202 (2011).
[Crossref] [PubMed]

S. M. Sadeghi, W. J. Wing, and R. R. Gutha, “Undamped ultrafast pulsation of plasmonic fields via coherent exciton-plasmon coupling,” Nanotechnology 26, 085202 (2015).
[Crossref] [PubMed]

Nature (London) (1)

J. T. Zhang, Y. Tang, K. Lee, and M. Ouyang, “Tailoring light-matter-spin interactions in colloidal hetero-nanostructures,” Nature (London) 466, 91 (2010).
[Crossref]

New J. Phys. (1)

F. Yang and R.-B. Liu, “Berry phases of quantum trajectories of optically excited electron-hole pairs in semiconductors under strong terahertz fields,” New J. Phys. 15, 115005 (2013).
[Crossref]

Opt. Express (7)

Opt. Lett. (3)

Optics Express (1)

W.-X. Yang, A.-X. Chen, Z. Huang, and R.-K. Lee, “Ultrafast optical switching in quantum dot-metallic nanoparticle hybrid systems,” Optics Express 23, 13032 (2015).
[Crossref] [PubMed]

Phys. B: Condens. Matter (1)

X. Feng, Y. Chen, and D. Hou, “Optical nonlinearity enhanced by metal nanoparticle in CdTe quantum dots,” Phys. B: Condens. Matter 406, 1702 (2011).
[Crossref]

Phys. Lett. B (1)

S. Joshi and S. R. Jain, “Geometric phase for neutrino propagation in magnetic field,” Phys. Lett. B 754, 135 (2016).
[Crossref]

Phys. Rev. A (7)

S. P. Tewari, “Berry’s phase in a two-level atom,” Phys. Rev. A 39, 6082 (1989).
[Crossref]

P. V. Mironova, M. A. Efremov, and W. P. Schleich, “Berry phase in atom optics,” Phys. Rev. A 87, 013627 (2013).
[Crossref]

C. A. Marocico and J. Knoester, “Effect of surface-plasmon polaritons on spontaneous emission and intermolecular energy-transfer rates in multilayered geometries,” Phys. Rev. A 84, 053824 (2011).
[Crossref]

W. X. Yang, X. T. Xie, A. X. Chen, Z. Huang, and R. K. Lee, “Coherent control of high-order-harmonic generation via tunable plasmonic bichromatic near fields in a metal nanoparticle,” Phys. Rev. A 93, 053806 (2016).
[Crossref]

S. M. Sadeghi, W. J. Wing, and R. R. Gutha, “Control of plasmon fields via irreversible ultrafast dynamics caused by interaction of infrared laser pulses with quantum-dot-metallic-nanoparticle molecules,” Phys. Rev. A 92, 023808 (2015).
[Crossref]

J. Hakami, L. Wang, and M. S. Zubairy, “Spectral properties of a strongly coupled quantum-dot-metal-nanoparticle system,” Phys. Rev. A 89, 053835 (2014).
[Crossref]

F. Carreño, M. A. Antón, V. Yannopapas, and E. Paspalakis, “Resonance fluorescence spectrum of a Λ-type quantum emitter close to a metallic nanoparticle,” Phys. Rev. A 94, 013834 (2016).
[Crossref]

Phys. Rev. B (25)

F. Carreño, M. A. Antón, and F. Arrieta-Yáñez, “Resonance fluorescence spectrum of a p-doped quantum dot coupled to a metallic nanoparticle,” Phys. Rev. B 88, 195303 (2013).
[Crossref]

Y. Gu, L. Huang, O. J. F. Martin, and Q. Gong, “Resonance fluorescence of single molecules assisted by a plasmonic structure,” Phys. Rev. B 81, 193103 (2010).
[Crossref]

R. D. Artuso and G. W. Bryant, “Quantum dot-quantum dot interactions mediated by a metal nanoparticle: Towards a fully quantum model,” Phys. Rev. B 87, 125423 (2013).
[Crossref]

L. Hayati, C. Lane, B. Barbiellini, A. Bansil, and H. Mosallaei, “Self-consistent scheme for optical response of large hybrid networks of semiconductor quantum dots and plasmonic metal nanoparticles,” Phys. Rev. B 93, 245411 (2016).
[Crossref]

R. J. McMillan, L. Stella, and M. Grüning, “Projected equations of motion approach to hybrid quantum/classical dynamics in dielectric-metal composites,” Phys. Rev. B 94, 125312 (2016).
[Crossref]

R. D. Artuso and G. W. Bryant, “Strongly coupled quantum dot-metal nanoparticle systems: Exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effects,” Phys. Rev. B 82, 195419 (2010).
[Crossref]

J.-Y. Yan, W. Zhang, S. Duan, X.-G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects,” Phys. Rev. B 77, 165301 (2008).
[Crossref]

S. M. Sadeghi, “Coherent control of metallic nanoparticles near fields: Nanopulse controllers and functional nanoamplifiers,” Phys. Rev. B 82, 035413 (2010).
[Crossref]

