Abstract

In this study, we proposed morphology-modulated Si nanowires (NWs) with a hexagonal cross-section and numerically investigated their resonant optical absorption and scattering properties. The calculated absorption and scattering efficiency spectra of the NWs exhibited optical resonances that could be controlled by tuning the aspect ratio (AR) of the NW cross-sectional shapes. The spectra also revealed interesting spectral behaviors including resonant peak shifts in the absorption spectrum and asymmetric line shapes in the scattering spectrum. To achieve spatially confined and wavelength-selective light absorption, we periodically modulated the geometry of the diameter in a single NW by combining two different ARs; we call these “diameter-modulated NWs.” We designed various diameter-modulated NWs with short and long pitch sizes, and we observed unique and interesting features in the optical resonance and corresponding light absorption spectra such as grating modes and three-dimensional cavity modes. The proposed diameter-modulated NWs can be promising building blocks for the nanoscale localized light absorption and detection in compact nanophotonic integrated circuits.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Laterally assembled nanowires for ultrathin broadband solar absorbers

Kyung-Deok Song, Thomas J. Kempa, Hong-Gyu Park, and Sun-Kyung Kim
Opt. Express 22(S3) A992-A1000 (2014)

Bending effects on lasing action of semiconductor nanowires

Weisong Yang, Yaoguang Ma, Yipei Wang, Chao Meng, Xiaoqin Wu, Yu Ye, Lun Dai, Limin Tong, Xu Liu, and Qing Yang
Opt. Express 21(2) 2024-2031 (2013)

Combining 1D and 2D waveguiding in an ultrathin GaAs NW/Si tandem solar cell

Nasim Tavakoli and Esther Alarcon-Llado
Opt. Express 27(12) A909-A923 (2019)

References

  • View by:
  • |
  • |
  • |

  1. C. M. Lieber, “Semiconductor nanowires: A platform for nanoscience and nanotechnology,” MRS Bull. 36(12), 1052–1063 (2011).
    [Crossref] [PubMed]
  2. W. Zhou, X. Dai, and C. M. Lieber, “Advances in nanowire bioelectronics,” Rep. Prog. Phys. 80(1), 016701 (2017).
    [Crossref] [PubMed]
  3. R. Agarwal and C. M. Lieber, “Semiconductor nanowires: optics and optoelectronics,” Appl. Phys., A Mater. Sci. Process. 85(3), 209–215 (2006).
    [Crossref]
  4. F. Qian, Y. Li, S. Gradecak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7(9), 701–706 (2008).
    [Crossref] [PubMed]
  5. T. J. Kempa and C. M. Lieber, “Semiconductor nanowire solar cells: synthetic advances and tunable properties,” Pure Appl. Chem. 86(1), 13–26 (2014).
    [Crossref]
  6. J. Yao, H. Yan, S. Das, J. F. Klemic, J. C. Ellenbogen, and C. M. Lieber, “Nanowire nanocomputer as a finite-state machine,” Proc. Natl. Acad. Sci. U.S.A. 111(7), 2431–2435 (2014).
    [Crossref] [PubMed]
  7. W. Shim, J. Yao, and C. M. Lieber, “Programmable resistive-switch nanowire transistor logic circuits,” Nano Lett. 14(9), 5430–5436 (2014).
    [Crossref] [PubMed]
  8. B. Tian, T. Cohen-Karni, Q. Qing, X. Duan, P. Xie, and C. M. Lieber, “Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes,” Science 329(5993), 830–834 (2010).
    [Crossref] [PubMed]
  9. Z. Jiang, Q. Qing, P. Xie, R. Gao, and C. M. Lieber, “Kinked p-n junction nanowire probes for high spatial resolution sensing and intracellular recording,” Nano Lett. 12(3), 1711–1716 (2012).
    [Crossref] [PubMed]
  10. L. Xu, Z. Jiang, Q. Qing, L. Mai, Q. Zhang, and C. M. Lieber, “Design and synthesis of diverse functional kinked nanowire structures for nanoelectronic bioprobes,” Nano Lett. 13(2), 746–751 (2013).
    [Crossref] [PubMed]
  11. Y.-S. No, R. Gao, M. N. Mankin, R. W. Day, H.-G. Park, and C. M. Lieber, “Encoding active device elements at nanowire tips,” Nano Lett. 16(7), 4713–4719 (2016).
    [Crossref] [PubMed]
  12. M. L. Brongersma, Y. Cui, and S. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat. Mater. 13(5), 451–460 (2014).
    [Crossref] [PubMed]
  13. T. J. Kempa, J. F. Cahoon, S.-K. Kim, R. W. Day, D. C. Bell, H.-G. Park, and C. M. Lieber, “Coaxial multishell nanowires with high-quality electronic interfaces and tunable optical cavities for ultrathin photovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 109(5), 1407–1412 (2012).
    [Crossref] [PubMed]
  14. S.-K. Kim, X. Zhang, D. J. Hill, K.-D. Song, J.-S. Park, H.-G. Park, and J. F. Cahoon, “Doubling Absorption in Nanowire Solar Cells with Dielectric Shell Optical Antennas,” Nano Lett. 15(1), 753–758 (2015).
    [Crossref] [PubMed]
  15. L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
    [Crossref] [PubMed]
  16. L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
    [Crossref] [PubMed]
  17. L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the color of silicon nanostructures,” Nano Lett. 10(7), 2649–2654 (2010).
    [Crossref] [PubMed]
  18. R. W. Day, M. N. Mankin, R. Gao, Y.-S. No, S.-K. Kim, D. C. Bell, H.-G. Park, and C. M. Lieber, “Plateau-Rayleigh crystal growth of periodic shells on one-dimensional substrates,” Nat. Nanotechnol. 10(4), 345–352 (2015).
    [Crossref] [PubMed]
  19. R. W. Day, M. N. Mankin, and C. M. Lieber, “Plateau-Rayleigh crystal growth of nanowire heterostructures: strain-modified surface chemistry and morphological control in one, two, and three dimensions,” Nano Lett. 16(4), 2830–2836 (2016).
    [Crossref] [PubMed]
  20. J. D. Christesen, C. W. Pinion, E. M. Grumstrup, J. M. Papanikolas, and J. F. Cahoon, “Synthetically encoding 10 nm morphology in silicon nanowires,” Nano Lett. 13(12), 6281–6286 (2013).
    [Crossref] [PubMed]
  21. S. Kim, D. J. Hill, C. W. Pinion, J. D. Christesen, J. R. McBride, and J. F. Cahoon, “Desiging morphology in eptitaxial silicon nanowires: the role of gold, surface chemistry, and phosphorus doping,” ACS Nano 11(5), 4453–4462 (2017).
    [Crossref] [PubMed]
  22. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
    [Crossref] [PubMed]
  23. P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical Fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13(5), 471–475 (2014).
    [Crossref] [PubMed]
  24. H.-C. Lee, J.-Y. Na, Y.-J. Moon, J.-S. Park, H.-S. Ee, H.-G. Park, and S.-K. Kim, “Three-dimensional grating nanowires for enhanced light trapping,” Opt. Lett. 41(7), 1578–1581 (2016).
    [Crossref] [PubMed]

