Abstract

Optical microstructure array surfaces such as micro-lens array surface, micro-groove array surface etc., are being used in more and more optical products, depending on its ability to produce a unique or particular performance. The geometrical complexity of the optical microstructures array surfaces makes them difficult to be fabricated. In this paper, a novel method named fluid jet-array parallel machining (FJAPM) is proposed to provide a new way to generate the microstructure array surfaces with high productivity. In this process, an array of abrasive water jets is pumped out of a nozzle, and each fluid jet simultaneously impinges the target surface to implement material removal independently. The jet-array nozzle was optimally designed firstly to diminish the effect of jet interference based on the experimental investigation on the 2-Jet nozzles with different jet intervals. The material removal and surface generation models were built and validated through the comparison of simulation and experimental results of the generation of several kinds of microstructure array surfaces. Following that, the effect of some factors in the process was discussed, including the fluid pressure, nozzle geometry, tool path, and dwell time. The experimental results and analysis prove that FJAPM process is an effective way to fabricate the optical microstructure array surface together with high productivity.

© 2017 Optical Society of America

Full Article  |  PDF Article

Corrections

Chunjin Wang, Chi Fai Cheung, Mingyu Liu, and Wing Bun Lee, "Fluid jet-array parallel machining of optical microstructure array surfaces: publisher’s note," Opt. Express 25, 23387-23387 (2017)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-25-19-23387

11 September 2017: Typographical corrections were made to the funding section and Ref. 33.


OSA Recommended Articles
Fluid jet polishing of optical surfaces

Oliver W. Fähnle, Hedser van Brug, and Hans J. Frankena
Appl. Opt. 37(28) 6771-6773 (1998)

Edge effect in fluid jet polishing

Peiji Guo, Hui Fang, and Jingchi Yu
Appl. Opt. 45(26) 6729-6735 (2006)

Shaping with fluid jet polishing by footprint optimization

Silvia M. Booij, Oliver W. Fähnle, and Joseph J. M. Braat
Appl. Opt. 43(1) 67-69 (2004)

References

  • View by:
  • |
  • |
  • |

  1. L. Li and A. Y. Yi, “Development of a 3D artificial compound eye,” Opt. Express 18(17), 18125–18137 (2010).
    [Crossref] [PubMed]
  2. L. B. Kong, C. F. Cheung, X. Q. Jiang, W. B. Lee, S. To, L. Blunt, and P. Scott, “Characterization of surface generation of optical microstructures using a pattern and feature parametric analysis method,” Precis. Eng. 34(4), 755–766 (2010).
    [Crossref]
  3. D. Xu, J. D. Owen, J. C. Papa, J. Reimers, T. J. Suleski, J. R. Troutman, M. A. Davies, K. P. Thompson, and J. P. Rolland, “Design, fabrication, and testing of convex reflective diffraction gratings,” Opt. Express 25(13), 15252–15268 (2017).
    [Crossref] [PubMed]
  4. M. Mao and J. W. Yan, “Ductile machining of single-crystal silicon for microlens arrays by ultraprecision diamond turning using a slow tool servo,” Int. J. Mach. Tools Manuf. 115, 2–14 (2017).
    [Crossref]
  5. Y. H. Ko and J. S. Yu, “Highly transparent sapphire micro-grating structures with large diffuse light scattering,” Opt. Express 19(16), 15574–15583 (2011).
    [Crossref] [PubMed]
  6. X. H. Lee, I. Moreno, and C.-C. Sun, “High-performance LED street lighting using microlens arrays,” Opt. Express 21(9), 10612–10621 (2013).
    [Crossref] [PubMed]
  7. T. Hou, C. Zheng, S. Bai, Q. Ma, D. Bridges, A. Hu, and W. W. Duley, “Fabrication, characterization, and applications of microlenses,” Appl. Opt. 54(24), 7366–7376 (2015).
    [Crossref] [PubMed]
  8. C. Florian, S. Piazza, A. Diaspro, P. Serra, and M. Duocastella, “Direct laser printing of tailored polymeric microlenses,” ACS Appl. Mater. Interfaces 8(27), 17028–17032 (2016).
    [Crossref] [PubMed]
  9. H. Lin, J. Gao, Q. Mei, Y. He, J. Liu, and X. Wang, “Adaptive digital fringe projection technique for high dynamic range three-dimensional shape measurement,” Opt. Express 24(7), 7703–7718 (2016).
    [Crossref] [PubMed]
  10. Z. Cai, X. Liu, X. Peng, Y. Yin, A. Li, J. Wu, and B. Z. Gao, “Structured light field 3D imaging,” Opt. Express 24(18), 20324–20334 (2016).
    [Crossref] [PubMed]
  11. Y. Caulier, “Inspection of complex surfaces by means of structured light patterns,” Opt. Express 18(7), 6642–6660 (2010).
    [Crossref] [PubMed]
  12. C. D. Torres, P. J. Heaney, A. V. Sumant, M. A. Hamilton, R. W. Carpick, and F. E. Pfefferkorn, “Analyzing the performance of diamond-coated micro end mills,” Int. J. Mach. Tools Manuf. 49(7), 599–612 (2009).
    [Crossref]
  13. C. Iliescu, B. Chen, and J. Miao, “On the wet etching of Pyrex glass,” Sens. Actuators A Phys. 143(1), 154–161 (2008).
    [Crossref]
  14. G. Cusanelli, A. Hessler-Wyser, F. Bobard, R. Demellayer, R. Perez, and R. Flükiger, “Microstructure at submicron scale of the white layer produced by EDM technique,” J. Mater. Process. Technol. 149(1), 289–295 (2004).
    [Crossref]
  15. B. McCall and T. S. Tkaczyk, “Rapid fabrication of miniature lens arrays by four-axis single point diamond machining,” Opt. Express 21(3), 3557–3572 (2013).
    [Crossref] [PubMed]
  16. H. Zhang, L. Li, D. L. McCray, S. Scheiding, N. J. Naples, A. Gebhardt, S. Risse, R. Eberhardt, A. Tünnermann, and A. Y. Yi, “Development of a low cost high precision three-layer 3D artificial compound eye,” Opt. Express 21(19), 22232–22245 (2013).
    [Crossref] [PubMed]
  17. Z. Zhu, S. To, and S. Zhang, “Large-scale fabrication of micro-lens array by novel end-fly-cutting-servo diamond machining,” Opt. Express 23(16), 20593–20604 (2015).
    [Crossref] [PubMed]
  18. J. Li, F. Zhao, and W. C. Shih, “Direct-write patterning of nanoporous gold microstructures by in situ laser-assisted dealloying,” Opt. Express 24(20), 23610–23617 (2016).
    [Crossref] [PubMed]
  19. I. Saxena, K. Ehmann, and J. Cao, “High throughput microfabrication using laser induced plasma in saline aqueous medium,” J. Mater. Process. Technol. 217, 77–87 (2015).
    [Crossref]
  20. X. Cheng, Z. Wang, K. Nakamoto, and K. Yamazaki, “A study on the micro tooling for micro/nano milling,” Int. J. Adv. Manuf. Technol. 53(5–8), 523–533 (2011).
    [Crossref]
  21. O. Iordan and C. Burlacu, “The main factors of influence in the micro-milling field,” Academic J. Manuf. Eng. 48, 43–49 (2010).
  22. C.-Y. Huang, C.-H. Kuo, W.-T. Hsiao, K.-C. Huang, S.-F. Tseng, and C.-P. Chou, “Glass biochip fabrication by laser micromachining and glass-molding process,” J. Mater. Process. Technol. 212(3), 633–639 (2012).
    [Crossref]
  23. G. Kucukturk and C. Cogun, “A new method for machining of electrically nonconductive workpieces using electric discharge machining technique,” Mach. Sci. Technol. 14(2), 189–207 (2010).
    [Crossref]
  24. H. Ogura and Y. Yoshida, “Hole drilling of glass substrates with a CO2 laser,” Jpn. J. Appl. Phys. 42(5), 2881–2886 (2003).
    [Crossref]
  25. J. Yang, F. Luo, T. S. Kao, X. Li, G. W. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light Sci. Appl. 3(7), e185 (2014).
    [Crossref]
  26. D. A. Axint, B. Karpuschewski, M. C. Kong, A. T. Beaucamp, S. Anwar, D. Miller, and M. Petzel, “High energy fluid jet machining (HEFJet-Mach): from scientific and technological advances to niche industrial applications,” CIRP Annals-Manuf. Technol. 63(2), 751–771 (2014).
  27. N. Haghbin, J. K. Spelt, and M. Papini, “Abrasive waterjet micro-machining of channels in metals: Model to predict high aspect-ratio channel profiles for submerged and unsubmerged machining,” J. Mater. Process. Technol. 222, 399–409 (2015).
    [Crossref]
  28. N. Haghbin, J. K. Spelt, and M. Papini, “Abrasive waterjet micro-machining of channels in metals: comparison between machining in air and submerged in water,” Int. J. Mach. Tools Manuf. 88, 108–117 (2015).
    [Crossref]
  29. O. W. Fähnle, H. Brug, and H. J. Frankena, “Fluid Jet Polishing of optical surfaces,” Appl. Opt. 37(28), 6771–6773 (1998).
    [Crossref] [PubMed]
  30. O. W. Faehnle, “Process optimization in optical fabrication,” Opt. Eng. 55(3), 035106 (2016).
    [Crossref]
  31. L. T. Ho, C. F. Cheung, L. B. Kong, and M. J. Ren, “Theoretical and experimental investigation of three-dimensional-structured surface generation using fluid jet polishing,” Proc. Institution Mechanical Eng. Part B. in press.
  32. C. J. Wang, C. F. Cheung, L. T. Ho, M. Y. Liu, and W. B. Lee, “A novel multi-jet polishing process and tool for high-efficiency polishing,” Int. J. Mach. Tools Manuf. 115, 60–73 (2017).
    [Crossref]
  33. C. J. Wang, C. F. Cheung, and M. Y. Liu, “Numerical modeling and experimentation of three dimensional material removal characteristics in fluid jet polishing,” Int. J. Mech. Sci. under review (2017).
  34. M. Y. Liu, C. F. Cheung, C. H. Cheng, R. Su, and R. K. Leach, “A Gaussian process and image registration based stitching method for high dynamic range measurement of precision surfaces,” Precision Eng. 2017 (published online) https://doi.org/10.1016/j.precisioneng.2017.04.017
    [Crossref]
  35. M. C. Kong, S. Anwar, J. Billingham, and D. A. Axinte, “Mathematical modelling of abrasive waterjet footprints for arbitrarily moving jets: part i – single straight paths,” Int. J. Mach. Tools Manuf. 53(1), 58–68 (2012).
    [Crossref]
  36. C. Wang, W. Yang, Z. Wang, X. Yang, C. Hu, B. Zhong, Y. Guo, and Q. Xu, “Dwell-time algorithm for polishing large optics,” Appl. Opt. 53(21), 4752–4760 (2014).
    [Crossref] [PubMed]
  37. C. Wang, Z. Wang, and Q. Xu, “Unicursal random maze tool path for computer-controlled optical surfacing,” Appl. Opt. 54(34), 10128–10136 (2015).
    [Crossref] [PubMed]
  38. C. F. Cheung, L. B. Kong, L. T. Ho, and S. To, “Modelling and simulation of structure surface generation using computer controlled ultra-precision polishing,” Precis. Eng. 35(4), 574–590 (2011).
    [Crossref]

