Abstract

Acoustic scattering medium is a fundamental challenge for photoacoustic imaging. In this study, we reveal the different coherent properties of the scattering photoacoustic waves and the direct photoacoustic waves in a matrix form. Direct waves show a particular coherence on the antidiagonals of the matrix, whereas scattering waves do not. Based on this property, a correlation matrix filter combining with a time reversal operator is proposed to preserve the direct waves and recover the image behind a scattering layer. Both numerical simulations and photoacoustic imaging experiments demonstrate that the proposed approach effectively increases the image contrast and decreases the background speckles in a scattering medium. This study might improve the quality of photoacoustic imaging in an acoustic scattering environment and extend its applications.

© 2017 Optical Society of America

Full Article  |  PDF Article

Corrections

13 September 2017: A typographical correction was made to the author affiliations.


OSA Recommended Articles
Synthetic-aperture based photoacoustic re-beamforming (SPARE) approach using beamformed ultrasound data

Haichong K. Zhang, Muyinatu A. Lediju Bell, Xiaoyu Guo, Hyun Jae Kang, and Emad M. Boctor
Biomed. Opt. Express 7(8) 3056-3068 (2016)

Adaptive beamforming for photoacoustic imaging

Suhyun Park, Andrei B. Karpiouk, Salavat R. Aglyamov, and Stanislav Y. Emelianov
Opt. Lett. 33(12) 1291-1293 (2008)

Photoacoustic tomography extracted from speckle noise in acoustically inhomogeneous tissue

Dan Wu, Chao Tao, and Xiaojun Liu
Opt. Express 21(15) 18061-18067 (2013)

References

  • View by:
  • |
  • |
  • |

  1. L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
    [Crossref] [PubMed]
  2. L. V. Wang and J. Yao, “A practical guide to photoacoustic tomography in the life sciences,” Nat. Methods 13(8), 627–638 (2016).
    [Crossref] [PubMed]
  3. L. Xi and H. Jiang, “High resolution three-dimensional photoacoustic imaging of human finger joints in vivo,” Appl. Phys. Lett. 15, 18076–18081 (2015).
  4. M. S. Singh and H. Jiang, “Estimating both direction and magnitude of flow velocity using photoacoustic microscopy,” Appl. Phys. Lett. 104(25), 1145–1151 (2014).
    [Crossref]
  5. J. Xiao, L. Yao, Y. Sun, E. S. Sobel, J. He, and H. Jiang, “Quantitative two-dimensional photoacoustic tomography of osteoarthritis in the finger joints,” Opt. Express 18(14), 14359–14365 (2010).
    [Crossref] [PubMed]
  6. A. Dima and V. Ntziachristos, “Non-invasive carotid imaging using optoacoustic tomography,” Opt. Express 20(22), 25044–25057 (2012).
    [Crossref] [PubMed]
  7. Z. Yang, J. Chen, J. Yao, R. Lin, J. Meng, C. Liu, J. Yang, X. Li, L. Wang, and L. Song, “Multi-parametric quantitative microvascular imaging with optical-resolution photoacoustic microscopy in vivo,” Opt. Express 22(2), 1500–1511 (2014).
    [Crossref] [PubMed]
  8. B. Ning, M. J. Kennedy, A. J. Dixon, N. Sun, R. Cao, B. T. Soetikno, R. Chen, Q. Zhou, K. Kirk Shung, J. A. Hossack, and S. Hu, “Simultaneous photoacoustic microscopy of microvascular anatomy, oxygen saturation, and blood flow,” Opt. Lett. 40(6), 910–913 (2015).
    [Crossref] [PubMed]
  9. L. Yao, L. Xi, and H. Jiang, “Photoacoustic computed microscopy,” Sci. Rep. 4(1), 4960 (2014).
    [Crossref] [PubMed]
  10. J. R. Rajian, M. L. Fabiilli, J. B. Fowlkes, P. L. Carson, and X. Wang, “Drug delivery monitoring by photoacoustic tomography with an ICG encapsulated double emulsion,” Opt. Express 19(15), 14335–14347 (2011).
    [Crossref] [PubMed]
  11. L. Xi, S. R. Grobmyer, L. Wu, R. Chen, G. Zhou, L. G. Gutwein, J. Sun, W. Liao, Q. Zhou, H. Xie, and H. Jiang, “Evaluation of breast tumor margins in vivo with intraoperative photoacoustic imaging,” Opt. Express 20(8), 8726–8731 (2012).
    [Crossref] [PubMed]
  12. X. Xiong, Y. Sun, A. Sattiraju, Y. Jung, A. Mintz, S. Hayasaka, and K. C. Li, “Remote spatiotemporally controlled and biologically selective permeabilization of blood-brain barrier,” J. Control. Release 217, 113–120 (2015).
    [Crossref] [PubMed]
  13. Y. Sun and B. O’Neill, “Imaging high-intensity focused ultrasound-induced tissue denaturation by multispectral photoacoustic method: an ex vivo study,” Appl. Opt. 52(8), 1764–1770 (2013).
    [Crossref] [PubMed]
  14. J. Xia, G. Li, L. Wang, M. Nasiriavanaki, K. Maslov, J. A. Engelbach, J. R. Garbow, and L. V. Wang, “Wide-field two-dimensional multifocal optical-resolution photoacoustic-computed microscopy,” Opt. Lett. 38(24), 5236–5239 (2013).
    [Crossref] [PubMed]
  15. D. Wang, Y. Wang, Y. Zhou, J. F. Lovell, and J. Xia, “Coherent-weighted three-dimensional image reconstruction in linear-array-based photoacoustic tomography,” Biomed. Opt. Express 7(5), 1957–1965 (2016).
    [Crossref] [PubMed]
  16. J.-L. Robert and M. Fink, “Green’s function estimation in speckle using the decomposition of the time reversal operator: Application to aberration correction in medical imaging,” J. Acoust. Soc. Am. 123(2), 866–877 (2008).
    [Crossref] [PubMed]
  17. X. Jin, C. Li, and L. V. Wang, “Effects of acoustic heterogeneities on transcranial brain imaging with microwave-induced thermoacoustic tomography,” Med. Phys. 35(7Part1), 3205–3214 (2008).
    [Crossref]
  18. M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
    [Crossref]
  19. X. L. Dean-Ben, V. Ntziachristos, and D. Razansky, “Statistical optoacoustic image reconstruction using a-priori knowledge on the location of acoustic distortions,” Appl. Phys. Lett. 98(17), 412 (2011).
    [Crossref]
  20. D. Wu, C. Tao, and X. Liu, “Photoacoustic tomography in scattering biological tissue by using virtual time reversal mirror,” J. Appl. Phys. 109(8), 084702 (2011).
    [Crossref]
  21. D. Wu, C. Tao, and X. Liu, “Photoacoustic tomography extracted from speckle noise in acoustically inhomogeneous tissue,” Opt. Express 21(15), 18061–18067 (2013).
    [Crossref] [PubMed]
  22. C. Yoon, J. Kang, S. Han, Y. Yoo, T. K. Song, and J. H. Chang, “Enhancement of photoacoustic image quality by sound speed correction: ex vivo evaluation,” Opt. Express 20(3), 3082–3090 (2012).
    [Crossref] [PubMed]
  23. J. Yin, C. Tao, P. Cai, and X. Liu, “Photoacoustic tomography based on the Green’s function retrieval with ultrasound interferometry for sample partially behind an acoustically scattering layer,” Appl. Phys. Lett. 106(23), 503 (2015).
    [Crossref]
  24. Y. Liu, Y. Shen, C. Ma, J. Shi, and L. V. Wang, “Lock-in camera based heterodyne holography for ultrasound-modulated optical tomography inside dynamic scattering media,” Appl. Phys. Lett. 108(23), 231106 (2016).
    [Crossref] [PubMed]
  25. T. Chaigne, O. Katz, A. C. Boccara, M. Fink, E. Bossy, and S. Gigan, “Controlling light in scattering media non-invasively using the photoacoustic transmission matrix,” Nat. Photonics 8(1), 58–64 (2013).
    [Crossref]
  26. S. Kang, S. Jeong, W. Choi, H. Ko, T. D. Yang, J. H. Joo, J. S. Lee, Y. S. Lim, Q. H. Park, and W. Choi, “Imaging deep within a scattering medium using collective accumulation of single-scattered waves,” Nat. Photonics 9, 253–258 (2015).
  27. S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
    [Crossref] [PubMed]
  28. A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Smart optical coherence tomography for ultra-deep imaging through highly scattering media,” Sci. Adv. 2(11), e1600370 (2016).
    [Crossref] [PubMed]
  29. A. Badon, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Retrieving time-dependent Green’s functions in optics with low-coherence interferometry,” Phys. Rev. Lett. 114(2), 023901 (2015).
    [Crossref] [PubMed]
  30. A. Aubry and A. Derode, “Random matrix theory applied to acoustic backscattering and imaging in complex media,” Phys. Rev. Lett. 102(8), 084301 (2009).
    [Crossref] [PubMed]
  31. S. Shahjahan, A. Aubry, F. Rupin, B. Chassignole, and A. Derode, “A random matrix approach to detect defects in a strongly scattering polycrystal: how the memory effect can help overcome multiple scattering,” Appl. Phys. Lett. 104(23), 046607 (2014).
    [Crossref]
  32. A. Aubry, L. A. Cobus, S. E. Skipetrov, B. A. van Tiggelen, A. Derode, and J. H. Page, “Recurrent scattering and memory effect at the Anderson localization transition,” Phys. Rev. Lett. 112(4), 043903 (2014).
    [Crossref] [PubMed]
  33. A. Derode, A. Tourin, J. de Rosny, M. Tanter, S. Yon, and M. Fink, “Taking advantage of multiple scattering to communicate with time-reversal antennas,” Phys. Rev. Lett. 90(1), 014301 (2003).
    [Crossref] [PubMed]
  34. A. M. Tulino, S. Verd, Random matrix theory and wireless communications (Now Publishers Inc., 2004).
  35. R. Sprik, A. Tourin, J. de Rosny, and M. Fink, “Eigenvalue distributions of correlated multichannel transfer matrices in strongly scattering systems,” Phys. Rev. B 78(1), 012202 (2008).
    [Crossref]
  36. A. Aubry and A. Derode, “Detection and imaging in a random medium: A matrix method to overcome multiple scattering and aberration,” J. Appl. Phys. 106(4), 044903 (2009).
    [Crossref]
  37. W. V. Meyer, D. S. Cannell, A. E. Smart, T. W. Taylor, and P. Tin, “Multiple-scattering suppression by cross correlation,” Appl. Opt. 36(30), 7551–7558 (1997).
    [Crossref] [PubMed]
  38. C. Prada and J. L. Thomas, “Experimental subwavelength localization of scatterers by decomposition of the time reversal operator interpreted as a covariance matrix,” J. Acoust. Soc. Am. 114(1), 235–243 (2003).
    [Crossref] [PubMed]
  39. A. Derode, V. Mamou, and A. Tourin, “Influence of correlations between scatterers on the attenuation of the coherent wave in a random medium,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036606 (2006).
    [Crossref] [PubMed]
  40. A. Aubry and A. Derode, “Singular value distribution of the propagation matrix in random scattering media,” Waves Random Complex Media 20(3), 333–363 (2010).
    [Crossref]
  41. D. Wu, C. Tao, X. J. Liu, and X. D. Wang, “Influence of limited-view scanning on depth imaging of photoacoustic tomography,” Chin. Phys. B 21(1), 014301 (2012).
    [Crossref]

2016 (4)

L. V. Wang and J. Yao, “A practical guide to photoacoustic tomography in the life sciences,” Nat. Methods 13(8), 627–638 (2016).
[Crossref] [PubMed]

Y. Liu, Y. Shen, C. Ma, J. Shi, and L. V. Wang, “Lock-in camera based heterodyne holography for ultrasound-modulated optical tomography inside dynamic scattering media,” Appl. Phys. Lett. 108(23), 231106 (2016).
[Crossref] [PubMed]

A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Smart optical coherence tomography for ultra-deep imaging through highly scattering media,” Sci. Adv. 2(11), e1600370 (2016).
[Crossref] [PubMed]

D. Wang, Y. Wang, Y. Zhou, J. F. Lovell, and J. Xia, “Coherent-weighted three-dimensional image reconstruction in linear-array-based photoacoustic tomography,” Biomed. Opt. Express 7(5), 1957–1965 (2016).
[Crossref] [PubMed]

2015 (6)

B. Ning, M. J. Kennedy, A. J. Dixon, N. Sun, R. Cao, B. T. Soetikno, R. Chen, Q. Zhou, K. Kirk Shung, J. A. Hossack, and S. Hu, “Simultaneous photoacoustic microscopy of microvascular anatomy, oxygen saturation, and blood flow,” Opt. Lett. 40(6), 910–913 (2015).
[Crossref] [PubMed]

A. Badon, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Retrieving time-dependent Green’s functions in optics with low-coherence interferometry,” Phys. Rev. Lett. 114(2), 023901 (2015).
[Crossref] [PubMed]

S. Kang, S. Jeong, W. Choi, H. Ko, T. D. Yang, J. H. Joo, J. S. Lee, Y. S. Lim, Q. H. Park, and W. Choi, “Imaging deep within a scattering medium using collective accumulation of single-scattered waves,” Nat. Photonics 9, 253–258 (2015).

J. Yin, C. Tao, P. Cai, and X. Liu, “Photoacoustic tomography based on the Green’s function retrieval with ultrasound interferometry for sample partially behind an acoustically scattering layer,” Appl. Phys. Lett. 106(23), 503 (2015).
[Crossref]

L. Xi and H. Jiang, “High resolution three-dimensional photoacoustic imaging of human finger joints in vivo,” Appl. Phys. Lett. 15, 18076–18081 (2015).

X. Xiong, Y. Sun, A. Sattiraju, Y. Jung, A. Mintz, S. Hayasaka, and K. C. Li, “Remote spatiotemporally controlled and biologically selective permeabilization of blood-brain barrier,” J. Control. Release 217, 113–120 (2015).
[Crossref] [PubMed]

2014 (5)

M. S. Singh and H. Jiang, “Estimating both direction and magnitude of flow velocity using photoacoustic microscopy,” Appl. Phys. Lett. 104(25), 1145–1151 (2014).
[Crossref]

S. Shahjahan, A. Aubry, F. Rupin, B. Chassignole, and A. Derode, “A random matrix approach to detect defects in a strongly scattering polycrystal: how the memory effect can help overcome multiple scattering,” Appl. Phys. Lett. 104(23), 046607 (2014).
[Crossref]

A. Aubry, L. A. Cobus, S. E. Skipetrov, B. A. van Tiggelen, A. Derode, and J. H. Page, “Recurrent scattering and memory effect at the Anderson localization transition,” Phys. Rev. Lett. 112(4), 043903 (2014).
[Crossref] [PubMed]

L. Yao, L. Xi, and H. Jiang, “Photoacoustic computed microscopy,” Sci. Rep. 4(1), 4960 (2014).
[Crossref] [PubMed]

Z. Yang, J. Chen, J. Yao, R. Lin, J. Meng, C. Liu, J. Yang, X. Li, L. Wang, and L. Song, “Multi-parametric quantitative microvascular imaging with optical-resolution photoacoustic microscopy in vivo,” Opt. Express 22(2), 1500–1511 (2014).
[Crossref] [PubMed]

2013 (4)

2012 (5)

2011 (3)

J. R. Rajian, M. L. Fabiilli, J. B. Fowlkes, P. L. Carson, and X. Wang, “Drug delivery monitoring by photoacoustic tomography with an ICG encapsulated double emulsion,” Opt. Express 19(15), 14335–14347 (2011).
[Crossref] [PubMed]

X. L. Dean-Ben, V. Ntziachristos, and D. Razansky, “Statistical optoacoustic image reconstruction using a-priori knowledge on the location of acoustic distortions,” Appl. Phys. Lett. 98(17), 412 (2011).
[Crossref]

D. Wu, C. Tao, and X. Liu, “Photoacoustic tomography in scattering biological tissue by using virtual time reversal mirror,” J. Appl. Phys. 109(8), 084702 (2011).
[Crossref]

2010 (3)

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

J. Xiao, L. Yao, Y. Sun, E. S. Sobel, J. He, and H. Jiang, “Quantitative two-dimensional photoacoustic tomography of osteoarthritis in the finger joints,” Opt. Express 18(14), 14359–14365 (2010).
[Crossref] [PubMed]

A. Aubry and A. Derode, “Singular value distribution of the propagation matrix in random scattering media,” Waves Random Complex Media 20(3), 333–363 (2010).
[Crossref]

2009 (2)

A. Aubry and A. Derode, “Detection and imaging in a random medium: A matrix method to overcome multiple scattering and aberration,” J. Appl. Phys. 106(4), 044903 (2009).
[Crossref]

A. Aubry and A. Derode, “Random matrix theory applied to acoustic backscattering and imaging in complex media,” Phys. Rev. Lett. 102(8), 084301 (2009).
[Crossref] [PubMed]

2008 (3)

J.-L. Robert and M. Fink, “Green’s function estimation in speckle using the decomposition of the time reversal operator: Application to aberration correction in medical imaging,” J. Acoust. Soc. Am. 123(2), 866–877 (2008).
[Crossref] [PubMed]

X. Jin, C. Li, and L. V. Wang, “Effects of acoustic heterogeneities on transcranial brain imaging with microwave-induced thermoacoustic tomography,” Med. Phys. 35(7Part1), 3205–3214 (2008).
[Crossref]

R. Sprik, A. Tourin, J. de Rosny, and M. Fink, “Eigenvalue distributions of correlated multichannel transfer matrices in strongly scattering systems,” Phys. Rev. B 78(1), 012202 (2008).
[Crossref]

2006 (2)

A. Derode, V. Mamou, and A. Tourin, “Influence of correlations between scatterers on the attenuation of the coherent wave in a random medium,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036606 (2006).
[Crossref] [PubMed]

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[Crossref]

2003 (2)

C. Prada and J. L. Thomas, “Experimental subwavelength localization of scatterers by decomposition of the time reversal operator interpreted as a covariance matrix,” J. Acoust. Soc. Am. 114(1), 235–243 (2003).
[Crossref] [PubMed]

A. Derode, A. Tourin, J. de Rosny, M. Tanter, S. Yon, and M. Fink, “Taking advantage of multiple scattering to communicate with time-reversal antennas,” Phys. Rev. Lett. 90(1), 014301 (2003).
[Crossref] [PubMed]

1997 (1)

Aubry, A.

A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Smart optical coherence tomography for ultra-deep imaging through highly scattering media,” Sci. Adv. 2(11), e1600370 (2016).
[Crossref] [PubMed]

A. Badon, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Retrieving time-dependent Green’s functions in optics with low-coherence interferometry,” Phys. Rev. Lett. 114(2), 023901 (2015).
[Crossref] [PubMed]

S. Shahjahan, A. Aubry, F. Rupin, B. Chassignole, and A. Derode, “A random matrix approach to detect defects in a strongly scattering polycrystal: how the memory effect can help overcome multiple scattering,” Appl. Phys. Lett. 104(23), 046607 (2014).
[Crossref]

A. Aubry, L. A. Cobus, S. E. Skipetrov, B. A. van Tiggelen, A. Derode, and J. H. Page, “Recurrent scattering and memory effect at the Anderson localization transition,” Phys. Rev. Lett. 112(4), 043903 (2014).
[Crossref] [PubMed]

A. Aubry and A. Derode, “Singular value distribution of the propagation matrix in random scattering media,” Waves Random Complex Media 20(3), 333–363 (2010).
[Crossref]

A. Aubry and A. Derode, “Detection and imaging in a random medium: A matrix method to overcome multiple scattering and aberration,” J. Appl. Phys. 106(4), 044903 (2009).
[Crossref]

A. Aubry and A. Derode, “Random matrix theory applied to acoustic backscattering and imaging in complex media,” Phys. Rev. Lett. 102(8), 084301 (2009).
[Crossref] [PubMed]

Badon, A.

A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Smart optical coherence tomography for ultra-deep imaging through highly scattering media,” Sci. Adv. 2(11), e1600370 (2016).
[Crossref] [PubMed]

A. Badon, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Retrieving time-dependent Green’s functions in optics with low-coherence interferometry,” Phys. Rev. Lett. 114(2), 023901 (2015).
[Crossref] [PubMed]

Boccara, A. C.

A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Smart optical coherence tomography for ultra-deep imaging through highly scattering media,” Sci. Adv. 2(11), e1600370 (2016).
[Crossref] [PubMed]

A. Badon, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Retrieving time-dependent Green’s functions in optics with low-coherence interferometry,” Phys. Rev. Lett. 114(2), 023901 (2015).
[Crossref] [PubMed]

T. Chaigne, O. Katz, A. C. Boccara, M. Fink, E. Bossy, and S. Gigan, “Controlling light in scattering media non-invasively using the photoacoustic transmission matrix,” Nat. Photonics 8(1), 58–64 (2013).
[Crossref]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Bossy, E.

T. Chaigne, O. Katz, A. C. Boccara, M. Fink, E. Bossy, and S. Gigan, “Controlling light in scattering media non-invasively using the photoacoustic transmission matrix,” Nat. Photonics 8(1), 58–64 (2013).
[Crossref]

Cai, P.

J. Yin, C. Tao, P. Cai, and X. Liu, “Photoacoustic tomography based on the Green’s function retrieval with ultrasound interferometry for sample partially behind an acoustically scattering layer,” Appl. Phys. Lett. 106(23), 503 (2015).
[Crossref]

Cannell, D. S.

Cao, R.

Carminati, R.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Carson, P. L.

Chaigne, T.

T. Chaigne, O. Katz, A. C. Boccara, M. Fink, E. Bossy, and S. Gigan, “Controlling light in scattering media non-invasively using the photoacoustic transmission matrix,” Nat. Photonics 8(1), 58–64 (2013).
[Crossref]

Chang, J. H.

Chassignole, B.

S. Shahjahan, A. Aubry, F. Rupin, B. Chassignole, and A. Derode, “A random matrix approach to detect defects in a strongly scattering polycrystal: how the memory effect can help overcome multiple scattering,” Appl. Phys. Lett. 104(23), 046607 (2014).
[Crossref]

Chen, J.

Chen, R.

Choi, W.

S. Kang, S. Jeong, W. Choi, H. Ko, T. D. Yang, J. H. Joo, J. S. Lee, Y. S. Lim, Q. H. Park, and W. Choi, “Imaging deep within a scattering medium using collective accumulation of single-scattered waves,” Nat. Photonics 9, 253–258 (2015).

S. Kang, S. Jeong, W. Choi, H. Ko, T. D. Yang, J. H. Joo, J. S. Lee, Y. S. Lim, Q. H. Park, and W. Choi, “Imaging deep within a scattering medium using collective accumulation of single-scattered waves,” Nat. Photonics 9, 253–258 (2015).

Cobus, L. A.

A. Aubry, L. A. Cobus, S. E. Skipetrov, B. A. van Tiggelen, A. Derode, and J. H. Page, “Recurrent scattering and memory effect at the Anderson localization transition,” Phys. Rev. Lett. 112(4), 043903 (2014).
[Crossref] [PubMed]

de Rosny, J.

R. Sprik, A. Tourin, J. de Rosny, and M. Fink, “Eigenvalue distributions of correlated multichannel transfer matrices in strongly scattering systems,” Phys. Rev. B 78(1), 012202 (2008).
[Crossref]

A. Derode, A. Tourin, J. de Rosny, M. Tanter, S. Yon, and M. Fink, “Taking advantage of multiple scattering to communicate with time-reversal antennas,” Phys. Rev. Lett. 90(1), 014301 (2003).
[Crossref] [PubMed]

Dean-Ben, X. L.

X. L. Dean-Ben, V. Ntziachristos, and D. Razansky, “Statistical optoacoustic image reconstruction using a-priori knowledge on the location of acoustic distortions,” Appl. Phys. Lett. 98(17), 412 (2011).
[Crossref]

Derode, A.

A. Aubry, L. A. Cobus, S. E. Skipetrov, B. A. van Tiggelen, A. Derode, and J. H. Page, “Recurrent scattering and memory effect at the Anderson localization transition,” Phys. Rev. Lett. 112(4), 043903 (2014).
[Crossref] [PubMed]

S. Shahjahan, A. Aubry, F. Rupin, B. Chassignole, and A. Derode, “A random matrix approach to detect defects in a strongly scattering polycrystal: how the memory effect can help overcome multiple scattering,” Appl. Phys. Lett. 104(23), 046607 (2014).
[Crossref]

A. Aubry and A. Derode, “Singular value distribution of the propagation matrix in random scattering media,” Waves Random Complex Media 20(3), 333–363 (2010).
[Crossref]

A. Aubry and A. Derode, “Detection and imaging in a random medium: A matrix method to overcome multiple scattering and aberration,” J. Appl. Phys. 106(4), 044903 (2009).
[Crossref]

A. Aubry and A. Derode, “Random matrix theory applied to acoustic backscattering and imaging in complex media,” Phys. Rev. Lett. 102(8), 084301 (2009).
[Crossref] [PubMed]

A. Derode, V. Mamou, and A. Tourin, “Influence of correlations between scatterers on the attenuation of the coherent wave in a random medium,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036606 (2006).
[Crossref] [PubMed]

A. Derode, A. Tourin, J. de Rosny, M. Tanter, S. Yon, and M. Fink, “Taking advantage of multiple scattering to communicate with time-reversal antennas,” Phys. Rev. Lett. 90(1), 014301 (2003).
[Crossref] [PubMed]

Dima, A.

Dixon, A. J.

Engelbach, J. A.

Fabiilli, M. L.

Fink, M.

A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Smart optical coherence tomography for ultra-deep imaging through highly scattering media,” Sci. Adv. 2(11), e1600370 (2016).
[Crossref] [PubMed]

A. Badon, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Retrieving time-dependent Green’s functions in optics with low-coherence interferometry,” Phys. Rev. Lett. 114(2), 023901 (2015).
[Crossref] [PubMed]

T. Chaigne, O. Katz, A. C. Boccara, M. Fink, E. Bossy, and S. Gigan, “Controlling light in scattering media non-invasively using the photoacoustic transmission matrix,” Nat. Photonics 8(1), 58–64 (2013).
[Crossref]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

R. Sprik, A. Tourin, J. de Rosny, and M. Fink, “Eigenvalue distributions of correlated multichannel transfer matrices in strongly scattering systems,” Phys. Rev. B 78(1), 012202 (2008).
[Crossref]

J.-L. Robert and M. Fink, “Green’s function estimation in speckle using the decomposition of the time reversal operator: Application to aberration correction in medical imaging,” J. Acoust. Soc. Am. 123(2), 866–877 (2008).
[Crossref] [PubMed]

A. Derode, A. Tourin, J. de Rosny, M. Tanter, S. Yon, and M. Fink, “Taking advantage of multiple scattering to communicate with time-reversal antennas,” Phys. Rev. Lett. 90(1), 014301 (2003).
[Crossref] [PubMed]

Fowlkes, J. B.

Garbow, J. R.

Gigan, S.

T. Chaigne, O. Katz, A. C. Boccara, M. Fink, E. Bossy, and S. Gigan, “Controlling light in scattering media non-invasively using the photoacoustic transmission matrix,” Nat. Photonics 8(1), 58–64 (2013).
[Crossref]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Grobmyer, S. R.

Gutwein, L. G.

Han, S.

Hayasaka, S.

X. Xiong, Y. Sun, A. Sattiraju, Y. Jung, A. Mintz, S. Hayasaka, and K. C. Li, “Remote spatiotemporally controlled and biologically selective permeabilization of blood-brain barrier,” J. Control. Release 217, 113–120 (2015).
[Crossref] [PubMed]

He, J.

Hossack, J. A.

Hu, S.

Jeong, S.

S. Kang, S. Jeong, W. Choi, H. Ko, T. D. Yang, J. H. Joo, J. S. Lee, Y. S. Lim, Q. H. Park, and W. Choi, “Imaging deep within a scattering medium using collective accumulation of single-scattered waves,” Nat. Photonics 9, 253–258 (2015).

Jiang, H.

L. Xi and H. Jiang, “High resolution three-dimensional photoacoustic imaging of human finger joints in vivo,” Appl. Phys. Lett. 15, 18076–18081 (2015).

M. S. Singh and H. Jiang, “Estimating both direction and magnitude of flow velocity using photoacoustic microscopy,” Appl. Phys. Lett. 104(25), 1145–1151 (2014).
[Crossref]

L. Yao, L. Xi, and H. Jiang, “Photoacoustic computed microscopy,” Sci. Rep. 4(1), 4960 (2014).
[Crossref] [PubMed]

L. Xi, S. R. Grobmyer, L. Wu, R. Chen, G. Zhou, L. G. Gutwein, J. Sun, W. Liao, Q. Zhou, H. Xie, and H. Jiang, “Evaluation of breast tumor margins in vivo with intraoperative photoacoustic imaging,” Opt. Express 20(8), 8726–8731 (2012).
[Crossref] [PubMed]

J. Xiao, L. Yao, Y. Sun, E. S. Sobel, J. He, and H. Jiang, “Quantitative two-dimensional photoacoustic tomography of osteoarthritis in the finger joints,” Opt. Express 18(14), 14359–14365 (2010).
[Crossref] [PubMed]

Jin, X.