2017 (2)

W. Zhou, X. Dai, and C. M. Lieber, “Advances in nanowire bioelectronics,” Rep. Prog. Phys. 80(1), 016701 (2017).
[Crossref] [PubMed]

S. Kim, D. J. Hill, C. W. Pinion, J. D. Christesen, J. R. McBride, and J. F. Cahoon, “Desiging morphology in eptitaxial silicon nanowires: the role of gold, surface chemistry, and phosphorus doping,” ACS Nano 11(5), 4453–4462 (2017).
[Crossref] [PubMed]

2016 (3)

R. W. Day, M. N. Mankin, and C. M. Lieber, “Plateau-Rayleigh crystal growth of nanowire heterostructures: strain-modified surface chemistry and morphological control in one, two, and three dimensions,” Nano Lett. 16(4), 2830–2836 (2016).
[Crossref] [PubMed]

H.-C. Lee, J.-Y. Na, Y.-J. Moon, J.-S. Park, H.-S. Ee, H.-G. Park, and S.-K. Kim, “Three-dimensional grating nanowires for enhanced light trapping,” Opt. Lett. 41(7), 1578–1581 (2016).
[Crossref] [PubMed]

Y.-S. No, R. Gao, M. N. Mankin, R. W. Day, H.-G. Park, and C. M. Lieber, “Encoding active device elements at nanowire tips,” Nano Lett. 16(7), 4713–4719 (2016).
[Crossref] [PubMed]

2015 (2)

S.-K. Kim, X. Zhang, D. J. Hill, K.-D. Song, J.-S. Park, H.-G. Park, and J. F. Cahoon, “Doubling Absorption in Nanowire Solar Cells with Dielectric Shell Optical Antennas,” Nano Lett. 15(1), 753–758 (2015).
[Crossref] [PubMed]

R. W. Day, M. N. Mankin, R. Gao, Y.-S. No, S.-K. Kim, D. C. Bell, H.-G. Park, and C. M. Lieber, “Plateau-Rayleigh crystal growth of periodic shells on one-dimensional substrates,” Nat. Nanotechnol. 10(4), 345–352 (2015).
[Crossref] [PubMed]

2014 (5)

P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical Fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13(5), 471–475 (2014).
[Crossref] [PubMed]

M. L. Brongersma, Y. Cui, and S. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat. Mater. 13(5), 451–460 (2014).
[Crossref] [PubMed]

T. J. Kempa and C. M. Lieber, “Semiconductor nanowire solar cells: synthetic advances and tunable properties,” Pure Appl. Chem. 86(1), 13–26 (2014).
[Crossref]

J. Yao, H. Yan, S. Das, J. F. Klemic, J. C. Ellenbogen, and C. M. Lieber, “Nanowire nanocomputer as a finite-state machine,” Proc. Natl. Acad. Sci. U.S.A. 111(7), 2431–2435 (2014).
[Crossref] [PubMed]

W. Shim, J. Yao, and C. M. Lieber, “Programmable resistive-switch nanowire transistor logic circuits,” Nano Lett. 14(9), 5430–5436 (2014).
[Crossref] [PubMed]

2013 (2)

L. Xu, Z. Jiang, Q. Qing, L. Mai, Q. Zhang, and C. M. Lieber, “Design and synthesis of diverse functional kinked nanowire structures for nanoelectronic bioprobes,” Nano Lett. 13(2), 746–751 (2013).
[Crossref] [PubMed]

J. D. Christesen, C. W. Pinion, E. M. Grumstrup, J. M. Papanikolas, and J. F. Cahoon, “Synthetically encoding 10 nm morphology in silicon nanowires,” Nano Lett. 13(12), 6281–6286 (2013).
[Crossref] [PubMed]

2012 (2)

Z. Jiang, Q. Qing, P. Xie, R. Gao, and C. M. Lieber, “Kinked p-n junction nanowire probes for high spatial resolution sensing and intracellular recording,” Nano Lett. 12(3), 1711–1716 (2012).
[Crossref] [PubMed]

T. J. Kempa, J. F. Cahoon, S.-K. Kim, R. W. Day, D. C. Bell, H.-G. Park, and C. M. Lieber, “Coaxial multishell nanowires with high-quality electronic interfaces and tunable optical cavities for ultrathin photovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 109(5), 1407–1412 (2012).
[Crossref] [PubMed]

2011 (1)

C. M. Lieber, “Semiconductor nanowires: A platform for nanoscience and nanotechnology,” MRS Bull. 36(12), 1052–1063 (2011).
[Crossref] [PubMed]

2010 (4)

B. Tian, T. Cohen-Karni, Q. Qing, X. Duan, P. Xie, and C. M. Lieber, “Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes,” Science 329(5993), 830–834 (2010).
[Crossref] [PubMed]

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[Crossref] [PubMed]

L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the color of silicon nanostructures,” Nano Lett. 10(7), 2649–2654 (2010).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

2009 (1)

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[Crossref] [PubMed]

2008 (1)

F. Qian, Y. Li, S. Gradecak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7(9), 701–706 (2008).
[Crossref] [PubMed]

2006 (1)

R. Agarwal and C. M. Lieber, “Semiconductor nanowires: optics and optoelectronics,” Appl. Phys., A Mater. Sci. Process. 85(3), 209–215 (2006).
[Crossref]

Agarwal, R.

R. Agarwal and C. M. Lieber, “Semiconductor nanowires: optics and optoelectronics,” Appl. Phys., A Mater. Sci. Process. 85(3), 209–215 (2006).
[Crossref]

Barnard, E. S.

L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the color of silicon nanostructures,” Nano Lett. 10(7), 2649–2654 (2010).
[Crossref] [PubMed]

Bell, D. C.

R. W. Day, M. N. Mankin, R. Gao, Y.-S. No, S.-K. Kim, D. C. Bell, H.-G. Park, and C. M. Lieber, “Plateau-Rayleigh crystal growth of periodic shells on one-dimensional substrates,” Nat. Nanotechnol. 10(4), 345–352 (2015).
[Crossref] [PubMed]

T. J. Kempa, J. F. Cahoon, S.-K. Kim, R. W. Day, D. C. Bell, H.-G. Park, and C. M. Lieber, “Coaxial multishell nanowires with high-quality electronic interfaces and tunable optical cavities for ultrathin photovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 109(5), 1407–1412 (2012).
[Crossref] [PubMed]

Brongersma, M. L.

M. L. Brongersma, Y. Cui, and S. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat. Mater. 13(5), 451–460 (2014).
[Crossref] [PubMed]

P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical Fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13(5), 471–475 (2014).
[Crossref] [PubMed]

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[Crossref] [PubMed]

L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the color of silicon nanostructures,” Nano Lett. 10(7), 2649–2654 (2010).
[Crossref] [PubMed]

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[Crossref] [PubMed]

Brown, A. M.

L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the color of silicon nanostructures,” Nano Lett. 10(7), 2649–2654 (2010).
[Crossref] [PubMed]

Cahoon, J. F.

S. Kim, D. J. Hill, C. W. Pinion, J. D. Christesen, J. R. McBride, and J. F. Cahoon, “Desiging morphology in eptitaxial silicon nanowires: the role of gold, surface chemistry, and phosphorus doping,” ACS Nano 11(5), 4453–4462 (2017).
[Crossref] [PubMed]

S.-K. Kim, X. Zhang, D. J. Hill, K.-D. Song, J.-S. Park, H.-G. Park, and J. F. Cahoon, “Doubling Absorption in Nanowire Solar Cells with Dielectric Shell Optical Antennas,” Nano Lett. 15(1), 753–758 (2015).
[Crossref] [PubMed]

J. D. Christesen, C. W. Pinion, E. M. Grumstrup, J. M. Papanikolas, and J. F. Cahoon, “Synthetically encoding 10 nm morphology in silicon nanowires,” Nano Lett. 13(12), 6281–6286 (2013).
[Crossref] [PubMed]

T. J. Kempa, J. F. Cahoon, S.-K. Kim, R. W. Day, D. C. Bell, H.-G. Park, and C. M. Lieber, “Coaxial multishell nanowires with high-quality electronic interfaces and tunable optical cavities for ultrathin photovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 109(5), 1407–1412 (2012).
[Crossref] [PubMed]

Cai, W.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[Crossref] [PubMed]

Cao, L.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[Crossref] [PubMed]

L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the color of silicon nanostructures,” Nano Lett. 10(7), 2649–2654 (2010).
[Crossref] [PubMed]

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[Crossref] [PubMed]

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Christesen, J. D.

S. Kim, D. J. Hill, C. W. Pinion, J. D. Christesen, J. R. McBride, and J. F. Cahoon, “Desiging morphology in eptitaxial silicon nanowires: the role of gold, surface chemistry, and phosphorus doping,” ACS Nano 11(5), 4453–4462 (2017).
[Crossref] [PubMed]

J. D. Christesen, C. W. Pinion, E. M. Grumstrup, J. M. Papanikolas, and J. F. Cahoon, “Synthetically encoding 10 nm morphology in silicon nanowires,” Nano Lett. 13(12), 6281–6286 (2013).
[Crossref] [PubMed]

Clemens, B. M.

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[Crossref] [PubMed]

Cohen-Karni, T.

B. Tian, T. Cohen-Karni, Q. Qing, X. Duan, P. Xie, and C. M. Lieber, “Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes,” Science 329(5993), 830–834 (2010).
[Crossref] [PubMed]

Cui, Y.

M. L. Brongersma, Y. Cui, and S. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat. Mater. 13(5), 451–460 (2014).
[Crossref] [PubMed]

Dai, X.

W. Zhou, X. Dai, and C. M. Lieber, “Advances in nanowire bioelectronics,” Rep. Prog. Phys. 80(1), 016701 (2017).
[Crossref] [PubMed]

Das, S.

J. Yao, H. Yan, S. Das, J. F. Klemic, J. C. Ellenbogen, and C. M. Lieber, “Nanowire nanocomputer as a finite-state machine,” Proc. Natl. Acad. Sci. U.S.A. 111(7), 2431–2435 (2014).
[Crossref] [PubMed]

Day, R. W.

Y.-S. No, R. Gao, M. N. Mankin, R. W. Day, H.-G. Park, and C. M. Lieber, “Encoding active device elements at nanowire tips,” Nano Lett. 16(7), 4713–4719 (2016).
[Crossref] [PubMed]

R. W. Day, M. N. Mankin, and C. M. Lieber, “Plateau-Rayleigh crystal growth of nanowire heterostructures: strain-modified surface chemistry and morphological control in one, two, and three dimensions,” Nano Lett. 16(4), 2830–2836 (2016).
[Crossref] [PubMed]

R. W. Day, M. N. Mankin, R. Gao, Y.-S. No, S.-K. Kim, D. C. Bell, H.-G. Park, and C. M. Lieber, “Plateau-Rayleigh crystal growth of periodic shells on one-dimensional substrates,” Nat. Nanotechnol. 10(4), 345–352 (2015).
[Crossref] [PubMed]

T. J. Kempa, J. F. Cahoon, S.-K. Kim, R. W. Day, D. C. Bell, H.-G. Park, and C. M. Lieber, “Coaxial multishell nanowires with high-quality electronic interfaces and tunable optical cavities for ultrathin photovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 109(5), 1407–1412 (2012).
[Crossref] [PubMed]

Ding, Y.

