Abstract

We present a one-dimensional (1-D) single-photon position-sensitive silicon photomultiplier (PS-SiPM) that can perform both photon number and position discriminations. The device, which features epitaxial quenching resistors and a continuous cap resistive layer for charge division, possesses two cathodes on top and one anode at the bottom. The PS-SiPM shows an active size of 2.2 mm × 2.2 mm and micro avalanche photodiode cell pitch of ~10 μm. The position measurement error (PME) and position resolution of the device are analyzed. The PME with low mean photoelectron number of approximately 0.11 is 29.6 ± 27.3 μm. The single-photon position resolution is 393.4 μm. When the photoelectron number increases from 1 to 7, the position resolution is improved from 393.4 μm to 56.2 μm. The application of the PS-SiPM in Raman spectroscopy for carbon tetrachloride (CCl4) at room temperature shows advantages of both CCD (rapid measurement) and photomultiplier tube (high gain, fast photon response, and simple readout electronics). This novel device concept exhibits potential as a low-cost and high-performance detector for various laser spectroscopies.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Single-photon image sensor at room temperature with only four anodes

Yu Peng, Lei Dai, Tianqi Zhao, Jian Liu, Kun Liang, Ru Yang, and Dejun Han
Opt. Express 27(15) 21194-21203 (2019)

Two-photon imaging with silicon photomultipliers

Mehrab N. Modi, Kayvon Daie, Glenn C. Turner, and Kaspar Podgorski
Opt. Express 27(24) 35830-35841 (2019)

Fast identification of substance by measuring two Raman peaks with dual strip silicon photomultipliers and gated photon counting technique

Guoqing Zhang, Xiaobo Hu, Yue Cheng, Chunling Zhang, Lina Liu, Ru Yang, Kun Liang, and Dejun Han
Appl. Opt. 50(24) 4733-4736 (2011)

References

  • View by:
  • |
  • |
  • |

  1. Y. Maruyama, J. Blacksberg, and E. Charbon, “A 1024×8, 700-ps time-gated SPAD line sensor for planetary surface exploration with laser raman spectroscopy and LIBS,” IEEE J. Solid-State Circuits 49(1), 179–189 (2014).
    [Crossref]
  2. D. Renker, “Geiger-mode avalanche photodiodes, history, properties and problems,” Nucl. Instrum. Methods Phys. Res. A 567(1), 48–56 (2006).
    [Crossref]
  3. P. W. Cattaneo, M. De Gerone, F. Gatti, M. Nishimura, W. Ootani, M. Rossella, and Y. Uchiyama, “Development of high precision timing counter based on plastic scintillator with SiPM readout,” IEEE Trans. Nucl. Sci. 61(5), 2657–2666 (2014).
    [Crossref]
  4. A. Kishimoto, J. Kataoka, T. Kato, T. Miura, T. Nakamori, K. Kamada, S. Nakamura, K. Sato, Y. Ishikawa, K. Yamamura, N. Kawabata, and S. Yamamoto, “Development of a dual-sided readout DOI-PET module using large-area monolithic MPPC-Arrays,” IEEE Trans. Nucl. Sci. 60(1), 38–43 (2013).
    [Crossref]
  5. G. Zhang, X. Hu, R. Yang, C. Zhang, K. Liang, and D. Han, “Fast identification of trace substance by single-photon detection of characteristic Raman scatterings with gated coincidence technique and multipixel photon counters,” Appl. Opt. 49(14), 2601–2605 (2010).
    [Crossref]
  6. E. Vilella and A. Diéguez, “Dynamic range extension of SiPM detectors with the time-gated operation,” Opt. Express 22(10), 12007–12012 (2014).
    [Crossref] [PubMed]
  7. P. Eraerds, M. Legré, A. Rochas, H. Zbinden, and N. Gisin, “SiPM for fast Photon-Counting and Multiphoton Detection,” Opt. Express 15(22), 14539–14549 (2007).
    [Crossref] [PubMed]
  8. V. Schulz, Y. Berker, A. Berneking, N. Omidvari, F. Kiessling, A. Gola, and C. Piemonte, “Sensitivity encoded silicon photomultiplier-a new sensor for high-resolution PET-MRI,” Phys. Med. Biol. 58(14), 4733–4748 (2013).
    [Crossref] [PubMed]
  9. I. Sacco, P. Fischer, A. Gola, and C. Piemonte, “Interpolating silicon photo-multiplier: a novel position sensitive device with submillimeter spatial resolution and depth of interaction capability,” in Proc. IEEE Nucl. Sci. Symp. Med. Imag. Conf. (NSS/MIC, 2013), 1–3.
  10. M. McClish, P. Dokhale, J. Christian, C. Stapels, E. Johnson, F. Augustine, and K. Shah, “Performance measurements from LYSO scintillators coupled to a CMOS position sensitive SSPM detector,” Nucl. Instrum. Methods Phys. Res. A 652(1), 264–267 (2011).
    [Crossref]
  11. A. Ferri, F. Acerbi, A. Gola, G. Paternoster, C. Piemonte, and N. Zorzi, “Characterization of linearly graded position-sensitive silicon photomultipliers,” IEEE Trans. Nucl. Sci. 62(3), 688–693 (2015).
    [Crossref]
  12. T. Zhao, B. Li, C. Li, Y. Wang, Q. Miao, K. Liang, R. Yang, and D. J. Han, “New Distortion Correction Algorithm for Two-Dimensional Tetra-Lateral Position-Sensitive Silicon Photomultiplier,” IEEE Electron Device Lett. 38(2), 228–231 (2017).
    [Crossref]
  13. C. Li, S. Wang, L. Huo, Y. Wang, K. Liang, R. Yang, and D. Han, “Position Sensitive Silicon Photomultiplier With Intrinsic Cap Resistive Layer,” IEEE Tran. Electron Dev. 61(9), 3229–3232 (2014).
    [Crossref]
  14. L. Kirkup and B. Frenkel, An Introduction to Uncertainty in Measurement (Cambridge University 2006).
  15. C. Li, Z. Chen, Y. Li, B. Li, K. Wang, K. Liang, R. Yang, and D. Han, “Progresses in large dynamic range Silicon photomultipliers with bulk quenching resistor,” in Proc. IEEE Nucl. Sci. Symp. Med. Imag. Conf. (NSS/MIC, 2013), 1–4.
  16. S. Vinogradov, T. Vinogradova, V. Shubin, D. Shushakov, and K. Sitarskii, “Probabilistic characteristics of detection of short light pulses and single photons,” Kratkie Soobshcheniya po Fizike. 38(5), 39–51 (2011).
  17. A. Otte, J. Hose, R. Mirzoyan, A. Romaszkiewicz, M. Teshima, and A. Thea, “A measurement of the photon detection efficiency of silicon photomultiplier,” Nucl. Instrum. Methods Phys. Res. A 567(1), 360–363 (2006).
    [Crossref]

2017 (1)

T. Zhao, B. Li, C. Li, Y. Wang, Q. Miao, K. Liang, R. Yang, and D. J. Han, “New Distortion Correction Algorithm for Two-Dimensional Tetra-Lateral Position-Sensitive Silicon Photomultiplier,” IEEE Electron Device Lett. 38(2), 228–231 (2017).
[Crossref]

2015 (1)

A. Ferri, F. Acerbi, A. Gola, G. Paternoster, C. Piemonte, and N. Zorzi, “Characterization of linearly graded position-sensitive silicon photomultipliers,” IEEE Trans. Nucl. Sci. 62(3), 688–693 (2015).
[Crossref]

2014 (4)

C. Li, S. Wang, L. Huo, Y. Wang, K. Liang, R. Yang, and D. Han, “Position Sensitive Silicon Photomultiplier With Intrinsic Cap Resistive Layer,” IEEE Tran. Electron Dev. 61(9), 3229–3232 (2014).
[Crossref]

Y. Maruyama, J. Blacksberg, and E. Charbon, “A 1024×8, 700-ps time-gated SPAD line sensor for planetary surface exploration with laser raman spectroscopy and LIBS,” IEEE J. Solid-State Circuits 49(1), 179–189 (2014).
[Crossref]

P. W. Cattaneo, M. De Gerone, F. Gatti, M. Nishimura, W. Ootani, M. Rossella, and Y. Uchiyama, “Development of high precision timing counter based on plastic scintillator with SiPM readout,” IEEE Trans. Nucl. Sci. 61(5), 2657–2666 (2014).
[Crossref]

E. Vilella and A. Diéguez, “Dynamic range extension of SiPM detectors with the time-gated operation,” Opt. Express 22(10), 12007–12012 (2014).
[Crossref] [PubMed]

2013 (2)

V. Schulz, Y. Berker, A. Berneking, N. Omidvari, F. Kiessling, A. Gola, and C. Piemonte, “Sensitivity encoded silicon photomultiplier-a new sensor for high-resolution PET-MRI,” Phys. Med. Biol. 58(14), 4733–4748 (2013).
[Crossref] [PubMed]

A. Kishimoto, J. Kataoka, T. Kato, T. Miura, T. Nakamori, K. Kamada, S. Nakamura, K. Sato, Y. Ishikawa, K. Yamamura, N. Kawabata, and S. Yamamoto, “Development of a dual-sided readout DOI-PET module using large-area monolithic MPPC-Arrays,” IEEE Trans. Nucl. Sci. 60(1), 38–43 (2013).
[Crossref]

2011 (2)

M. McClish, P. Dokhale, J. Christian, C. Stapels, E. Johnson, F. Augustine, and K. Shah, “Performance measurements from LYSO scintillators coupled to a CMOS position sensitive SSPM detector,” Nucl. Instrum. Methods Phys. Res. A 652(1), 264–267 (2011).
[Crossref]

S. Vinogradov, T. Vinogradova, V. Shubin, D. Shushakov, and K. Sitarskii, “Probabilistic characteristics of detection of short light pulses and single photons,” Kratkie Soobshcheniya po Fizike. 38(5), 39–51 (2011).

2010 (1)

2007 (1)

2006 (2)

D. Renker, “Geiger-mode avalanche photodiodes, history, properties and problems,” Nucl. Instrum. Methods Phys. Res. A 567(1), 48–56 (2006).
[Crossref]

A. Otte, J. Hose, R. Mirzoyan, A. Romaszkiewicz, M. Teshima, and A. Thea, “A measurement of the photon detection efficiency of silicon photomultiplier,” Nucl. Instrum. Methods Phys. Res. A 567(1), 360–363 (2006).
[Crossref]

Acerbi, F.

A. Ferri, F. Acerbi, A. Gola, G. Paternoster, C. Piemonte, and N. Zorzi, “Characterization of linearly graded position-sensitive silicon photomultipliers,” IEEE Trans. Nucl. Sci. 62(3), 688–693 (2015).
[Crossref]

Augustine, F.

M. McClish, P. Dokhale, J. Christian, C. Stapels, E. Johnson, F. Augustine, and K. Shah, “Performance measurements from LYSO scintillators coupled to a CMOS position sensitive SSPM detector,” Nucl. Instrum. Methods Phys. Res. A 652(1), 264–267 (2011).
[Crossref]

Berker, Y.

V. Schulz, Y. Berker, A. Berneking, N. Omidvari, F. Kiessling, A. Gola, and C. Piemonte, “Sensitivity encoded silicon photomultiplier-a new sensor for high-resolution PET-MRI,” Phys. Med. Biol. 58(14), 4733–4748 (2013).
[Crossref] [PubMed]

Berneking, A.

V. Schulz, Y. Berker, A. Berneking, N. Omidvari, F. Kiessling, A. Gola, and C. Piemonte, “Sensitivity encoded silicon photomultiplier-a new sensor for high-resolution PET-MRI,” Phys. Med. Biol. 58(14), 4733–4748 (2013).
[Crossref] [PubMed]

Blacksberg, J.

Y. Maruyama, J. Blacksberg, and E. Charbon, “A 1024×8, 700-ps time-gated SPAD line sensor for planetary surface exploration with laser raman spectroscopy and LIBS,” IEEE J. Solid-State Circuits 49(1), 179–189 (2014).
[Crossref]

Cattaneo, P. W.

P. W. Cattaneo, M. De Gerone, F. Gatti, M. Nishimura, W. Ootani, M. Rossella, and Y. Uchiyama, “Development of high precision timing counter based on plastic scintillator with SiPM readout,” IEEE Trans. Nucl. Sci. 61(5), 2657–2666 (2014).
[Crossref]

Charbon, E.

Y. Maruyama, J. Blacksberg, and E. Charbon, “A 1024×8, 700-ps time-gated SPAD line sensor for planetary surface exploration with laser raman spectroscopy and LIBS,” IEEE J. Solid-State Circuits 49(1), 179–189 (2014).
[Crossref]

Christian, J.

M. McClish, P. Dokhale, J. Christian, C. Stapels, E. Johnson, F. Augustine, and K. Shah, “Performance measurements from LYSO scintillators coupled to a CMOS position sensitive SSPM detector,” Nucl. Instrum. Methods Phys. Res. A 652(1), 264–267 (2011).
[Crossref]

De Gerone, M.

P. W. Cattaneo, M. De Gerone, F. Gatti, M. Nishimura, W. Ootani, M. Rossella, and Y. Uchiyama, “Development of high precision timing counter based on plastic scintillator with SiPM readout,” IEEE Trans. Nucl. Sci. 61(5), 2657–2666 (2014).
[Crossref]

Diéguez, A.

Dokhale, P.

M. McClish, P. Dokhale, J. Christian, C. Stapels, E. Johnson, F. Augustine, and K. Shah, “Performance measurements from LYSO scintillators coupled to a CMOS position sensitive SSPM detector,” Nucl. Instrum. Methods Phys. Res. A 652(1), 264–267 (2011).
[Crossref]

Eraerds, P.

Ferri, A.

A. Ferri, F. Acerbi, A. Gola, G. Paternoster, C. Piemonte, and N. Zorzi, “Characterization of linearly graded position-sensitive silicon photomultipliers,” IEEE Trans. Nucl. Sci. 62(3), 688–693 (2015).
[Crossref]

Gatti, F.

P. W. Cattaneo, M. De Gerone, F. Gatti, M. Nishimura, W. Ootani, M. Rossella, and Y. Uchiyama, “Development of high precision timing counter based on plastic scintillator with SiPM readout,” IEEE Trans. Nucl. Sci. 61(5), 2657–2666 (2014).
[Crossref]

Gisin, N.

Gola, A.

A. Ferri, F. Acerbi, A. Gola, G. Paternoster, C. Piemonte, and N. Zorzi, “Characterization of linearly graded position-sensitive silicon photomultipliers,” IEEE Trans. Nucl. Sci. 62(3), 688–693 (2015).
[Crossref]

V. Schulz, Y. Berker, A. Berneking, N. Omidvari, F. Kiessling, A. Gola, and C. Piemonte, “Sensitivity encoded silicon photomultiplier-a new sensor for high-resolution PET-MRI,” Phys. Med. Biol. 58(14), 4733–4748 (2013).
[Crossref] [PubMed]

Han, D.

C. Li, S. Wang, L. Huo, Y. Wang, K. Liang, R. Yang, and D. Han, “Position Sensitive Silicon Photomultiplier With Intrinsic Cap Resistive Layer,” IEEE Tran. Electron Dev. 61(9), 3229–3232 (2014).
[Crossref]

G. Zhang, X. Hu, R. Yang, C. Zhang, K. Liang, and D. Han, “Fast identification of trace substance by single-photon detection of characteristic Raman scatterings with gated coincidence technique and multipixel photon counters,” Appl. Opt. 49(14), 2601–2605 (2010).
[Crossref]

Han, D. J.

