Abstract

An electrically controlled metamaterial perfect absorber (MPA) based on Mie resonance is demonstrated experimentally and modeled numerically. A ceramic dielectric cube is adhered to a specially shaped thin copper film sputtered on a quartz plate. By passing direct current (DC) through the film, the temperature of the cube can be varied, resulting in changing the cube’s permittivity and shifting the absorption resonance frequency. The frequency increases on heating and the absorption is over 99% throughout the tuning range. This method for constructing miniaturized tunable MPAs compares favorably to bulky alternative designs. It also provides a versatile route to broaden the absorption bandwidth and potentially expand the range of applications such as metasurfaces and cloaking devices utilizing nonuniform permittivity absorbers produced by temperature gradients.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Thermally tunable electric mie resonance of dielectric cut-wire type metamaterial

Fuli Zhang, Lei Chen, Ying Wang, Qian Zhao, Xuan He, and Ke Chen
Opt. Express 22(21) 24908-24913 (2014)

Mie resonance induced broadband near-perfect absorption in nonstructured graphene loaded with periodical dielectric wires

Jiawen Yang, Zhihong Zhu, Jianfa Zhang, Wei Xu, Chucai Guo, Ken Liu, Mengjian Zhu, Haitao Chen, Renyan Zhang, Xiaodong Yuan, and Shiqiao Qin
Opt. Express 26(16) 20174-20182 (2018)

Metamaterial perfect absorber based on artificial dielectric “atoms”

Xiaoming Liu, Ke Bi, Bo Li, Qian Zhao, and Ji Zhou
Opt. Express 24(18) 20454-20460 (2016)

References

  • View by:
  • |
  • |
  • |

  1. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
    [Crossref] [PubMed]
  2. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of and μ,” Sov. Phys. Usp. 10, 509 (1968).
    [Crossref]
  3. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
    [Crossref] [PubMed]
  4. D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
    [Crossref] [PubMed]
  5. M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
    [Crossref] [PubMed]
  6. X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
    [Crossref] [PubMed]
  7. P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
    [Crossref]
  8. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
    [Crossref] [PubMed]
  9. J. B. Pendry, A. J. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
    [Crossref]
  10. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [Crossref] [PubMed]
  11. C. Lan, Y. Yang, Z. Geng, B. Li, and J. Zhou, “Electrostatic Field Invisibility Cloak,” Sci. Rep. 5(1), 16416 (2015).
    [Crossref] [PubMed]
  12. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
    [Crossref] [PubMed]
  13. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [Crossref] [PubMed]
  14. Y. Dong and T. Itoh, “Metamaterial-based antennas,” Proc. IEEE 100(7), 2271–2285 (2012).
    [Crossref]
  15. M. Kang, T. Feng, H.-T. Wang, and J. Li, “Wave front engineering from an array of thin aperture antennas,” Opt. Express 20(14), 15882–15890 (2012).
    [Crossref] [PubMed]
  16. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  17. H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
    [Crossref]
  18. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
    [Crossref] [PubMed]
  19. X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
    [Crossref] [PubMed]
  20. N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
    [Crossref]
  21. X. Liu, K. Bi, B. Li, Q. Zhao, and J. Zhou, “Metamaterial perfect absorber based on artificial dielectric “atoms”,” Opt. Express 24(18), 20454–20460 (2016).
    [Crossref] [PubMed]
  22. Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
    [Crossref] [PubMed]
  23. A. Tittl, A. K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid‐infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
    [Crossref] [PubMed]
  24. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
    [Crossref] [PubMed]
  25. F. Alves, D. Grbovic, B. Kearney, N. V. Lavrik, and G. Karunasiri, “Bi-material terahertz sensors using metamaterial structures,” Opt. Express 21(11), 13256–13271 (2013).
    [Crossref] [PubMed]
  26. P. Gay-Balmaz and O. J. Martin, “Efficient isotropic magnetic resonators,” Appl. Phys. Lett. 81(5), 939–941 (2002).
    [Crossref]
  27. Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101(2), 027402 (2008).
    [Crossref] [PubMed]
  28. X. Liu, Q. Zhao, C. Lan, and J. Zhou, “Isotropic Mie resonance-based metamaterial perfect absorber,” Appl. Phys. Lett. 103(3), 031910 (2013).
    [Crossref]
  29. F. Zhang, S. Feng, K. Qiu, Z. Liu, Y. Fan, W. Zhang, Q. Zhao, and J. Zhou, “Mechanically stretchable and tunable metamaterial absorber,” Appl. Phys. Lett. 106(9), 091907 (2015).
    [Crossref]
  30. M. Lei, N. Feng, Q. Wang, Y. Hao, S. Huang, and K. Bi, “Magnetically tunable metamaterial perfect absorber,” J. Appl. Phys. 119(24), 244504 (2016).
    [Crossref]
  31. D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
    [Crossref] [PubMed]
  32. B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An All-Optical, Non-volatile, Bidirectional, Phase-Change Meta-Switch,” Adv. Mater. 25(22), 3050–3054 (2013).
    [Crossref] [PubMed]
  33. X. Kong, X. Shi, J. Mo, Y. Fang, X. Chen, and S. Liu, “Tunable multichannel absorber composed of graphene and doped periodic structures,” Opt. Commun. 383, 391–396 (2017).
    [Crossref]
  34. Q. Zhao, Z. Xiao, F. Zhang, J. Ma, M. Qiao, Y. Meng, C. Lan, B. Li, J. Zhou, P. Zhang, N.-H. Shen, T. Koschny, and C. M. Soukoulis, “Tailorable Zero-Phase Delay of Subwavelength Particles toward Miniaturized Wave Manipulation Devices,” Adv. Mater. 27(40), 6187–6194 (2015).
    [Crossref] [PubMed]