F. Qian, Y. Li, S. Gradecak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7(9), 701–706 (2008).
[Crossref] [PubMed]

Dong, Y.

F. Qian, Y. Li, S. Gradecak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7(9), 701–706 (2008).
[Crossref] [PubMed]

Duan, X.

B. Tian, T. Cohen-Karni, Q. Qing, X. Duan, P. Xie, and C. M. Lieber, “Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes,” Science 329(5993), 830–834 (2010).
[Crossref] [PubMed]

Ee, H.-S.

Ellenbogen, J. C.

J. Yao, H. Yan, S. Das, J. F. Klemic, J. C. Ellenbogen, and C. M. Lieber, “Nanowire nanocomputer as a finite-state machine,” Proc. Natl. Acad. Sci. U.S.A. 111(7), 2431–2435 (2014).
[Crossref] [PubMed]

Fan, P.

P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical Fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13(5), 471–475 (2014).
[Crossref] [PubMed]

L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the color of silicon nanostructures,” Nano Lett. 10(7), 2649–2654 (2010).
[Crossref] [PubMed]

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[Crossref] [PubMed]

Fan, S.

P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical Fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13(5), 471–475 (2014).
[Crossref] [PubMed]

M. L. Brongersma, Y. Cui, and S. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat. Mater. 13(5), 451–460 (2014).
[Crossref] [PubMed]

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[Crossref] [PubMed]

Gao, R.

Y.-S. No, R. Gao, M. N. Mankin, R. W. Day, H.-G. Park, and C. M. Lieber, “Encoding active device elements at nanowire tips,” Nano Lett. 16(7), 4713–4719 (2016).
[Crossref] [PubMed]

R. W. Day, M. N. Mankin, R. Gao, Y.-S. No, S.-K. Kim, D. C. Bell, H.-G. Park, and C. M. Lieber, “Plateau-Rayleigh crystal growth of periodic shells on one-dimensional substrates,” Nat. Nanotechnol. 10(4), 345–352 (2015).
[Crossref] [PubMed]

Z. Jiang, Q. Qing, P. Xie, R. Gao, and C. M. Lieber, “Kinked p-n junction nanowire probes for high spatial resolution sensing and intracellular recording,” Nano Lett. 12(3), 1711–1716 (2012).
[Crossref] [PubMed]

Giessen, H.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Gradecak, S.

F. Qian, Y. Li, S. Gradecak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7(9), 701–706 (2008).
[Crossref] [PubMed]

Grumstrup, E. M.

J. D. Christesen, C. W. Pinion, E. M. Grumstrup, J. M. Papanikolas, and J. F. Cahoon, “Synthetically encoding 10 nm morphology in silicon nanowires,” Nano Lett. 13(12), 6281–6286 (2013).
[Crossref] [PubMed]

Halas, N. J.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Hill, D. J.

S. Kim, D. J. Hill, C. W. Pinion, J. D. Christesen, J. R. McBride, and J. F. Cahoon, “Desiging morphology in eptitaxial silicon nanowires: the role of gold, surface chemistry, and phosphorus doping,” ACS Nano 11(5), 4453–4462 (2017).
[Crossref] [PubMed]

S.-K. Kim, X. Zhang, D. J. Hill, K.-D. Song, J.-S. Park, H.-G. Park, and J. F. Cahoon, “Doubling Absorption in Nanowire Solar Cells with Dielectric Shell Optical Antennas,” Nano Lett. 15(1), 753–758 (2015).
[Crossref] [PubMed]

Jiang, Z.

L. Xu, Z. Jiang, Q. Qing, L. Mai, Q. Zhang, and C. M. Lieber, “Design and synthesis of diverse functional kinked nanowire structures for nanoelectronic bioprobes,” Nano Lett. 13(2), 746–751 (2013).
[Crossref] [PubMed]

Z. Jiang, Q. Qing, P. Xie, R. Gao, and C. M. Lieber, “Kinked p-n junction nanowire probes for high spatial resolution sensing and intracellular recording,” Nano Lett. 12(3), 1711–1716 (2012).
[Crossref] [PubMed]

Kempa, T. J.

T. J. Kempa and C. M. Lieber, “Semiconductor nanowire solar cells: synthetic advances and tunable properties,” Pure Appl. Chem. 86(1), 13–26 (2014).
[Crossref]

T. J. Kempa, J. F. Cahoon, S.-K. Kim, R. W. Day, D. C. Bell, H.-G. Park, and C. M. Lieber, “Coaxial multishell nanowires with high-quality electronic interfaces and tunable optical cavities for ultrathin photovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 109(5), 1407–1412 (2012).
[Crossref] [PubMed]

Kim, S.

S. Kim, D. J. Hill, C. W. Pinion, J. D. Christesen, J. R. McBride, and J. F. Cahoon, “Desiging morphology in eptitaxial silicon nanowires: the role of gold, surface chemistry, and phosphorus doping,” ACS Nano 11(5), 4453–4462 (2017).
[Crossref] [PubMed]

Kim, S.-K.

H.-C. Lee, J.-Y. Na, Y.-J. Moon, J.-S. Park, H.-S. Ee, H.-G. Park, and S.-K. Kim, “Three-dimensional grating nanowires for enhanced light trapping,” Opt. Lett. 41(7), 1578–1581 (2016).
[Crossref] [PubMed]

R. W. Day, M. N. Mankin, R. Gao, Y.-S. No, S.-K. Kim, D. C. Bell, H.-G. Park, and C. M. Lieber, “Plateau-Rayleigh crystal growth of periodic shells on one-dimensional substrates,” Nat. Nanotechnol. 10(4), 345–352 (2015).
[Crossref] [PubMed]

S.-K. Kim, X. Zhang, D. J. Hill, K.-D. Song, J.-S. Park, H.-G. Park, and J. F. Cahoon, “Doubling Absorption in Nanowire Solar Cells with Dielectric Shell Optical Antennas,” Nano Lett. 15(1), 753–758 (2015).
[Crossref] [PubMed]

T. J. Kempa, J. F. Cahoon, S.-K. Kim, R. W. Day, D. C. Bell, H.-G. Park, and C. M. Lieber, “Coaxial multishell nanowires with high-quality electronic interfaces and tunable optical cavities for ultrathin photovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 109(5), 1407–1412 (2012).
[Crossref] [PubMed]

Klemic, J. F.