2017 (3)

D. Xu, J. D. Owen, J. C. Papa, J. Reimers, T. J. Suleski, J. R. Troutman, M. A. Davies, K. P. Thompson, and J. P. Rolland, “Design, fabrication, and testing of convex reflective diffraction gratings,” Opt. Express 25(13), 15252–15268 (2017).
[Crossref] [PubMed]

M. Mao and J. W. Yan, “Ductile machining of single-crystal silicon for microlens arrays by ultraprecision diamond turning using a slow tool servo,” Int. J. Mach. Tools Manuf. 115, 2–14 (2017).
[Crossref]

C. J. Wang, C. F. Cheung, L. T. Ho, M. Y. Liu, and W. B. Lee, “A novel multi-jet polishing process and tool for high-efficiency polishing,” Int. J. Mach. Tools Manuf. 115, 60–73 (2017).
[Crossref]

2016 (5)

2015 (6)

I. Saxena, K. Ehmann, and J. Cao, “High throughput microfabrication using laser induced plasma in saline aqueous medium,” J. Mater. Process. Technol. 217, 77–87 (2015).
[Crossref]

T. Hou, C. Zheng, S. Bai, Q. Ma, D. Bridges, A. Hu, and W. W. Duley, “Fabrication, characterization, and applications of microlenses,” Appl. Opt. 54(24), 7366–7376 (2015).
[Crossref] [PubMed]

Z. Zhu, S. To, and S. Zhang, “Large-scale fabrication of micro-lens array by novel end-fly-cutting-servo diamond machining,” Opt. Express 23(16), 20593–20604 (2015).
[Crossref] [PubMed]

N. Haghbin, J. K. Spelt, and M. Papini, “Abrasive waterjet micro-machining of channels in metals: Model to predict high aspect-ratio channel profiles for submerged and unsubmerged machining,” J. Mater. Process. Technol. 222, 399–409 (2015).
[Crossref]

N. Haghbin, J. K. Spelt, and M. Papini, “Abrasive waterjet micro-machining of channels in metals: comparison between machining in air and submerged in water,” Int. J. Mach. Tools Manuf. 88, 108–117 (2015).
[Crossref]

C. Wang, Z. Wang, and Q. Xu, “Unicursal random maze tool path for computer-controlled optical surfacing,” Appl. Opt. 54(34), 10128–10136 (2015).
[Crossref] [PubMed]

2014 (3)

C. Wang, W. Yang, Z. Wang, X. Yang, C. Hu, B. Zhong, Y. Guo, and Q. Xu, “Dwell-time algorithm for polishing large optics,” Appl. Opt. 53(21), 4752–4760 (2014).
[Crossref] [PubMed]

J. Yang, F. Luo, T. S. Kao, X. Li, G. W. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light Sci. Appl. 3(7), e185 (2014).
[Crossref]

D. A. Axint, B. Karpuschewski, M. C. Kong, A. T. Beaucamp, S. Anwar, D. Miller, and M. Petzel, “High energy fluid jet machining (HEFJet-Mach): from scientific and technological advances to niche industrial applications,” CIRP Annals-Manuf. Technol. 63(2), 751–771 (2014).