T. Zhao, B. Li, C. Li, Y. Wang, Q. Miao, K. Liang, R. Yang, and D. J. Han, “New Distortion Correction Algorithm for Two-Dimensional Tetra-Lateral Position-Sensitive Silicon Photomultiplier,” IEEE Electron Device Lett. 38(2), 228–231 (2017).
[Crossref]

Hose, J.

A. Otte, J. Hose, R. Mirzoyan, A. Romaszkiewicz, M. Teshima, and A. Thea, “A measurement of the photon detection efficiency of silicon photomultiplier,” Nucl. Instrum. Methods Phys. Res. A 567(1), 360–363 (2006).
[Crossref]

Hu, X.

Huo, L.

C. Li, S. Wang, L. Huo, Y. Wang, K. Liang, R. Yang, and D. Han, “Position Sensitive Silicon Photomultiplier With Intrinsic Cap Resistive Layer,” IEEE Tran. Electron Dev. 61(9), 3229–3232 (2014).
[Crossref]

Ishikawa, Y.

A. Kishimoto, J. Kataoka, T. Kato, T. Miura, T. Nakamori, K. Kamada, S. Nakamura, K. Sato, Y. Ishikawa, K. Yamamura, N. Kawabata, and S. Yamamoto, “Development of a dual-sided readout DOI-PET module using large-area monolithic MPPC-Arrays,” IEEE Trans. Nucl. Sci. 60(1), 38–43 (2013).
[Crossref]

Johnson, E.

M. McClish, P. Dokhale, J. Christian, C. Stapels, E. Johnson, F. Augustine, and K. Shah, “Performance measurements from LYSO scintillators coupled to a CMOS position sensitive SSPM detector,” Nucl. Instrum. Methods Phys. Res. A 652(1), 264–267 (2011).
[Crossref]

Kamada, K.

A. Kishimoto, J. Kataoka, T. Kato, T. Miura, T. Nakamori, K. Kamada, S. Nakamura, K. Sato, Y. Ishikawa, K. Yamamura, N. Kawabata, and S. Yamamoto, “Development of a dual-sided readout DOI-PET module using large-area monolithic MPPC-Arrays,” IEEE Trans. Nucl. Sci. 60(1), 38–43 (2013).
[Crossref]

Kataoka, J.

A. Kishimoto, J. Kataoka, T. Kato, T. Miura, T. Nakamori, K. Kamada, S. Nakamura, K. Sato, Y. Ishikawa, K. Yamamura, N. Kawabata, and S. Yamamoto, “Development of a dual-sided readout DOI-PET module using large-area monolithic MPPC-Arrays,” IEEE Trans. Nucl. Sci. 60(1), 38–43 (2013).
[Crossref]

Kato, T.

A. Kishimoto, J. Kataoka, T. Kato, T. Miura, T. Nakamori, K. Kamada, S. Nakamura, K. Sato, Y. Ishikawa, K. Yamamura, N. Kawabata, and S. Yamamoto, “Development of a dual-sided readout DOI-PET module using large-area monolithic MPPC-Arrays,” IEEE Trans. Nucl. Sci. 60(1), 38–43 (2013).
[Crossref]

Kawabata, N.

A. Kishimoto, J. Kataoka, T. Kato, T. Miura, T. Nakamori, K. Kamada, S. Nakamura, K. Sato, Y. Ishikawa, K. Yamamura, N. Kawabata, and S. Yamamoto, “Development of a dual-sided readout DOI-PET module using large-area monolithic MPPC-Arrays,” IEEE Trans. Nucl. Sci. 60(1), 38–43 (2013).
[Crossref]

Kiessling, F.

V. Schulz, Y. Berker, A. Berneking, N. Omidvari, F. Kiessling, A. Gola, and C. Piemonte, “Sensitivity encoded silicon photomultiplier-a new sensor for high-resolution PET-MRI,” Phys. Med. Biol. 58(14), 4733–4748 (2013).
[Crossref] [PubMed]

Kishimoto, A.

A. Kishimoto, J. Kataoka, T. Kato, T. Miura, T. Nakamori, K. Kamada, S. Nakamura, K. Sato, Y. Ishikawa, K. Yamamura, N. Kawabata, and S. Yamamoto, “Development of a dual-sided readout DOI-PET module using large-area monolithic MPPC-Arrays,” IEEE Trans. Nucl. Sci. 60(1), 38–43 (2013).
[Crossref]

Legré, M.

Li, B.

T. Zhao, B. Li, C. Li, Y. Wang, Q. Miao, K. Liang, R. Yang, and D. J. Han, “New Distortion Correction Algorithm for Two-Dimensional Tetra-Lateral Position-Sensitive Silicon Photomultiplier,” IEEE Electron Device Lett. 38(2), 228–231 (2017).
[Crossref]

Li, C.

T. Zhao, B. Li, C. Li, Y. Wang, Q. Miao, K. Liang, R. Yang, and D. J. Han, “New Distortion Correction Algorithm for Two-Dimensional Tetra-Lateral Position-Sensitive Silicon Photomultiplier,” IEEE Electron Device Lett. 38(2), 228–231 (2017).
[Crossref]

C. Li, S. Wang, L. Huo, Y. Wang, K. Liang, R. Yang, and D. Han, “Position Sensitive Silicon Photomultiplier With Intrinsic Cap Resistive Layer,” IEEE Tran. Electron Dev. 61(9), 3229–3232 (2014).
[Crossref]

Liang, K.