X. Jin, C. Li, and L. V. Wang, “Effects of acoustic heterogeneities on transcranial brain imaging with microwave-induced thermoacoustic tomography,” Med. Phys. 35(7Part1), 3205–3214 (2008).
[Crossref]

Joo, J. H.

S. Kang, S. Jeong, W. Choi, H. Ko, T. D. Yang, J. H. Joo, J. S. Lee, Y. S. Lim, Q. H. Park, and W. Choi, “Imaging deep within a scattering medium using collective accumulation of single-scattered waves,” Nat. Photonics 9, 253–258 (2015).

Jung, Y.

X. Xiong, Y. Sun, A. Sattiraju, Y. Jung, A. Mintz, S. Hayasaka, and K. C. Li, “Remote spatiotemporally controlled and biologically selective permeabilization of blood-brain barrier,” J. Control. Release 217, 113–120 (2015).
[Crossref] [PubMed]

Kang, J.

Kang, S.

S. Kang, S. Jeong, W. Choi, H. Ko, T. D. Yang, J. H. Joo, J. S. Lee, Y. S. Lim, Q. H. Park, and W. Choi, “Imaging deep within a scattering medium using collective accumulation of single-scattered waves,” Nat. Photonics 9, 253–258 (2015).

Katz, O.

T. Chaigne, O. Katz, A. C. Boccara, M. Fink, E. Bossy, and S. Gigan, “Controlling light in scattering media non-invasively using the photoacoustic transmission matrix,” Nat. Photonics 8(1), 58–64 (2013).
[Crossref]

Kennedy, M. J.

Kirk Shung, K.

Ko, H.

S. Kang, S. Jeong, W. Choi, H. Ko, T. D. Yang, J. H. Joo, J. S. Lee, Y. S. Lim, Q. H. Park, and W. Choi, “Imaging deep within a scattering medium using collective accumulation of single-scattered waves,” Nat. Photonics 9, 253–258 (2015).

Lee, J. S.

S. Kang, S. Jeong, W. Choi, H. Ko, T. D. Yang, J. H. Joo, J. S. Lee, Y. S. Lim, Q. H. Park, and W. Choi, “Imaging deep within a scattering medium using collective accumulation of single-scattered waves,” Nat. Photonics 9, 253–258 (2015).

Lerosey, G.

A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Smart optical coherence tomography for ultra-deep imaging through highly scattering media,” Sci. Adv. 2(11), e1600370 (2016).
[Crossref] [PubMed]

A. Badon, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Retrieving time-dependent Green’s functions in optics with low-coherence interferometry,” Phys. Rev. Lett. 114(2), 023901 (2015).
[Crossref] [PubMed]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Li, C.

X. Jin, C. Li, and L. V. Wang, “Effects of acoustic heterogeneities on transcranial brain imaging with microwave-induced thermoacoustic tomography,” Med. Phys. 35(7Part1), 3205–3214 (2008).
[Crossref]

Li, D.

A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Smart optical coherence tomography for ultra-deep imaging through highly scattering media,” Sci. Adv. 2(11), e1600370 (2016).
[Crossref] [PubMed]

Li, G.

Li, K. C.

X. Xiong, Y. Sun, A. Sattiraju, Y. Jung, A. Mintz, S. Hayasaka, and K. C. Li, “Remote spatiotemporally controlled and biologically selective permeabilization of blood-brain barrier,” J. Control. Release 217, 113–120 (2015).
[Crossref] [PubMed]

Li, X.

Liao, W.

Lim, Y. S.

S. Kang, S. Jeong, W. Choi, H. Ko, T. D. Yang, J. H. Joo, J. S. Lee, Y. S. Lim, Q. H. Park, and W. Choi, “Imaging deep within a scattering medium using collective accumulation of single-scattered waves,” Nat. Photonics 9, 253–258 (2015).

Lin, R.

Liu, C.

Liu, X.

J. Yin, C. Tao, P. Cai, and X. Liu, “Photoacoustic tomography based on the Green’s function retrieval with ultrasound interferometry for sample partially behind an acoustically scattering layer,” Appl. Phys. Lett. 106(23), 503 (2015).
[Crossref]

D. Wu, C. Tao, and X. Liu, “Photoacoustic tomography extracted from speckle noise in acoustically inhomogeneous tissue,” Opt. Express 21(15), 18061–18067 (2013).
[Crossref] [PubMed]

D. Wu, C. Tao, and X. Liu, “Photoacoustic tomography in scattering biological tissue by using virtual time reversal mirror,” J. Appl. Phys. 109(8), 084702 (2011).
[Crossref]

Liu, X. J.

D. Wu, C. Tao, X. J. Liu, and X. D. Wang, “Influence of limited-view scanning on depth imaging of photoacoustic tomography,” Chin. Phys. B 21(1), 014301 (2012).
[Crossref]

Liu, Y.

Y. Liu, Y. Shen, C. Ma, J. Shi, and L. V. Wang, “Lock-in camera based heterodyne holography for ultrasound-modulated optical tomography inside dynamic scattering media,” Appl. Phys. Lett. 108(23), 231106 (2016).
[Crossref] [PubMed]

Lovell, J. F.

Ma, C.

Y. Liu, Y. Shen, C. Ma, J. Shi, and L. V. Wang, “Lock-in camera based heterodyne holography for ultrasound-modulated optical tomography inside dynamic scattering media,” Appl. Phys. Lett. 108(23), 231106 (2016).
[Crossref] [PubMed]

Mamou, V.

A. Derode, V. Mamou, and A. Tourin, “Influence of correlations between scatterers on the attenuation of the coherent wave in a random medium,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036606 (2006).
[Crossref] [PubMed]

Maslov, K.

Meng, J.

Meyer, W. V.

Mintz, A.

X. Xiong, Y. Sun, A. Sattiraju, Y. Jung, A. Mintz, S. Hayasaka, and K. C. Li, “Remote spatiotemporally controlled and biologically selective permeabilization of blood-brain barrier,” J. Control. Release 217, 113–120 (2015).
[Crossref] [PubMed]

Nasiriavanaki, M.

Ning, B.

Ntziachristos, V.

A. Dima and V. Ntziachristos, “Non-invasive carotid imaging using optoacoustic tomography,” Opt. Express 20(22), 25044–25057 (2012).
[Crossref] [PubMed]

X. L. Dean-Ben, V. Ntziachristos, and D. Razansky, “Statistical optoacoustic image reconstruction using a-priori knowledge on the location of acoustic distortions,” Appl. Phys. Lett. 98(17), 412 (2011).
[Crossref]

O’Neill, B.

Page, J. H.

A. Aubry, L. A. Cobus, S. E. Skipetrov, B. A. van Tiggelen, A. Derode, and J. H. Page, “Recurrent scattering and memory effect at the Anderson localization transition,” Phys. Rev. Lett. 112(4), 043903 (2014).
[Crossref] [PubMed]

Park, Q. H.