2013 (3)

2012 (2)

C.-Y. Huang, C.-H. Kuo, W.-T. Hsiao, K.-C. Huang, S.-F. Tseng, and C.-P. Chou, “Glass biochip fabrication by laser micromachining and glass-molding process,” J. Mater. Process. Technol. 212(3), 633–639 (2012).
[Crossref]

M. C. Kong, S. Anwar, J. Billingham, and D. A. Axinte, “Mathematical modelling of abrasive waterjet footprints for arbitrarily moving jets: part i – single straight paths,” Int. J. Mach. Tools Manuf. 53(1), 58–68 (2012).
[Crossref]

2011 (3)

C. F. Cheung, L. B. Kong, L. T. Ho, and S. To, “Modelling and simulation of structure surface generation using computer controlled ultra-precision polishing,” Precis. Eng. 35(4), 574–590 (2011).
[Crossref]

X. Cheng, Z. Wang, K. Nakamoto, and K. Yamazaki, “A study on the micro tooling for micro/nano milling,” Int. J. Adv. Manuf. Technol. 53(5–8), 523–533 (2011).
[Crossref]

Y. H. Ko and J. S. Yu, “Highly transparent sapphire micro-grating structures with large diffuse light scattering,” Opt. Express 19(16), 15574–15583 (2011).
[Crossref] [PubMed]

2010 (5)

L. Li and A. Y. Yi, “Development of a 3D artificial compound eye,” Opt. Express 18(17), 18125–18137 (2010).
[Crossref] [PubMed]

L. B. Kong, C. F. Cheung, X. Q. Jiang, W. B. Lee, S. To, L. Blunt, and P. Scott, “Characterization of surface generation of optical microstructures using a pattern and feature parametric analysis method,” Precis. Eng. 34(4), 755–766 (2010).
[Crossref]

Y. Caulier, “Inspection of complex surfaces by means of structured light patterns,” Opt. Express 18(7), 6642–6660 (2010).
[Crossref] [PubMed]

O. Iordan and C. Burlacu, “The main factors of influence in the micro-milling field,” Academic J. Manuf. Eng. 48, 43–49 (2010).

G. Kucukturk and C. Cogun, “A new method for machining of electrically nonconductive workpieces using electric discharge machining technique,” Mach. Sci. Technol. 14(2), 189–207 (2010).
[Crossref]

2009 (1)

C. D. Torres, P. J. Heaney, A. V. Sumant, M. A. Hamilton, R. W. Carpick, and F. E. Pfefferkorn, “Analyzing the performance of diamond-coated micro end mills,” Int. J. Mach. Tools Manuf. 49(7), 599–612 (2009).
[Crossref]

2008 (1)

C. Iliescu, B. Chen, and J. Miao, “On the wet etching of Pyrex glass,” Sens. Actuators A Phys. 143(1), 154–161 (2008).
[Crossref]

2004 (1)

G. Cusanelli, A. Hessler-Wyser, F. Bobard, R. Demellayer, R. Perez, and R. Flükiger, “Microstructure at submicron scale of the white layer produced by EDM technique,” J. Mater. Process. Technol. 149(1), 289–295 (2004).
[Crossref]

2003 (1)

H. Ogura and Y. Yoshida, “Hole drilling of glass substrates with a CO2 laser,” Jpn. J. Appl. Phys. 42(5), 2881–2886 (2003).
[Crossref]

1998 (1)

Anwar, S.

D. A. Axint, B. Karpuschewski, M. C. Kong, A. T. Beaucamp, S. Anwar, D. Miller, and M. Petzel, “High energy fluid jet machining (HEFJet-Mach): from scientific and technological advances to niche industrial applications,” CIRP Annals-Manuf. Technol. 63(2), 751–771 (2014).

M. C. Kong, S. Anwar, J. Billingham, and D. A. Axinte, “Mathematical modelling of abrasive waterjet footprints for arbitrarily moving jets: part i – single straight paths,” Int. J. Mach. Tools Manuf. 53(1), 58–68 (2012).
[Crossref]

Axint, D. A.

D. A. Axint, B. Karpuschewski, M. C. Kong, A. T. Beaucamp, S. Anwar, D. Miller, and M. Petzel, “High energy fluid jet machining (HEFJet-Mach): from scientific and technological advances to niche industrial applications,” CIRP Annals-Manuf. Technol. 63(2), 751–771 (2014).

Axinte, D. A.

M. C. Kong, S. Anwar, J. Billingham, and D. A. Axinte, “Mathematical modelling of abrasive waterjet footprints for arbitrarily moving jets: part i – single straight paths,” Int. J. Mach. Tools Manuf. 53(1), 58–68 (2012).
[Crossref]

Bai, S.

Beaucamp, A. T.

D. A. Axint, B. Karpuschewski, M. C. Kong, A. T. Beaucamp, S. Anwar, D. Miller, and M. Petzel, “High energy fluid jet machining (HEFJet-Mach): from scientific and technological advances to niche industrial applications,” CIRP Annals-Manuf. Technol. 63(2), 751–771 (2014).

Billingham, J.

M. C. Kong, S. Anwar, J. Billingham, and D. A. Axinte, “Mathematical modelling of abrasive waterjet footprints for arbitrarily moving jets: part i – single straight paths,” Int. J. Mach. Tools Manuf. 53(1), 58–68 (2012).
[Crossref]

Blunt, L.

L. B. Kong, C. F. Cheung, X. Q. Jiang, W. B. Lee, S. To, L. Blunt, and P. Scott, “Characterization of surface generation of optical microstructures using a pattern and feature parametric analysis method,” Precis. Eng. 34(4), 755–766 (2010).
[Crossref]

Bobard, F.

G. Cusanelli, A. Hessler-Wyser, F. Bobard, R. Demellayer, R. Perez, and R. Flükiger, “Microstructure at submicron scale of the white layer produced by EDM technique,” J. Mater. Process. Technol. 149(1), 289–295 (2004).
[Crossref]

Bridges, D.

Brug, H.

Burlacu, C.

O. Iordan and C. Burlacu, “The main factors of influence in the micro-milling field,” Academic J. Manuf. Eng. 48, 43–49 (2010).

Cai, Z.

Cao, J.