T. Zhao, B. Li, C. Li, Y. Wang, Q. Miao, K. Liang, R. Yang, and D. J. Han, “New Distortion Correction Algorithm for Two-Dimensional Tetra-Lateral Position-Sensitive Silicon Photomultiplier,” IEEE Electron Device Lett. 38(2), 228–231 (2017).
[Crossref]

C. Li, S. Wang, L. Huo, Y. Wang, K. Liang, R. Yang, and D. Han, “Position Sensitive Silicon Photomultiplier With Intrinsic Cap Resistive Layer,” IEEE Tran. Electron Dev. 61(9), 3229–3232 (2014).
[Crossref]

G. Zhang, X. Hu, R. Yang, C. Zhang, K. Liang, and D. Han, “Fast identification of trace substance by single-photon detection of characteristic Raman scatterings with gated coincidence technique and multipixel photon counters,” Appl. Opt. 49(14), 2601–2605 (2010).
[Crossref]

Maruyama, Y.

Y. Maruyama, J. Blacksberg, and E. Charbon, “A 1024×8, 700-ps time-gated SPAD line sensor for planetary surface exploration with laser raman spectroscopy and LIBS,” IEEE J. Solid-State Circuits 49(1), 179–189 (2014).
[Crossref]

McClish, M.

M. McClish, P. Dokhale, J. Christian, C. Stapels, E. Johnson, F. Augustine, and K. Shah, “Performance measurements from LYSO scintillators coupled to a CMOS position sensitive SSPM detector,” Nucl. Instrum. Methods Phys. Res. A 652(1), 264–267 (2011).
[Crossref]

Miao, Q.

T. Zhao, B. Li, C. Li, Y. Wang, Q. Miao, K. Liang, R. Yang, and D. J. Han, “New Distortion Correction Algorithm for Two-Dimensional Tetra-Lateral Position-Sensitive Silicon Photomultiplier,” IEEE Electron Device Lett. 38(2), 228–231 (2017).
[Crossref]

Mirzoyan, R.

A. Otte, J. Hose, R. Mirzoyan, A. Romaszkiewicz, M. Teshima, and A. Thea, “A measurement of the photon detection efficiency of silicon photomultiplier,” Nucl. Instrum. Methods Phys. Res. A 567(1), 360–363 (2006).
[Crossref]

Miura, T.

A. Kishimoto, J. Kataoka, T. Kato, T. Miura, T. Nakamori, K. Kamada, S. Nakamura, K. Sato, Y. Ishikawa, K. Yamamura, N. Kawabata, and S. Yamamoto, “Development of a dual-sided readout DOI-PET module using large-area monolithic MPPC-Arrays,” IEEE Trans. Nucl. Sci. 60(1), 38–43 (2013).
[Crossref]

Nakamori, T.

A. Kishimoto, J. Kataoka, T. Kato, T. Miura, T. Nakamori, K. Kamada, S. Nakamura, K. Sato, Y. Ishikawa, K. Yamamura, N. Kawabata, and S. Yamamoto, “Development of a dual-sided readout DOI-PET module using large-area monolithic MPPC-Arrays,” IEEE Trans. Nucl. Sci. 60(1), 38–43 (2013).
[Crossref]

Nakamura, S.

A. Kishimoto, J. Kataoka, T. Kato, T. Miura, T. Nakamori, K. Kamada, S. Nakamura, K. Sato, Y. Ishikawa, K. Yamamura, N. Kawabata, and S. Yamamoto, “Development of a dual-sided readout DOI-PET module using large-area monolithic MPPC-Arrays,” IEEE Trans. Nucl. Sci. 60(1), 38–43 (2013).
[Crossref]

Nishimura, M.

P. W. Cattaneo, M. De Gerone, F. Gatti, M. Nishimura, W. Ootani, M. Rossella, and Y. Uchiyama, “Development of high precision timing counter based on plastic scintillator with SiPM readout,” IEEE Trans. Nucl. Sci. 61(5), 2657–2666 (2014).
[Crossref]

Omidvari, N.

V. Schulz, Y. Berker, A. Berneking, N. Omidvari, F. Kiessling, A. Gola, and C. Piemonte, “Sensitivity encoded silicon photomultiplier-a new sensor for high-resolution PET-MRI,” Phys. Med. Biol. 58(14), 4733–4748 (2013).
[Crossref] [PubMed]

Ootani, W.

P. W. Cattaneo, M. De Gerone, F. Gatti, M. Nishimura, W. Ootani, M. Rossella, and Y. Uchiyama, “Development of high precision timing counter based on plastic scintillator with SiPM readout,” IEEE Trans. Nucl. Sci. 61(5), 2657–2666 (2014).
[Crossref]

Otte, A.

A. Otte, J. Hose, R. Mirzoyan, A. Romaszkiewicz, M. Teshima, and A. Thea, “A measurement of the photon detection efficiency of silicon photomultiplier,” Nucl. Instrum. Methods Phys. Res. A 567(1), 360–363 (2006).
[Crossref]

Paternoster, G.

A. Ferri, F. Acerbi, A. Gola, G. Paternoster, C. Piemonte, and N. Zorzi, “Characterization of linearly graded position-sensitive silicon photomultipliers,” IEEE Trans. Nucl. Sci. 62(3), 688–693 (2015).
[Crossref]

Piemonte, C.