R.-C. Ge, C. Van Vlack, P. Yao, Jeff. F. Young, and S. Hughes, “Accessing quantum nanoplasmonics in a hybrid quantum dot-metal nanosystem: Mollow triplet of a quantum dot near a metal nanoparticle,” Phys. Rev. B 87, 205425 (2013).
[Crossref]

B. S. Nugroho, V. A. Malyshev, and J. Knoester, “Tailoring optical response of a hybrid comprising a quantum dimer emitter strongly coupled to a metallic nanoparticle,” Phys. Rev. B 92, 165432 (2015).
[Crossref]

M. A. Antón, F. Carreño, S. Melle, O. G. Calderón, E. Cabrera-Granado, J. Cox, and M. R. Singh, “Plasmonic effects in excitonic population transfer in a driven semiconductor-metal nanoparticle hybrid system,” Phys. Rev. B 86, 155305 (2012).
[Crossref]

E. Paspalakis, S. Evangelou, and A. F. Terzis, “Control of excitonic population inversion in a coupled semiconductor quantum dot-metal nanoparticle system,” Phys. Rev. B 87, 235302 (2013).
[Crossref]

S. M. Sadeghi, “Plasmonic metaresonances: Molecular resonances in quantum dot-metallic nanoparticle conjugates,” Phys. Rev. B 79, 233309 (2009).
[Crossref]

M. A. Antón, F. Carreño, S. Melle, O. G. Calderón, E. Cabrera-Granado, and M. R. Singh, “Optical pumping of a single hole spin in a p-doped quantum dot coupled to a metallic nanoparticle,” Phys. Rev. B 87, 195303 (2013).
[Crossref]

A. O. Govorov, “Semiconductor-metal nanoparticle molecules in a magnetic field: Spin-plasmon and exciton-plasmon interactions,” Phys. Rev. B 82, 155322 (2010).
[Crossref]

A. V. Malyshev and V. A. Malyshev, “Optical bistability and hysteresis of a hybrid metal-semiconductor nanodimer,” Phys. Rev. B 84, 035314 (2011).
[Crossref]

R. D. Artuso, G. W. Bryant, A. Garcia-Etxarri, and J. Aizpurua, “Using local fields to tailor hybrid quantum-dot/metal nanoparticle systems,” Phys. Rev. B 83, 235406 (2011).
[Crossref]

W. Zhang and A. O. Govorov, “Quantum theory of the nonlinear Fano effect in hybrid metal-semiconductor nanostructures: The case of strong nonlinearity,” Phys. Rev. B 84, 081405 (2011).
[Crossref]

R. A. Shah, N. F. Scherer, M. Pelton, and S. K. Gray, “Ultrafast reversal of a Fano resonance in a plasmon-exciton system,” Phys. Rev. B 88, 075411 (2013).
[Crossref]

J.-Y. Yan, “Strong exciton-plasmon interaction in semiconductor-insulator-metal nanowires,” Phys. Rev. B 86, 075438 (2012).
[Crossref]

G. Bachelier and A. Mlayah, “Surface plasmon mediated Raman scattering in metal nanoparticles,” Phys. Rev. B 69, 205408 (2004).
[Crossref]

I. L. Rasskazov, S. V. Karpov, and V. A. Markel, “Surface plasmon polaritons in curved chains of metal nanoparticles,” Phys. Rev. B 90, 075405 (2014).
[Crossref]

P. J. Compaijen, V. A. Malyshev, and J. Knoester, “Surface-mediated light transmission in metal nanoparticle chains,” Phys. Rev. B 87, 205437 (2013).
[Crossref]

C. Schulhauser, D. Haft, R. J. Warburton, K. Karrai, A. O. Govorov, A. V. Kalameitsev, A. Chaplik, W. Schoenfeld, J. M. Garcia, and P. M. Petroff, “Magneto-optical properties of charged excitons in quantum dots,” Phys. Rev. B 66, 193303 (2002).
[Crossref]

V. N. Gladilin, S. N. Klimin, V. M. Fomin, and J. T. Devreese, “Optical properties of polaronic excitons in stacked quantum dots,” Phys. Rev. B 69, 155325 (2004).
[Crossref]

Phys. Rev. Lett. (4)

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: Hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97, 146804 (2006).
[Crossref] [PubMed]

A. Ridolfo, O. Di Stefano, N. Fina, R. Saija, and S. Savasta, “Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics,” Phys. Rev. Lett. 105, 263601 (2010).
[Crossref]

X. X. Yi, L. C. Wang, and T. Y. Zheng, “Berry phase in a composite system,” Phys. Rev. Lett. 92, 150406 (2004).
[Crossref] [PubMed]

M. Koch, J. Feldmann, G. von Plessen, E. O. Göbel, P. Thomas, and K. Köhler, “Quantum beats versus polarization interference: An experimental distinction,” Phys. Rev. Lett. 69, 3631 (1992).
[Crossref] [PubMed]

