Abstract

Usually, up-conversion (UC) green emission is easily observed by using rare-earth doped fluoride nanocrystals. However, preferential red emission is desired for some actual applications especially in biological field. Here, we demonstrated that the dominant UC red emission can be realized by preparing TiO2:Yb,Er nanocrystals under 980 nm exciation. By controlling the crystal symmetry and size via the annealing temperature and Yb3+ ions concentration, the enhanced UC red emission is achieved. The multi-photon relaxation and cross-relaxation mechanisms may be responsible for the energy transform process and in turn the UC emission.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced upconversion fluorescence and altered particle size of β-NaGdF4:Yb3+/Er3+ nanocrystals by codoping with Mo3+ ions

Wei Zhu, Qixiao Wu, Suling Zhao, Zhiqin Liang, Yongxin Yang, Junjie Zhang, and Zheng Xu
Opt. Mater. Express 6(9) 3001-3007 (2016)

Up-conversion luminescence of Er3+-Yb3+ co-doped CaIn2O4

Ting Li, Chongfeng Guo, and Lin Li
Opt. Express 21(15) 18281-18289 (2013)

Tunable green to red upconversion fluorescence of water-soluble hexagonal-phase core-shell CaF2@NaYF4 nanocrystals

Daguang Li, Weiping Qin, Dan Zhao, Tuerxun Aidilibike, Huan Chen, Shihu Liu, Peng Zhang, and Lili Wang
Opt. Mater. Express 6(1) 270-278 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. Zhou, Q. Liu, W. Feng, Y. Sun, and F. Li, “Upconversion luminescent materials: advances and applications,” Chem. Rev. 115(1), 395–465 (2015).
    [Crossref] [PubMed]
  2. S. Han, R. Deng, X. Xie, and X. Liu, “Enhancing luminescence in lanthanide-doped upconversion nanoparticles,” Angew. Chem. Int. Ed. Engl. 53(44), 11702–11715 (2014).
    [Crossref] [PubMed]
  3. D. H. Weingarten, M. D. LaCount, J. van de Lagemaat, G. Rumbles, M. T. Lusk, and S. E. Shaheen, “Experimental demonstration of photon upconversion via cooperative energy pooling,” Nat. Commun. 8, 14808 (2017).
    [Crossref] [PubMed]
  4. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical haramonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
    [Crossref]
  5. C. A. Parker and C. G. Hatchard, “Delayed fluorescence from solutions of anthracene and phenanthrene,” Proc. R. Soc. Lond. A Math. Phys. Sci. 269(1339), 574–584 (1962).
    [Crossref]
  6. F. Zhang, Q. Shi, Y. Zhang, Y. Shi, K. Ding, D. Zhao, and G. D. Stucky, “Fluorescence upconversion microbarcodes for multiplexed biological detection: nucleic acid encoding,” Adv. Mater. 23(33), 3775–3779 (2011).
    [Crossref] [PubMed]
  7. J. de Wild, J. K. Rath, A. Meijerink, W. G. J. H. M. van Sark, and R. E. I. Schropp, “Enhanced near-infrared response of a-Si:H solar cells with β-NaYF4:Yb3+(18%), Er3+ (2%) upconversion phosphors,” Sol. Energy Mater. Sol. Cells 94(12), 2395–2398 (2010).
    [Crossref]
  8. Z. H. Xu, M. Quintanilla, F. Vetrone, A. O. Govorov, M. Chaker, and D. L. Ma, “Harvesting lost photons: plasmon and upconversion enhanced broadband photocatalytic activity in Core@Shell microspheres based on lanthanide-doped NaYF4, TiO2, and Au,” Adv. Funct. Mater. 25(20), 2950–2960 (2015).
    [Crossref]
  9. S. F. Leon-Luis, U. R. Rodríguez-Mendoza, E. Lalla, and V. Lavín, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sens. Actuators B Chem. 158(1), 208–213 (2011).
    [Crossref]
  10. W. Yang, X. Li, D. Chi, H. Zhang, and X. Liu, “Lanthanide-doped upconversion materials: emerging applications for photovoltaics and photocatalysis,” Nanotechnology 25(48), 482001 (2014).
    [Crossref] [PubMed]
  11. Y. Huang, Q. Xiao, H. Hu, K. Zhang, Y. Feng, F. Li, J. Wang, X. Ding, J. Jiang, Y. Li, L. Shi, and H. Lin, “915 nm light-triggered photodynamic therapy and MR/CT dual-modal imaging of tumor based on the nonstoichiometric Na0.52YbF3.52:Er upconversion nanoprobes,” Small 12(31), 4200–4210 (2016).
    [Crossref] [PubMed]
  12. G. Tian, Z. Gu, L. Zhou, W. Yin, X. Liu, L. Yan, S. Jin, W. Ren, G. Xing, S. Li, and Y. Zhao, “Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
    [Crossref] [PubMed]
  13. Z. H. Bai, H. Lin, J. Johnson, S. C. R. Gui, K. Imakita, R. Montazami, M. Fujii, and N. Hashemi, “The single-band red upconversion luminescence from morphology and size controllable Er3+/Yb3+ doped MnF2 nanostructures,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(9), 1736–1741 (2014).
    [Crossref]
  14. M. Y. Xie, X. N. Peng, X. F. Fu, J. J. Zhang, G. L. Lia, and X. F. Yu, “Synthesis of Yb3+/Er3+ co-doped MnF2 nanocrystals with bright red up-converted fluorescence,” Scr. Mater. 60(3), 190–193 (2009).
    [Crossref]
  15. M. Saboktakin, X. Ye, U. K. Chettiar, N. Engheta, C. B. Murray, and C. R. Kagan, “Plasmonic enhancement of nanophosphor upconversion luminescence in Au nanohole arrays,” ACS Nano 7(8), 7186–7192 (2013).
    [Crossref] [PubMed]
  16. Y. Q. Wu, Y. Ji, J. Xu, J. J. Liu, Z. W. Lin, Y. L. Zhao, Y. Sun, L. Xu, and K. J. Chen, “Crystalline phase and morphology controlling to enhance the up-conversion emission from NaYF4:Yb,Er nanocrystals,” Acta Mater. 131, 373–379 (2017).
    [Crossref]
  17. D. K. Chatterjee, A. J. Rufaihah, and Y. Zhang, “Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals,” Biomaterials 29(7), 937–943 (2008).
    [Crossref] [PubMed]
  18. J. H. Zeng, J. Su, Z. H. Li, R. X. Yan, and Y. D. Li, “Synthesis and upconversion luminescence of hexagonal-phase NaYF4:Yb,Er3+ phosphors of controlled size and morphology,” Adv. Mater. 17(17), 2119–2123 (2005).
    [Crossref]
  19. W. Gao, H. R. Zheng, Q. Y. Han, E. J. He, F. Q. Gao, and R. B. Wang, “Enhanced red upconversion luminescence by codoping Ce3+ in β-NaY(Gd0.4)F4:Yb3+/Ho3+ nanocrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(27), 5327–5334 (2014).
    [Crossref]
  20. Z. Yi, T. Zeng, Y. Xu, W. Lu, C. Qian, H. Liu, S. Zeng, and J. Hao, “Multicolor tuning towards single red-emission band of upconversion nanoparticles for tunable optical component and optical/x-ray imaging agents via Ce3+ doping,” Nanotechnology 26(38), 385702 (2015).
    [Crossref] [PubMed]
  21. W. Yin, L. Zhao, L. Zhou, Z. Gu, X. Liu, G. Tian, S. Jin, L. Yan, W. Ren, G. Xing, and Y. Zhao, “Enhanced red emission from GdF3:Yb3+,Er3+ upconversion nanocrystals by Li+ doping and their application for bioimaging,” Chemistry 18(30), 9239–9245 (2012).
    [Crossref] [PubMed]
  22. L. J. Zhou, Z. J. Gu, X. X. Liu, W. Y. Yin, G. Tian, L. Yan, S. Jin, W. L. Ren, G. M. Xing, W. Li, X. L. Chang, Z. B. Hu, and Y. L. Zhao, “Size-tunable synthesis of lanthanide-doped Gd2O3 nanoparticles and their applications for optical and magnetic resonance imaging,” J. Mater. Chem. 22(3), 966–974 (2012).
    [Crossref]
  23. J. Wang, F. Wang, C. Wang, Z. Liu, and X. Liu, “Single-Band Upconversion Emission in Lanthanide-Doped KMnF3 Nanocrystals,” Angew. Chem. Int. Ed. Engl. 50(44), 10369–10372 (2011).
    [Crossref] [PubMed]
  24. G. Y. Chen, G. Somesfalean, Y. Liu, Z. G. Zhang, Q. Sun, and F. P. Wang, “Upconversion mechanism for two-color emission in rare-earth-ion-doped ZrO2 nanocrystalsPhys,” Phys. Rev. B 75(19), 195204 (2007).
    [Crossref]
  25. B. S. Cao, Y. Y. He, Z. Q. Feng, M. Song, and B. Dong, “Crystalline-structure-dependent green and red upconversion emissions of Er3+-Yb3+-Li+ codoped TiO2,” Opt. Commun. 284(13), 3311–3314 (2011).
    [Crossref]
  26. X. Zhang, S. Lin, T. Lin, P. Zhang, J. Xu, L. Xu, and K. Chen, “Improved sensitization efficiency in Er(3+) ions and SnO2 nanocrystals co-doped silica thin films,” Phys. Chem. Chem. Phys. 17(18), 11974–11980 (2015).
    [Crossref] [PubMed]
  27. T. Lin, X. W. Zhang, J. Xu, X. Liu, M. T. Swihart, L. Xu, and K. J. Chen, “Strong energy-transfer-induced enhancement of Er3+ luminescence in In2O3 nanocrystal codoped silica films,” Appl. Phys. Lett. 103(18), 181906 (2013).
    [Crossref]
  28. X. Zhang, T. Lin, P. Zhang, J. Xu, S. Lin, L. Xu, and K. Chen, “Highly efficient near-infrared emission in Er3+ doped silica films containing size-tunable SnO2 nanocrystals,” Opt. Express 22(1), 369–376 (2014).
    [Crossref] [PubMed]
  29. T. Lin, X. Y. Ding, J. Xu, N. Wan, L. Xu, and K. J. Chen, “Influences of doping and annealing conditions on the photoluminescence from In2O3 nanocrystals and Eu3+ ions co-doped sol-gel SiO2 films,” J. Appl. Phys. 109(8), 083512 (2011).
    [Crossref]
  30. T. Lin, X. W. Zhang, Y. J. Wang, J. Xu, N. Wan, J. F. Liu, L. Xu, and K. J. Chen, “Luminescence enhancement due to energy transfer in ZnO nanoparticles and Eu3+ ions co-doped silica,” Thin Solid Films 520(17), 5815–5819 (2012).
    [Crossref]
  31. S. Y. Chen, C. C. Ting, and W. F. Hsieh, “Comparison of visible fluorescence properties between sol-gel derived Er-Yb and Er-Y co-doped TiO2 films,” Thin Solid Films 434 (1-2), 171–177 (2003).
    [Crossref]
  32. S. X. Liu, X. S. Li, X. B. Zhu, T. L. Zhao, J. L. Liu, and A. M. Zhu, “Gliding arc plasma synthesis of crystalline TiO2 nanopowders with high photocatalytic activity,” Plasma Chem. Plasma Process. 33(5), 827–838 (2013).
    [Crossref]
  33. J. C. Boyer and F. C. J. M. van Veggel, “Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles,” Nanoscale 2(8), 1417–1419 (2010).
    [Crossref] [PubMed]
  34. J. Hao, Y. Zhang, and X. Wei, “Electric-induced enhancement and modulation of upconversion photoluminescence in epitaxial BaTiO3:Yb/Er thin films,” Angew. Chem. Int. Ed. Engl. 50(30), 6876–6880 (2011).
    [Crossref] [PubMed]
  35. C. Zhao, X. Kong, X. Liu, L. Tu, F. Wu, Y. Zhang, K. Liu, Q. Zeng, and H. Zhang, “Li+ ion doping: an approach for improving the crystallinity and upconversion emissions of NaYF4:Yb3+, Tm3+ nanoparticles,” Nanoscale 5(17), 8084–8089 (2013).
    [Crossref] [PubMed]
  36. G. Liu, “Advances in the theoretical understanding of photon upconversion in rare-earth activated nanophosphors,” Chem. Soc. Rev. 44(6), 1635–1652 (2015).
    [Crossref] [PubMed]
  37. Y. Q. Wu, S. B. Lin, W. Y. Shao, X. W. Zhang, J. Xu, L. Y. Yu, and K. J. Chen, “Enhanced up-conversion luminescence from NaYF4:Yb,Er nanocrystals by Gd3+ ions induced phase transformation and plasmonic Au nanosphere arrays,” RSC Advances 6(105), 102869 (2016).
    [Crossref] [PubMed]
  38. Z. Z. Zhang, J. H. Zhang, W. Zhou, M. X. Song, W. Li, Q. Hu, and X. J. Zhao, “Structure and up-conversion luminescence properties of Er3+-Yb3+ co-doped TiO2 nanocrystals prepared by sol-gel method,” Adv. Mat. Res. 66, 167–170 (2009).
    [Crossref]
  39. X. Li, F. Zhang, and D. Zhao, “Lab on upconversion nanoparticles: optical properties and applications engineering via designed nanostructure,” Chem. Soc. Rev. 44(6), 1346–1378 (2015).
    [Crossref] [PubMed]
  40. Q. K. Shang, H. Yu, X. G. Kong, H. D. Wang, X. Wang, Y. J. Sun, Y. L. Zhang, and Q. H. Zeng, “Green and red up-conversion emissions of Er3+-Yb3+ Co-doped TiO2 nanocrystals prepared by sol-gel method,” J. Lumin. 128(7), 1211–1216 (2008).
    [Crossref]
  41. B. Zhou, B. Shi, D. Jin, and X. Liu, “Controlling upconversion nanocrystals for emerging applications,” Nat. Nanotechnol. 10(11), 924–936 (2015).
    [Crossref] [PubMed]

2017 (2)

D. H. Weingarten, M. D. LaCount, J. van de Lagemaat, G. Rumbles, M. T. Lusk, and S. E. Shaheen, “Experimental demonstration of photon upconversion via cooperative energy pooling,” Nat. Commun. 8, 14808 (2017).
[Crossref] [PubMed]

Y. Q. Wu, Y. Ji, J. Xu, J. J. Liu, Z. W. Lin, Y. L. Zhao, Y. Sun, L. Xu, and K. J. Chen, “Crystalline phase and morphology controlling to enhance the up-conversion emission from NaYF4:Yb,Er nanocrystals,” Acta Mater. 131, 373–379 (2017).
[Crossref]

2016 (2)

Y. Huang, Q. Xiao, H. Hu, K. Zhang, Y. Feng, F. Li, J. Wang, X. Ding, J. Jiang, Y. Li, L. Shi, and H. Lin, “915 nm light-triggered photodynamic therapy and MR/CT dual-modal imaging of tumor based on the nonstoichiometric Na0.52YbF3.52:Er upconversion nanoprobes,” Small 12(31), 4200–4210 (2016).
[Crossref] [PubMed]

Y. Q. Wu, S. B. Lin, W. Y. Shao, X. W. Zhang, J. Xu, L. Y. Yu, and K. J. Chen, “Enhanced up-conversion luminescence from NaYF4:Yb,Er nanocrystals by Gd3+ ions induced phase transformation and plasmonic Au nanosphere arrays,” RSC Advances 6(105), 102869 (2016).
[Crossref] [PubMed]

2015 (7)

X. Li, F. Zhang, and D. Zhao, “Lab on upconversion nanoparticles: optical properties and applications engineering via designed nanostructure,” Chem. Soc. Rev. 44(6), 1346–1378 (2015).
[Crossref] [PubMed]

B. Zhou, B. Shi, D. Jin, and X. Liu, “Controlling upconversion nanocrystals for emerging applications,” Nat. Nanotechnol. 10(11), 924–936 (2015).
[Crossref] [PubMed]

J. Zhou, Q. Liu, W. Feng, Y. Sun, and F. Li, “Upconversion luminescent materials: advances and applications,” Chem. Rev. 115(1), 395–465 (2015).
[Crossref] [PubMed]

Z. H. Xu, M. Quintanilla, F. Vetrone, A. O. Govorov, M. Chaker, and D. L. Ma, “Harvesting lost photons: plasmon and upconversion enhanced broadband photocatalytic activity in Core@Shell microspheres based on lanthanide-doped NaYF4, TiO2, and Au,” Adv. Funct. Mater. 25(20), 2950–2960 (2015).
[Crossref]

Z. Yi, T. Zeng, Y. Xu, W. Lu, C. Qian, H. Liu, S. Zeng, and J. Hao, “Multicolor tuning towards single red-emission band of upconversion nanoparticles for tunable optical component and optical/x-ray imaging agents via Ce3+ doping,” Nanotechnology 26(38), 385702 (2015).
[Crossref] [PubMed]

X. Zhang, S. Lin, T. Lin, P. Zhang, J. Xu, L. Xu, and K. Chen, “Improved sensitization efficiency in Er(3+) ions and SnO2 nanocrystals co-doped silica thin films,” Phys. Chem. Chem. Phys. 17(18), 11974–11980 (2015).
[Crossref] [PubMed]

G. Liu, “Advances in the theoretical understanding of photon upconversion in rare-earth activated nanophosphors,” Chem. Soc. Rev. 44(6), 1635–1652 (2015).
[Crossref] [PubMed]

2014 (5)

W. Gao, H. R. Zheng, Q. Y. Han, E. J. He, F. Q. Gao, and R. B. Wang, “Enhanced red upconversion luminescence by codoping Ce3+ in β-NaY(Gd0.4)F4:Yb3+/Ho3+ nanocrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(27), 5327–5334 (2014).
[Crossref]

S. Han, R. Deng, X. Xie, and X. Liu, “Enhancing luminescence in lanthanide-doped upconversion nanoparticles,” Angew. Chem. Int. Ed. Engl. 53(44), 11702–11715 (2014).
[Crossref] [PubMed]

W. Yang, X. Li, D. Chi, H. Zhang, and X. Liu, “Lanthanide-doped upconversion materials: emerging applications for photovoltaics and photocatalysis,” Nanotechnology 25(48), 482001 (2014).
[Crossref] [PubMed]

Z. H. Bai, H. Lin, J. Johnson, S. C. R. Gui, K. Imakita, R. Montazami, M. Fujii, and N. Hashemi, “The single-band red upconversion luminescence from morphology and size controllable Er3+/Yb3+ doped MnF2 nanostructures,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(9), 1736–1741 (2014).
[Crossref]

X. Zhang, T. Lin, P. Zhang, J. Xu, S. Lin, L. Xu, and K. Chen, “Highly efficient near-infrared emission in Er3+ doped silica films containing size-tunable SnO2 nanocrystals,” Opt. Express 22(1), 369–376 (2014).
[Crossref] [PubMed]

2013 (4)

M. Saboktakin, X. Ye, U. K. Chettiar, N. Engheta, C. B. Murray, and C. R. Kagan, “Plasmonic enhancement of nanophosphor upconversion luminescence in Au nanohole arrays,” ACS Nano 7(8), 7186–7192 (2013).
[Crossref] [PubMed]

T. Lin, X. W. Zhang, J. Xu, X. Liu, M. T. Swihart, L. Xu, and K. J. Chen, “Strong energy-transfer-induced enhancement of Er3+ luminescence in In2O3 nanocrystal codoped silica films,” Appl. Phys. Lett. 103(18), 181906 (2013).
[Crossref]

C. Zhao, X. Kong, X. Liu, L. Tu, F. Wu, Y. Zhang, K. Liu, Q. Zeng, and H. Zhang, “Li+ ion doping: an approach for improving the crystallinity and upconversion emissions of NaYF4:Yb3+, Tm3+ nanoparticles,” Nanoscale 5(17), 8084–8089 (2013).
[Crossref] [PubMed]

S. X. Liu, X. S. Li, X. B. Zhu, T. L. Zhao, J. L. Liu, and A. M. Zhu, “Gliding arc plasma synthesis of crystalline TiO2 nanopowders with high photocatalytic activity,” Plasma Chem. Plasma Process. 33(5), 827–838 (2013).
[Crossref]

2012 (4)

T. Lin, X. W. Zhang, Y. J. Wang, J. Xu, N. Wan, J. F. Liu, L. Xu, and K. J. Chen, “Luminescence enhancement due to energy transfer in ZnO nanoparticles and Eu3+ ions co-doped silica,” Thin Solid Films 520(17), 5815–5819 (2012).
[Crossref]

W. Yin, L. Zhao, L. Zhou, Z. Gu, X. Liu, G. Tian, S. Jin, L. Yan, W. Ren, G. Xing, and Y. Zhao, “Enhanced red emission from GdF3:Yb3+,Er3+ upconversion nanocrystals by Li+ doping and their application for bioimaging,” Chemistry 18(30), 9239–9245 (2012).
[Crossref] [PubMed]

L. J. Zhou, Z. J. Gu, X. X. Liu, W. Y. Yin, G. Tian, L. Yan, S. Jin, W. L. Ren, G. M. Xing, W. Li, X. L. Chang, Z. B. Hu, and Y. L. Zhao, “Size-tunable synthesis of lanthanide-doped Gd2O3 nanoparticles and their applications for optical and magnetic resonance imaging,” J. Mater. Chem. 22(3), 966–974 (2012).
[Crossref]

G. Tian, Z. Gu, L. Zhou, W. Yin, X. Liu, L. Yan, S. Jin, W. Ren, G. Xing, S. Li, and Y. Zhao, “Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
[Crossref] [PubMed]

2011 (6)

S. F. Leon-Luis, U. R. Rodríguez-Mendoza, E. Lalla, and V. Lavín, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sens. Actuators B Chem. 158(1), 208–213 (2011).
[Crossref]

F. Zhang, Q. Shi, Y. Zhang, Y. Shi, K. Ding, D. Zhao, and G. D. Stucky, “Fluorescence upconversion microbarcodes for multiplexed biological detection: nucleic acid encoding,” Adv. Mater. 23(33), 3775–3779 (2011).
[Crossref] [PubMed]

J. Wang, F. Wang, C. Wang, Z. Liu, and X. Liu, “Single-Band Upconversion Emission in Lanthanide-Doped KMnF3 Nanocrystals,” Angew. Chem. Int. Ed. Engl. 50(44), 10369–10372 (2011).
[Crossref] [PubMed]

T. Lin, X. Y. Ding, J. Xu, N. Wan, L. Xu, and K. J. Chen, “Influences of doping and annealing conditions on the photoluminescence from In2O3 nanocrystals and Eu3+ ions co-doped sol-gel SiO2 films,” J. Appl. Phys. 109(8), 083512 (2011).
[Crossref]

B. S. Cao, Y. Y. He, Z. Q. Feng, M. Song, and B. Dong, “Crystalline-structure-dependent green and red upconversion emissions of Er3+-Yb3+-Li+ codoped TiO2,” Opt. Commun. 284(13), 3311–3314 (2011).
[Crossref]

J. Hao, Y. Zhang, and X. Wei, “Electric-induced enhancement and modulation of upconversion photoluminescence in epitaxial BaTiO3:Yb/Er thin films,” Angew. Chem. Int. Ed. Engl. 50(30), 6876–6880 (2011).
[Crossref] [PubMed]

2010 (2)

J. C. Boyer and F. C. J. M. van Veggel, “Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles,” Nanoscale 2(8), 1417–1419 (2010).
[Crossref] [PubMed]

J. de Wild, J. K. Rath, A. Meijerink, W. G. J. H. M. van Sark, and R. E. I. Schropp, “Enhanced near-infrared response of a-Si:H solar cells with β-NaYF4:Yb3+(18%), Er3+ (2%) upconversion phosphors,” Sol. Energy Mater. Sol. Cells 94(12), 2395–2398 (2010).
[Crossref]

2009 (2)

M. Y. Xie, X. N. Peng, X. F. Fu, J. J. Zhang, G. L. Lia, and X. F. Yu, “Synthesis of Yb3+/Er3+ co-doped MnF2 nanocrystals with bright red up-converted fluorescence,” Scr. Mater. 60(3), 190–193 (2009).
[Crossref]

Z. Z. Zhang, J. H. Zhang, W. Zhou, M. X. Song, W. Li, Q. Hu, and X. J. Zhao, “Structure and up-conversion luminescence properties of Er3+-Yb3+ co-doped TiO2 nanocrystals prepared by sol-gel method,” Adv. Mat. Res. 66, 167–170 (2009).
[Crossref]

2008 (2)

Q. K. Shang, H. Yu, X. G. Kong, H. D. Wang, X. Wang, Y. J. Sun, Y. L. Zhang, and Q. H. Zeng, “Green and red up-conversion emissions of Er3+-Yb3+ Co-doped TiO2 nanocrystals prepared by sol-gel method,” J. Lumin. 128(7), 1211–1216 (2008).
[Crossref]

D. K. Chatterjee, A. J. Rufaihah, and Y. Zhang, “Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals,” Biomaterials 29(7), 937–943 (2008).
[Crossref] [PubMed]

2007 (1)

G. Y. Chen, G. Somesfalean, Y. Liu, Z. G. Zhang, Q. Sun, and F. P. Wang, “Upconversion mechanism for two-color emission in rare-earth-ion-doped ZrO2 nanocrystalsPhys,” Phys. Rev. B 75(19), 195204 (2007).
[Crossref]

2005 (1)

J. H. Zeng, J. Su, Z. H. Li, R. X. Yan, and Y. D. Li, “Synthesis and upconversion luminescence of hexagonal-phase NaYF4:Yb,Er3+ phosphors of controlled size and morphology,” Adv. Mater. 17(17), 2119–2123 (2005).
[Crossref]

2003 (1)

S. Y. Chen, C. C. Ting, and W. F. Hsieh, “Comparison of visible fluorescence properties between sol-gel derived Er-Yb and Er-Y co-doped TiO2 films,” Thin Solid Films 434 (1-2), 171–177 (2003).
[Crossref]

1962 (1)

C. A. Parker and C. G. Hatchard, “Delayed fluorescence from solutions of anthracene and phenanthrene,” Proc. R. Soc. Lond. A Math. Phys. Sci. 269(1339), 574–584 (1962).
[Crossref]

1961 (1)

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical haramonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[Crossref]

Bai, Z. H.

Z. H. Bai, H. Lin, J. Johnson, S. C. R. Gui, K. Imakita, R. Montazami, M. Fujii, and N. Hashemi, “The single-band red upconversion luminescence from morphology and size controllable Er3+/Yb3+ doped MnF2 nanostructures,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(9), 1736–1741 (2014).
[Crossref]

Boyer, J. C.

J. C. Boyer and F. C. J. M. van Veggel, “Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles,” Nanoscale 2(8), 1417–1419 (2010).
[Crossref] [PubMed]

Cao, B. S.

B. S. Cao, Y. Y. He, Z. Q. Feng, M. Song, and B. Dong, “Crystalline-structure-dependent green and red upconversion emissions of Er3+-Yb3+-Li+ codoped TiO2,” Opt. Commun. 284(13), 3311–3314 (2011).
[Crossref]

Chaker, M.

Z. H. Xu, M. Quintanilla, F. Vetrone, A. O. Govorov, M. Chaker, and D. L. Ma, “Harvesting lost photons: plasmon and upconversion enhanced broadband photocatalytic activity in Core@Shell microspheres based on lanthanide-doped NaYF4, TiO2, and Au,” Adv. Funct. Mater. 25(20), 2950–2960 (2015).
[Crossref]

Chang, X. L.

L. J. Zhou, Z. J. Gu, X. X. Liu, W. Y. Yin, G. Tian, L. Yan, S. Jin, W. L. Ren, G. M. Xing, W. Li, X. L. Chang, Z. B. Hu, and Y. L. Zhao, “Size-tunable synthesis of lanthanide-doped Gd2O3 nanoparticles and their applications for optical and magnetic resonance imaging,” J. Mater. Chem. 22(3), 966–974 (2012).
[Crossref]

Chatterjee, D. K.

D. K. Chatterjee, A. J. Rufaihah, and Y. Zhang, “Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals,” Biomaterials 29(7), 937–943 (2008).
[Crossref] [PubMed]

Chen, G. Y.

G. Y. Chen, G. Somesfalean, Y. Liu, Z. G. Zhang, Q. Sun, and F. P. Wang, “Upconversion mechanism for two-color emission in rare-earth-ion-doped ZrO2 nanocrystalsPhys,” Phys. Rev. B 75(19), 195204 (2007).
[Crossref]

Chen, K.

X. Zhang, S. Lin, T. Lin, P. Zhang, J. Xu, L. Xu, and K. Chen, “Improved sensitization efficiency in Er(3+) ions and SnO2 nanocrystals co-doped silica thin films,” Phys. Chem. Chem. Phys. 17(18), 11974–11980 (2015).
[Crossref] [PubMed]

X. Zhang, T. Lin, P. Zhang, J. Xu, S. Lin, L. Xu, and K. Chen, “Highly efficient near-infrared emission in Er3+ doped silica films containing size-tunable SnO2 nanocrystals,” Opt. Express 22(1), 369–376 (2014).
[Crossref] [PubMed]

Chen, K. J.

Y. Q. Wu, Y. Ji, J. Xu, J. J. Liu, Z. W. Lin, Y. L. Zhao, Y. Sun, L. Xu, and K. J. Chen, “Crystalline phase and morphology controlling to enhance the up-conversion emission from NaYF4:Yb,Er nanocrystals,” Acta Mater. 131, 373–379 (2017).
[Crossref]

Y. Q. Wu, S. B. Lin, W. Y. Shao, X. W. Zhang, J. Xu, L. Y. Yu, and K. J. Chen, “Enhanced up-conversion luminescence from NaYF4:Yb,Er nanocrystals by Gd3+ ions induced phase transformation and plasmonic Au nanosphere arrays,” RSC Advances 6(105), 102869 (2016).
[Crossref] [PubMed]

T. Lin, X. W. Zhang, J. Xu, X. Liu, M. T. Swihart, L. Xu, and K. J. Chen, “Strong energy-transfer-induced enhancement of Er3+ luminescence in In2O3 nanocrystal codoped silica films,” Appl. Phys. Lett. 103(18), 181906 (2013).
[Crossref]

T. Lin, X. W. Zhang, Y. J. Wang, J. Xu, N. Wan, J. F. Liu, L. Xu, and K. J. Chen, “Luminescence enhancement due to energy transfer in ZnO nanoparticles and Eu3+ ions co-doped silica,” Thin Solid Films 520(17), 5815–5819 (2012).
[Crossref]

T. Lin, X. Y. Ding, J. Xu, N. Wan, L. Xu, and K. J. Chen, “Influences of doping and annealing conditions on the photoluminescence from In2O3 nanocrystals and Eu3+ ions co-doped sol-gel SiO2 films,” J. Appl. Phys. 109(8), 083512 (2011).
[Crossref]

Chen, S. Y.

S. Y. Chen, C. C. Ting, and W. F. Hsieh, “Comparison of visible fluorescence properties between sol-gel derived Er-Yb and Er-Y co-doped TiO2 films,” Thin Solid Films 434 (1-2), 171–177 (2003).
[Crossref]

Chettiar, U. K.

M. Saboktakin, X. Ye, U. K. Chettiar, N. Engheta, C. B. Murray, and C. R. Kagan, “Plasmonic enhancement of nanophosphor upconversion luminescence in Au nanohole arrays,” ACS Nano 7(8), 7186–7192 (2013).
[Crossref] [PubMed]

Chi, D.

W. Yang, X. Li, D. Chi, H. Zhang, and X. Liu, “Lanthanide-doped upconversion materials: emerging applications for photovoltaics and photocatalysis,” Nanotechnology 25(48), 482001 (2014).
[Crossref] [PubMed]

de Wild, J.

J. de Wild, J. K. Rath, A. Meijerink, W. G. J. H. M. van Sark, and R. E. I. Schropp, “Enhanced near-infrared response of a-Si:H solar cells with β-NaYF4:Yb3+(18%), Er3+ (2%) upconversion phosphors,” Sol. Energy Mater. Sol. Cells 94(12), 2395–2398 (2010).
[Crossref]

Deng, R.

S. Han, R. Deng, X. Xie, and X. Liu, “Enhancing luminescence in lanthanide-doped upconversion nanoparticles,” Angew. Chem. Int. Ed. Engl. 53(44), 11702–11715 (2014).
[Crossref] [PubMed]

Ding, K.

F. Zhang, Q. Shi, Y. Zhang, Y. Shi, K. Ding, D. Zhao, and G. D. Stucky, “Fluorescence upconversion microbarcodes for multiplexed biological detection: nucleic acid encoding,” Adv. Mater. 23(33), 3775–3779 (2011).
[Crossref] [PubMed]

Ding, X.

Y. Huang, Q. Xiao, H. Hu, K. Zhang, Y. Feng, F. Li, J. Wang, X. Ding, J. Jiang, Y. Li, L. Shi, and H. Lin, “915 nm light-triggered photodynamic therapy and MR/CT dual-modal imaging of tumor based on the nonstoichiometric Na0.52YbF3.52:Er upconversion nanoprobes,” Small 12(31), 4200–4210 (2016).
[Crossref] [PubMed]

Ding, X. Y.

T. Lin, X. Y. Ding, J. Xu, N. Wan, L. Xu, and K. J. Chen, “Influences of doping and annealing conditions on the photoluminescence from In2O3 nanocrystals and Eu3+ ions co-doped sol-gel SiO2 films,” J. Appl. Phys. 109(8), 083512 (2011).
[Crossref]

Dong, B.

B. S. Cao, Y. Y. He, Z. Q. Feng, M. Song, and B. Dong, “Crystalline-structure-dependent green and red upconversion emissions of Er3+-Yb3+-Li+ codoped TiO2,” Opt. Commun. 284(13), 3311–3314 (2011).
[Crossref]

Engheta, N.

M. Saboktakin, X. Ye, U. K. Chettiar, N. Engheta, C. B. Murray, and C. R. Kagan, “Plasmonic enhancement of nanophosphor upconversion luminescence in Au nanohole arrays,” ACS Nano 7(8), 7186–7192 (2013).
[Crossref] [PubMed]

Feng, W.

J. Zhou, Q. Liu, W. Feng, Y. Sun, and F. Li, “Upconversion luminescent materials: advances and applications,” Chem. Rev. 115(1), 395–465 (2015).
[Crossref] [PubMed]

Feng, Y.

Y. Huang, Q. Xiao, H. Hu, K. Zhang, Y. Feng, F. Li, J. Wang, X. Ding, J. Jiang, Y. Li, L. Shi, and H. Lin, “915 nm light-triggered photodynamic therapy and MR/CT dual-modal imaging of tumor based on the nonstoichiometric Na0.52YbF3.52:Er upconversion nanoprobes,” Small 12(31), 4200–4210 (2016).
[Crossref] [PubMed]

Feng, Z. Q.

B. S. Cao, Y. Y. He, Z. Q. Feng, M. Song, and B. Dong, “Crystalline-structure-dependent green and red upconversion emissions of Er3+-Yb3+-Li+ codoped TiO2,” Opt. Commun. 284(13), 3311–3314 (2011).
[Crossref]

Franken, P. A.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical haramonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[Crossref]

Fu, X. F.

M. Y. Xie, X. N. Peng, X. F. Fu, J. J. Zhang, G. L. Lia, and X. F. Yu, “Synthesis of Yb3+/Er3+ co-doped MnF2 nanocrystals with bright red up-converted fluorescence,” Scr. Mater. 60(3), 190–193 (2009).
[Crossref]

Fujii, M.

Z. H. Bai, H. Lin, J. Johnson, S. C. R. Gui, K. Imakita, R. Montazami, M. Fujii, and N. Hashemi, “The single-band red upconversion luminescence from morphology and size controllable Er3+/Yb3+ doped MnF2 nanostructures,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(9), 1736–1741 (2014).
[Crossref]

Gao, F. Q.

W. Gao, H. R. Zheng, Q. Y. Han, E. J. He, F. Q. Gao, and R. B. Wang, “Enhanced red upconversion luminescence by codoping Ce3+ in β-NaY(Gd0.4)F4:Yb3+/Ho3+ nanocrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(27), 5327–5334 (2014).
[Crossref]

Gao, W.

W. Gao, H. R. Zheng, Q. Y. Han, E. J. He, F. Q. Gao, and R. B. Wang, “Enhanced red upconversion luminescence by codoping Ce3+ in β-NaY(Gd0.4)F4:Yb3+/Ho3+ nanocrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(27), 5327–5334 (2014).
[Crossref]

Govorov, A. O.

Z. H. Xu, M. Quintanilla, F. Vetrone, A. O. Govorov, M. Chaker, and D. L. Ma, “Harvesting lost photons: plasmon and upconversion enhanced broadband photocatalytic activity in Core@Shell microspheres based on lanthanide-doped NaYF4, TiO2, and Au,” Adv. Funct. Mater. 25(20), 2950–2960 (2015).
[Crossref]

Gu, Z.

G. Tian, Z. Gu, L. Zhou, W. Yin, X. Liu, L. Yan, S. Jin, W. Ren, G. Xing, S. Li, and Y. Zhao, “Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
[Crossref] [PubMed]

W. Yin, L. Zhao, L. Zhou, Z. Gu, X. Liu, G. Tian, S. Jin, L. Yan, W. Ren, G. Xing, and Y. Zhao, “Enhanced red emission from GdF3:Yb3+,Er3+ upconversion nanocrystals by Li+ doping and their application for bioimaging,” Chemistry 18(30), 9239–9245 (2012).
[Crossref] [PubMed]

Gu, Z. J.

L. J. Zhou, Z. J. Gu, X. X. Liu, W. Y. Yin, G. Tian, L. Yan, S. Jin, W. L. Ren, G. M. Xing, W. Li, X. L. Chang, Z. B. Hu, and Y. L. Zhao, “Size-tunable synthesis of lanthanide-doped Gd2O3 nanoparticles and their applications for optical and magnetic resonance imaging,” J. Mater. Chem. 22(3), 966–974 (2012).
[Crossref]

Gui, S. C. R.

Z. H. Bai, H. Lin, J. Johnson, S. C. R. Gui, K. Imakita, R. Montazami, M. Fujii, and N. Hashemi, “The single-band red upconversion luminescence from morphology and size controllable Er3+/Yb3+ doped MnF2 nanostructures,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(9), 1736–1741 (2014).
[Crossref]

Han, Q. Y.

W. Gao, H. R. Zheng, Q. Y. Han, E. J. He, F. Q. Gao, and R. B. Wang, “Enhanced red upconversion luminescence by codoping Ce3+ in β-NaY(Gd0.4)F4:Yb3+/Ho3+ nanocrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(27), 5327–5334 (2014).
[Crossref]

Han, S.

S. Han, R. Deng, X. Xie, and X. Liu, “Enhancing luminescence in lanthanide-doped upconversion nanoparticles,” Angew. Chem. Int. Ed. Engl. 53(44), 11702–11715 (2014).
[Crossref] [PubMed]

Hao, J.

Z. Yi, T. Zeng, Y. Xu, W. Lu, C. Qian, H. Liu, S. Zeng, and J. Hao, “Multicolor tuning towards single red-emission band of upconversion nanoparticles for tunable optical component and optical/x-ray imaging agents via Ce3+ doping,” Nanotechnology 26(38), 385702 (2015).
[Crossref] [PubMed]

J. Hao, Y. Zhang, and X. Wei, “Electric-induced enhancement and modulation of upconversion photoluminescence in epitaxial BaTiO3:Yb/Er thin films,” Angew. Chem. Int. Ed. Engl. 50(30), 6876–6880 (2011).
[Crossref] [PubMed]

Hashemi, N.

Z. H. Bai, H. Lin, J. Johnson, S. C. R. Gui, K. Imakita, R. Montazami, M. Fujii, and N. Hashemi, “The single-band red upconversion luminescence from morphology and size controllable Er3+/Yb3+ doped MnF2 nanostructures,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(9), 1736–1741 (2014).
[Crossref]

Hatchard, C. G.

C. A. Parker and C. G. Hatchard, “Delayed fluorescence from solutions of anthracene and phenanthrene,” Proc. R. Soc. Lond. A Math. Phys. Sci. 269(1339), 574–584 (1962).
[Crossref]

He, E. J.

W. Gao, H. R. Zheng, Q. Y. Han, E. J. He, F. Q. Gao, and R. B. Wang, “Enhanced red upconversion luminescence by codoping Ce3+ in β-NaY(Gd0.4)F4:Yb3+/Ho3+ nanocrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(27), 5327–5334 (2014).
[Crossref]

He, Y. Y.

B. S. Cao, Y. Y. He, Z. Q. Feng, M. Song, and B. Dong, “Crystalline-structure-dependent green and red upconversion emissions of Er3+-Yb3+-Li+ codoped TiO2,” Opt. Commun. 284(13), 3311–3314 (2011).
[Crossref]

Hill, A. E.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical haramonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[Crossref]

Hsieh, W. F.

S. Y. Chen, C. C. Ting, and W. F. Hsieh, “Comparison of visible fluorescence properties between sol-gel derived Er-Yb and Er-Y co-doped TiO2 films,” Thin Solid Films 434 (1-2), 171–177 (2003).
[Crossref]

Hu, H.

Y. Huang, Q. Xiao, H. Hu, K. Zhang, Y. Feng, F. Li, J. Wang, X. Ding, J. Jiang, Y. Li, L. Shi, and H. Lin, “915 nm light-triggered photodynamic therapy and MR/CT dual-modal imaging of tumor based on the nonstoichiometric Na0.52YbF3.52:Er upconversion nanoprobes,” Small 12(31), 4200–4210 (2016).
[Crossref] [PubMed]

Hu, Q.

Z. Z. Zhang, J. H. Zhang, W. Zhou, M. X. Song, W. Li, Q. Hu, and X. J. Zhao, “Structure and up-conversion luminescence properties of Er3+-Yb3+ co-doped TiO2 nanocrystals prepared by sol-gel method,” Adv. Mat. Res. 66, 167–170 (2009).
[Crossref]

Hu, Z. B.

L. J. Zhou, Z. J. Gu, X. X. Liu, W. Y. Yin, G. Tian, L. Yan, S. Jin, W. L. Ren, G. M. Xing, W. Li, X. L. Chang, Z. B. Hu, and Y. L. Zhao, “Size-tunable synthesis of lanthanide-doped Gd2O3 nanoparticles and their applications for optical and magnetic resonance imaging,” J. Mater. Chem. 22(3), 966–974 (2012).
[Crossref]

Huang, Y.

Y. Huang, Q. Xiao, H. Hu, K. Zhang, Y. Feng, F. Li, J. Wang, X. Ding, J. Jiang, Y. Li, L. Shi, and H. Lin, “915 nm light-triggered photodynamic therapy and MR/CT dual-modal imaging of tumor based on the nonstoichiometric Na0.52YbF3.52:Er upconversion nanoprobes,” Small 12(31), 4200–4210 (2016).
[Crossref] [PubMed]

Imakita, K.

Z. H. Bai, H. Lin, J. Johnson, S. C. R. Gui, K. Imakita, R. Montazami, M. Fujii, and N. Hashemi, “The single-band red upconversion luminescence from morphology and size controllable Er3+/Yb3+ doped MnF2 nanostructures,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(9), 1736–1741 (2014).
[Crossref]

Ji, Y.

Y. Q. Wu, Y. Ji, J. Xu, J. J. Liu, Z. W. Lin, Y. L. Zhao, Y. Sun, L. Xu, and K. J. Chen, “Crystalline phase and morphology controlling to enhance the up-conversion emission from NaYF4:Yb,Er nanocrystals,” Acta Mater. 131, 373–379 (2017).
[Crossref]

Jiang, J.

Y. Huang, Q. Xiao, H. Hu, K. Zhang, Y. Feng, F. Li, J. Wang, X. Ding, J. Jiang, Y. Li, L. Shi, and H. Lin, “915 nm light-triggered photodynamic therapy and MR/CT dual-modal imaging of tumor based on the nonstoichiometric Na0.52YbF3.52:Er upconversion nanoprobes,” Small 12(31), 4200–4210 (2016).
[Crossref] [PubMed]

Jin, D.

B. Zhou, B. Shi, D. Jin, and X. Liu, “Controlling upconversion nanocrystals for emerging applications,” Nat. Nanotechnol. 10(11), 924–936 (2015).
[Crossref] [PubMed]

Jin, S.

W. Yin, L. Zhao, L. Zhou, Z. Gu, X. Liu, G. Tian, S. Jin, L. Yan, W. Ren, G. Xing, and Y. Zhao, “Enhanced red emission from GdF3:Yb3+,Er3+ upconversion nanocrystals by Li+ doping and their application for bioimaging,” Chemistry 18(30), 9239–9245 (2012).
[Crossref] [PubMed]

L. J. Zhou, Z. J. Gu, X. X. Liu, W. Y. Yin, G. Tian, L. Yan, S. Jin, W. L. Ren, G. M. Xing, W. Li, X. L. Chang, Z. B. Hu, and Y. L. Zhao, “Size-tunable synthesis of lanthanide-doped Gd2O3 nanoparticles and their applications for optical and magnetic resonance imaging,” J. Mater. Chem. 22(3), 966–974 (2012).
[Crossref]

G. Tian, Z. Gu, L. Zhou, W. Yin, X. Liu, L. Yan, S. Jin, W. Ren, G. Xing, S. Li, and Y. Zhao, “Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
[Crossref] [PubMed]

Johnson, J.

Z. H. Bai, H. Lin, J. Johnson, S. C. R. Gui, K. Imakita, R. Montazami, M. Fujii, and N. Hashemi, “The single-band red upconversion luminescence from morphology and size controllable Er3+/Yb3+ doped MnF2 nanostructures,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(9), 1736–1741 (2014).
[Crossref]

Kagan, C. R.

M. Saboktakin, X. Ye, U. K. Chettiar, N. Engheta, C. B. Murray, and C. R. Kagan, “Plasmonic enhancement of nanophosphor upconversion luminescence in Au nanohole arrays,” ACS Nano 7(8), 7186–7192 (2013).
[Crossref] [PubMed]

Kong, X.

C. Zhao, X. Kong, X. Liu, L. Tu, F. Wu, Y. Zhang, K. Liu, Q. Zeng, and H. Zhang, “Li+ ion doping: an approach for improving the crystallinity and upconversion emissions of NaYF4:Yb3+, Tm3+ nanoparticles,” Nanoscale 5(17), 8084–8089 (2013).
[Crossref] [PubMed]

Kong, X. G.

Q. K. Shang, H. Yu, X. G. Kong, H. D. Wang, X. Wang, Y. J. Sun, Y. L. Zhang, and Q. H. Zeng, “Green and red up-conversion emissions of Er3+-Yb3+ Co-doped TiO2 nanocrystals prepared by sol-gel method,” J. Lumin. 128(7), 1211–1216 (2008).
[Crossref]

LaCount, M. D.

D. H. Weingarten, M. D. LaCount, J. van de Lagemaat, G. Rumbles, M. T. Lusk, and S. E. Shaheen, “Experimental demonstration of photon upconversion via cooperative energy pooling,” Nat. