Abstract

We have proposed and designed zigzag-folded U-shaped waveguides to realize highly efficient wavelength conversion with an extremely small footprint. Extreme high efficiencies are achieved with a combination of modal phase matching and 4¯ quasi phase matching in inversion-stacked AlGaAs/Alox waveguides. Numerical simulations reveal that the conversion efficiency of second harmonic generation pumped at 1.55 μm as high as 12000 %W−1 can be achieved in an 8.0-mm-long AlGaAs/Alox waveguide that is folded up into a small domain of 0.8×0.6 mm2 area. A phase matching signal bandwidth of difference frequency generation, 29 nm, covers 83 % of the telecommunication C band.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Second harmonic generation in AlGaAs photonic wires using low power continuous wave light

D. Duchesne, K. A. Rutkowska, M. Volatier, F. Légaré, S. Delprat, M. Chaker, D. Modotto, A. Locatelli, C. De Angelis, M. Sorel, D. N. Christodoulides, G. Salamo, R. Arès, V. Aimez, and R. Morandotti
Opt. Express 19(13) 12408-12417 (2011)

Efficient continuous wave second harmonic generation pumped at 1.55 μm in quasi-phase-matched AlGaAs waveguides

X. Yu, L. Scaccabarozzi, J. S. Harris, P. S. Kuo, and M. M. Fejer
Opt. Express 13(26) 10742-10748 (2005)

Broadband wavelength converters with flattop responses based on cascaded second-harmonic generation and difference frequency generation in Bessel-chirped gratings

Tao Liu, Ivan B. Djordjevic, Zekun Song, Ying Chen, Rongxiang Zhang, Ke Zhang, Wei Zhao, and Baogang Li
Opt. Express 24(10) 10946-10955 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S.J.B Yoo, “Wavelength conversion technologies for WDM network application,” J. Lightwave Technol. 14(6), 955–966 (1996).
    [Crossref]
  2. T. Umeki, M. Asobe, and H. Takenouchi, “In-line phase sensitive amplifier based on PPLN waveguides,” Opt. Lett. 21(10), 12077–12084 (2013).
  3. S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89(19), 191123 (2006).
    [Crossref]
  4. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14(9), 2268–2294 (1997).
    [Crossref]
  5. M. Ohashi, T. Kondo, R. Ito, S. Fukatsu, Y. Shiraki, K. Kumata, and S.S. Kano, “Determination of quadratic nonlinear optical coefficient of Alx Ga1−x As system by the method of reflected second harmonics,” J. Appl. Phys. 74(1), 596–601 (1993).
    [Crossref]
  6. S.J.B Yoo, R. Bhat, C. Caneau, and M.A. Koza, “Quasi-phase-matched second harmonic generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 66(25), 3410–3412 (1995).
    [Crossref]
  7. S.J.B Yoo, C. Caneau, R. Bhat, M.A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68(19), 2609–2611 (1996).
    [Crossref]
  8. S. Koh, T. Kondo, Y. Shiraki, and R. Ito, “GaAs/Ge/GaAs sublattice reversal epitaxy and its application to nonlinear optical devices,” J. Cryst. Growth 227–228183–192 (2001).
    [Crossref]
  9. J. Ota, W. Narita, I. Ohta, T. Matsushita, and T. Kondo, “Fabrication of periodically-inverted AlGaAs waveguides for quasi-phase-matched wavelength conversion at 1.55 μm,” Jpn. J. Appl. Phys. 48(4S), 04C110 (2009).
    [Crossref]
  10. O. Levi, T.J. Pinguet, T. Skauli, L. A. Eyres, K. R. Parameswaran, J. S. Harris, M.M. Fejer, T. J. Kulp, S. E. Bisson, B. Gerard, E. Lallier, and L. Becouarn, “Difference frequency generation of 8-μm radiation in orientation-patterned GaAs,” Opt. Lett. 27(23), 2091–2093 (2002).
    [Crossref]
  11. X. Yu, L. Scaccabarozzi, A.C. Lin, M.M. Fejer, and J.S. Harris, “Growth of GaAs with orientation-patterned structures for nonlinear optics,” J. Cryst. Growth. 301–302163–167 (2007).
    [Crossref]
  12. T. Matsushita, J. Ota, I. Ohta, and T. Kondo, “Quasi-phase-matched second-harmonic generation in high-quarity AlGaAs waveguides pumped at 1.55 μm,” Proceedings of the 2010 Frontiers in Optics (FiO)/Laser Science XXVI (LS) Conference, FThH2 (2010).
  13. Y. Dumeige and P. Féron, “Whispering-gallery-mode analysis of phase-matched doubly resonant second-harmonic generation,” Phys. Rev. A 74(6), 063804 (2006).
    [Crossref]
  14. P.S. Kuo, J. Bravo-Abad, and G. S. Solomon, “Second-harmonic generation using 4¯−quasi−phasematching in a GaAs whispering-gallery-mode microcavity,” Nature Comm. 5, 3109 (2014).
    [Crossref]
  15. Z. Yang, P. Chak, A.D. Bristow, H.M. van Driel, R. Iyer, J.S. Aitchison, A.L. Smirl, and J.E. Sipe, “Enhanced second-harmonic generation in AlGaAs microring resonators,” Opt. Lett. 32(7), 826–828 (2007).
    [Crossref] [PubMed]
  16. S. Mariani, A. Andronico, A. Lemaître, I. Favero, S. Ducci, and G. Leo, “Second-harmonic generation in AlGaAs microdisks in the telecom range,” Opt. Lett. 39(10), 3062–3065 (2014).
    [Crossref] [PubMed]
  17. J. P. van der Ziel, “Phase-matched harmonic generation in a laminar structure with wave propagation in the plane of the layers,” Appl. Phys. Lett. 26(2), 60–61 (1975).
    [Crossref]
  18. A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature,  391, 463–466 (1998).
    [Crossref]
  19. H. Ishikawa and T. Kondo, “Birefringent phase matching in thin rectangular high-index-contrast waveguides,” Appl. Phys. Express 2(4), 042202 (2009).
    [Crossref]
  20. T.W. Kim, T. Matsushita, and T. Kondo, “Phase-matched second-harmonic generation in thin rectangular high-index-contrast AlGaAs waveguides,” Appl. Phys. Express,  4(8), 082201 (2011).
    [Crossref]
  21. H. Ito and H. Inaba, “Efficient phase-matched second-harmonic generation method in four-layered optical-waveguide structure,” Opt. Lett. 2(6), 139–141 (1978).
    [Crossref] [PubMed]
  22. J. Khurgin, “Improvement of frequency-conversion efficiency in waveguides with rotationally twinned layers,” Opt. Lett. 13(7), 603–605 (1988).
    [Crossref] [PubMed]
  23. T. Matsushita and T. Kondo, “Hybrid modal-phase-matched and bent-quasi-phase-matched wavelength conversion in AlGaAs/SiO2 rib-type zigzag waveguides,” in Proceedings of Conference on Laser and Electro-Optics (Optical Society of America, 2011), paper JThB90.
  24. T. Matsushita, K. Murakami, K. Hara, I. Shoji, and T. Kondo, “Fabrication of AlGaAs waveguides with laterally inverted core structure for higher-order modal phase matching devices,” in Proceedings of 8th Asia Pacific Laser Symposium (The laser Society of Japan, 2012), paper O3.1.
  25. M.A. Afromowitz, “Refractive index of Ga1−x Alx As,” Solid State Commun. 15(1), 59–63 (1974).
    [Crossref]
  26. K. J. Knopp, R. P. Mirin, D. H. Christensen, K. A. Bertness, A. Roshko, and R. A. Synowicki, “Optical constants of (Al0.98Ga0.02)x Oy native oxides,” Appl. Phys. Lett. 73(24), 3512–3514 (1998).
    [Crossref]
  27. R.L. Sutherland, Handbook of Nonlinear Optics2rd ed. (Marcel Dekker Inc., 2003).
    [Crossref]
  28. R.W. Boyd, Nonlinear Optics3rd ed. (Academic, 2008).
  29. M. Savanier, A. Andronico, A. Lemaître, C. Manquest, I. Favero, S. Ducci, and G. Leo, “Nearly-degenerate three wave mixing at 1.55 μm in oxidized AlGaAs waveguides,” Opt. Lett. 19(23), 22582–22587 (2011).
  30. K.E. Docherty, S. Thoms, P. Dobson, and J.M.R. Weaver, “Improvements to the alignment process in a commercial vector scan electron beam lithography tool,” Microelectron. Eng. 85(5–6), 761–763 (2008).
    [Crossref]