I. Saxena, K. Ehmann, and J. Cao, “High throughput microfabrication using laser induced plasma in saline aqueous medium,” J. Mater. Process. Technol. 217, 77–87 (2015).
[Crossref]

Carpick, R. W.

C. D. Torres, P. J. Heaney, A. V. Sumant, M. A. Hamilton, R. W. Carpick, and F. E. Pfefferkorn, “Analyzing the performance of diamond-coated micro end mills,” Int. J. Mach. Tools Manuf. 49(7), 599–612 (2009).
[Crossref]

Caulier, Y.

Chen, B.

C. Iliescu, B. Chen, and J. Miao, “On the wet etching of Pyrex glass,” Sens. Actuators A Phys. 143(1), 154–161 (2008).
[Crossref]

Cheng, X.

X. Cheng, Z. Wang, K. Nakamoto, and K. Yamazaki, “A study on the micro tooling for micro/nano milling,” Int. J. Adv. Manuf. Technol. 53(5–8), 523–533 (2011).
[Crossref]

Cheung, C. F.

C. J. Wang, C. F. Cheung, L. T. Ho, M. Y. Liu, and W. B. Lee, “A novel multi-jet polishing process and tool for high-efficiency polishing,” Int. J. Mach. Tools Manuf. 115, 60–73 (2017).
[Crossref]

C. F. Cheung, L. B. Kong, L. T. Ho, and S. To, “Modelling and simulation of structure surface generation using computer controlled ultra-precision polishing,” Precis. Eng. 35(4), 574–590 (2011).
[Crossref]

L. B. Kong, C. F. Cheung, X. Q. Jiang, W. B. Lee, S. To, L. Blunt, and P. Scott, “Characterization of surface generation of optical microstructures using a pattern and feature parametric analysis method,” Precis. Eng. 34(4), 755–766 (2010).
[Crossref]

L. T. Ho, C. F. Cheung, L. B. Kong, and M. J. Ren, “Theoretical and experimental investigation of three-dimensional-structured surface generation using fluid jet polishing,” Proc. Institution Mechanical Eng. Part B. in press.

Chou, C.-P.

C.-Y. Huang, C.-H. Kuo, W.-T. Hsiao, K.-C. Huang, S.-F. Tseng, and C.-P. Chou, “Glass biochip fabrication by laser micromachining and glass-molding process,” J. Mater. Process. Technol. 212(3), 633–639 (2012).
[Crossref]

Cogun, C.

G. Kucukturk and C. Cogun, “A new method for machining of electrically nonconductive workpieces using electric discharge machining technique,” Mach. Sci. Technol. 14(2), 189–207 (2010).
[Crossref]

Cusanelli, G.

G. Cusanelli, A. Hessler-Wyser, F. Bobard, R. Demellayer, R. Perez, and R. Flükiger, “Microstructure at submicron scale of the white layer produced by EDM technique,” J. Mater. Process. Technol. 149(1), 289–295 (2004).
[Crossref]

Davies, M. A.

Demellayer, R.

G. Cusanelli, A. Hessler-Wyser, F. Bobard, R. Demellayer, R. Perez, and R. Flükiger, “Microstructure at submicron scale of the white layer produced by EDM technique,” J. Mater. Process. Technol. 149(1), 289–295 (2004).
[Crossref]

Diaspro, A.

C. Florian, S. Piazza, A. Diaspro, P. Serra, and M. Duocastella, “Direct laser printing of tailored polymeric microlenses,” ACS Appl. Mater. Interfaces 8(27), 17028–17032 (2016).
[Crossref] [PubMed]

Duley, W. W.

Duocastella, M.

C. Florian, S. Piazza, A. Diaspro, P. Serra, and M. Duocastella, “Direct laser printing of tailored polymeric microlenses,” ACS Appl. Mater. Interfaces 8(27), 17028–17032 (2016).
[Crossref] [PubMed]

Eberhardt, R.

Ehmann, K.

I. Saxena, K. Ehmann, and J. Cao, “High throughput microfabrication using laser induced plasma in saline aqueous medium,” J. Mater. Process. Technol. 217, 77–87 (2015).
[Crossref]

Faehnle, O. W.

O. W. Faehnle, “Process optimization in optical fabrication,” Opt. Eng. 55(3), 035106 (2016).
[Crossref]

Fähnle, O. W.

Florian, C.

C. Florian, S. Piazza, A. Diaspro, P. Serra, and M. Duocastella, “Direct laser printing of tailored polymeric microlenses,” ACS Appl. Mater. Interfaces 8(27), 17028–17032 (2016).
[Crossref] [PubMed]

Flükiger, R.

G. Cusanelli, A. Hessler-Wyser, F. Bobard, R. Demellayer, R. Perez, and R. Flükiger, “Microstructure at submicron scale of the white layer produced by EDM technique,” J. Mater. Process. Technol. 149(1), 289–295 (2004).
[Crossref]

Frankena, H. J.

Gao, B. Z.

Gao, J.

Gebhardt, A.

Guo, Y.

Haghbin, N.

N. Haghbin, J. K. Spelt, and M. Papini, “Abrasive waterjet micro-machining of channels in metals: Model to predict high aspect-ratio channel profiles for submerged and unsubmerged machining,” J. Mater. Process. Technol. 222, 399–409 (2015).
[Crossref]

N. Haghbin, J. K. Spelt, and M. Papini, “Abrasive waterjet micro-machining of channels in metals: comparison between machining in air and submerged in water,” Int. J. Mach. Tools Manuf. 88, 108–117 (2015).
[Crossref]

Hamilton, M. A.

C. D. Torres, P. J. Heaney, A. V. Sumant, M. A. Hamilton, R. W. Carpick, and F. E. Pfefferkorn, “Analyzing the performance of diamond-coated micro end mills,” Int. J. Mach. Tools Manuf. 49(7), 599–612 (2009).
[Crossref]

He, Y.

Heaney, P. J.

C. D. Torres, P. J. Heaney, A. V. Sumant, M. A. Hamilton, R. W. Carpick, and F. E. Pfefferkorn, “Analyzing the performance of diamond-coated micro end mills,” Int. J. Mach. Tools Manuf. 49(7), 599–612 (2009).
[Crossref]

Hessler-Wyser, A.

G. Cusanelli, A. Hessler-Wyser, F. Bobard, R. Demellayer, R. Perez, and R. Flükiger, “Microstructure at submicron scale of the white layer produced by EDM technique,” J. Mater. Process. Technol. 149(1), 289–295 (2004).
[Crossref]

Ho, G. W.

J. Yang, F. Luo, T. S. Kao, X. Li, G. W. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light Sci. Appl. 3(7), e185 (2014).
[Crossref]

Ho, L. T.

C. J. Wang, C. F. Cheung, L. T. Ho, M. Y. Liu, and W. B. Lee, “A novel multi-jet polishing process and tool for high-efficiency polishing,” Int. J. Mach. Tools Manuf. 115, 60–73 (2017).
[Crossref]

C. F. Cheung, L. B. Kong, L. T. Ho, and S. To, “Modelling and simulation of structure surface generation using computer controlled ultra-precision polishing,” Precis. Eng. 35(4), 574–590 (2011).
[Crossref]

L. T. Ho, C. F. Cheung, L. B. Kong, and M. J. Ren, “Theoretical and experimental investigation of three-dimensional-structured surface generation using fluid jet polishing,” Proc. Institution Mechanical Eng. Part B. in press.