J. Yao, H. Yan, S. Das, J. F. Klemic, J. C. Ellenbogen, and C. M. Lieber, “Nanowire nanocomputer as a finite-state machine,” Proc. Natl. Acad. Sci. U.S.A. 111(7), 2431–2435 (2014).
[Crossref] [PubMed]

Lee, H.-C.

Li, Y.

F. Qian, Y. Li, S. Gradecak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7(9), 701–706 (2008).
[Crossref] [PubMed]

Lieber, C. M.

W. Zhou, X. Dai, and C. M. Lieber, “Advances in nanowire bioelectronics,” Rep. Prog. Phys. 80(1), 016701 (2017).
[Crossref] [PubMed]

Y.-S. No, R. Gao, M. N. Mankin, R. W. Day, H.-G. Park, and C. M. Lieber, “Encoding active device elements at nanowire tips,” Nano Lett. 16(7), 4713–4719 (2016).
[Crossref] [PubMed]

R. W. Day, M. N. Mankin, and C. M. Lieber, “Plateau-Rayleigh crystal growth of nanowire heterostructures: strain-modified surface chemistry and morphological control in one, two, and three dimensions,” Nano Lett. 16(4), 2830–2836 (2016).
[Crossref] [PubMed]

R. W. Day, M. N. Mankin, R. Gao, Y.-S. No, S.-K. Kim, D. C. Bell, H.-G. Park, and C. M. Lieber, “Plateau-Rayleigh crystal growth of periodic shells on one-dimensional substrates,” Nat. Nanotechnol. 10(4), 345–352 (2015).
[Crossref] [PubMed]

T. J. Kempa and C. M. Lieber, “Semiconductor nanowire solar cells: synthetic advances and tunable properties,” Pure Appl. Chem. 86(1), 13–26 (2014).
[Crossref]

W. Shim, J. Yao, and C. M. Lieber, “Programmable resistive-switch nanowire transistor logic circuits,” Nano Lett. 14(9), 5430–5436 (2014).
[Crossref] [PubMed]

J. Yao, H. Yan, S. Das, J. F. Klemic, J. C. Ellenbogen, and C. M. Lieber, “Nanowire nanocomputer as a finite-state machine,” Proc. Natl. Acad. Sci. U.S.A. 111(7), 2431–2435 (2014).
[Crossref] [PubMed]

L. Xu, Z. Jiang, Q. Qing, L. Mai, Q. Zhang, and C. M. Lieber, “Design and synthesis of diverse functional kinked nanowire structures for nanoelectronic bioprobes,” Nano Lett. 13(2), 746–751 (2013).
[Crossref] [PubMed]

T. J. Kempa, J. F. Cahoon, S.-K. Kim, R. W. Day, D. C. Bell, H.-G. Park, and C. M. Lieber, “Coaxial multishell nanowires with high-quality electronic interfaces and tunable optical cavities for ultrathin photovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 109(5), 1407–1412 (2012).
[Crossref] [PubMed]

Z. Jiang, Q. Qing, P. Xie, R. Gao, and C. M. Lieber, “Kinked p-n junction nanowire probes for high spatial resolution sensing and intracellular recording,” Nano Lett. 12(3), 1711–1716 (2012).
[Crossref] [PubMed]

C. M. Lieber, “Semiconductor nanowires: A platform for nanoscience and nanotechnology,” MRS Bull. 36(12), 1052–1063 (2011).
[Crossref] [PubMed]

B. Tian, T. Cohen-Karni, Q. Qing, X. Duan, P. Xie, and C. M. Lieber, “Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes,” Science 329(5993), 830–834 (2010).
[Crossref] [PubMed]

F. Qian, Y. Li, S. Gradecak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7(9), 701–706 (2008).
[Crossref] [PubMed]

R. Agarwal and C. M. Lieber, “Semiconductor nanowires: optics and optoelectronics,” Appl. Phys., A Mater. Sci. Process. 85(3), 209–215 (2006).
[Crossref]

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Mai, L.

L. Xu, Z. Jiang, Q. Qing, L. Mai, Q. Zhang, and C. M. Lieber, “Design and synthesis of diverse functional kinked nanowire structures for nanoelectronic bioprobes,” Nano Lett. 13(2), 746–751 (2013).
[Crossref] [PubMed]

Maier, S. A.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Mankin, M. N.

R. W. Day, M. N. Mankin, and C. M. Lieber, “Plateau-Rayleigh crystal growth of nanowire heterostructures: strain-modified surface chemistry and morphological control in one, two, and three dimensions,” Nano Lett. 16(4), 2830–2836 (2016).
[Crossref] [PubMed]

Y.-S. No, R. Gao, M. N. Mankin, R. W. Day, H.-G. Park, and C. M. Lieber, “Encoding active device elements at nanowire tips,” Nano Lett. 16(7), 4713–4719 (2016).
[Crossref] [PubMed]

R. W. Day, M. N. Mankin, R. Gao, Y.-S. No, S.-K. Kim, D. C. Bell, H.-G. Park, and C. M. Lieber, “Plateau-Rayleigh crystal growth of periodic shells on one-dimensional substrates,” Nat. Nanotechnol. 10(4), 345–352 (2015).
[Crossref] [PubMed]

McBride, J. R.

S. Kim, D. J. Hill, C. W. Pinion, J. D. Christesen, J. R. McBride, and J. F. Cahoon, “Desiging morphology in eptitaxial silicon nanowires: the role of gold, surface chemistry, and phosphorus doping,” ACS Nano 11(5), 4453–4462 (2017).
[Crossref] [PubMed]

Moon, Y.-J.

Na, J.-Y.

No, Y.-S.