2014 (2)

P.S. Kuo, J. Bravo-Abad, and G. S. Solomon, “Second-harmonic generation using 4¯−quasi−phasematching in a GaAs whispering-gallery-mode microcavity,” Nature Comm. 5, 3109 (2014).
[Crossref]

S. Mariani, A. Andronico, A. Lemaître, I. Favero, S. Ducci, and G. Leo, “Second-harmonic generation in AlGaAs microdisks in the telecom range,” Opt. Lett. 39(10), 3062–3065 (2014).
[Crossref] [PubMed]

2013 (1)

T. Umeki, M. Asobe, and H. Takenouchi, “In-line phase sensitive amplifier based on PPLN waveguides,” Opt. Lett. 21(10), 12077–12084 (2013).

2011 (2)

T.W. Kim, T. Matsushita, and T. Kondo, “Phase-matched second-harmonic generation in thin rectangular high-index-contrast AlGaAs waveguides,” Appl. Phys. Express,  4(8), 082201 (2011).
[Crossref]

M. Savanier, A. Andronico, A. Lemaître, C. Manquest, I. Favero, S. Ducci, and G. Leo, “Nearly-degenerate three wave mixing at 1.55 μm in oxidized AlGaAs waveguides,” Opt. Lett. 19(23), 22582–22587 (2011).

2009 (2)

H. Ishikawa and T. Kondo, “Birefringent phase matching in thin rectangular high-index-contrast waveguides,” Appl. Phys. Express 2(4), 042202 (2009).
[Crossref]

J. Ota, W. Narita, I. Ohta, T. Matsushita, and T. Kondo, “Fabrication of periodically-inverted AlGaAs waveguides for quasi-phase-matched wavelength conversion at 1.55 μm,” Jpn. J. Appl. Phys. 48(4S), 04C110 (2009).
[Crossref]

2008 (1)

K.E. Docherty, S. Thoms, P. Dobson, and J.M.R. Weaver, “Improvements to the alignment process in a commercial vector scan electron beam lithography tool,” Microelectron. Eng. 85(5–6), 761–763 (2008).
[Crossref]

2007 (2)

X. Yu, L. Scaccabarozzi, A.C. Lin, M.M. Fejer, and J.S. Harris, “Growth of GaAs with orientation-patterned structures for nonlinear optics,” J. Cryst. Growth. 301–302163–167 (2007).
[Crossref]

Z. Yang, P. Chak, A.D. Bristow, H.M. van Driel, R. Iyer, J.S. Aitchison, A.L. Smirl, and J.E. Sipe, “Enhanced second-harmonic generation in AlGaAs microring resonators,” Opt. Lett. 32(7), 826–828 (2007).
[Crossref] [PubMed]

2006 (2)

