Abstract

We demonstrate a 235-channel wavelength division multiplexing (WDM), polarization-multiplexed (pol-mux) 18-Gbaud 64 QAM coherent transmission of 160 km over the full C-band. By applying an injection-locked homodyne detection circuit to WDM coherent transmission, we have achieved low noise optical carrier-phase locking between transmitted data and a local oscillator over the full C-band range. As a result, a potential capacity of 42.3 Tbit/s data with a spectral efficiency of 9 bit/s/Hz was transmitted.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
320 Gbit/s, 20 Gsymbol/s 256 QAM coherent transmission over 160 km by using injection-locked local oscillator

Yixin Wang, Keisuke Kasai, Masato Yoshida, and Masataka Nakazawa
Opt. Express 24(19) 22088-22096 (2016)

80 Gbit/s, 256 QAM coherent transmission over 150 km with an injection-locked homodyne receiver

Keisuke Kasai, Yixin Wang, Shohei Beppu, Masato Yoshida, and Masataka Nakazawa
Opt. Express 23(22) 29174-29183 (2015)

448 Gbit/s, 32 Gbaud 128 QAM coherent transmission over 150 km with a potential spectral efficiency of 10.7 bit/s/Hz

Keisuke Kasai, Yixin Wang, David Odeke Otuya, Masato Yoshida, and Masataka Nakazawa
Opt. Express 23(22) 28423-28429 (2015)