S. Kang, S. Jeong, W. Choi, H. Ko, T. D. Yang, J. H. Joo, J. S. Lee, Y. S. Lim, Q. H. Park, and W. Choi, “Imaging deep within a scattering medium using collective accumulation of single-scattered waves,” Nat. Photonics 9, 253–258 (2015).

Popoff, S. M.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Prada, C.

C. Prada and J. L. Thomas, “Experimental subwavelength localization of scatterers by decomposition of the time reversal operator interpreted as a covariance matrix,” J. Acoust. Soc. Am. 114(1), 235–243 (2003).
[Crossref] [PubMed]

Rajian, J. R.

Razansky, D.

X. L. Dean-Ben, V. Ntziachristos, and D. Razansky, “Statistical optoacoustic image reconstruction using a-priori knowledge on the location of acoustic distortions,” Appl. Phys. Lett. 98(17), 412 (2011).
[Crossref]

Robert, J.-L.

J.-L. Robert and M. Fink, “Green’s function estimation in speckle using the decomposition of the time reversal operator: Application to aberration correction in medical imaging,” J. Acoust. Soc. Am. 123(2), 866–877 (2008).
[Crossref] [PubMed]

Rupin, F.

S. Shahjahan, A. Aubry, F. Rupin, B. Chassignole, and A. Derode, “A random matrix approach to detect defects in a strongly scattering polycrystal: how the memory effect can help overcome multiple scattering,” Appl. Phys. Lett. 104(23), 046607 (2014).
[Crossref]

Sattiraju, A.

X. Xiong, Y. Sun, A. Sattiraju, Y. Jung, A. Mintz, S. Hayasaka, and K. C. Li, “Remote spatiotemporally controlled and biologically selective permeabilization of blood-brain barrier,” J. Control. Release 217, 113–120 (2015).
[Crossref] [PubMed]

Shahjahan, S.

S. Shahjahan, A. Aubry, F. Rupin, B. Chassignole, and A. Derode, “A random matrix approach to detect defects in a strongly scattering polycrystal: how the memory effect can help overcome multiple scattering,” Appl. Phys. Lett. 104(23), 046607 (2014).
[Crossref]

Shen, Y.

Y. Liu, Y. Shen, C. Ma, J. Shi, and L. V. Wang, “Lock-in camera based heterodyne holography for ultrasound-modulated optical tomography inside dynamic scattering media,” Appl. Phys. Lett. 108(23), 231106 (2016).
[Crossref] [PubMed]

Shi, J.

Y. Liu, Y. Shen, C. Ma, J. Shi, and L. V. Wang, “Lock-in camera based heterodyne holography for ultrasound-modulated optical tomography inside dynamic scattering media,” Appl. Phys. Lett. 108(23), 231106 (2016).
[Crossref] [PubMed]

Singh, M. S.

M. S. Singh and H. Jiang, “Estimating both direction and magnitude of flow velocity using photoacoustic microscopy,” Appl. Phys. Lett. 104(25), 1145–1151 (2014).
[Crossref]

Skipetrov, S. E.

A. Aubry, L. A. Cobus, S. E. Skipetrov, B. A. van Tiggelen, A. Derode, and J. H. Page, “Recurrent scattering and memory effect at the Anderson localization transition,” Phys. Rev. Lett. 112(4), 043903 (2014).
[Crossref] [PubMed]

Smart, A. E.

Sobel, E. S.

Soetikno, B. T.

Song, L.

Song, T. K.

Sprik, R.

R. Sprik, A. Tourin, J. de Rosny, and M. Fink, “Eigenvalue distributions of correlated multichannel transfer matrices in strongly scattering systems,” Phys. Rev. B 78(1), 012202 (2008).
[Crossref]

Sun, J.

Sun, N.

Sun, Y.

Tanter, M.

A. Derode, A. Tourin, J. de Rosny, M. Tanter, S. Yon, and M. Fink, “Taking advantage of multiple scattering to communicate with time-reversal antennas,” Phys. Rev. Lett. 90(1), 014301 (2003).
[Crossref] [PubMed]

Tao, C.

J. Yin, C. Tao, P. Cai, and X. Liu, “Photoacoustic tomography based on the Green’s function retrieval with ultrasound interferometry for sample partially behind an acoustically scattering layer,” Appl. Phys. Lett. 106(23), 503 (2015).
[Crossref]

D. Wu, C. Tao, and X. Liu, “Photoacoustic tomography extracted from speckle noise in acoustically inhomogeneous tissue,” Opt. Express 21(15), 18061–18067 (2013).
[Crossref] [PubMed]

D. Wu, C. Tao, X. J. Liu, and X. D. Wang, “Influence of limited-view scanning on depth imaging of photoacoustic tomography,” Chin. Phys. B 21(1), 014301 (2012).
[Crossref]

D. Wu, C. Tao, and X. Liu, “Photoacoustic tomography in scattering biological tissue by using virtual time reversal mirror,” J. Appl. Phys. 109(8), 084702 (2011).
[Crossref]

Taylor, T. W.

Thomas, J. L.

C. Prada and J. L. Thomas, “Experimental subwavelength localization of scatterers by decomposition of the time reversal operator interpreted as a covariance matrix,” J. Acoust. Soc. Am. 114(1), 235–243 (2003).
[Crossref] [PubMed]

Tin, P.

Tourin, A.

R. Sprik, A. Tourin, J. de Rosny, and M. Fink, “Eigenvalue distributions of correlated multichannel transfer matrices in strongly scattering systems,” Phys. Rev. B 78(1), 012202 (2008).
[Crossref]

A. Derode, V. Mamou, and A. Tourin, “Influence of correlations between scatterers on the attenuation of the coherent wave in a random medium,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036606 (2006).
[Crossref] [PubMed]

A. Derode, A. Tourin, J. de Rosny, M. Tanter, S. Yon, and M. Fink, “Taking advantage of multiple scattering to communicate with time-reversal antennas,” Phys. Rev. Lett. 90(1), 014301 (2003).
[Crossref] [PubMed]

van Tiggelen, B. A.

A. Aubry, L. A. Cobus, S. E. Skipetrov, B. A. van Tiggelen, A. Derode, and J. H. Page, “Recurrent scattering and memory effect at the Anderson localization transition,” Phys. Rev. Lett. 112(4), 043903 (2014).
[Crossref] [PubMed]

Wang, D.

Wang, L.

Wang, L. V.

Y. Liu, Y. Shen, C. Ma, J. Shi, and L. V. Wang, “Lock-in camera based heterodyne holography for ultrasound-modulated optical tomography inside dynamic scattering media,” Appl. Phys. Lett. 108(23), 231106 (2016).
[Crossref] [PubMed]

L. V. Wang and J. Yao, “A practical guide to photoacoustic tomography in the life sciences,” Nat. Methods 13(8), 627–638 (2016).
[Crossref] [PubMed]

J. Xia, G. Li, L. Wang, M. Nasiriavanaki, K. Maslov, J. A. Engelbach, J. R. Garbow, and L. V. Wang, “Wide-field two-dimensional multifocal optical-resolution photoacoustic-computed microscopy,” Opt. Lett. 38(24), 5236–5239 (2013).
[Crossref] [PubMed]

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

X. Jin, C. Li, and L. V. Wang, “Effects of acoustic heterogeneities on transcranial brain imaging with microwave-induced thermoacoustic tomography,” Med. Phys. 35(7Part1), 3205–3214 (2008).
[Crossref]

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[Crossref]

Wang, X.