Y. Dumeige and P. Féron, “Whispering-gallery-mode analysis of phase-matched doubly resonant second-harmonic generation,” Phys. Rev. A 74(6), 063804 (2006).
[Crossref]

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89(19), 191123 (2006).
[Crossref]

2002 (1)

2001 (1)

S. Koh, T. Kondo, Y. Shiraki, and R. Ito, “GaAs/Ge/GaAs sublattice reversal epitaxy and its application to nonlinear optical devices,” J. Cryst. Growth 227–228183–192 (2001).
[Crossref]

1998 (2)

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature,  391, 463–466 (1998).
[Crossref]

K. J. Knopp, R. P. Mirin, D. H. Christensen, K. A. Bertness, A. Roshko, and R. A. Synowicki, “Optical constants of (Al0.98Ga0.02)x Oy native oxides,” Appl. Phys. Lett. 73(24), 3512–3514 (1998).
[Crossref]

1997 (1)

1996 (2)

S.J.B Yoo, C. Caneau, R. Bhat, M.A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68(19), 2609–2611 (1996).
[Crossref]

S.J.B Yoo, “Wavelength conversion technologies for WDM network application,” J. Lightwave Technol. 14(6), 955–966 (1996).
[Crossref]

1995 (1)

S.J.B Yoo, R. Bhat, C. Caneau, and M.A. Koza, “Quasi-phase-matched second harmonic generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 66(25), 3410–3412 (1995).
[Crossref]

1993 (1)

M. Ohashi, T. Kondo, R. Ito, S. Fukatsu, Y. Shiraki, K. Kumata, and S.S. Kano, “Determination of quadratic nonlinear optical coefficient of Alx Ga1−x As system by the method of reflected second harmonics,” J. Appl. Phys. 74(1), 596–601 (1993).
[Crossref]

1988 (1)

1978 (1)

1975 (1)

J. P. van der Ziel, “Phase-matched harmonic generation in a laminar structure with wave propagation in the plane of the layers,” Appl. Phys. Lett. 26(2), 60–61 (1975).
[Crossref]

1974 (1)

M.A. Afromowitz, “Refractive index of Ga1−x Alx As,” Solid State Commun. 15(1), 59–63 (1974).
[Crossref]

Afromowitz, M.A.

M.A. Afromowitz, “Refractive index of Ga1−x Alx As,” Solid State Commun. 15(1), 59–63 (1974).
[Crossref]

Aitchison, J.S.

Andronico, A.

S. Mariani, A. Andronico, A. Lemaître, I. Favero, S. Ducci, and G. Leo, “Second-harmonic generation in AlGaAs microdisks in the telecom range,” Opt. Lett. 39(10), 3062–3065 (2014).
[Crossref] [PubMed]

M. Savanier, A. Andronico, A. Lemaître, C. Manquest, I. Favero, S. Ducci, and G. Leo, “Nearly-degenerate three wave mixing at 1.55 μm in oxidized AlGaAs waveguides,” Opt. Lett. 19(23), 22582–22587 (2011).

Antoniades, N.

S.J.B Yoo, C. Caneau, R. Bhat, M.A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68(19), 2609–2611 (1996).
[Crossref]

Asobe, M.

T. Umeki, M. Asobe, and H. Takenouchi, “In-line phase sensitive amplifier based on PPLN waveguides,” Opt. Lett. 21(10), 12077–12084 (2013).

Becouarn, L.

Berger, V.

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature,  391, 463–466 (1998).
[Crossref]

Bertness, K. A.

K. J. Knopp, R. P. Mirin, D. H. Christensen, K. A. Bertness, A. Roshko, and R. A. Synowicki, “Optical constants of (Al0.98Ga0.02)x Oy native oxides,” Appl. Phys. Lett. 73(24), 3512–3514 (1998).
[Crossref]

Bhat, R.

S.J.B Yoo, C. Caneau, R. Bhat, M.A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68(19), 2609–2611 (1996).
[Crossref]

S.J.B Yoo, R. Bhat, C. Caneau, and M.A. Koza, “Quasi-phase-matched second harmonic generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 66(25), 3410–3412 (1995).
[Crossref]

Bisson, S. E.

Boyd, R.W.

R.W. Boyd, Nonlinear Optics3rd ed. (Academic, 2008).

Bravetti, P.

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature,  391, 463–466 (1998).
[Crossref]

Bravo-Abad, J.

P.S. Kuo, J. Bravo-Abad, and G. S. Solomon, “Second-harmonic generation using 4¯−quasi−phasematching in a GaAs whispering-gallery-mode microcavity,” Nature Comm. 5, 3109 (2014).
[Crossref]

Bristow, A.D.

Caneau, C.

S.J.B Yoo, C. Caneau, R. Bhat, M.A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68(19), 2609–2611 (1996).
[Crossref]

S.J.B Yoo, R. Bhat, C. Caneau, and M.A. Koza, “Quasi-phase-matched second harmonic generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 66(25), 3410–3412 (1995).
[Crossref]

Chak, P.

Christensen, D. H.

K. J. Knopp, R. P. Mirin, D. H. Christensen, K. A. Bertness, A. Roshko, and R. A. Synowicki, “Optical constants of (Al0.98Ga0.02)x Oy native oxides,” Appl. Phys. Lett. 73(24), 3512–3514 (1998).
[Crossref]

Dobson, P.

K.E. Docherty, S. Thoms, P. Dobson, and J.M.R. Weaver, “Improvements to the alignment process in a commercial vector scan electron beam lithography tool,” Microelectron. Eng. 85(5–6), 761–763 (2008).
[Crossref]

Docherty, K.E.

K.E. Docherty, S. Thoms, P. Dobson, and J.M.R. Weaver, “Improvements to the alignment process in a commercial vector scan electron beam lithography tool,” Microelectron. Eng. 85(5–6), 761–763 (2008).
[Crossref]

Ducci, S.