References

  • View by:
  • |
  • |
  • |

  1. H. Takara, A. Sano, T. Kobayashi, H. Kubota, H. Kawakami, A. Matsuura, Y. Miyamoto, Y. Abe, H. Ono, K. Shikama, Y. Goto, K. Tsujikawa, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Koshiba, and T. Morioka, “1.01-Pb/s (12 SDM/222 WDM/456 Gb/s) crosstalk-managed transmission with 91.4-b/s/Hz aggregate spectral efficiency,” in European Conference on Optical Communication (Optical Society of America, 2012), paper Th.3.C.1.
    [Crossref]
  2. D. Qian, E. Ip, M. Huang, M. Li, A. Dogariu, S. Zhang, Y. Shao, Y. Huang, Y. Zhang, X. Cheng, Y. Tian, P. Ji, A. Collier, Y. Geng, J. Linares, C. Montero, V. Moreno, X. Prieto, and T. Wang, “1.05Pb/s transmission with 109b/s/Hz spectral efficiency using hybrid single- and few-mode cores,” in Frontiers in Optics (Optical Society of America, 2012), paper FW6C.3.
  3. B. J. Puttnam, R. S. Luís, W. Klaus, J. Sakaguchi, J.-M. Delgado Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, and J. Marciante, “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” in European Conference on Optical Communication (Optical Society of America, 2015), paper PDP3.1.
    [Crossref]
  4. D. Soma, K. Igarashi, Y. Wakayama, K. Takeshima, Y. Kawaguchi, N. Yoshikane, T. Tsuritani, I. Morita, and M. Suzuki, “2.05 Peta-bit/s super-nyquist-WDM SDM transmission using 9.8-km 6-mode 19-core fiber in full C band,” in European Conference on Optical Communication (Optical Society of America, 2015), paper PDP3.2.
    [Crossref]
  5. T. Kobayashi, M. Nakamura, F. Hamaoka, K. Shibahara, T. Mizuno, A. Sano, H. Kawakami, A. Isoda, M. Nagatani, H. Yamazaki, Y. Miyamoto, Y. Amma, Y. Sasaki, K. Takenaga, K. Aikawa, K. Saitoh, Y. Jung, D. J. Richardson, K. Pulverer, M. Bohn, M. Nooruzzaman, and T. Morioka, “1-Pb/s (32 SDM/46 WDM/768 Gb/s) C-band dense SDM transmission over 205.6-km of single-mode heterogeneous multi-core fiber using 96-Gbaud PDM-16QAM channels,” in Optical Fiber Communication Conference (Optical Society of America, 2017), paper Th5B.1.
    [Crossref]
  6. D. Qian, M. Huang, E. Ip, Y. Huang, Y. Shao, J. Hu, and T. Wang, “101.7-Tb/s 370×294-Gb/s) PDM-128QAM-OFDM transmission over 3×55-km SSMF using pilot-based phase noise mitigation,” in Optical Fiber Communication Conference (Optical Society of America, 2011), paper PDPB5.
  7. A. Sano, T. Kobayashi, S. Yamanaka, A. Matsuura, H. Kawakami, Y. Miyamoto, K. Ishihara, and H. Masuda, “102.3-Tb/s (224 × 548-Gb/s) C- and extended L-band all-Raman transmission over 240 km using PDM-64QAM single carrier FDM with digital pilot tone,” in Optical Fiber Communication Conference (Optical Society of America, 2012), paper PDP5C.3.
    [Crossref]
  8. S. Beppu, K. Kasai, M. Yoshida, and M. Nakazawa, “2048 QAM (66 Gbit/s) single-carrier coherent optical transmission over 150 km with a potential SE of 15.3 bit/s/Hz,” Opt. Express 23(4), 4960–4969 (2015).
    [Crossref] [PubMed]
  9. Y. Wang, K. Kasai, M. Yoshida, and M. Nakazawa, “320 Gbit/s, 20 Gsymbol/s 256 QAM coherent transmission over 160 km by using injection-locked local oscillator,” Opt. Express 24(19), 22088–22096 (2016).
    [Crossref] [PubMed]
  10. Y. Wang, K. Kasai, M. Yoshida, and M. Nakazawa, “Single-carrier 216 Gbit/s, 12 Gsymbol/s 512 QAM coherent transmission over 160 km with injection-locked homodyne detection,” in Optical Fiber Communication Conference (Optical Society of America, 2017), paper Tu2E.1.
    [Crossref]
  11. T. Kan, K. Kasai, M. Yoshida, and M. Nakazawa, “42.3-Tbit/s, 18-Gbaud 64QAM WDM coherent transmission of 160 km over full C-band using an injection locking technique with a spectral efficiency of 9 bit/s/Hz,” in Optical Fiber Communication Conference, (Optical Society of America, 2017), paper Th3F.5.
    [Crossref]
  12. K. Kasai, M. Nakazawa, Y. Tomomatsu, and T. Endo, “Full C-band, mode-hop-free wavelength-tunable laser diode with a linewidth of 8 kHz and a RIN of −130 dB/Hz,” in Optical Fiber Communication Conference (Optical Society of America, 2017), paper W1E.2.
    [Crossref]
  13. H. Ishii, K. Kasaya, and H. Oohashi, “Spectral linewidth reduction in widely wavelength tunable DFB laser array,” IEEE J. Sel. Top. Quantum Electron. 15(3), 514–520 (2009).
    [Crossref]
  14. B. Szafraniec, B. Nebendahl, and T. Marshall, “Polarization demultiplexing in Stokes space,” Opt. Express 18(17), 17928–17939 (2010).
    [Crossref] [PubMed]
  15. C. Paré, A. Villeneuve, P. A. Bélanger, and N. J. Doran, “Compensating for dispersion and the nonlinear Kerr effect without phase conjugation,” Opt. Lett. 21(7), 459–461 (1996).
    [Crossref] [PubMed]
  16. A. C. Bordonalli, C. Walton, and A. J. Seeds, “High-performance phase locking of wide linewidth semiconductor lasers by combined use of optical injection locking and optical phase-lock loop,” J. Lightwave Technol. 17(2), 328–342 (1999).
    [Crossref]
  17. Y. Wang, K. Kasai, T. Omiya, and M. Nakazawa, “120 Gbit/s, polarization-multiplexed 10 Gsymbol/s, 64 QAM coherent transmission over 150 km using an optical voltage controlled oscillator,” Opt. Express 21(23), 28290–28296 (2013).
    [Crossref] [PubMed]

2016 (1)

2015 (1)

2013 (1)

2010 (1)

2009 (1)

H. Ishii, K. Kasaya, and H. Oohashi, “Spectral linewidth reduction in widely wavelength tunable DFB laser array,” IEEE J. Sel. Top. Quantum Electron. 15(3), 514–520 (2009).
[Crossref]

1999 (1)

1996 (1)

Bélanger, P. A.