Hong, M.

J. Yang, F. Luo, T. S. Kao, X. Li, G. W. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light Sci. Appl. 3(7), e185 (2014).
[Crossref]

Hou, T.

Hsiao, W.-T.

C.-Y. Huang, C.-H. Kuo, W.-T. Hsiao, K.-C. Huang, S.-F. Tseng, and C.-P. Chou, “Glass biochip fabrication by laser micromachining and glass-molding process,” J. Mater. Process. Technol. 212(3), 633–639 (2012).
[Crossref]

Hu, A.

Hu, C.

Huang, C.-Y.

C.-Y. Huang, C.-H. Kuo, W.-T. Hsiao, K.-C. Huang, S.-F. Tseng, and C.-P. Chou, “Glass biochip fabrication by laser micromachining and glass-molding process,” J. Mater. Process. Technol. 212(3), 633–639 (2012).
[Crossref]

Huang, K.-C.

C.-Y. Huang, C.-H. Kuo, W.-T. Hsiao, K.-C. Huang, S.-F. Tseng, and C.-P. Chou, “Glass biochip fabrication by laser micromachining and glass-molding process,” J. Mater. Process. Technol. 212(3), 633–639 (2012).
[Crossref]

Iliescu, C.

C. Iliescu, B. Chen, and J. Miao, “On the wet etching of Pyrex glass,” Sens. Actuators A Phys. 143(1), 154–161 (2008).
[Crossref]

Iordan, O.

O. Iordan and C. Burlacu, “The main factors of influence in the micro-milling field,” Academic J. Manuf. Eng. 48, 43–49 (2010).

Jiang, X. Q.

L. B. Kong, C. F. Cheung, X. Q. Jiang, W. B. Lee, S. To, L. Blunt, and P. Scott, “Characterization of surface generation of optical microstructures using a pattern and feature parametric analysis method,” Precis. Eng. 34(4), 755–766 (2010).
[Crossref]

Kao, T. S.

J. Yang, F. Luo, T. S. Kao, X. Li, G. W. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light Sci. Appl. 3(7), e185 (2014).
[Crossref]

Karpuschewski, B.

D. A. Axint, B. Karpuschewski, M. C. Kong, A. T. Beaucamp, S. Anwar, D. Miller, and M. Petzel, “High energy fluid jet machining (HEFJet-Mach): from scientific and technological advances to niche industrial applications,” CIRP Annals-Manuf. Technol. 63(2), 751–771 (2014).

Ko, Y. H.

Kong, L. B.

C. F. Cheung, L. B. Kong, L. T. Ho, and S. To, “Modelling and simulation of structure surface generation using computer controlled ultra-precision polishing,” Precis. Eng. 35(4), 574–590 (2011).
[Crossref]

L. B. Kong, C. F. Cheung, X. Q. Jiang, W. B. Lee, S. To, L. Blunt, and P. Scott, “Characterization of surface generation of optical microstructures using a pattern and feature parametric analysis method,” Precis. Eng. 34(4), 755–766 (2010).
[Crossref]

L. T. Ho, C. F. Cheung, L. B. Kong, and M. J. Ren, “Theoretical and experimental investigation of three-dimensional-structured surface generation using fluid jet polishing,” Proc. Institution Mechanical Eng. Part B. in press.

Kong, M. C.

D. A. Axint, B. Karpuschewski, M. C. Kong, A. T. Beaucamp, S. Anwar, D. Miller, and M. Petzel, “High energy fluid jet machining (HEFJet-Mach): from scientific and technological advances to niche industrial applications,” CIRP Annals-Manuf. Technol. 63(2), 751–771 (2014).

M. C. Kong, S. Anwar, J. Billingham, and D. A. Axinte, “Mathematical modelling of abrasive waterjet footprints for arbitrarily moving jets: part i – single straight paths,” Int. J. Mach. Tools Manuf. 53(1), 58–68 (2012).
[Crossref]

Kucukturk, G.

G. Kucukturk and C. Cogun, “A new method for machining of electrically nonconductive workpieces using electric discharge machining technique,” Mach. Sci. Technol. 14(2), 189–207 (2010).
[Crossref]

Kuo, C.-H.

C.-Y. Huang, C.-H. Kuo, W.-T. Hsiao, K.-C. Huang, S.-F. Tseng, and C.-P. Chou, “Glass biochip fabrication by laser micromachining and glass-molding process,” J. Mater. Process. Technol. 212(3), 633–639 (2012).
[Crossref]

Lee, W. B.

C. J. Wang, C. F. Cheung, L. T. Ho, M. Y. Liu, and W. B. Lee, “A novel multi-jet polishing process and tool for high-efficiency polishing,” Int. J. Mach. Tools Manuf. 115, 60–73 (2017).
[Crossref]

L. B. Kong, C. F. Cheung, X. Q. Jiang, W. B. Lee, S. To, L. Blunt, and P. Scott, “Characterization of surface generation of optical microstructures using a pattern and feature parametric analysis method,” Precis. Eng. 34(4), 755–766 (2010).
[Crossref]

Lee, X. H.

Li, A.

Li, J.

Li, L.

Li, X.

J. Yang, F. Luo, T. S. Kao, X. Li, G. W. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light Sci. Appl. 3(7), e185 (2014).
[Crossref]

Lin, H.

Liu, J.

Liu, M. Y.

C. J. Wang, C. F. Cheung, L. T. Ho, M. Y. Liu, and W. B. Lee, “A novel multi-jet polishing process and tool for high-efficiency polishing,” Int. J. Mach. Tools Manuf. 115, 60–73 (2017).
[Crossref]

Liu, X.

Luo, F.

J. Yang, F. Luo, T. S. Kao, X. Li, G. W. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light Sci. Appl. 3(7), e185 (2014).
[Crossref]

Luo, X.

J. Yang, F. Luo, T. S. Kao, X. Li, G. W. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light Sci. Appl. 3(7), e185 (2014).
[Crossref]

Ma, Q.

Mao, M.

M. Mao and J. W. Yan, “Ductile machining of single-crystal silicon for microlens arrays by ultraprecision diamond turning using a slow tool servo,” Int. J. Mach. Tools Manuf. 115, 2–14 (2017).
[Crossref]

McCall, B.

McCray, D. L.

Mei, Q.

Miao, J.

C. Iliescu, B. Chen, and J. Miao, “On the wet etching of Pyrex glass,” Sens. Actuators A Phys. 143(1), 154–161 (2008).
[Crossref]

Miller, D.

D. A. Axint, B. Karpuschewski, M. C. Kong, A. T. Beaucamp, S. Anwar, D. Miller, and M. Petzel, “High energy fluid jet machining (HEFJet-Mach): from scientific and technological advances to niche industrial applications,” CIRP Annals-Manuf. Technol. 63(2), 751–771 (2014).