S. Mariani, A. Andronico, A. Lemaître, I. Favero, S. Ducci, and G. Leo, “Second-harmonic generation in AlGaAs microdisks in the telecom range,” Opt. Lett. 39(10), 3062–3065 (2014).
[Crossref] [PubMed]

M. Savanier, A. Andronico, A. Lemaître, C. Manquest, I. Favero, S. Ducci, and G. Leo, “Nearly-degenerate three wave mixing at 1.55 μm in oxidized AlGaAs waveguides,” Opt. Lett. 19(23), 22582–22587 (2011).

Dumeige, Y.

Y. Dumeige and P. Féron, “Whispering-gallery-mode analysis of phase-matched doubly resonant second-harmonic generation,” Phys. Rev. A 74(6), 063804 (2006).
[Crossref]

Eyres, L. A.

Favero, I.

S. Mariani, A. Andronico, A. Lemaître, I. Favero, S. Ducci, and G. Leo, “Second-harmonic generation in AlGaAs microdisks in the telecom range,” Opt. Lett. 39(10), 3062–3065 (2014).
[Crossref] [PubMed]

M. Savanier, A. Andronico, A. Lemaître, C. Manquest, I. Favero, S. Ducci, and G. Leo, “Nearly-degenerate three wave mixing at 1.55 μm in oxidized AlGaAs waveguides,” Opt. Lett. 19(23), 22582–22587 (2011).

Fejer, M.M.

Féron, P.

Y. Dumeige and P. Féron, “Whispering-gallery-mode analysis of phase-matched doubly resonant second-harmonic generation,” Phys. Rev. A 74(6), 063804 (2006).
[Crossref]

Fiore, A.

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature,  391, 463–466 (1998).
[Crossref]

Fukatsu, S.

M. Ohashi, T. Kondo, R. Ito, S. Fukatsu, Y. Shiraki, K. Kumata, and S.S. Kano, “Determination of quadratic nonlinear optical coefficient of Alx Ga1−x As system by the method of reflected second harmonics,” J. Appl. Phys. 74(1), 596–601 (1993).
[Crossref]

Gerard, B.

Hara, K.

T. Matsushita, K. Murakami, K. Hara, I. Shoji, and T. Kondo, “Fabrication of AlGaAs waveguides with laterally inverted core structure for higher-order modal phase matching devices,” in Proceedings of 8th Asia Pacific Laser Symposium (The laser Society of Japan, 2012), paper O3.1.

Harris, J. S.

Harris, J.S.

X. Yu, L. Scaccabarozzi, A.C. Lin, M.M. Fejer, and J.S. Harris, “Growth of GaAs with orientation-patterned structures for nonlinear optics,” J. Cryst. Growth. 301–302163–167 (2007).
[Crossref]

Inaba, H.

Ishikawa, H.

H. Ishikawa and T. Kondo, “Birefringent phase matching in thin rectangular high-index-contrast waveguides,” Appl. Phys. Express 2(4), 042202 (2009).
[Crossref]

Ito, H.

Ito, R.

S. Koh, T. Kondo, Y. Shiraki, and R. Ito, “GaAs/Ge/GaAs sublattice reversal epitaxy and its application to nonlinear optical devices,” J. Cryst. Growth 227–228183–192 (2001).
[Crossref]

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14(9), 2268–2294 (1997).
[Crossref]

M. Ohashi, T. Kondo, R. Ito, S. Fukatsu, Y. Shiraki, K. Kumata, and S.S. Kano, “Determination of quadratic nonlinear optical coefficient of Alx Ga1−x As system by the method of reflected second harmonics,” J. Appl. Phys. 74(1), 596–601 (1993).
[Crossref]

Iyer, R.

Kano, S.S.

M. Ohashi, T. Kondo, R. Ito, S. Fukatsu, Y. Shiraki, K. Kumata, and S.S. Kano, “Determination of quadratic nonlinear optical coefficient of Alx Ga1−x As system by the method of reflected second harmonics,” J. Appl. Phys. 74(1), 596–601 (1993).
[Crossref]

Kato, Y.

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89(19), 191123 (2006).
[Crossref]

Khurgin, J.

Kim, T.W.

T.W. Kim, T. Matsushita, and T. Kondo, “Phase-matched second-harmonic generation in thin rectangular high-index-contrast AlGaAs waveguides,” Appl. Phys. Express,  4(8), 082201 (2011).
[Crossref]

Kitamoto, A.

Knopp, K. J.

K. J. Knopp, R. P. Mirin, D. H. Christensen, K. A. Bertness, A. Roshko, and R. A. Synowicki, “Optical constants of (Al0.98Ga0.02)x Oy native oxides,” Appl. Phys. Lett. 73(24), 3512–3514 (1998).
[Crossref]

Koh, S.

S. Koh, T. Kondo, Y. Shiraki, and R. Ito, “GaAs/Ge/GaAs sublattice reversal epitaxy and its application to nonlinear optical devices,” J. Cryst. Growth 227–228183–192 (2001).
[Crossref]

Kondo, T.