A. Ferri, F. Acerbi, A. Gola, G. Paternoster, C. Piemonte, and N. Zorzi, “Characterization of linearly graded position-sensitive silicon photomultipliers,” IEEE Trans. Nucl. Sci. 62(3), 688–693 (2015).
[Crossref]

V. Schulz, Y. Berker, A. Berneking, N. Omidvari, F. Kiessling, A. Gola, and C. Piemonte, “Sensitivity encoded silicon photomultiplier-a new sensor for high-resolution PET-MRI,” Phys. Med. Biol. 58(14), 4733–4748 (2013).
[Crossref] [PubMed]

Renker, D.

D. Renker, “Geiger-mode avalanche photodiodes, history, properties and problems,” Nucl. Instrum. Methods Phys. Res. A 567(1), 48–56 (2006).
[Crossref]

Rochas, A.

Romaszkiewicz, A.

A. Otte, J. Hose, R. Mirzoyan, A. Romaszkiewicz, M. Teshima, and A. Thea, “A measurement of the photon detection efficiency of silicon photomultiplier,” Nucl. Instrum. Methods Phys. Res. A 567(1), 360–363 (2006).
[Crossref]

Rossella, M.

P. W. Cattaneo, M. De Gerone, F. Gatti, M. Nishimura, W. Ootani, M. Rossella, and Y. Uchiyama, “Development of high precision timing counter based on plastic scintillator with SiPM readout,” IEEE Trans. Nucl. Sci. 61(5), 2657–2666 (2014).
[Crossref]

Sato, K.

A. Kishimoto, J. Kataoka, T. Kato, T. Miura, T. Nakamori, K. Kamada, S. Nakamura, K. Sato, Y. Ishikawa, K. Yamamura, N. Kawabata, and S. Yamamoto, “Development of a dual-sided readout DOI-PET module using large-area monolithic MPPC-Arrays,” IEEE Trans. Nucl. Sci. 60(1), 38–43 (2013).
[Crossref]

Schulz, V.

V. Schulz, Y. Berker, A. Berneking, N. Omidvari, F. Kiessling, A. Gola, and C. Piemonte, “Sensitivity encoded silicon photomultiplier-a new sensor for high-resolution PET-MRI,” Phys. Med. Biol. 58(14), 4733–4748 (2013).
[Crossref] [PubMed]

Shah, K.

M. McClish, P. Dokhale, J. Christian, C. Stapels, E. Johnson, F. Augustine, and K. Shah, “Performance measurements from LYSO scintillators coupled to a CMOS position sensitive SSPM detector,” Nucl. Instrum. Methods Phys. Res. A 652(1), 264–267 (2011).
[Crossref]

Shubin, V.

S. Vinogradov, T. Vinogradova, V. Shubin, D. Shushakov, and K. Sitarskii, “Probabilistic characteristics of detection of short light pulses and single photons,” Kratkie Soobshcheniya po Fizike. 38(5), 39–51 (2011).

Shushakov, D.

S. Vinogradov, T. Vinogradova, V. Shubin, D. Shushakov, and K. Sitarskii, “Probabilistic characteristics of detection of short light pulses and single photons,” Kratkie Soobshcheniya po Fizike. 38(5), 39–51 (2011).

Sitarskii, K.

S. Vinogradov, T. Vinogradova, V. Shubin, D. Shushakov, and K. Sitarskii, “Probabilistic characteristics of detection of short light pulses and single photons,” Kratkie Soobshcheniya po Fizike. 38(5), 39–51 (2011).

Stapels, C.

M. McClish, P. Dokhale, J. Christian, C. Stapels, E. Johnson, F. Augustine, and K. Shah, “Performance measurements from LYSO scintillators coupled to a CMOS position sensitive SSPM detector,” Nucl. Instrum. Methods Phys. Res. A 652(1), 264–267 (2011).
[Crossref]

Teshima, M.

A. Otte, J. Hose, R. Mirzoyan, A. Romaszkiewicz, M. Teshima, and A. Thea, “A measurement of the photon detection efficiency of silicon photomultiplier,” Nucl. Instrum. Methods Phys. Res. A 567(1), 360–363 (2006).
[Crossref]

Thea, A.

A. Otte, J. Hose, R. Mirzoyan, A. Romaszkiewicz, M. Teshima, and A. Thea, “A measurement of the photon detection efficiency of silicon photomultiplier,” Nucl. Instrum. Methods Phys. Res. A 567(1), 360–363 (2006).
[Crossref]

Uchiyama, Y.

P. W. Cattaneo, M. De Gerone, F. Gatti, M. Nishimura, W. Ootani, M. Rossella, and Y. Uchiyama, “Development of high precision timing counter based on plastic scintillator with SiPM readout,” IEEE Trans. Nucl. Sci. 61(5), 2657–2666 (2014).
[Crossref]

Vilella, E.

Vinogradov, S.

S. Vinogradov, T. Vinogradova, V. Shubin, D. Shushakov, and K. Sitarskii, “Probabilistic characteristics of detection of short light pulses and single photons,” Kratkie Soobshcheniya po Fizike. 38(5), 39–51 (2011).

Vinogradova, T.