Beppu, S.

Bordonalli, A. C.

Doran, N. J.

Ishii, H.

H. Ishii, K. Kasaya, and H. Oohashi, “Spectral linewidth reduction in widely wavelength tunable DFB laser array,” IEEE J. Sel. Top. Quantum Electron. 15(3), 514–520 (2009).
[Crossref]

Kasai, K.

Kasaya, K.

H. Ishii, K. Kasaya, and H. Oohashi, “Spectral linewidth reduction in widely wavelength tunable DFB laser array,” IEEE J. Sel. Top. Quantum Electron. 15(3), 514–520 (2009).
[Crossref]

Marshall, T.

Nakazawa, M.

Nebendahl, B.

Omiya, T.

Oohashi, H.

H. Ishii, K. Kasaya, and H. Oohashi, “Spectral linewidth reduction in widely wavelength tunable DFB laser array,” IEEE J. Sel. Top. Quantum Electron. 15(3), 514–520 (2009).
[Crossref]

Paré, C.

Seeds, A. J.

Szafraniec, B.

Villeneuve, A.

Walton, C.

Wang, Y.

Yoshida, M.

IEEE J. Sel. Top. Quantum Electron. (1)

H. Ishii, K. Kasaya, and H. Oohashi, “Spectral linewidth reduction in widely wavelength tunable DFB laser array,” IEEE J. Sel. Top. Quantum Electron. 15(3), 514–520 (2009).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (4)

Opt. Lett. (1)

Other (10)

H. Takara, A. Sano, T. Kobayashi, H. Kubota, H. Kawakami, A. Matsuura, Y. Miyamoto, Y. Abe, H. Ono, K. Shikama, Y. Goto, K. Tsujikawa, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Koshiba, and T. Morioka, “1.01-Pb/s (12 SDM/222 WDM/456 Gb/s) crosstalk-managed transmission with 91.4-b/s/Hz aggregate spectral efficiency,” in European Conference on Optical Communication (Optical Society of America, 2012), paper Th.3.C.1.
[Crossref]

D. Qian, E. Ip, M. Huang, M. Li, A. Dogariu, S. Zhang, Y. Shao, Y. Huang, Y. Zhang, X. Cheng, Y. Tian, P. Ji, A. Collier, Y. Geng, J. Linares, C. Montero, V. Moreno, X. Prieto, and T. Wang, “1.05Pb/s transmission with 109b/s/Hz spectral efficiency using hybrid single- and few-mode cores,” in Frontiers in Optics (Optical Society of America, 2012), paper FW6C.3.

B. J. Puttnam, R. S. Luís, W. Klaus, J. Sakaguchi, J.-M. Delgado Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, and J. Marciante, “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” in European Conference on Optical Communication (Optical Society of America, 2015), paper PDP3.1.
[Crossref]

D. Soma, K. Igarashi, Y. Wakayama, K. Takeshima, Y. Kawaguchi, N. Yoshikane, T. Tsuritani, I. Morita, and M. Suzuki, “2.05 Peta-bit/s super-nyquist-WDM SDM transmission using 9.8-km 6-mode 19-core fiber in full C band,” in European Conference on Optical Communication (Optical Society of America, 2015), paper PDP3.2.
[Crossref]

T. Kobayashi, M. Nakamura, F. Hamaoka, K. Shibahara, T. Mizuno, A. Sano, H. Kawakami, A. Isoda, M. Nagatani, H. Yamazaki, Y. Miyamoto, Y. Amma, Y. Sasaki, K. Takenaga, K. Aikawa, K. Saitoh, Y. Jung, D. J. Richardson, K. Pulverer, M. Bohn, M. Nooruzzaman, and T. Morioka, “1-Pb/s (32 SDM/46 WDM/768 Gb/s) C-band dense SDM transmission over 205.6-km of single-mode heterogeneous multi-core fiber using 96-Gbaud PDM-16QAM channels,” in Optical Fiber Communication Conference (Optical Society of America, 2017), paper Th5B.1.
[Crossref]