T.W. Kim, T. Matsushita, and T. Kondo, “Phase-matched second-harmonic generation in thin rectangular high-index-contrast AlGaAs waveguides,” Appl. Phys. Express,  4(8), 082201 (2011).
[Crossref]

H. Ishikawa and T. Kondo, “Birefringent phase matching in thin rectangular high-index-contrast waveguides,” Appl. Phys. Express 2(4), 042202 (2009).
[Crossref]

J. Ota, W. Narita, I. Ohta, T. Matsushita, and T. Kondo, “Fabrication of periodically-inverted AlGaAs waveguides for quasi-phase-matched wavelength conversion at 1.55 μm,” Jpn. J. Appl. Phys. 48(4S), 04C110 (2009).
[Crossref]

S. Koh, T. Kondo, Y. Shiraki, and R. Ito, “GaAs/Ge/GaAs sublattice reversal epitaxy and its application to nonlinear optical devices,” J. Cryst. Growth 227–228183–192 (2001).
[Crossref]

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14(9), 2268–2294 (1997).
[Crossref]

M. Ohashi, T. Kondo, R. Ito, S. Fukatsu, Y. Shiraki, K. Kumata, and S.S. Kano, “Determination of quadratic nonlinear optical coefficient of Alx Ga1−x As system by the method of reflected second harmonics,” J. Appl. Phys. 74(1), 596–601 (1993).
[Crossref]

T. Matsushita, K. Murakami, K. Hara, I. Shoji, and T. Kondo, “Fabrication of AlGaAs waveguides with laterally inverted core structure for higher-order modal phase matching devices,” in Proceedings of 8th Asia Pacific Laser Symposium (The laser Society of Japan, 2012), paper O3.1.

T. Matsushita and T. Kondo, “Hybrid modal-phase-matched and bent-quasi-phase-matched wavelength conversion in AlGaAs/SiO2 rib-type zigzag waveguides,” in Proceedings of Conference on Laser and Electro-Optics (Optical Society of America, 2011), paper JThB90.

T. Matsushita, J. Ota, I. Ohta, and T. Kondo, “Quasi-phase-matched second-harmonic generation in high-quarity AlGaAs waveguides pumped at 1.55 μm,” Proceedings of the 2010 Frontiers in Optics (FiO)/Laser Science XXVI (LS) Conference, FThH2 (2010).

Koza, M.A.

S.J.B Yoo, C. Caneau, R. Bhat, M.A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68(19), 2609–2611 (1996).
[Crossref]

S.J.B Yoo, R. Bhat, C. Caneau, and M.A. Koza, “Quasi-phase-matched second harmonic generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 66(25), 3410–3412 (1995).
[Crossref]

Kulp, T. J.

Kumata, K.

M. Ohashi, T. Kondo, R. Ito, S. Fukatsu, Y. Shiraki, K. Kumata, and S.S. Kano, “Determination of quadratic nonlinear optical coefficient of Alx Ga1−x As system by the method of reflected second harmonics,” J. Appl. Phys. 74(1), 596–601 (1993).
[Crossref]

Kuo, P.S.

P.S. Kuo, J. Bravo-Abad, and G. S. Solomon, “Second-harmonic generation using 4¯−quasi−phasematching in a GaAs whispering-gallery-mode microcavity,” Nature Comm. 5, 3109 (2014).
[Crossref]

Kurimura, S.

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89(19), 191123 (2006).
[Crossref]

Lallier, E.

Lemaître, A.

S. Mariani, A. Andronico, A. Lemaître, I. Favero, S. Ducci, and G. Leo, “Second-harmonic generation in AlGaAs microdisks in the telecom range,” Opt. Lett. 39(10), 3062–3065 (2014).
[Crossref] [PubMed]

M. Savanier, A. Andronico, A. Lemaître, C. Manquest, I. Favero, S. Ducci, and G. Leo, “Nearly-degenerate three wave mixing at 1.55 μm in oxidized AlGaAs waveguides,” Opt. Lett. 19(23), 22582–22587 (2011).

Leo, G.

S. Mariani, A. Andronico, A. Lemaître, I. Favero, S. Ducci, and G. Leo, “Second-harmonic generation in AlGaAs microdisks in the telecom range,” Opt. Lett. 39(10), 3062–3065 (2014).
[Crossref] [PubMed]

M. Savanier, A. Andronico, A. Lemaître, C. Manquest, I. Favero, S. Ducci, and G. Leo, “Nearly-degenerate three wave mixing at 1.55 μm in oxidized AlGaAs waveguides,” Opt. Lett. 19(23), 22582–22587 (2011).

Levi, O.

Lin, A.C.

X. Yu, L. Scaccabarozzi, A.C. Lin, M.M. Fejer, and J.S. Harris, “Growth of GaAs with orientation-patterned structures for nonlinear optics,” J. Cryst. Growth. 301–302163–167 (2007).
[Crossref]

Manquest, C.

M. Savanier, A. Andronico, A. Lemaître, C. Manquest, I. Favero, S. Ducci, and G. Leo, “Nearly-degenerate three wave mixing at 1.55 μm in oxidized AlGaAs waveguides,” Opt. Lett. 19(23), 22582–22587 (2011).

Mariani, S.

Maruyama, M.

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89(19), 191123 (2006).
[Crossref]

Matsushita, T.

T.W. Kim, T. Matsushita, and T. Kondo, “Phase-matched second-harmonic generation in thin rectangular high-index-contrast AlGaAs waveguides,” Appl. Phys. Express,  4(8), 082201 (2011).
[Crossref]

J. Ota, W. Narita, I. Ohta, T. Matsushita, and T. Kondo, “Fabrication of periodically-inverted AlGaAs waveguides for quasi-phase-matched wavelength conversion at 1.55 μm,” Jpn. J. Appl. Phys. 48(4S), 04C110 (2009).
[Crossref]

T. Matsushita, J. Ota, I. Ohta, and T. Kondo, “Quasi-phase-matched second-harmonic generation in high-quarity AlGaAs waveguides pumped at 1.55 μm,” Proceedings of the 2010 Frontiers in Optics (FiO)/Laser Science XXVI (LS) Conference, FThH2 (2010).