S. Vinogradov, T. Vinogradova, V. Shubin, D. Shushakov, and K. Sitarskii, “Probabilistic characteristics of detection of short light pulses and single photons,” Kratkie Soobshcheniya po Fizike. 38(5), 39–51 (2011).

Wang, S.

C. Li, S. Wang, L. Huo, Y. Wang, K. Liang, R. Yang, and D. Han, “Position Sensitive Silicon Photomultiplier With Intrinsic Cap Resistive Layer,” IEEE Tran. Electron Dev. 61(9), 3229–3232 (2014).
[Crossref]

Wang, Y.

T. Zhao, B. Li, C. Li, Y. Wang, Q. Miao, K. Liang, R. Yang, and D. J. Han, “New Distortion Correction Algorithm for Two-Dimensional Tetra-Lateral Position-Sensitive Silicon Photomultiplier,” IEEE Electron Device Lett. 38(2), 228–231 (2017).
[Crossref]

C. Li, S. Wang, L. Huo, Y. Wang, K. Liang, R. Yang, and D. Han, “Position Sensitive Silicon Photomultiplier With Intrinsic Cap Resistive Layer,” IEEE Tran. Electron Dev. 61(9), 3229–3232 (2014).
[Crossref]

Yamamoto, S.

A. Kishimoto, J. Kataoka, T. Kato, T. Miura, T. Nakamori, K. Kamada, S. Nakamura, K. Sato, Y. Ishikawa, K. Yamamura, N. Kawabata, and S. Yamamoto, “Development of a dual-sided readout DOI-PET module using large-area monolithic MPPC-Arrays,” IEEE Trans. Nucl. Sci. 60(1), 38–43 (2013).
[Crossref]

Yamamura, K.

A. Kishimoto, J. Kataoka, T. Kato, T. Miura, T. Nakamori, K. Kamada, S. Nakamura, K. Sato, Y. Ishikawa, K. Yamamura, N. Kawabata, and S. Yamamoto, “Development of a dual-sided readout DOI-PET module using large-area monolithic MPPC-Arrays,” IEEE Trans. Nucl. Sci. 60(1), 38–43 (2013).
[Crossref]

Yang, R.

T. Zhao, B. Li, C. Li, Y. Wang, Q. Miao, K. Liang, R. Yang, and D. J. Han, “New Distortion Correction Algorithm for Two-Dimensional Tetra-Lateral Position-Sensitive Silicon Photomultiplier,” IEEE Electron Device Lett. 38(2), 228–231 (2017).
[Crossref]

C. Li, S. Wang, L. Huo, Y. Wang, K. Liang, R. Yang, and D. Han, “Position Sensitive Silicon Photomultiplier With Intrinsic Cap Resistive Layer,” IEEE Tran. Electron Dev. 61(9), 3229–3232 (2014).
[Crossref]

G. Zhang, X. Hu, R. Yang, C. Zhang, K. Liang, and D. Han, “Fast identification of trace substance by single-photon detection of characteristic Raman scatterings with gated coincidence technique and multipixel photon counters,” Appl. Opt. 49(14), 2601–2605 (2010).
[Crossref]

Zbinden, H.

Zhang, C.

Zhang, G.

Zhao, T.

T. Zhao, B. Li, C. Li, Y. Wang, Q. Miao, K. Liang, R. Yang, and D. J. Han, “New Distortion Correction Algorithm for Two-Dimensional Tetra-Lateral Position-Sensitive Silicon Photomultiplier,” IEEE Electron Device Lett. 38(2), 228–231 (2017).
[Crossref]

Zorzi, N.

A. Ferri, F. Acerbi, A. Gola, G. Paternoster, C. Piemonte, and N. Zorzi, “Characterization of linearly graded position-sensitive silicon photomultipliers,” IEEE Trans. Nucl. Sci. 62(3), 688–693 (2015).
[Crossref]

Appl. Opt. (1)

IEEE Electron Device Lett. (1)

T. Zhao, B. Li, C. Li, Y. Wang, Q. Miao, K. Liang, R. Yang, and D. J. Han, “New Distortion Correction Algorithm for Two-Dimensional Tetra-Lateral Position-Sensitive Silicon Photomultiplier,” IEEE Electron Device Lett. 38(2), 228–231 (2017).
[Crossref]

IEEE J. Solid-State Circuits (1)

Y. Maruyama, J. Blacksberg, and E. Charbon, “A 1024×8, 700-ps time-gated SPAD line sensor for planetary surface exploration with laser raman spectroscopy and LIBS,” IEEE J. Solid-State Circuits 49(1), 179–189 (2014).
[Crossref]

IEEE Tran. Electron Dev. (1)

C. Li, S. Wang, L. Huo, Y. Wang, K. Liang, R. Yang, and D. Han, “Position Sensitive Silicon Photomultiplier With Intrinsic Cap Resistive Layer,” IEEE Tran. Electron Dev. 61(9), 3229–3232 (2014).
[Crossref]

IEEE Trans. Nucl. Sci. (3)

A. Ferri, F. Acerbi, A. Gola, G. Paternoster, C. Piemonte, and N. Zorzi, “Characterization of linearly graded position-sensitive silicon photomultipliers,” IEEE Trans. Nucl. Sci. 62(3), 688–693 (2015).
[Crossref]

P. W. Cattaneo, M. De Gerone, F. Gatti, M. Nishimura, W. Ootani, M. Rossella, and Y. Uchiyama, “Development of high precision timing counter based on plastic scintillator with SiPM readout,” IEEE Trans. Nucl. Sci. 61(5), 2657–2666 (2014).
[Crossref]