Moreno, I.

Nakamoto, K.

X. Cheng, Z. Wang, K. Nakamoto, and K. Yamazaki, “A study on the micro tooling for micro/nano milling,” Int. J. Adv. Manuf. Technol. 53(5–8), 523–533 (2011).
[Crossref]

Naples, N. J.

Ogura, H.

H. Ogura and Y. Yoshida, “Hole drilling of glass substrates with a CO2 laser,” Jpn. J. Appl. Phys. 42(5), 2881–2886 (2003).
[Crossref]

Owen, J. D.

Papa, J. C.

Papini, M.

N. Haghbin, J. K. Spelt, and M. Papini, “Abrasive waterjet micro-machining of channels in metals: Model to predict high aspect-ratio channel profiles for submerged and unsubmerged machining,” J. Mater. Process. Technol. 222, 399–409 (2015).
[Crossref]

N. Haghbin, J. K. Spelt, and M. Papini, “Abrasive waterjet micro-machining of channels in metals: comparison between machining in air and submerged in water,” Int. J. Mach. Tools Manuf. 88, 108–117 (2015).
[Crossref]

Peng, X.

Perez, R.

G. Cusanelli, A. Hessler-Wyser, F. Bobard, R. Demellayer, R. Perez, and R. Flükiger, “Microstructure at submicron scale of the white layer produced by EDM technique,” J. Mater. Process. Technol. 149(1), 289–295 (2004).
[Crossref]

Petzel, M.

D. A. Axint, B. Karpuschewski, M. C. Kong, A. T. Beaucamp, S. Anwar, D. Miller, and M. Petzel, “High energy fluid jet machining (HEFJet-Mach): from scientific and technological advances to niche industrial applications,” CIRP Annals-Manuf. Technol. 63(2), 751–771 (2014).

Pfefferkorn, F. E.

C. D. Torres, P. J. Heaney, A. V. Sumant, M. A. Hamilton, R. W. Carpick, and F. E. Pfefferkorn, “Analyzing the performance of diamond-coated micro end mills,” Int. J. Mach. Tools Manuf. 49(7), 599–612 (2009).
[Crossref]

Piazza, S.

C. Florian, S. Piazza, A. Diaspro, P. Serra, and M. Duocastella, “Direct laser printing of tailored polymeric microlenses,” ACS Appl. Mater. Interfaces 8(27), 17028–17032 (2016).
[Crossref] [PubMed]

Reimers, J.

Ren, M. J.

L. T. Ho, C. F. Cheung, L. B. Kong, and M. J. Ren, “Theoretical and experimental investigation of three-dimensional-structured surface generation using fluid jet polishing,” Proc. Institution Mechanical Eng. Part B. in press.

Risse, S.

Rolland, J. P.

Saxena, I.

I. Saxena, K. Ehmann, and J. Cao, “High throughput microfabrication using laser induced plasma in saline aqueous medium,” J. Mater. Process. Technol. 217, 77–87 (2015).
[Crossref]

Scheiding, S.

Scott, P.

L. B. Kong, C. F. Cheung, X. Q. Jiang, W. B. Lee, S. To, L. Blunt, and P. Scott, “Characterization of surface generation of optical microstructures using a pattern and feature parametric analysis method,” Precis. Eng. 34(4), 755–766 (2010).
[Crossref]

Serra, P.

C. Florian, S. Piazza, A. Diaspro, P. Serra, and M. Duocastella, “Direct laser printing of tailored polymeric microlenses,” ACS Appl. Mater. Interfaces 8(27), 17028–17032 (2016).
[Crossref] [PubMed]

Shih, W. C.

Spelt, J. K.

N. Haghbin, J. K. Spelt, and M. Papini, “Abrasive waterjet micro-machining of channels in metals: comparison between machining in air and submerged in water,” Int. J. Mach. Tools Manuf. 88, 108–117 (2015).
[Crossref]

N. Haghbin, J. K. Spelt, and M. Papini, “Abrasive waterjet micro-machining of channels in metals: Model to predict high aspect-ratio channel profiles for submerged and unsubmerged machining,” J. Mater. Process. Technol. 222, 399–409 (2015).
[Crossref]

Suleski, T. J.

Sumant, A. V.

C. D. Torres, P. J. Heaney, A. V. Sumant, M. A. Hamilton, R. W. Carpick, and F. E. Pfefferkorn, “Analyzing the performance of diamond-coated micro end mills,” Int. J. Mach. Tools Manuf. 49(7), 599–612 (2009).
[Crossref]

Sun, C.-C.

Teng, J.

J. Yang, F. Luo, T. S. Kao, X. Li, G. W. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light Sci. Appl. 3(7), e185 (2014).
[Crossref]

Thompson, K. P.

Tkaczyk, T. S.

To, S.

Z. Zhu, S. To, and S. Zhang, “Large-scale fabrication of micro-lens array by novel end-fly-cutting-servo diamond machining,” Opt. Express 23(16), 20593–20604 (2015).
[Crossref] [PubMed]

C. F. Cheung, L. B. Kong, L. T. Ho, and S. To, “Modelling and simulation of structure surface generation using computer controlled ultra-precision polishing,” Precis. Eng. 35(4), 574–590 (2011).
[Crossref]

L. B. Kong, C. F. Cheung, X. Q. Jiang, W. B. Lee, S. To, L. Blunt, and P. Scott, “Characterization of surface generation of optical microstructures using a pattern and feature parametric analysis method,” Precis. Eng. 34(4), 755–766 (2010).
[Crossref]

Torres, C. D.

C. D. Torres, P. J. Heaney, A. V. Sumant, M. A. Hamilton, R. W. Carpick, and F. E. Pfefferkorn, “Analyzing the performance of diamond-coated micro end mills,” Int. J. Mach. Tools Manuf. 49(7), 599–612 (2009).
[Crossref]

Troutman, J. R.

Tseng, S.-F.

C.-Y. Huang, C.-H. Kuo, W.-T. Hsiao, K.-C. Huang, S.-F. Tseng, and C.-P. Chou, “Glass biochip fabrication by laser micromachining and glass-molding process,” J. Mater. Process. Technol. 212(3), 633–639 (2012).
[Crossref]

Tünnermann, A.

Wang, C.

Wang, C. J.

C. J. Wang, C. F. Cheung, L. T. Ho, M. Y. Liu, and W. B. Lee, “A novel multi-jet polishing process and tool for high-efficiency polishing,” Int. J. Mach. Tools Manuf. 115, 60–73 (2017).
[Crossref]

Wang, X.

Wang, Z.

Wu, J.

Xu, D.

Xu, Q.

Yamazaki, K.

X. Cheng, Z. Wang, K. Nakamoto, and K. Yamazaki, “A study on the micro tooling for micro/nano milling,” Int. J. Adv. Manuf. Technol. 53(5–8), 523–533 (2011).
[Crossref]

Yan, J. W.