2017 (1)

X. Kong, X. Shi, J. Mo, Y. Fang, X. Chen, and S. Liu, “Tunable multichannel absorber composed of graphene and doped periodic structures,” Opt. Commun. 383, 391–396 (2017).
[Crossref]

2016 (2)

X. Liu, K. Bi, B. Li, Q. Zhao, and J. Zhou, “Metamaterial perfect absorber based on artificial dielectric “atoms”,” Opt. Express 24(18), 20454–20460 (2016).
[Crossref] [PubMed]

M. Lei, N. Feng, Q. Wang, Y. Hao, S. Huang, and K. Bi, “Magnetically tunable metamaterial perfect absorber,” J. Appl. Phys. 119(24), 244504 (2016).
[Crossref]

2015 (4)

F. Zhang, S. Feng, K. Qiu, Z. Liu, Y. Fan, W. Zhang, Q. Zhao, and J. Zhou, “Mechanically stretchable and tunable metamaterial absorber,” Appl. Phys. Lett. 106(9), 091907 (2015).
[Crossref]

A. Tittl, A. K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid‐infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

Q. Zhao, Z. Xiao, F. Zhang, J. Ma, M. Qiao, Y. Meng, C. Lan, B. Li, J. Zhou, P. Zhang, N.-H. Shen, T. Koschny, and C. M. Soukoulis, “Tailorable Zero-Phase Delay of Subwavelength Particles toward Miniaturized Wave Manipulation Devices,” Adv. Mater. 27(40), 6187–6194 (2015).
[Crossref] [PubMed]

C. Lan, Y. Yang, Z. Geng, B. Li, and J. Zhou, “Electrostatic Field Invisibility Cloak,” Sci. Rep. 5(1), 16416 (2015).
[Crossref] [PubMed]

2013 (5)

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

F. Alves, D. Grbovic, B. Kearney, N. V. Lavrik, and G. Karunasiri, “Bi-material terahertz sensors using metamaterial structures,” Opt. Express 21(11), 13256–13271 (2013).
[Crossref] [PubMed]

X. Liu, Q. Zhao, C. Lan, and J. Zhou, “Isotropic Mie resonance-based metamaterial perfect absorber,” Appl. Phys. Lett. 103(3), 031910 (2013).
[Crossref]

D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An All-Optical, Non-volatile, Bidirectional, Phase-Change Meta-Switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref] [PubMed]

2012 (2)

2011 (4)

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
[Crossref] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref] [PubMed]

2010 (1)

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

2009 (1)

N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

2008 (5)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101(2), 027402 (2008).
[Crossref] [PubMed]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref] [PubMed]

2006 (1)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

2005 (1)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

2004 (1)

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

2002 (1)

P. Gay-Balmaz and O. J. Martin, “Efficient isotropic magnetic resonators,” Appl. Phys. Lett. 81(5), 939–941 (2002).
[Crossref]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

1999 (1)

J. B. Pendry, A. J. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

1996 (1)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

1968 (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of and μ,” Sov. Phys. Usp. 10, 509 (1968).
[Crossref]

Alves, F.

Anderson, Z.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Averitt, R.

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Averitt, R. D.

Bartal, G.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Bi, K.

M. Lei, N. Feng, Q. Wang, Y. Hao, S. Huang, and K. Bi, “Magnetically tunable metamaterial perfect absorber,” J. Appl. Phys. 119(24), 244504 (2016).
[Crossref]

X. Liu, K. Bi, B. Li, Q. Zhao, and J. Zhou, “Metamaterial perfect absorber based on artificial dielectric “atoms”,” Opt. Express 24(18), 20454–20460 (2016).
[Crossref] [PubMed]

Bingham, C.

N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Bingham, C. M.

Briggs, D. P.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Chan, C. T.

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
[Crossref] [PubMed]

Chen, W.-C.

D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

Chen, X.

X. Kong, X. Shi, J. Mo, Y. Fang, X. Chen, and S. Liu, “Tunable multichannel absorber composed of graphene and doped periodic structures,” Opt. Commun. 383, 391–396 (2017).
[Crossref]

Choi, M.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

Cui, L.

A. Tittl, A. K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid‐infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Dong, Y.

Y. Dong and T. Itoh, “Metamaterial-based antennas,” Proc. IEEE 100(7), 2271–2285 (2012).
[Crossref]

Du, B.

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101(2), 027402 (2008).
[Crossref] [PubMed]

Fan, K.

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Fan, Y.

F. Zhang, S. Feng, K. Qiu, Z. Liu, Y. Fan, W. Zhang, Q. Zhao, and J. Zhou, “Mechanically stretchable and tunable metamaterial absorber,” Appl. Phys. Lett. 106(9), 091907 (2015).
[Crossref]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Fang, Y.

X. Kong, X. Shi, J. Mo, Y. Fang, X. Chen, and S. Liu, “Tunable multichannel absorber composed of graphene and doped periodic structures,” Opt. Commun. 383, 391–396 (2017).
[Crossref]

Feng, N.

M. Lei, N. Feng, Q. Wang, Y. Hao, S. Huang, and K. Bi, “Magnetically tunable metamaterial perfect absorber,” J. Appl. Phys. 119(24), 244504 (2016).
[Crossref]

Feng, S.

F. Zhang, S. Feng, K. Qiu, Z. Liu, Y. Fan, W. Zhang, Q. Zhao, and J. Zhou, “Mechanically stretchable and tunable metamaterial absorber,” Appl. Phys. Lett. 106(9), 091907 (2015).
[Crossref]

Feng, T.

Gay-Balmaz, P.

P. Gay-Balmaz and O. J. Martin, “Efficient isotropic magnetic resonators,” Appl. Phys. Lett. 81(5), 939–941 (2002).
[Crossref]

Geng, Z.

C. Lan, Y. Yang, Z. Geng, B. Li, and J. Zhou, “Electrostatic Field Invisibility Cloak,” Sci. Rep. 5(1), 16416 (2015).
[Crossref] [PubMed]

Genov, D. A.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Gholipour, B.

A. Tittl, A. K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid‐infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An All-Optical, Non-volatile, Bidirectional, Phase-Change Meta-Switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref] [PubMed]

Giessen, H.

A. Tittl, A. K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid‐infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

Grbovic, D.

Hang, Z. H.

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
[Crossref] [PubMed]

Hao, Y.

M. Lei, N. Feng, Q. Wang, Y. Hao, S. Huang, and K. Bi, “Magnetically tunable metamaterial perfect absorber,” J. Appl. Phys. 119(24), 244504 (2016).
[Crossref]

Hewak, D. W.

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An All-Optical, Non-volatile, Bidirectional, Phase-Change Meta-Switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref] [PubMed]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

Huang, S.

M. Lei, N. Feng, Q. Wang, Y. Hao, S. Huang, and K. Bi, “Magnetically tunable metamaterial perfect absorber,” J. Appl. Phys. 119(24), 244504 (2016).
[Crossref]

Huang, X.

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
[Crossref] [PubMed]

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101(2), 027402 (2008).
[Crossref] [PubMed]

Itoh, T.

Y. Dong and T. Itoh, “Metamaterial-based antennas,” Proc. IEEE 100(7), 2271–2285 (2012).
[Crossref]

Jiang, Z. H.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref] [PubMed]

Jokerst, N.

N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Kang, K.-Y.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

Kang, L.

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101(2), 027402 (2008).
[Crossref] [PubMed]

Kang, M.

Kang, S. B.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

Karunasiri, G.

Kearney, B.

Kim, Y.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

Kong, X.

X. Kong, X. Shi, J. Mo, Y. Fang, X. Chen, and S. Liu, “Tunable multichannel absorber composed of graphene and doped periodic structures,” Opt. Commun. 383, 391–396 (2017).
[Crossref]

Koschny, T.

Q. Zhao, Z. Xiao, F. Zhang, J. Ma, M. Qiao, Y. Meng, C. Lan, B. Li, J. Zhou, P. Zhang, N.-H. Shen, T. Koschny, and C. M. Soukoulis, “Tailorable Zero-Phase Delay of Subwavelength Particles toward Miniaturized Wave Manipulation Devices,” Adv. Mater. 27(40), 6187–6194 (2015).
[Crossref] [PubMed]

Kravchenko, I. I.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Kwak, M. H.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

Lai, Y.

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
[Crossref] [PubMed]

Lan, C.

C. Lan, Y. Yang, Z. Geng, B. Li, and J. Zhou, “Electrostatic Field Invisibility Cloak,” Sci. Rep. 5(1), 16416 (2015).
[Crossref] [PubMed]

Q. Zhao, Z. Xiao, F. Zhang, J. Ma, M. Qiao, Y. Meng, C. Lan, B. Li, J. Zhou, P. Zhang, N.-H. Shen, T. Koschny, and C. M. Soukoulis, “Tailorable Zero-Phase Delay of Subwavelength Particles toward Miniaturized Wave Manipulation Devices,” Adv. Mater. 27(40), 6187–6194 (2015).
[Crossref] [PubMed]

X. Liu, Q. Zhao, C. Lan, and J. Zhou, “Isotropic Mie resonance-based metamaterial perfect absorber,” Appl. Phys. Lett. 103(3), 031910 (2013).
[Crossref]

Landy, N.

N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Landy, N. I.

Lavrik, N. V.

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Lee, S. H.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

Lee, Y.-H.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

Lei, M.

M. Lei, N. Feng, Q. Wang, Y. Hao, S. Huang, and K. Bi, “Magnetically tunable metamaterial perfect absorber,” J. Appl. Phys. 119(24), 244504 (2016).
[Crossref]

Li, B.

X. Liu, K. Bi, B. Li, Q. Zhao, and J. Zhou, “Metamaterial perfect absorber based on artificial dielectric “atoms”,” Opt. Express 24(18), 20454–20460 (2016).
[Crossref] [PubMed]

Q. Zhao, Z. Xiao, F. Zhang, J. Ma, M. Qiao, Y. Meng, C. Lan, B. Li, J. Zhou, P. Zhang, N.-H. Shen, T. Koschny, and C. M. Soukoulis, “Tailorable Zero-Phase Delay of Subwavelength Particles toward Miniaturized Wave Manipulation Devices,” Adv. Mater. 27(40), 6187–6194 (2015).
[Crossref] [PubMed]

C. Lan, Y. Yang, Z. Geng, B. Li, and J. Zhou, “Electrostatic Field Invisibility Cloak,” Sci. Rep. 5(1), 16416 (2015).
[Crossref] [PubMed]

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101(2), 027402 (2008).
[Crossref] [PubMed]

Li, J.

Li, L.

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101(2), 027402 (2008).
[Crossref] [PubMed]

Liu, S.

X. Kong, X. Shi, J. Mo, Y. Fang, X. Chen, and S. Liu, “Tunable multichannel absorber composed of graphene and doped periodic structures,” Opt. Commun. 383, 391–396 (2017).
[Crossref]

Liu, X.

X. Liu, K. Bi, B. Li, Q. Zhao, and J. Zhou, “Metamaterial perfect absorber based on artificial dielectric “atoms”,” Opt. Express 24(18), 20454–20460 (2016).
[Crossref] [PubMed]

X. Liu, Q. Zhao, C. Lan, and J. Zhou, “Isotropic Mie resonance-based metamaterial perfect absorber,” Appl. Phys. Lett. 103(3), 031910 (2013).
[Crossref]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Liu, Z.

F. Zhang, S. Feng, K. Qiu, Z. Liu, Y. Fan, W. Zhang, Q. Zhao, and J. Zhou, “Mechanically stretchable and tunable metamaterial absorber,” Appl. Phys. Lett. 106(9), 091907 (2015).
[Crossref]

Ma, J.

Q. Zhao, Z. Xiao, F. Zhang, J. Ma, M. Qiao, Y. Meng, C. Lan, B. Li, J. Zhou, P. Zhang, N.-H. Shen, T. Koschny, and C. M. Soukoulis, “Tailorable Zero-Phase Delay of Subwavelength Particles toward Miniaturized Wave Manipulation Devices,” Adv. Mater. 27(40), 6187–6194 (2015).
[Crossref] [PubMed]

MacDonald, K. F.

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An All-Optical, Non-volatile, Bidirectional, Phase-Change Meta-Switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref] [PubMed]

Martin, O. J.

P. Gay-Balmaz and O. J. Martin, “Efficient isotropic magnetic resonators,” Appl. Phys. Lett. 81(5), 939–941 (2002).
[Crossref]

Mayer, T. S.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref] [PubMed]

Meng, Y.

Q. Zhao, Z. Xiao, F. Zhang, J. Ma, M. Qiao, Y. Meng, C. Lan, B. Li, J. Zhou, P. Zhang, N.-H. Shen, T. Koschny, and C. M. Soukoulis, “Tailorable Zero-Phase Delay of Subwavelength Particles toward Miniaturized Wave Manipulation Devices,” Adv. Mater. 27(40), 6187–6194 (2015).
[Crossref] [PubMed]

Michel, A. K. U.

A. Tittl, A. K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid‐infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

Min, B.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

Mo, J.

X. Kong, X. Shi, J. Mo, Y. Fang, X. Chen, and S. Liu, “Tunable multichannel absorber composed of graphene and doped periodic structures,” Opt. Commun. 383, 391–396 (2017).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Moitra, P.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Neubrech, F.

A. Tittl, A. K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid‐infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

Padilla, W.

N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Padilla, W. J.

D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Park, N.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

J. B. Pendry, A. J. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

Pilon, D.

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Qiao, M.

Q. Zhao, Z. Xiao, F. Zhang, J. Ma, M. Qiao, Y. Meng, C. Lan, B. Li, J. Zhou, P. Zhang, N.-H. Shen, T. Koschny, and C. M. Soukoulis, “Tailorable Zero-Phase Delay of Subwavelength Particles toward Miniaturized Wave Manipulation Devices,” Adv. Mater. 27(40), 6187–6194 (2015).
[Crossref] [PubMed]

Qiu, K.

F. Zhang, S. Feng, K. Qiu, Z. Liu, Y. Fan, W. Zhang, Q. Zhao, and J. Zhou, “Mechanically stretchable and tunable metamaterial absorber,” Appl. Phys. Lett. 106(9), 091907 (2015).
[Crossref]

Robbins, D.

J. B. Pendry, A. J. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Schäferling, M.

A. Tittl, A. K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid‐infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Shen, N.-H.

Q. Zhao, Z. Xiao, F. Zhang, J. Ma, M. Qiao, Y. Meng, C. Lan, B. Li, J. Zhou, P. Zhang, N.-H. Shen, T. Koschny, and C. M. Soukoulis, “Tailorable Zero-Phase Delay of Subwavelength Particles toward Miniaturized Wave Manipulation Devices,” Adv. Mater. 27(40), 6187–6194 (2015).
[Crossref] [PubMed]

Shi, X.

X. Kong, X. Shi, J. Mo, Y. Fang, X. Chen, and S. Liu, “Tunable multichannel absorber composed of graphene and doped periodic structures,” Opt. Commun. 383, 391–396 (2017).
[Crossref]

Shin, J.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

Shrekenhamer, D.

D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Smith, D.

N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Soukoulis, C. M.

Q. Zhao, Z. Xiao, F. Zhang, J. Ma, M. Qiao, Y. Meng, C. Lan, B. Li, J. Zhou, P. Zhang, N.-H. Shen, T. Koschny, and C. M. Soukoulis, “Tailorable Zero-Phase Delay of Subwavelength Particles toward Miniaturized Wave Manipulation Devices,” Adv. Mater. 27(40), 6187–6194 (2015).
[Crossref] [PubMed]

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Stewart, W.

J. B. Pendry, A. J. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Stewart, W. J.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

Strikwerda, A.

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Tao, H.

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref] [PubMed]

Taubner, T.

A. Tittl, A. K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid‐infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

Tittl, A.

A. Tittl, A. K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid‐infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

Toor, F.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref] [PubMed]

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Ulin-Avila, E.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Valentine, J.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Veselago, V. G.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of and μ,” Sov. Phys. Usp. 10, 509 (1968).
[Crossref]

Wang, H.-T.

Wang, Q.

M. Lei, N. Feng, Q. Wang, Y. Hao, S. Huang, and K. Bi, “Magnetically tunable metamaterial perfect absorber,” J. Appl. Phys. 119(24), 244504 (2016).
[Crossref]

Werner, D. H.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref] [PubMed]

Wiltshire, M. C.

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Wuttig, M.

A. Tittl, A. K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid‐infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

Xiao, Z.

Q. Zhao, Z. Xiao, F. Zhang, J. Ma, M. Qiao, Y. Meng, C. Lan, B. Li, J. Zhou, P. Zhang, N.-H. Shen, T. Koschny, and C. M. Soukoulis, “Tailorable Zero-Phase Delay of Subwavelength Particles toward Miniaturized Wave Manipulation Devices,” Adv. Mater. 27(40), 6187–6194 (2015).
[Crossref] [PubMed]

Xie, Q.

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101(2), 027402 (2008).
[Crossref] [PubMed]

Yang, Y.

C. Lan, Y. Yang, Z. Geng, B. Li, and J. Zhou, “Electrostatic Field Invisibility Cloak,” Sci. Rep. 5(1), 16416 (2015).
[Crossref] [PubMed]

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Yin, X.

A. Tittl, A. K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid‐infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

Youngs, I.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

Yun, S.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref] [PubMed]

Zentgraf, T.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Zhang, F.

F. Zhang, S. Feng, K. Qiu, Z. Liu, Y. Fan, W. Zhang, Q. Zhao, and J. Zhou, “Mechanically stretchable and tunable metamaterial absorber,” Appl. Phys. Lett. 106(9), 091907 (2015).
[Crossref]

Q. Zhao, Z. Xiao, F. Zhang, J. Ma, M. Qiao, Y. Meng, C. Lan, B. Li, J. Zhou, P. Zhang, N.-H. Shen, T. Koschny, and C. M. Soukoulis, “Tailorable Zero-Phase Delay of Subwavelength Particles toward Miniaturized Wave Manipulation Devices,” Adv. Mater. 27(40), 6187–6194 (2015).
[Crossref] [PubMed]

Zhang, J.

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An All-Optical, Non-volatile, Bidirectional, Phase-Change Meta-Switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref] [PubMed]

Zhang, P.

Q. Zhao, Z. Xiao, F. Zhang, J. Ma, M. Qiao, Y. Meng, C. Lan, B. Li, J. Zhou, P. Zhang, N.-H. Shen, T. Koschny, and C. M. Soukoulis, “Tailorable Zero-Phase Delay of Subwavelength Particles toward Miniaturized Wave Manipulation Devices,” Adv. Mater. 27(40), 6187–6194 (2015).
[Crossref] [PubMed]

Zhang, S.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Zhang, W.

F. Zhang, S. Feng, K. Qiu, Z. Liu, Y. Fan, W. Zhang, Q. Zhao, and J. Zhou, “Mechanically stretchable and tunable metamaterial absorber,” Appl. Phys. Lett. 106(9), 091907 (2015).
[Crossref]

Zhang, X.

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Zhao, H.

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101(2), 027402 (2008).
[Crossref] [PubMed]

Zhao, Q.

X. Liu, K. Bi, B. Li, Q. Zhao, and J. Zhou, “Metamaterial perfect absorber based on artificial dielectric “atoms”,” Opt. Express 24(18), 20454–20460 (2016).
[Crossref] [PubMed]

F. Zhang, S. Feng, K. Qiu, Z. Liu, Y. Fan, W. Zhang, Q. Zhao, and J. Zhou, “Mechanically stretchable and tunable metamaterial absorber,” Appl. Phys. Lett. 106(9), 091907 (2015).
[Crossref]

Q. Zhao, Z. Xiao, F. Zhang, J. Ma, M. Qiao, Y. Meng, C. Lan, B. Li, J. Zhou, P. Zhang, N.-H. Shen, T. Koschny, and C. M. Soukoulis, “Tailorable Zero-Phase Delay of Subwavelength Particles toward Miniaturized Wave Manipulation Devices,” Adv. Mater. 27(40), 6187–6194 (2015).
[Crossref] [PubMed]

X. Liu, Q. Zhao, C. Lan, and J. Zhou, “Isotropic Mie resonance-based metamaterial perfect absorber,” Appl. Phys. Lett. 103(3), 031910 (2013).
[Crossref]

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101(2), 027402 (2008).
[Crossref] [PubMed]

Zheludev, N. I.

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An All-Optical, Non-volatile, Bidirectional, Phase-Change Meta-Switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref] [PubMed]

Zheng, H.

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
[Crossref] [PubMed]

Zhou, J.

X. Liu, K. Bi, B. Li, Q. Zhao, and J. Zhou, “Metamaterial perfect absorber based on artificial dielectric “atoms”,” Opt. Express 24(18), 20454–20460 (2016).
[Crossref] [PubMed]

Q. Zhao, Z. Xiao, F. Zhang, J. Ma, M. Qiao, Y. Meng, C. Lan, B. Li, J. Zhou, P. Zhang, N.-H. Shen, T. Koschny, and C. M. Soukoulis, “Tailorable Zero-Phase Delay of Subwavelength Particles toward Miniaturized Wave Manipulation Devices,” Adv. Mater. 27(40), 6187–6194 (2015).
[Crossref] [PubMed]

C. Lan, Y. Yang, Z. Geng, B. Li, and J. Zhou, “Electrostatic Field Invisibility Cloak,” Sci. Rep. 5(1), 16416 (2015).
[Crossref] [PubMed]

F. Zhang, S. Feng, K. Qiu, Z. Liu, Y. Fan, W. Zhang, Q. Zhao, and J. Zhou, “Mechanically stretchable and tunable metamaterial absorber,” Appl. Phys. Lett. 106(9), 091907 (2015).
[Crossref]

X. Liu, Q. Zhao, C. Lan, and J. Zhou, “Isotropic Mie resonance-based metamaterial perfect absorber,” Appl. Phys. Lett. 103(3), 031910 (2013).
[Crossref]

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101(2), 027402 (2008).
[Crossref] [PubMed]

ACS Nano (1)

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref] [PubMed]

Adv. Mater. (3)

A. Tittl, A. K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid‐infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An All-Optical, Non-volatile, Bidirectional, Phase-Change Meta-Switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref] [PubMed]

Q. Zhao, Z. Xiao, F. Zhang, J. Ma, M. Qiao, Y. Meng, C. Lan, B. Li, J. Zhou, P. Zhang, N.-H. Shen, T. Koschny, and C. M. Soukoulis, “Tailorable Zero-Phase Delay of Subwavelength Particles toward Miniaturized Wave Manipulation Devices,” Adv. Mater. 27(40), 6187–6194 (2015).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

X. Liu, Q. Zhao, C. Lan, and J. Zhou, “Isotropic Mie resonance-based metamaterial perfect absorber,” Appl. Phys. Lett. 103(3), 031910 (2013).
[Crossref]

F. Zhang, S. Feng, K. Qiu, Z. Liu, Y. Fan, W. Zhang, Q. Zhao, and J. Zhou, “Mechanically stretchable and tunable metamaterial absorber,” Appl. Phys. Lett. 106(9), 091907 (2015).
[Crossref]

P. Gay-Balmaz and O. J. Martin, “Efficient isotropic magnetic resonators,” Appl. Phys. Lett. 81(5), 939–941 (2002).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

J. B. Pendry, A. J. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

J. Appl. Phys. (1)

M. Lei, N. Feng, Q. Wang, Y. Hao, S. Huang, and K. Bi, “Magnetically tunable metamaterial perfect absorber,” J. Appl. Phys. 119(24), 244504 (2016).
[Crossref]

Nat. Mater. (1)

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
[Crossref] [PubMed]

Nat. Photonics (1)

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Nature (2)

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

Opt. Commun. (1)

X. Kong, X. Shi, J. Mo, Y. Fang, X. Chen, and S. Liu, “Tunable multichannel absorber composed of graphene and doped periodic structures,” Opt. Commun. 383, 391–396 (2017).
[Crossref]

Opt. Express (4)

Phys. Rev. B (2)

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Phys. Rev. Lett. (7)

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101(2), 027402 (2008).
[Crossref] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

Proc. IEEE (1)

Y. Dong and T. Itoh, “Metamaterial-based antennas,” Proc. IEEE 100(7), 2271–2285 (2012).
[Crossref]

Sci. Rep. (1)

C. Lan, Y. Yang, Z. Geng, B. Li, and J. Zhou, “Electrostatic Field Invisibility Cloak,” Sci. Rep. 5(1), 16416 (2015).
[Crossref] [PubMed]

Science (4)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Sov. Phys. Usp. (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of and μ,” Sov. Phys. Usp. 10, 509 (1968).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic diagram of the CaTiO3-1wt% ZrO2 ceramic cube, whose size is 2 mm × 2 mm × 2 mm. (b) Schematic of the 2 μm thick specially shaped copper film sputtered on a quartz plate. (c,d) Photographs of (c) the dielectric cubes and (d) the whole MPA.
Fig. 2
Fig. 2 (a) Schematic diagram of the Mie resonance-based MPA unit cell for calculations. (b) Simulated distribution of the electric field orientation. Displacement currents are indicative of a magnetic dipole. (c,d) Simulated and experimental absorption data with a series of heating currents from zero to 1.5 A
Fig. 3
Fig. 3 (a) Schematic diagram of the unit cell of an isolated dielectric cube. (b) Simulated distribution of the electric field. (c,d) Simulated and experimental transmittance (S21) at a series of temperatures from 18 to 45 °C
Fig. 4
Fig. 4 (a) The relationship between current, temperature, and permittivity. (b) The permittivity variation derived from reflection and transmission tests. (c) Current density magnitudes and vectors in the copper film, simulated by Comsol 5.2a. (d) In simulation, the peak of absorption broadens as the permittivity gradient heighten from zero (means no gradient) to 0.8 between adjacent cubes along y axis.
Fig. 5
Fig. 5 Photograph of the setup used to calibrate temperature in the MPA as a function of current flow in the copper film.
Fig. 6
Fig. 6 Absorbing properties of different space models in simulation. Due to coupling effects resulting from the spacing of the cubes shrinking the peak of the absorption changes from about 11.7 GHz to 15.5 GHz.
Fig. 7
Fig. 7 The details of the experiments. The microwave reflectance and transmittance S-parameters were measured by an Agilent N5230A PNA-L network analyzer and an aligned WR-90 X-band rectangular waveguide. A regulated direct current power supply connected the two ends of the metal substrate for heating. The waveguide end face had a thin insulator to prevent heating current from flowing into the waveguide metal.

Metrics