Wang, X. D.

D. Wu, C. Tao, X. J. Liu, and X. D. Wang, “Influence of limited-view scanning on depth imaging of photoacoustic tomography,” Chin. Phys. B 21(1), 014301 (2012).
[Crossref]

Wang, Y.

Wu, D.

D. Wu, C. Tao, and X. Liu, “Photoacoustic tomography extracted from speckle noise in acoustically inhomogeneous tissue,” Opt. Express 21(15), 18061–18067 (2013).
[Crossref] [PubMed]

D. Wu, C. Tao, X. J. Liu, and X. D. Wang, “Influence of limited-view scanning on depth imaging of photoacoustic tomography,” Chin. Phys. B 21(1), 014301 (2012).
[Crossref]

D. Wu, C. Tao, and X. Liu, “Photoacoustic tomography in scattering biological tissue by using virtual time reversal mirror,” J. Appl. Phys. 109(8), 084702 (2011).
[Crossref]

Wu, L.

Xi, L.

L. Xi and H. Jiang, “High resolution three-dimensional photoacoustic imaging of human finger joints in vivo,” Appl. Phys. Lett. 15, 18076–18081 (2015).

L. Yao, L. Xi, and H. Jiang, “Photoacoustic computed microscopy,” Sci. Rep. 4(1), 4960 (2014).
[Crossref] [PubMed]

L. Xi, S. R. Grobmyer, L. Wu, R. Chen, G. Zhou, L. G. Gutwein, J. Sun, W. Liao, Q. Zhou, H. Xie, and H. Jiang, “Evaluation of breast tumor margins in vivo with intraoperative photoacoustic imaging,” Opt. Express 20(8), 8726–8731 (2012).
[Crossref] [PubMed]

Xia, J.

Xiao, J.

Xie, H.

Xiong, X.

X. Xiong, Y. Sun, A. Sattiraju, Y. Jung, A. Mintz, S. Hayasaka, and K. C. Li, “Remote spatiotemporally controlled and biologically selective permeabilization of blood-brain barrier,” J. Control. Release 217, 113–120 (2015).
[Crossref] [PubMed]

Xu, M.

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[Crossref]

Yang, J.

Yang, T. D.

S. Kang, S. Jeong, W. Choi, H. Ko, T. D. Yang, J. H. Joo, J. S. Lee, Y. S. Lim, Q. H. Park, and W. Choi, “Imaging deep within a scattering medium using collective accumulation of single-scattered waves,” Nat. Photonics 9, 253–258 (2015).

Yang, Z.

Yao, J.

Yao, L.

Yin, J.

J. Yin, C. Tao, P. Cai, and X. Liu, “Photoacoustic tomography based on the Green’s function retrieval with ultrasound interferometry for sample partially behind an acoustically scattering layer,” Appl. Phys. Lett. 106(23), 503 (2015).
[Crossref]

Yon, S.

A. Derode, A. Tourin, J. de Rosny, M. Tanter, S. Yon, and M. Fink, “Taking advantage of multiple scattering to communicate with time-reversal antennas,” Phys. Rev. Lett. 90(1), 014301 (2003).
[Crossref] [PubMed]

Yoo, Y.

Yoon, C.

Zhou, G.

Zhou, Q.

Zhou, Y.

Appl. Opt. (2)

Appl. Phys. Lett. (6)

L. Xi and H. Jiang, “High resolution three-dimensional photoacoustic imaging of human finger joints in vivo,” Appl. Phys. Lett. 15, 18076–18081 (2015).

M. S. Singh and H. Jiang, “Estimating both direction and magnitude of flow velocity using photoacoustic microscopy,” Appl. Phys. Lett. 104(25), 1145–1151 (2014).
[Crossref]

X. L. Dean-Ben, V. Ntziachristos, and D. Razansky, “Statistical optoacoustic image reconstruction using a-priori knowledge on the location of acoustic distortions,” Appl. Phys. Lett. 98(17), 412 (2011).
[Crossref]

J. Yin, C. Tao, P. Cai, and X. Liu, “Photoacoustic tomography based on the Green’s function retrieval with ultrasound interferometry for sample partially behind an acoustically scattering layer,” Appl. Phys. Lett. 106(23), 503 (2015).
[Crossref]

Y. Liu, Y. Shen, C. Ma, J. Shi, and L. V. Wang, “Lock-in camera based heterodyne holography for ultrasound-modulated optical tomography inside dynamic scattering media,” Appl. Phys. Lett. 108(23), 231106 (2016).
[Crossref] [PubMed]

S. Shahjahan, A. Aubry, F. Rupin, B. Chassignole, and A. Derode, “A random matrix approach to detect defects in a strongly scattering polycrystal: how the memory effect can help overcome multiple scattering,” Appl. Phys. Lett. 104(23), 046607 (2014).
[Crossref]

Biomed. Opt. Express (1)

Chin. Phys. B (1)

D. Wu, C. Tao, X. J. Liu, and X. D. Wang, “Influence of limited-view scanning on depth imaging of photoacoustic tomography,” Chin. Phys. B 21(1), 014301 (2012).
[Crossref]

J. Acoust. Soc. Am. (2)

C. Prada and J. L. Thomas, “Experimental subwavelength localization of scatterers by decomposition of the time reversal operator interpreted as a covariance matrix,” J. Acoust. Soc. Am. 114(1), 235–243 (2003).
[Crossref] [PubMed]

J.-L. Robert and M. Fink, “Green’s function estimation in speckle using the decomposition of the time reversal operator: Application to aberration correction in medical imaging,” J. Acoust. Soc. Am. 123(2), 866–877 (2008).
[Crossref] [PubMed]

J. Appl. Phys. (2)

D. Wu, C. Tao, and X. Liu, “Photoacoustic tomography in scattering biological tissue by using virtual time reversal mirror,” J. Appl. Phys. 109(8), 084702 (2011).
[Crossref]

A. Aubry and A. Derode, “Detection and imaging in a random medium: A matrix method to overcome multiple scattering and aberration,” J. Appl. Phys. 106(4), 044903 (2009).
[Crossref]

J. Control. Release (1)

X. Xiong, Y. Sun, A. Sattiraju, Y. Jung, A. Mintz, S. Hayasaka, and K. C. Li, “Remote spatiotemporally controlled and biologically selective permeabilization of blood-brain barrier,” J. Control. Release 217, 113–120 (2015).
[Crossref] [PubMed]

Med. Phys. (1)

X. Jin, C. Li, and L. V. Wang, “Effects of acoustic heterogeneities on transcranial brain imaging with microwave-induced thermoacoustic tomography,” Med. Phys. 35(7Part1), 3205–3214 (2008).
[Crossref]

Nat. Methods (1)

L. V. Wang and J. Yao, “A practical guide to photoacoustic tomography in the life sciences,” Nat. Methods 13(8), 627–638 (2016).
[Crossref] [PubMed]

Nat. Photonics (2)

T. Chaigne, O. Katz, A. C. Boccara, M. Fink, E. Bossy, and S. Gigan, “Controlling light in scattering media non-invasively using the photoacoustic transmission matrix,” Nat. Photonics 8(1), 58–64 (2013).
[Crossref]

S. Kang, S. Jeong, W. Choi, H. Ko, T. D. Yang, J. H. Joo, J. S. Lee, Y. S. Lim, Q. H. Park, and W. Choi, “Imaging deep within a scattering medium using collective accumulation of single-scattered waves,” Nat. Photonics 9, 253–258 (2015).

Opt. Express (7)

D. Wu, C. Tao, and X. Liu, “Photoacoustic tomography extracted from speckle noise in acoustically inhomogeneous tissue,” Opt. Express 21(15), 18061–18067 (2013).
[Crossref] [PubMed]

Z. Yang, J. Chen, J. Yao, R. Lin, J. Meng, C. Liu, J. Yang, X. Li, L. Wang, and L. Song, “Multi-parametric quantitative microvascular imaging with optical-resolution photoacoustic microscopy in vivo,” Opt. Express 22(2), 1500–1511 (2014).
[Crossref] [PubMed]

J. Xiao, L. Yao, Y. Sun, E. S. Sobel, J. He, and H. Jiang, “Quantitative two-dimensional photoacoustic tomography of osteoarthritis in the finger joints,” Opt. Express 18(14), 14359–14365 (2010).
[Crossref] [PubMed]

J. R. Rajian, M. L. Fabiilli, J. B. Fowlkes, P. L. Carson, and X. Wang, “Drug delivery monitoring by photoacoustic tomography with an ICG encapsulated double emulsion,” Opt. Express 19(15), 14335–14347 (2011).
[Crossref] [PubMed]

C. Yoon, J. Kang, S. Han, Y. Yoo, T. K. Song, and J. H. Chang, “Enhancement of photoacoustic image quality by sound speed correction: ex vivo evaluation,” Opt. Express 20(3), 3082–3090 (2012).
[Crossref] [PubMed]

L. Xi, S. R. Grobmyer, L. Wu, R. Chen, G. Zhou, L. G. Gutwein, J. Sun, W. Liao, Q. Zhou, H. Xie, and H. Jiang, “Evaluation of breast tumor margins in vivo with intraoperative photoacoustic imaging,” Opt. Express 20(8), 8726–8731 (2012).
[Crossref] [PubMed]

A. Dima and V. Ntziachristos, “Non-invasive carotid imaging using optoacoustic tomography,” Opt. Express 20(22), 25044–25057 (2012).
[Crossref] [PubMed]

Opt. Lett. (2)

Phys. Rev. B (1)

R. Sprik, A. Tourin, J. de Rosny, and M. Fink, “Eigenvalue distributions of correlated multichannel transfer matrices in strongly scattering systems,” Phys. Rev. B 78(1), 012202 (2008).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

A. Derode, V. Mamou, and A. Tourin, “Influence of correlations between scatterers on the attenuation of the coherent wave in a random medium,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036606 (2006).
[Crossref] [PubMed]

Phys. Rev. Lett. (5)

A. Badon, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Retrieving time-dependent Green’s functions in optics with low-coherence interferometry,” Phys. Rev. Lett. 114(2), 023901 (2015).
[Crossref] [PubMed]

A. Aubry and A. Derode, “Random matrix theory applied to acoustic backscattering and imaging in complex media,” Phys. Rev. Lett. 102(8), 084301 (2009).
[Crossref] [PubMed]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

A. Aubry, L. A. Cobus, S. E. Skipetrov, B. A. van Tiggelen, A. Derode, and J. H. Page, “Recurrent scattering and memory effect at the Anderson localization transition,” Phys. Rev. Lett. 112(4), 043903 (2014).
[Crossref] [PubMed]

A. Derode, A. Tourin, J. de Rosny, M. Tanter, S. Yon, and M. Fink, “Taking advantage of multiple scattering to communicate with time-reversal antennas,” Phys. Rev. Lett. 90(1), 014301 (2003).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[Crossref]

Sci. Adv. (1)

A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Smart optical coherence tomography for ultra-deep imaging through highly scattering media,” Sci. Adv. 2(11), e1600370 (2016).
[Crossref] [PubMed]

Sci. Rep. (1)

L. Yao, L. Xi, and H. Jiang, “Photoacoustic computed microscopy,” Sci. Rep. 4(1), 4960 (2014).
[Crossref] [PubMed]

Science (1)

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

Waves Random Complex Media (1)

A. Aubry and A. Derode, “Singular value distribution of the propagation matrix in random scattering media,” Waves Random Complex Media 20(3), 333–363 (2010).
[Crossref]

Other (1)

A. M. Tulino, S. Verd, Random matrix theory and wireless communications (Now Publishers Inc., 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The schematic of the scenario considered in this study. The dots represent the random distributed optical absorbers. The acoustic impendence between the optical absorbers and the surrounding tissue is seriously mismatched, which will generate strong scattering. The signals propagating through the scattering layer are detected by the transducer array. The detected signals in the time window [T∆t/2, T∆t/2] contain two kinds of components PD(T, f) and PS(T, f). PD(T, f) is one of the direct waves emitted directly from the object located at a depth of Z = cT. PS(T, f) are scattering waves.

Fig. 2
Fig. 2

The measured photoacoustic signals and their matrix form. (a) The waveform of the measured signals. (b) Real part of matrices (K) at time t = 32 μs and frequency f = 2.0 MHz. (c) The real part of matrix (K) at time t = 50 μs and frequency f = 2.0 MHz. (d) The real part of filtered matrix (K)F at time t = 50 μs and frequency f = 2.0 MHz. For the convenience of comparison, the matrix K is displayed its portion corresponding to (K)F in this figure.

Fig. 3
Fig. 3

Reconstructed images of the ROI behind an acoustically scattering layer. (a) The image reconstructed by the beamforming method. (b) The image reconstructed by the proposed method.

Fig. 4
Fig. 4

The comparison of the signal-to-noise ratio (SNR) and the resolution between the time reversal(TR) method and classical beam forming(BF) method. (a) The SNR of TR method and classical BF method (b) The axial and transverse resolution by the TR method and classical BF method. (c) The SNR by TR method and classical BF method. (d) The axial and transverse resolution by the TR method and classical BF method.

Fig. 5
Fig. 5

The experiment of photoacoustic imaging. (a) The schematic diagram of the photoacoustic imaging experimental setup. (b) The waveform of the detected photoacoustic signals. (c) The image reconstructed by the beamforming method. (d) The image reconstructed by the proposed method.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

P n D ( T , f ) A 0 exp ( j k Z ) exp [ j k ( x n X ) 2 2 Z ] ,
P n S ( T , f ) l = 1 L n [ A l exp ( j k s l ) ] = exp ( j k Z ) l = 1 L n [ A l exp ( j k S l ) ] ,
K m , n A 0 2 exp ( 2 j k Z ) exp [ j k ( x n X ) 2 + ( x m X ) 2 2 Z ] Coherence, K m , n C + { l = 1 L n A 0 A l exp [ j k ( D m + S l ) ] + l = 1 L m A 0 A l exp [ j k ( D n + S l ) ] + l m = 1 L m l n = 1 L n A l m A l n exp [ j k ( S l m + S l n ) ] } Random, K m , n R ,
φ q = K m q , m + q C / K m , m C = exp [ j k ( q w ) 2 / Z ] .
a u , v F = A 0 2 exp ( 2 j k Z ) Z × exp [ j k y u 2 2 Z ] × exp [ j k ( y v X ) 2 2 Z ] + c u u ' = 1 L c u ' * a u ' v R .

Metrics