Y.-S. No, R. Gao, M. N. Mankin, R. W. Day, H.-G. Park, and C. M. Lieber, “Encoding active device elements at nanowire tips,” Nano Lett. 16(7), 4713–4719 (2016).
[Crossref] [PubMed]

R. W. Day, M. N. Mankin, R. Gao, Y.-S. No, S.-K. Kim, D. C. Bell, H.-G. Park, and C. M. Lieber, “Plateau-Rayleigh crystal growth of periodic shells on one-dimensional substrates,” Nat. Nanotechnol. 10(4), 345–352 (2015).
[Crossref] [PubMed]

Nordlander, P.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Papanikolas, J. M.

J. D. Christesen, C. W. Pinion, E. M. Grumstrup, J. M. Papanikolas, and J. F. Cahoon, “Synthetically encoding 10 nm morphology in silicon nanowires,” Nano Lett. 13(12), 6281–6286 (2013).
[Crossref] [PubMed]

Park, H.-G.

H.-C. Lee, J.-Y. Na, Y.-J. Moon, J.-S. Park, H.-S. Ee, H.-G. Park, and S.-K. Kim, “Three-dimensional grating nanowires for enhanced light trapping,” Opt. Lett. 41(7), 1578–1581 (2016).
[Crossref] [PubMed]

Y.-S. No, R. Gao, M. N. Mankin, R. W. Day, H.-G. Park, and C. M. Lieber, “Encoding active device elements at nanowire tips,” Nano Lett. 16(7), 4713–4719 (2016).
[Crossref] [PubMed]

S.-K. Kim, X. Zhang, D. J. Hill, K.-D. Song, J.-S. Park, H.-G. Park, and J. F. Cahoon, “Doubling Absorption in Nanowire Solar Cells with Dielectric Shell Optical Antennas,” Nano Lett. 15(1), 753–758 (2015).
[Crossref] [PubMed]

R. W. Day, M. N. Mankin, R. Gao, Y.-S. No, S.-K. Kim, D. C. Bell, H.-G. Park, and C. M. Lieber, “Plateau-Rayleigh crystal growth of periodic shells on one-dimensional substrates,” Nat. Nanotechnol. 10(4), 345–352 (2015).
[Crossref] [PubMed]

T. J. Kempa, J. F. Cahoon, S.-K. Kim, R. W. Day, D. C. Bell, H.-G. Park, and C. M. Lieber, “Coaxial multishell nanowires with high-quality electronic interfaces and tunable optical cavities for ultrathin photovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 109(5), 1407–1412 (2012).
[Crossref] [PubMed]

F. Qian, Y. Li, S. Gradecak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7(9), 701–706 (2008).
[Crossref] [PubMed]

Park, J.-S.

H.-C. Lee, J.-Y. Na, Y.-J. Moon, J.-S. Park, H.-S. Ee, H.-G. Park, and S.-K. Kim, “Three-dimensional grating nanowires for enhanced light trapping,” Opt. Lett. 41(7), 1578–1581 (2016).
[Crossref] [PubMed]

S.-K. Kim, X. Zhang, D. J. Hill, K.-D. Song, J.-S. Park, H.-G. Park, and J. F. Cahoon, “Doubling Absorption in Nanowire Solar Cells with Dielectric Shell Optical Antennas,” Nano Lett. 15(1), 753–758 (2015).
[Crossref] [PubMed]

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[Crossref] [PubMed]

Pinion, C. W.

S. Kim, D. J. Hill, C. W. Pinion, J. D. Christesen, J. R. McBride, and J. F. Cahoon, “Desiging morphology in eptitaxial silicon nanowires: the role of gold, surface chemistry, and phosphorus doping,” ACS Nano 11(5), 4453–4462 (2017).
[Crossref] [PubMed]

J. D. Christesen, C. W. Pinion, E. M. Grumstrup, J. M. Papanikolas, and J. F. Cahoon, “Synthetically encoding 10 nm morphology in silicon nanowires,” Nano Lett. 13(12), 6281–6286 (2013).
[Crossref] [PubMed]

Qian, F.

F. Qian, Y. Li, S. Gradecak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7(9), 701–706 (2008).
[Crossref] [PubMed]

Qing, Q.

L. Xu, Z. Jiang, Q. Qing, L. Mai, Q. Zhang, and C. M. Lieber, “Design and synthesis of diverse functional kinked nanowire structures for nanoelectronic bioprobes,” Nano Lett. 13(2), 746–751 (2013).
[Crossref] [PubMed]

Z. Jiang, Q. Qing, P. Xie, R. Gao, and C. M. Lieber, “Kinked p-n junction nanowire probes for high spatial resolution sensing and intracellular recording,” Nano Lett. 12(3), 1711–1716 (2012).
[Crossref] [PubMed]

B. Tian, T. Cohen-Karni, Q. Qing, X. Duan, P. Xie, and C. M. Lieber, “Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes,” Science 329(5993), 830–834 (2010).
[Crossref] [PubMed]

Schuller, J. A.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[Crossref] [PubMed]

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[Crossref] [PubMed]

Shim, W.

W. Shim, J. Yao, and C. M. Lieber, “Programmable resistive-switch nanowire transistor logic circuits,” Nano Lett. 14(9), 5430–5436 (2014).
[Crossref] [PubMed]

Song, K.-D.

S.-K. Kim, X. Zhang, D. J. Hill, K.-D. Song, J.-S. Park, H.-G. Park, and J. F. Cahoon, “Doubling Absorption in Nanowire Solar Cells with Dielectric Shell Optical Antennas,” Nano Lett. 15(1), 753–758 (2015).
[Crossref] [PubMed]

Tian, B.

B. Tian, T. Cohen-Karni, Q. Qing, X. Duan, P. Xie, and C. M. Lieber, “Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes,” Science 329(5993), 830–834 (2010).
[Crossref] [PubMed]

Vasudev, A. P.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[Crossref] [PubMed]

Wang, Z. L.

F. Qian, Y. Li, S. Gradecak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7(9), 701–706 (2008).
[Crossref] [PubMed]

White, J. S.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[Crossref] [PubMed]

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[Crossref] [PubMed]

Xie, P.