T. Matsushita and T. Kondo, “Hybrid modal-phase-matched and bent-quasi-phase-matched wavelength conversion in AlGaAs/SiO2 rib-type zigzag waveguides,” in Proceedings of Conference on Laser and Electro-Optics (Optical Society of America, 2011), paper JThB90.

T. Matsushita, K. Murakami, K. Hara, I. Shoji, and T. Kondo, “Fabrication of AlGaAs waveguides with laterally inverted core structure for higher-order modal phase matching devices,” in Proceedings of 8th Asia Pacific Laser Symposium (The laser Society of Japan, 2012), paper O3.1.

Mirin, R. P.

K. J. Knopp, R. P. Mirin, D. H. Christensen, K. A. Bertness, A. Roshko, and R. A. Synowicki, “Optical constants of (Al0.98Ga0.02)x Oy native oxides,” Appl. Phys. Lett. 73(24), 3512–3514 (1998).
[Crossref]

Murakami, K.

T. Matsushita, K. Murakami, K. Hara, I. Shoji, and T. Kondo, “Fabrication of AlGaAs waveguides with laterally inverted core structure for higher-order modal phase matching devices,” in Proceedings of 8th Asia Pacific Laser Symposium (The laser Society of Japan, 2012), paper O3.1.

Nagle, J.

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature,  391, 463–466 (1998).
[Crossref]

Nakajima, H.

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89(19), 191123 (2006).
[Crossref]

Narita, W.

J. Ota, W. Narita, I. Ohta, T. Matsushita, and T. Kondo, “Fabrication of periodically-inverted AlGaAs waveguides for quasi-phase-matched wavelength conversion at 1.55 μm,” Jpn. J. Appl. Phys. 48(4S), 04C110 (2009).
[Crossref]

Ohashi, M.

M. Ohashi, T. Kondo, R. Ito, S. Fukatsu, Y. Shiraki, K. Kumata, and S.S. Kano, “Determination of quadratic nonlinear optical coefficient of Alx Ga1−x As system by the method of reflected second harmonics,” J. Appl. Phys. 74(1), 596–601 (1993).
[Crossref]

Ohta, I.

J. Ota, W. Narita, I. Ohta, T. Matsushita, and T. Kondo, “Fabrication of periodically-inverted AlGaAs waveguides for quasi-phase-matched wavelength conversion at 1.55 μm,” Jpn. J. Appl. Phys. 48(4S), 04C110 (2009).
[Crossref]

T. Matsushita, J. Ota, I. Ohta, and T. Kondo, “Quasi-phase-matched second-harmonic generation in high-quarity AlGaAs waveguides pumped at 1.55 μm,” Proceedings of the 2010 Frontiers in Optics (FiO)/Laser Science XXVI (LS) Conference, FThH2 (2010).

Ota, J.

J. Ota, W. Narita, I. Ohta, T. Matsushita, and T. Kondo, “Fabrication of periodically-inverted AlGaAs waveguides for quasi-phase-matched wavelength conversion at 1.55 μm,” Jpn. J. Appl. Phys. 48(4S), 04C110 (2009).
[Crossref]

T. Matsushita, J. Ota, I. Ohta, and T. Kondo, “Quasi-phase-matched second-harmonic generation in high-quarity AlGaAs waveguides pumped at 1.55 μm,” Proceedings of the 2010 Frontiers in Optics (FiO)/Laser Science XXVI (LS) Conference, FThH2 (2010).

Parameswaran, K. R.

Pinguet, T.J.

Rajhel, A.

S.J.B Yoo, C. Caneau, R. Bhat, M.A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68(19), 2609–2611 (1996).
[Crossref]

Rosencher, E.

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature,  391, 463–466 (1998).
[Crossref]

Roshko, A.

K. J. Knopp, R. P. Mirin, D. H. Christensen, K. A. Bertness, A. Roshko, and R. A. Synowicki, “Optical constants of (Al0.98Ga0.02)x Oy native oxides,” Appl. Phys. Lett. 73(24), 3512–3514 (1998).
[Crossref]

Savanier, M.

M. Savanier, A. Andronico, A. Lemaître, C. Manquest, I. Favero, S. Ducci, and G. Leo, “Nearly-degenerate three wave mixing at 1.55 μm in oxidized AlGaAs waveguides,” Opt. Lett. 19(23), 22582–22587 (2011).

Scaccabarozzi, L.

X. Yu, L. Scaccabarozzi, A.C. Lin, M.M. Fejer, and J.S. Harris, “Growth of GaAs with orientation-patterned structures for nonlinear optics,” J. Cryst. Growth. 301–302163–167 (2007).
[Crossref]

Shiraki, Y.

S. Koh, T. Kondo, Y. Shiraki, and R. Ito, “GaAs/Ge/GaAs sublattice reversal epitaxy and its application to nonlinear optical devices,” J. Cryst. Growth 227–228183–192 (2001).
[Crossref]

M. Ohashi, T. Kondo, R. Ito, S. Fukatsu, Y. Shiraki, K. Kumata, and S.S. Kano, “Determination of quadratic nonlinear optical coefficient of Alx Ga1−x As system by the method of reflected second harmonics,” J. Appl. Phys. 74(1), 596–601 (1993).
[Crossref]

Shirane, M.

Shoji, I.

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14(9), 2268–2294 (1997).
[Crossref]

T. Matsushita, K. Murakami, K. Hara, I. Shoji, and T. Kondo, “Fabrication of AlGaAs waveguides with laterally inverted core structure for higher-order modal phase matching devices,” in Proceedings of 8th Asia Pacific Laser Symposium (The laser Society of Japan, 2012), paper O3.1.

Sipe, J.E.

Skauli, T.

Smirl, A.L.

Solomon, G. S.

P.S. Kuo, J. Bravo-Abad, and G. S. Solomon, “Second-harmonic generation using 4¯−quasi−phasematching in a GaAs whispering-gallery-mode microcavity,” Nature Comm. 5, 3109 (2014).
[Crossref]

Sutherland, R.L.

R.L. Sutherland, Handbook of Nonlinear Optics2rd ed. (Marcel Dekker Inc., 2003).
[Crossref]

Synowicki, R. A.

K. J. Knopp, R. P. Mirin, D. H. Christensen, K. A. Bertness, A. Roshko, and R. A. Synowicki, “Optical constants of (Al0.98Ga0.02)x Oy native oxides,” Appl. Phys. Lett. 73(24), 3512–3514 (1998).
[Crossref]

Takenouchi, H.

T. Umeki, M. Asobe, and H. Takenouchi, “In-line phase sensitive amplifier based on PPLN waveguides,” Opt. Lett. 21(10), 12077–12084 (2013).

Thoms, S.

K.E. Docherty, S. Thoms, P. Dobson, and J.M.R. Weaver, “Improvements to the alignment process in a commercial vector scan electron beam lithography tool,” Microelectron. Eng. 85(5–6), 761–763 (2008).
[Crossref]

Umeki, T.

T. Umeki, M. Asobe, and H. Takenouchi, “In-line phase sensitive amplifier based on PPLN waveguides,” Opt. Lett. 21(10), 12077–12084 (2013).

Usui, Y.

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89(19), 191123 (2006).
[Crossref]

van der Ziel, J. P.

J. P. van der Ziel, “Phase-matched harmonic generation in a laminar structure with wave propagation in the plane of the layers,” Appl. Phys. Lett. 26(2), 60–61 (1975).
[Crossref]

van Driel, H.M.

Weaver, J.M.R.

K.E. Docherty, S. Thoms, P. Dobson, and J.M.R. Weaver, “Improvements to the alignment process in a commercial vector scan electron beam lithography tool,” Microelectron. Eng. 85(5–6), 761–763 (2008).
[Crossref]

Yang, Z.

Yoo, S.J.B

S.J.B Yoo, “Wavelength conversion technologies for WDM network application,” J. Lightwave Technol. 14(6), 955–966 (1996).
[Crossref]

S.J.B Yoo, C. Caneau, R. Bhat, M.A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68(19), 2609–2611 (1996).
[Crossref]

S.J.B Yoo, R. Bhat, C. Caneau, and M.A. Koza, “Quasi-phase-matched second harmonic generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 66(25), 3410–3412 (1995).
[Crossref]

Yu, X.

X. Yu, L. Scaccabarozzi, A.C. Lin, M.M. Fejer, and J.S. Harris, “Growth of GaAs with orientation-patterned structures for nonlinear optics,” J. Cryst. Growth. 301–302163–167 (2007).
[Crossref]

Appl. Phys. Express (2)

H. Ishikawa and T. Kondo, “Birefringent phase matching in thin rectangular high-index-contrast waveguides,” Appl. Phys. Express 2(4), 042202 (2009).
[Crossref]

T.W. Kim, T. Matsushita, and T. Kondo, “Phase-matched second-harmonic generation in thin rectangular high-index-contrast AlGaAs waveguides,” Appl. Phys. Express,  4(8), 082201 (2011).
[Crossref]

Appl. Phys. Lett. (5)

K. J. Knopp, R. P. Mirin, D. H. Christensen, K. A. Bertness, A. Roshko, and R. A. Synowicki, “Optical constants of (Al0.98Ga0.02)x Oy native oxides,” Appl. Phys. Lett. 73(24), 3512–3514 (1998).
[Crossref]

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89(19), 191123 (2006).
[Crossref]

S.J.B Yoo, R. Bhat, C. Caneau, and M.A. Koza, “Quasi-phase-matched second harmonic generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 66(25), 3410–3412 (1995).
[Crossref]

S.J.B Yoo, C. Caneau, R. Bhat, M.A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68(19), 2609–2611 (1996).
[Crossref]

J. P. van der Ziel, “Phase-matched harmonic generation in a laminar structure with wave propagation in the plane of the layers,” Appl. Phys. Lett. 26(2), 60–61 (1975).
[Crossref]

J. Appl. Phys. (1)

M. Ohashi, T. Kondo, R. Ito, S. Fukatsu, Y. Shiraki, K. Kumata, and S.S. Kano, “Determination of quadratic nonlinear optical coefficient of Alx Ga1−x As system by the method of reflected second harmonics,” J. Appl. Phys. 74(1), 596–601 (1993).
[Crossref]

J. Cryst. Growth (1)

S. Koh, T. Kondo, Y. Shiraki, and R. Ito, “GaAs/Ge/GaAs sublattice reversal epitaxy and its application to nonlinear optical devices,” J. Cryst. Growth 227–228183–192 (2001).
[Crossref]

J. Cryst. Growth. (1)

X. Yu, L. Scaccabarozzi, A.C. Lin, M.M. Fejer, and J.S. Harris, “Growth of GaAs with orientation-patterned structures for nonlinear optics,” J. Cryst. Growth. 301–302163–167 (2007).
[Crossref]

J. Lightwave Technol. (1)

S.J.B Yoo, “Wavelength conversion technologies for WDM network application,” J. Lightwave Technol. 14(6), 955–966 (1996).
[Crossref]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

J. Ota, W. Narita, I. Ohta, T. Matsushita, and T. Kondo, “Fabrication of periodically-inverted AlGaAs waveguides for quasi-phase-matched wavelength conversion at 1.55 μm,” Jpn. J. Appl. Phys. 48(4S), 04C110 (2009).
[Crossref]

Microelectron. Eng. (1)

K.E. Docherty, S. Thoms, P. Dobson, and J.M.R. Weaver, “Improvements to the alignment process in a commercial vector scan electron beam lithography tool,” Microelectron. Eng. 85(5–6), 761–763 (2008).
[Crossref]