A. Kishimoto, J. Kataoka, T. Kato, T. Miura, T. Nakamori, K. Kamada, S. Nakamura, K. Sato, Y. Ishikawa, K. Yamamura, N. Kawabata, and S. Yamamoto, “Development of a dual-sided readout DOI-PET module using large-area monolithic MPPC-Arrays,” IEEE Trans. Nucl. Sci. 60(1), 38–43 (2013).
[Crossref]

Kratkie Soobshcheniya po Fizike. (1)

S. Vinogradov, T. Vinogradova, V. Shubin, D. Shushakov, and K. Sitarskii, “Probabilistic characteristics of detection of short light pulses and single photons,” Kratkie Soobshcheniya po Fizike. 38(5), 39–51 (2011).

Nucl. Instrum. Methods Phys. Res. A (3)

A. Otte, J. Hose, R. Mirzoyan, A. Romaszkiewicz, M. Teshima, and A. Thea, “A measurement of the photon detection efficiency of silicon photomultiplier,” Nucl. Instrum. Methods Phys. Res. A 567(1), 360–363 (2006).
[Crossref]

M. McClish, P. Dokhale, J. Christian, C. Stapels, E. Johnson, F. Augustine, and K. Shah, “Performance measurements from LYSO scintillators coupled to a CMOS position sensitive SSPM detector,” Nucl. Instrum. Methods Phys. Res. A 652(1), 264–267 (2011).
[Crossref]

D. Renker, “Geiger-mode avalanche photodiodes, history, properties and problems,” Nucl. Instrum. Methods Phys. Res. A 567(1), 48–56 (2006).
[Crossref]

Opt. Express (2)

Phys. Med. Biol. (1)

V. Schulz, Y. Berker, A. Berneking, N. Omidvari, F. Kiessling, A. Gola, and C. Piemonte, “Sensitivity encoded silicon photomultiplier-a new sensor for high-resolution PET-MRI,” Phys. Med. Biol. 58(14), 4733–4748 (2013).
[Crossref] [PubMed]

Other (3)

I. Sacco, P. Fischer, A. Gola, and C. Piemonte, “Interpolating silicon photo-multiplier: a novel position sensitive device with submillimeter spatial resolution and depth of interaction capability,” in Proc. IEEE Nucl. Sci. Symp. Med. Imag. Conf. (NSS/MIC, 2013), 1–3.

L. Kirkup and B. Frenkel, An Introduction to Uncertainty in Measurement (Cambridge University 2006).

C. Li, Z. Chen, Y. Li, B. Li, K. Wang, K. Liang, R. Yang, and D. Han, “Progresses in large dynamic range Silicon photomultipliers with bulk quenching resistor,” in Proc. IEEE Nucl. Sci. Symp. Med. Imag. Conf. (NSS/MIC, 2013), 1–4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic structure of the one-dimensional position-sensitive silicon photomultiplier (1D PS-SiPM). Left: cross section. Right: top view. The green point (x, y) represents the incident photons position.
Fig. 2
Fig. 2 Schematic of the setup for (a) device characterization and (b) Raman spectroscopy. The attenuator for the pulse laser is not shown in the figure. The yellow part illuminated by the laser (arrow) is the device under test. All the measurements were performed at 20°C.
Fig. 3
Fig. 3 Photoelectron pulse area distributions recorded by cathode 1 at (a) (−1000 μm, 0) and (b) (1000 μm, 0). The mean photoelectron number was ~9.
Fig. 4
Fig. 4 (a) Photoelectron pulse area distributions recorded by cathode 1. The inset shows the corresponding full-width at half maximum (FWHM) of the statistical histogram of the pedestal area. (b) The dependence of the position resolution on the photoelectron number. In both (a) and (b), the photons were incident at the (0, 0).
Fig. 5
Fig. 5 Measured single photon PRDevice at different (x,y) positions with the fitted curves to represent the variation trend.
Fig. 6
Fig. 6 Light spot position vs. true light spot position measured at different y-points. The fitted straight lines represent the linearity between the measured and true light spot positions.
Fig. 7
Fig. 7 (a) Spatial distribution of single Raman photons corresponding to the Raman peaks of CCl4 at 538.68 and 541.48 nm. The inset shows the Raman spectroscopy of CCl4 between 534.70 and 558.70 nm measured with regular wavelength scanning method and the same 1D PS-SiPM. (b) The Raman spectroscopy of CCl4 for the peaks at 538.68 and 541.48 nm, as transformed from (a).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

X= 2 R S +R 2R L Q 2 Q 1 Q 2 + Q 1 ,
P R System 2 =P R Device 2 +FWH M Photons 2 ,
σ X 2 = ( X Q 1 ) 2 σ Q 1 2 + ( X Q 2 ) 2 σ Q 2 2 ,
P R Device = 2 R S +R R L ( σ Q n 1 Q 1 ) 2 + ( σ Q n2 Q 2 ) 2 2 2ln2 Q 1 Q 2 + Q 2 Q 1 +2 ,
P R Device ( 0 )= 2 R S +R 2 R L 2 2ln2 σ Q n Q ,
P R Device ( 0 )= 2 R S +R 2 R L FWH M S n S ,

Metrics