Z. Jiang, Q. Qing, P. Xie, R. Gao, and C. M. Lieber, “Kinked p-n junction nanowire probes for high spatial resolution sensing and intracellular recording,” Nano Lett. 12(3), 1711–1716 (2012).
[Crossref] [PubMed]

B. Tian, T. Cohen-Karni, Q. Qing, X. Duan, P. Xie, and C. M. Lieber, “Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes,” Science 329(5993), 830–834 (2010).
[Crossref] [PubMed]

Xu, L.

L. Xu, Z. Jiang, Q. Qing, L. Mai, Q. Zhang, and C. M. Lieber, “Design and synthesis of diverse functional kinked nanowire structures for nanoelectronic bioprobes,” Nano Lett. 13(2), 746–751 (2013).
[Crossref] [PubMed]

Yan, H.

J. Yao, H. Yan, S. Das, J. F. Klemic, J. C. Ellenbogen, and C. M. Lieber, “Nanowire nanocomputer as a finite-state machine,” Proc. Natl. Acad. Sci. U.S.A. 111(7), 2431–2435 (2014).
[Crossref] [PubMed]

Yao, J.

J. Yao, H. Yan, S. Das, J. F. Klemic, J. C. Ellenbogen, and C. M. Lieber, “Nanowire nanocomputer as a finite-state machine,” Proc. Natl. Acad. Sci. U.S.A. 111(7), 2431–2435 (2014).
[Crossref] [PubMed]

W. Shim, J. Yao, and C. M. Lieber, “Programmable resistive-switch nanowire transistor logic circuits,” Nano Lett. 14(9), 5430–5436 (2014).
[Crossref] [PubMed]

Yu, Z.

P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical Fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13(5), 471–475 (2014).
[Crossref] [PubMed]

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[Crossref] [PubMed]

Zhang, Q.

L. Xu, Z. Jiang, Q. Qing, L. Mai, Q. Zhang, and C. M. Lieber, “Design and synthesis of diverse functional kinked nanowire structures for nanoelectronic bioprobes,” Nano Lett. 13(2), 746–751 (2013).
[Crossref] [PubMed]

Zhang, X.

S.-K. Kim, X. Zhang, D. J. Hill, K.-D. Song, J.-S. Park, H.-G. Park, and J. F. Cahoon, “Doubling Absorption in Nanowire Solar Cells with Dielectric Shell Optical Antennas,” Nano Lett. 15(1), 753–758 (2015).
[Crossref] [PubMed]

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Zhou, W.

W. Zhou, X. Dai, and C. M. Lieber, “Advances in nanowire bioelectronics,” Rep. Prog. Phys. 80(1), 016701 (2017).
[Crossref] [PubMed]

ACS Nano (1)

S. Kim, D. J. Hill, C. W. Pinion, J. D. Christesen, J. R. McBride, and J. F. Cahoon, “Desiging morphology in eptitaxial silicon nanowires: the role of gold, surface chemistry, and phosphorus doping,” ACS Nano 11(5), 4453–4462 (2017).
[Crossref] [PubMed]

Appl. Phys., A Mater. Sci. Process. (1)

R. Agarwal and C. M. Lieber, “Semiconductor nanowires: optics and optoelectronics,” Appl. Phys., A Mater. Sci. Process. 85(3), 209–215 (2006).
[Crossref]

MRS Bull. (1)

C. M. Lieber, “Semiconductor nanowires: A platform for nanoscience and nanotechnology,” MRS Bull. 36(12), 1052–1063 (2011).
[Crossref] [PubMed]

Nano Lett. (9)

Z. Jiang, Q. Qing, P. Xie, R. Gao, and C. M. Lieber, “Kinked p-n junction nanowire probes for high spatial resolution sensing and intracellular recording,” Nano Lett. 12(3), 1711–1716 (2012).
[Crossref] [PubMed]

L. Xu, Z. Jiang, Q. Qing, L. Mai, Q. Zhang, and C. M. Lieber, “Design and synthesis of diverse functional kinked nanowire structures for nanoelectronic bioprobes,” Nano Lett. 13(2), 746–751 (2013).
[Crossref] [PubMed]

Y.-S. No, R. Gao, M. N. Mankin, R. W. Day, H.-G. Park, and C. M. Lieber, “Encoding active device elements at nanowire tips,” Nano Lett. 16(7), 4713–4719 (2016).
[Crossref] [PubMed]

W. Shim, J. Yao, and C. M. Lieber, “Programmable resistive-switch nanowire transistor logic circuits,” Nano Lett. 14(9), 5430–5436 (2014).
[Crossref] [PubMed]

S.-K. Kim, X. Zhang, D. J. Hill, K.-D. Song, J.-S. Park, H.-G. Park, and J. F. Cahoon, “Doubling Absorption in Nanowire Solar Cells with Dielectric Shell Optical Antennas,” Nano Lett. 15(1), 753–758 (2015).
[Crossref] [PubMed]

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[Crossref] [PubMed]

L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the color of silicon nanostructures,” Nano Lett. 10(7), 2649–2654 (2010).
[Crossref] [PubMed]

R. W. Day, M. N. Mankin, and C. M. Lieber, “Plateau-Rayleigh crystal growth of nanowire heterostructures: strain-modified surface chemistry and morphological control in one, two, and three dimensions,” Nano Lett. 16(4), 2830–2836 (2016).
[Crossref] [PubMed]

J. D. Christesen, C. W. Pinion, E. M. Grumstrup, J. M. Papanikolas, and J. F. Cahoon, “Synthetically encoding 10 nm morphology in silicon nanowires,” Nano Lett. 13(12), 6281–6286 (2013).
[Crossref] [PubMed]

Nat. Mater. (5)

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[Crossref] [PubMed]

M. L. Brongersma, Y. Cui, and S. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat. Mater. 13(5), 451–460 (2014).
[Crossref] [PubMed]

F. Qian, Y. Li, S. Gradecak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7(9), 701–706 (2008).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical Fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13(5), 471–475 (2014).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