M. Mao and J. W. Yan, “Ductile machining of single-crystal silicon for microlens arrays by ultraprecision diamond turning using a slow tool servo,” Int. J. Mach. Tools Manuf. 115, 2–14 (2017).
[Crossref]

Yang, J.

J. Yang, F. Luo, T. S. Kao, X. Li, G. W. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light Sci. Appl. 3(7), e185 (2014).
[Crossref]

Yang, W.

Yang, X.

Yi, A. Y.

Yin, Y.

Yoshida, Y.

H. Ogura and Y. Yoshida, “Hole drilling of glass substrates with a CO2 laser,” Jpn. J. Appl. Phys. 42(5), 2881–2886 (2003).
[Crossref]

Yu, J. S.

Zhang, H.

Zhang, S.

Zhao, F.

Zheng, C.

Zhong, B.

Zhu, Z.

Academic J. Manuf. Eng. (1)

O. Iordan and C. Burlacu, “The main factors of influence in the micro-milling field,” Academic J. Manuf. Eng. 48, 43–49 (2010).

ACS Appl. Mater. Interfaces (1)

C. Florian, S. Piazza, A. Diaspro, P. Serra, and M. Duocastella, “Direct laser printing of tailored polymeric microlenses,” ACS Appl. Mater. Interfaces 8(27), 17028–17032 (2016).
[Crossref] [PubMed]

Appl. Opt. (4)

CIRP Annals-Manuf. Technol. (1)

D. A. Axint, B. Karpuschewski, M. C. Kong, A. T. Beaucamp, S. Anwar, D. Miller, and M. Petzel, “High energy fluid jet machining (HEFJet-Mach): from scientific and technological advances to niche industrial applications,” CIRP Annals-Manuf. Technol. 63(2), 751–771 (2014).

Int. J. Adv. Manuf. Technol. (1)

X. Cheng, Z. Wang, K. Nakamoto, and K. Yamazaki, “A study on the micro tooling for micro/nano milling,” Int. J. Adv. Manuf. Technol. 53(5–8), 523–533 (2011).
[Crossref]

Int. J. Mach. Tools Manuf. (5)

M. C. Kong, S. Anwar, J. Billingham, and D. A. Axinte, “Mathematical modelling of abrasive waterjet footprints for arbitrarily moving jets: part i – single straight paths,” Int. J. Mach. Tools Manuf. 53(1), 58–68 (2012).
[Crossref]

N. Haghbin, J. K. Spelt, and M. Papini, “Abrasive waterjet micro-machining of channels in metals: comparison between machining in air and submerged in water,” Int. J. Mach. Tools Manuf. 88, 108–117 (2015).
[Crossref]

C. J. Wang, C. F. Cheung, L. T. Ho, M. Y. Liu, and W. B. Lee, “A novel multi-jet polishing process and tool for high-efficiency polishing,” Int. J. Mach. Tools Manuf. 115, 60–73 (2017).
[Crossref]

C. D. Torres, P. J. Heaney, A. V. Sumant, M. A. Hamilton, R. W. Carpick, and F. E. Pfefferkorn, “Analyzing the performance of diamond-coated micro end mills,” Int. J. Mach. Tools Manuf. 49(7), 599–612 (2009).
[Crossref]

M. Mao and J. W. Yan, “Ductile machining of single-crystal silicon for microlens arrays by ultraprecision diamond turning using a slow tool servo,” Int. J. Mach. Tools Manuf. 115, 2–14 (2017).
[Crossref]

J. Mater. Process. Technol. (4)

C.-Y. Huang, C.-H. Kuo, W.-T. Hsiao, K.-C. Huang, S.-F. Tseng, and C.-P. Chou, “Glass biochip fabrication by laser micromachining and glass-molding process,” J. Mater. Process. Technol. 212(3), 633–639 (2012).
[Crossref]

G. Cusanelli, A. Hessler-Wyser, F. Bobard, R. Demellayer, R. Perez, and R. Flükiger, “Microstructure at submicron scale of the white layer produced by EDM technique,” J. Mater. Process. Technol. 149(1), 289–295 (2004).
[Crossref]

I. Saxena, K. Ehmann, and J. Cao, “High throughput microfabrication using laser induced plasma in saline aqueous medium,” J. Mater. Process. Technol. 217, 77–87 (2015).
[Crossref]

N. Haghbin, J. K. Spelt, and M. Papini, “Abrasive waterjet micro-machining of channels in metals: Model to predict high aspect-ratio channel profiles for submerged and unsubmerged machining,” J. Mater. Process. Technol. 222, 399–409 (2015).
[Crossref]

Jpn. J. Appl. Phys. (1)

H. Ogura and Y. Yoshida, “Hole drilling of glass substrates with a CO2 laser,” Jpn. J. Appl. Phys. 42(5), 2881–2886 (2003).
[Crossref]

Light Sci. Appl. (1)

J. Yang, F. Luo, T. S. Kao, X. Li, G. W. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light Sci. Appl. 3(7), e185 (2014).
[Crossref]

Mach. Sci. Technol. (1)

G. Kucukturk and C. Cogun, “A new method for machining of electrically nonconductive workpieces using electric discharge machining technique,” Mach. Sci. Technol. 14(2), 189–207 (2010).
[Crossref]

Opt. Eng. (1)

O. W. Faehnle, “Process optimization in optical fabrication,” Opt. Eng. 55(3), 035106 (2016).
[Crossref]

Opt. Express (11)

Z. Cai, X. Liu, X. Peng, Y. Yin, A. Li, J. Wu, and B. Z. Gao, “Structured light field 3D imaging,” Opt. Express 24(18), 20324–20334 (2016).
[Crossref] [PubMed]

H. Lin, J. Gao, Q. Mei, Y. He, J. Liu, and X. Wang, “Adaptive digital fringe projection technique for high dynamic range three-dimensional shape measurement,” Opt. Express 24(7), 7703–7718 (2016).
[Crossref] [PubMed]

Y. Caulier, “Inspection of complex surfaces by means of structured light patterns,” Opt. Express 18(7), 6642–6660 (2010).
[Crossref] [PubMed]

Y. H. Ko and J. S. Yu, “Highly transparent sapphire micro-grating structures with large diffuse light scattering,” Opt. Express 19(16), 15574–15583 (2011).
[Crossref] [PubMed]

Z. Zhu, S. To, and S. Zhang, “Large-scale fabrication of micro-lens array by novel end-fly-cutting-servo diamond machining,” Opt. Express 23(16), 20593–20604 (2015).
[Crossref] [PubMed]

D. Xu, J. D. Owen, J. C. Papa, J. Reimers, T. J. Suleski, J. R. Troutman, M. A. Davies, K. P. Thompson, and J. P. Rolland, “Design, fabrication, and testing of convex reflective diffraction gratings,” Opt. Express 25(13), 15252–15268 (2017).
[Crossref] [PubMed]