D. Qian, M. Huang, E. Ip, Y. Huang, Y. Shao, J. Hu, and T. Wang, “101.7-Tb/s 370×294-Gb/s) PDM-128QAM-OFDM transmission over 3×55-km SSMF using pilot-based phase noise mitigation,” in Optical Fiber Communication Conference (Optical Society of America, 2011), paper PDPB5.

A. Sano, T. Kobayashi, S. Yamanaka, A. Matsuura, H. Kawakami, Y. Miyamoto, K. Ishihara, and H. Masuda, “102.3-Tb/s (224 × 548-Gb/s) C- and extended L-band all-Raman transmission over 240 km using PDM-64QAM single carrier FDM with digital pilot tone,” in Optical Fiber Communication Conference (Optical Society of America, 2012), paper PDP5C.3.
[Crossref]

Y. Wang, K. Kasai, M. Yoshida, and M. Nakazawa, “Single-carrier 216 Gbit/s, 12 Gsymbol/s 512 QAM coherent transmission over 160 km with injection-locked homodyne detection,” in Optical Fiber Communication Conference (Optical Society of America, 2017), paper Tu2E.1.
[Crossref]

T. Kan, K. Kasai, M. Yoshida, and M. Nakazawa, “42.3-Tbit/s, 18-Gbaud 64QAM WDM coherent transmission of 160 km over full C-band using an injection locking technique with a spectral efficiency of 9 bit/s/Hz,” in Optical Fiber Communication Conference, (Optical Society of America, 2017), paper Th3F.5.
[Crossref]

K. Kasai, M. Nakazawa, Y. Tomomatsu, and T. Endo, “Full C-band, mode-hop-free wavelength-tunable laser diode with a linewidth of 8 kHz and a RIN of −130 dB/Hz,” in Optical Fiber Communication Conference (Optical Society of America, 2017), paper W1E.2.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Experimental setup for 42.3 Tbit/s, WDM 64 QAM-160 km transmission with an injection locking technique.
Fig. 2
Fig. 2 Schematic diagram of data signal layout for measurement channel.
Fig. 3
Fig. 3 (a) Locking range characteristics of LO. (b) Relationship between SSB phase noise of IF signal and injection seed power. (c) PT OSNR dependence of SSB phase noise.
Fig. 4
Fig. 4 (a) IF spectrum of beat between PT and injection-locked LO in 2 MHz span, and (b) SSB phase noise spectrum (10 Hz ~1 MHz).
Fig. 5
Fig. 5 Wavelength dependence of SSB phase noise.
Fig. 6
Fig. 6 (a) Optical spectra of 235-channel WDM signals under back-to-back condition (0.1 nm resolution). (b) Enlarged view of test channel block (0.02 nm resolution).
Fig. 7
Fig. 7 Demodulation characteristics under back-to-back condition. (a) BER characteristics of channel 118 at 1546.12 nm as a function of the OSNR, (b) constellations of an 18 Gbaud 64 QAM signal measured at an OSNR of 32 dB.
Fig. 8
Fig. 8 (a) Optical spectra of 235-channel WDM signals after 160 km transmission and wavelength dependence of the OSNRs. (b) Enlarged view of shorter wavelength region.
Fig. 9
Fig. 9 (a) BER characteristics of 13 channels after 160 km transmission. (b) Enlarged view of shorter wavelength region.
Fig. 10
Fig. 10 Constellations of 18 Gbaud 64 QAM signal after 160 km transmission. (a) Channel 203 (best) at 1559.79 nm measured at an OSNR of 26.6 dB. (b) Channel 5 at 1528.31 nm measured at an OSNR of 25.2 dB.

Metrics