R. W. Day, M. N. Mankin, R. Gao, Y.-S. No, S.-K. Kim, D. C. Bell, H.-G. Park, and C. M. Lieber, “Plateau-Rayleigh crystal growth of periodic shells on one-dimensional substrates,” Nat. Nanotechnol. 10(4), 345–352 (2015).
[Crossref] [PubMed]

Opt. Lett. (1)

Proc. Natl. Acad. Sci. U.S.A. (2)

J. Yao, H. Yan, S. Das, J. F. Klemic, J. C. Ellenbogen, and C. M. Lieber, “Nanowire nanocomputer as a finite-state machine,” Proc. Natl. Acad. Sci. U.S.A. 111(7), 2431–2435 (2014).
[Crossref] [PubMed]

T. J. Kempa, J. F. Cahoon, S.-K. Kim, R. W. Day, D. C. Bell, H.-G. Park, and C. M. Lieber, “Coaxial multishell nanowires with high-quality electronic interfaces and tunable optical cavities for ultrathin photovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 109(5), 1407–1412 (2012).
[Crossref] [PubMed]

Pure Appl. Chem. (1)

T. J. Kempa and C. M. Lieber, “Semiconductor nanowire solar cells: synthetic advances and tunable properties,” Pure Appl. Chem. 86(1), 13–26 (2014).
[Crossref]

Rep. Prog. Phys. (1)

W. Zhou, X. Dai, and C. M. Lieber, “Advances in nanowire bioelectronics,” Rep. Prog. Phys. 80(1), 016701 (2017).
[Crossref] [PubMed]

Science (1)

B. Tian, T. Cohen-Karni, Q. Qing, X. Duan, P. Xie, and C. M. Lieber, “Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes,” Science 329(5993), 830–834 (2010).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic illustration of simulation geometry for normal (left) and high-AR NWs (middle) under TE-polarized incident illumination. Right inset: Cross-sectional shape of a NW and the definition of AR. (b) Two-dimensional color maps of the calculated total absorption (top, Qabs) and total scattering (bottom, Qsca) efficiencies of the NWs as functions of wavelength and cross-sectional AR for TE-polarized incident illumination. In the calculations, the height (H) of the NWs was fixed at 100 nm and the AR was varied from 1 to 6 by changing the width (W) of the NWs.
Fig. 2
Fig. 2 (a) Calculated absorption efficiency and (b) scattering efficiency spectra of NWs with various ARs of 1.2 (dark blue), 2.6 (green), 3.6 (yellow), and 4.2 (red) under TE-polarized incident illumination. For all calculations, the height of the NW was fixed at 100 nm. (c)–(d) Incident angle-dependent absorption (c) and scattering efficiencies (d) of the NW with AR of 3.6 (yellow arrow in (a) and (b)). Inset in (c) shows the angle of the incident light. Angles of 0°, 30°, 45°, and 60° with respect to the normal incident were simulated.
Fig. 3
Fig. 3 (a) Co-plot of absorption efficiency (pink) and scattering efficiency (navy) spectra from the NW with AR of 3.6 (arrows in Fig. 2(a) and 2(b)) near the resonant wavelength of 606 nm. (b) Calculated electric field intensity (top) and absorption profiles (bottom) of the NW used in (a) at the resonant wavelength of 606 nm. Both profiles are normalized with respect to their maximum values. The scale bar is 200 nm.
Fig. 4
Fig. 4 Spatially localized wavelength-selective light absorption in a diameter-modulated NW. (a) Schematic illustration of the diameter-modulated NW. Two different cross-sectional morphologies (inner and outer) were periodically (pitch) placed along the NW axis. Inset: inner (green) and outer (yellow) cross-sections with the same height but different ARs. (b) Calculated absorption efficiency spectra from the inner (green, AR = 2.6) and outer (yellow, AR = 3.6) segments of the periodically modulated NW. The height and pitch of the NW were 100 nm and 3 μm, respectively. (c)–(d) Calculated absorption profile (left, top) and normalized absorption efficiency (left, bottom) along the NW axis at the wavelengths of (c) 530 and (d) 606 nm. The scale bars are 500 nm. Cross-sectional absorption profiles of inner (right, top) and outer (right, bottom) segments at the wavelengths of (c) 530 and (d) 606 nm. The scale bars are 100 nm.
Fig. 5
Fig. 5 Wavelength-tunable and enhanced light absorption of waveguide modes in the diameter-modulated NWs with short pitch sizes. (a) Comparison of calculated absorption efficiency spectra of diameter-modulated NW (black line) with a short pitch (a = 440 nm), uniform NW with an AR of 3.6 (yellow dotted line), and thin film (gray dotted line). The height of the modulated and uniform NWs and thickness of the thin film were 100 nm. The ARs of the inner and outer segments of the diameter-modulated NW were identical to those used in Fig. 3. (b) Absorption profiles of the diameter-modulated NW at the wavelengths of 592 (top) and 910 nm (bottom). The scale bar is 200 nm. (c) Wavelength-tunable and enhanced absorption efficiency spectra from waveguide modes in the modulated NWs with various pitch sizes of 360 (red), 400 (yellow), 440 (green), and 480 nm (dark blue). The absorption efficiency spectrum (gray dotted line) of the thin film in (a) was co-plotted for comparison. (d) Absorption efficiency spectra from the same waveguide modes in the NWs on SiO2 substrate (inset).
Fig. 6
Fig. 6 Spatial confinement of absorption in the diameter-modulated NW with a short pitch and ultrathin inner diameter. (a) Calculated absorption efficiency spectra from the inner (gray) and outer (red) segments of the modulated NW. The pitch size was 440 nm and the height (AR) of the inner and outer segments were set to 30 (1.1) and 100 nm (2.6), respectively. (b) Top (top) and side (bottom) views of the calculated absorption profiles at the resonant wavelength of 664 nm (red arrow in (a)). The scale bar is 200 nm. (c) Calculated absorption efficiency spectra from the inner (gray) and outer (yellow) segments of the modulated NW. The pitch size and height of the NW were identical to those in (a). The ARs of the inner and outer segments were set to 1.1 and 3.6, respectively. (d) Top (top) and side (bottom) views of the calculated absorption profile at the resonant wavelength of 584 nm (yellow arrow in (c)). The scale bar is 200 nm.

Metrics