Phys. Scr. (1)

M. T. Thomaz, A. C. Aguiar Pinto, and M. Moutinho, “Phases of the electronic two-level model under rotating wave approximation,” Phys. Scr. 86, 025001 (2012).
[Crossref]

Proc. R. Soc. London, Ser. A (1)

M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. R. Soc. London, Ser. A 392, 45 (1984).
[Crossref]

Sci. Rep. (1)

H. J. Chen and K. D. Zhu, “Surface plasmon enhanced sensitive detection for possible signature of majorana fermions via a hybrid semiconductor quantum Dot-Metal nanoparticle system,” Sci. Rep. 5, 13518 (2015).
[Crossref] [PubMed]

Science (1)

P. J. Leek, J. M. Fink, A. Blais, R. Bianchetti, M. Goppl, J. M. Gambetta, D. I. Schuster, L. Frunzio, R. J. Schoelkopf, and A. Wallraff, “Observation of Berry’s phase in a solid-state qubit,” Science 318, 1889 (2007).
[Crossref] [PubMed]

Other (1)

E. D. Palik, Handbook of Optical Constant of Solids (Academic, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The nanocrystal complexes composed of an MNP and an SQD, where the corresponding coordinates, the sizes, the angles, and the permittivities are all given explicitly. The system is radiated with a circularly polarized light propagating along z direction. The dynamic path is shown by the dashed line with two arrows.
Fig. 2
Fig. 2 The dependence of the Berry phase on the polar angle θ with different parts of the electric fields considered. The lines with the hallowed circles is the case when only E2 is considered while the lines with solid ones is that when both E2 and E3 are included. The field strength is set as E0 = 105V/m and the interparticle distance is Rd = 12nm.
Fig. 3
Fig. 3 The dependence of the Berry phase on the interparticle distance, with both E2 and E3 considered and with only E3 considered. The polar angle is θ = π/4. Other used parameters are same as that in Fig. 2.
Fig. 4
Fig. 4 The scheme to observe the Berry phase in the complexes with two identical SQDs locating above and below the MNP, respectively. The sample is radiated by a circularly polarized light propagating along z direction. The right part shows the energy levels of these two SQDs and the strength changing of the detected light.
Fig. 5
Fig. 5 The scheme to observe the Berry phase in the nanocrystal complex including two SQDs with the different detuning. The transition energies of these two SQDs satisfy ω2 + ω1 = 2ω0.

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

E 0 ( t ) = E 0 cos ( ω t ) x ^ + E 0 cos ( ω t + π / 2 ) y ^ .
E SQD = ( E 1 + E 2 + E 3 ) ,
E 1 = ε e ε eff E 0 ,
P m = 3 ε e γ 1 E 0 ,
E 2 z = 3 ε e γ 1 R 0 3 2 ε eff R d 3 E 0 sin 2 θ cos ( ω t + φ ) .
E 3 z = 3 ε e γ 1 R 0 3 2 ε eff 2 R d 6 sin 2 θ p s ( t ) .
μ E SQD = μ ( E 1 + E 2 + E 3 ) = μ ( E 2 z + E 3 z ) .
H SQD = ( ω 0 2 μ E SQD μ E SQD ω 0 2 )
p s ( t ) = [ p ˜ s e i ( ω t + φ ) + p ˜ s * e i ( ω t + φ ) ] z ^ ,
H SQD = ( ω 0 2 χ e i ( ω t + φ ) χ * e i ( ω t + φ ) ω 0 2 )
χ = 3 μ ε e γ 1 R 0 3 4 ε eff R d 3 E 0 sin 2 θ + 3 μ ε e γ 1 R 0 3 2 ε eff 1 2 R d 6 p ˜ s sin 2 θ .
p ˙ = i ω 0 p + i χ .
H = ω 0 2 σ z [ χ 2 ( σ x + i σ y ) e i ( ω t + φ ) + h . c . ] .
H = UHU 1 i U U ˙ 1 ,
H = 2 δ σ z χ [ cos φ σ x + sin φ σ y ] ,
λ = ( δ 2 ) 2 + | χ | 2 ,
Ψ ( φ ) = 1 C ( χ e i φ λ δ 2 ) ,
C = ( δ 2 λ ) 2 + | χ | 2 .
γ = i Γ Ψ ( φ ) | φ | Ψ ( φ ) d φ ,
γ = π [ 1 + δ 2 λ ] ,
I | P a + P b | 2 = | P a | 2 + | P b | 2 + 2 [ P a P b * ] ,
[ P a P b * ] [ e i φ D e i γ a ( e i φ D e i γ b ) * ] E 0 2 = E 0 2 cos 2 γ a .
[ P a P b * ] [ e i ω 1 t e i γ a ( e i ω 2 t e i γ b ) * ] = E 0 2 cos [ 2 δ t + 2 γ a ] .

Metrics