L. Li and A. Y. Yi, “Development of a 3D artificial compound eye,” Opt. Express 18(17), 18125–18137 (2010).
[Crossref] [PubMed]

H. Zhang, L. Li, D. L. McCray, S. Scheiding, N. J. Naples, A. Gebhardt, S. Risse, R. Eberhardt, A. Tünnermann, and A. Y. Yi, “Development of a low cost high precision three-layer 3D artificial compound eye,” Opt. Express 21(19), 22232–22245 (2013).
[Crossref] [PubMed]

B. McCall and T. S. Tkaczyk, “Rapid fabrication of miniature lens arrays by four-axis single point diamond machining,” Opt. Express 21(3), 3557–3572 (2013).
[Crossref] [PubMed]

X. H. Lee, I. Moreno, and C.-C. Sun, “High-performance LED street lighting using microlens arrays,” Opt. Express 21(9), 10612–10621 (2013).
[Crossref] [PubMed]

J. Li, F. Zhao, and W. C. Shih, “Direct-write patterning of nanoporous gold microstructures by in situ laser-assisted dealloying,” Opt. Express 24(20), 23610–23617 (2016).
[Crossref] [PubMed]

Precis. Eng. (2)

L. B. Kong, C. F. Cheung, X. Q. Jiang, W. B. Lee, S. To, L. Blunt, and P. Scott, “Characterization of surface generation of optical microstructures using a pattern and feature parametric analysis method,” Precis. Eng. 34(4), 755–766 (2010).
[Crossref]

C. F. Cheung, L. B. Kong, L. T. Ho, and S. To, “Modelling and simulation of structure surface generation using computer controlled ultra-precision polishing,” Precis. Eng. 35(4), 574–590 (2011).
[Crossref]

Sens. Actuators A Phys. (1)

C. Iliescu, B. Chen, and J. Miao, “On the wet etching of Pyrex glass,” Sens. Actuators A Phys. 143(1), 154–161 (2008).
[Crossref]

Other (3)

L. T. Ho, C. F. Cheung, L. B. Kong, and M. J. Ren, “Theoretical and experimental investigation of three-dimensional-structured surface generation using fluid jet polishing,” Proc. Institution Mechanical Eng. Part B. in press.

C. J. Wang, C. F. Cheung, and M. Y. Liu, “Numerical modeling and experimentation of three dimensional material removal characteristics in fluid jet polishing,” Int. J. Mech. Sci. under review (2017).

M. Y. Liu, C. F. Cheung, C. H. Cheng, R. Su, and R. K. Leach, “A Gaussian process and image registration based stitching method for high dynamic range measurement of precision surfaces,” Precision Eng. 2017 (published online) https://doi.org/10.1016/j.precisioneng.2017.04.017
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Principle of Multi-Jet parallel machining process. (a) Schematic diagram of the polishing system, (b) spatial distribution of the fluid jet array, and (c) top view of synchronous movement of each fluid jet.
Fig. 2
Fig. 2 Jet interference demonstration. (a) Fluid jet interference of a linear distributed 5-jet nozzle, in which the orifice diameter is 1mm and the jet interval is 2mm; (b) the corresponding material removal on BK7 with the dwell time of 3 min [32].
Fig. 3
Fig. 3 Photographs of four kinds of 2-Jet nozzles with different jet interval: (a) jet interval = 0.6mm, (b) jet interval = 1 mm, (c) jet interval = 2 mm, and (d) jet interval = 3 mm.
Fig. 4
Fig. 4 Generated TIF shapes of the nozzles in Fig. 3: (a) jet interval = 0.6mm, (b) jet interval = 1mm, (c) jet interval = 2mm, and (d) jet interval = 3mm.
Fig. 5
Fig. 5 Photograph and material removal characteristics of multiple linear distributed 4-jet nozzle: (a) Photograph of the multiple linear distributed 4-jet nozzle, (b) TIF contour with the dwell time of 2min, (c) generated surface form after polishing along a 6 mm length line with the feed rate of 0.5 mm/min, (d) simulated velocity distribution of the fluid flow pumped out of the 4-jet jet-array nozzle, (e) magnified figure of the region in (d), and (f) the velocity distribution of four fluid jet flow when pumped out 1mm distance.
Fig. 6
Fig. 6 Simulation results of single jet polishing when the fluid pressure is 4bar: (a) Simulated fluid velocity distribution, (b) simulated material removal distribution.
Fig. 7
Fig. 7 Validation of the model to characterize the material removal of FJAPM: (a) measured practical material removal, (b) simulated material removal, (c) comparison of the 3D matching results marked with sectional profiles (Dash line and solid line are corresponding to the measured result and simulation result, respectively), (d) the deviation between the simulation and measured results.
Fig. 8
Fig. 8 Generated surface on nickel copper alloy through adopting the cross line path: (a) photo graph taken on Alicona Infinite Focus, (b) measured surface roughness of the position in (a), (c) measured surface form on Zygo Nexview 3D profilometer, and (d) simulation result of the generated surface form, (e) 3D matching results of the measured and simulated surface form, and (f) deviation error distribution.
Fig. 9
Fig. 9 Generated surface on nickel copper alloy through adopting the 4 sequential raster path: (a) photo graph taken on alicona InfiniteFocus, (b) measured surface roughness at the position shown in (a), (c) measured surface form on Zygo Nexview 3D profilometer, and (d) simulation result of the generated surface form, (e) 3D matching results of the measured and simulated surface form, and (f) deviation error distribution.
Fig. 10
Fig. 10 Generated channel arrays with the 2-line path on nickel copper alloy: (a) measured surface form on Zygo Nexview 3D profilometer, and (b) simulation result of the generated surface form, (c) 3D matching results of the measured and simulated surface form, and (d) deviation error distribution.
Fig. 11
Fig. 11 Generated 4 × 4 lens array surface on ground BK7 glass: (a) photo graph of the generated lens array surface, (d) measured surface form on Zygo Nexview 3D profilometer, (e) measured practical TIF on BK7 for the simulation, (f) simulation result of the generated surface form, (g) 3D matching results of the measured and simulated surface form, (h) deviation error distribution, and (i) maximum depth comparison of the generated lens array.

Tables (2)

Tables Icon

Table 1 TIF generation conditions

Tables Icon

Table 2 Polishing conditions for the validation experiments based on simulated TIF

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

R M J [ P × Q ] = [ I { R E X _ S J [ ( M - 1 ) × ( N - 1 ) ] R E X _ S J [ ( M - 1 ) × ( N - 1 ) ] R E X _ S J [ ( M - 1 ) × N ] R E X _ S J [ ( M - 1 ) × ( N - 1 ) ] R E X _ S J [ ( M - 1 ) × ( N - 1 ) ] R E X _ S J [ ( M - 1 ) × N ] R E X _ S J [ M × ( N - 1 ) ] R E X _ S J [ M × ( N - 1 ) ] R E X _ S J [ M × N ] J ]
H ( x , y ) = R M J ( x , y ) T ( x , y )
E ( x , y ) = H 0 ( x , y ) H ( x , y )

Metrics