Nature (1)

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature,  391, 463–466 (1998).
[Crossref]

Nature Comm. (1)

P.S. Kuo, J. Bravo-Abad, and G. S. Solomon, “Second-harmonic generation using 4¯−quasi−phasematching in a GaAs whispering-gallery-mode microcavity,” Nature Comm. 5, 3109 (2014).
[Crossref]

Opt. Lett. (7)

Phys. Rev. A (1)

Y. Dumeige and P. Féron, “Whispering-gallery-mode analysis of phase-matched doubly resonant second-harmonic generation,” Phys. Rev. A 74(6), 063804 (2006).
[Crossref]

Solid State Commun. (1)

M.A. Afromowitz, “Refractive index of Ga1−x Alx As,” Solid State Commun. 15(1), 59–63 (1974).
[Crossref]

Other (5)

R.L. Sutherland, Handbook of Nonlinear Optics2rd ed. (Marcel Dekker Inc., 2003).
[Crossref]

R.W. Boyd, Nonlinear Optics3rd ed. (Academic, 2008).

T. Matsushita and T. Kondo, “Hybrid modal-phase-matched and bent-quasi-phase-matched wavelength conversion in AlGaAs/SiO2 rib-type zigzag waveguides,” in Proceedings of Conference on Laser and Electro-Optics (Optical Society of America, 2011), paper JThB90.

T. Matsushita, K. Murakami, K. Hara, I. Shoji, and T. Kondo, “Fabrication of AlGaAs waveguides with laterally inverted core structure for higher-order modal phase matching devices,” in Proceedings of 8th Asia Pacific Laser Symposium (The laser Society of Japan, 2012), paper O3.1.

T. Matsushita, J. Ota, I. Ohta, and T. Kondo, “Quasi-phase-matched second-harmonic generation in high-quarity AlGaAs waveguides pumped at 1.55 μm,” Proceedings of the 2010 Frontiers in Optics (FiO)/Laser Science XXVI (LS) Conference, FThH2 (2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 A schematic image of a zigzag folded U-shaped device composed of straight and half-arc waveguides. Cross sectional structure of the waveguide is shown in the magnified image.
Fig. 2
Fig. 2 Schematics of (a) an AlGaAs/Alox inversion-stacked rib-type waveguide, (b) distribution of normalized nonlinear optical coefficient and, (c) electric-field distributions of a fundamental quasi-TE lowest-order mode and a second harmonic quasi-TM first-order mode.
Fig. 3
Fig. 3 Phase matching thickness tg (black solid line) and SHG normalized conversion efficiency (blue solid line) as functions of rib width ws in AlGaAs/Alox inversion-stacked waveguides.
Fig. 4
Fig. 4 Schematic of an AlGaAs single U-shaped waveguide which consists of a half-arc and two straight waveguides.
Fig. 5
Fig. 5 Phasors of normalized second-harmonic amplitudes in an AlGaAs single U-shape waveguide for ΔkhaπR = 0 (black), π (blue), 2π (red), 3π (purple), and 4π (green). The phasors in first straight, half-arc, and second straight waveguide are represented by broken, solid and dash-dotted lines, respectively. End points of the phasors are depicted by filled circles. For clarity, the phasor in the half-arc waveguide for ΔkhaπR = 0 is intentionally shifted to the negative direction along the real axis.
Fig. 6
Fig. 6 2D-FDTD computer-aided designs of (a) uniform (ws = wha) and (b) non-uniform (ws ≠ wha) U-shaped waveguides. In the non-uniform device, the half-arc waveguide is connected with 10-μm-long linearly-tapered waveguides to 10-μm-long straight waveguides. Guiding segments (red regions) are surrounded by air (white regions).
Fig. 7
Fig. 7 Calculated phase differences (a) and power transmittances of second harmonic waves (b) in uniform-width U-shaped waveguides versus curvature radius of the half-arc waveguide.
Fig. 8
Fig. 8 Phase difference (a) and SH transmittance (b) in non-uniform U-shaped waveguides with R = 30 μm versus the width of half-arc waveguides wha, and SH electric fields around point B in U-shaped waveguides with ws = 1.04 μm, wha = 1.007 μm (c) and ws = wha = 1.04 μm (d).
Fig. 9
Fig. 9 Phasor of normalized SH amplitude generated in a non-uniform U-shaped waveguide shown in Fig. 6(b) with R = 30 μm, ws = 1.04 μm, wha = 1.007 μm, αω = 0.16 cm−1 and α2ω = 0.38 cm−1.
Fig. 10
Fig. 10 SHG conversion efficiency in a zigzag-folded non-uniform U-shaped waveguide as a function of interaction length. The waveguide consists of 0.7-mm-long straight waveguides with ws = 1.04 μm and half-arc waveguides with R = 30 μm and wha = 1.007 μm connected with 10-μm-long tapered waveguides. The magnified drawing around the ninth half-arc waveguide is shown in the inset.
Fig. 11
Fig. 11 Signal (a) and pump (b) wavelength dependences of DFG conversion efficiency in a nine-time-folded U-shaped device.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

η 0 = 8 π 2 ϵ 0 c λ ω 2 d 14 2 n e f f 2 ω ( n e f f ω ) 2 [ d ˜ ( x , y ) 2 ω ( x , y ) ω 2 ( x , y ) d x d y ] 2 ,
d A 2 ω ( s ) d s = i d ¯ ( s ) e i Δ k ( s ) s ,
d A 2 ω ( s ) d s = i d ¯ ( s ) e ( α ω ( s ) α 2 ω ( s ) / 2 ) s e i Δ k ( s ) s .

Metrics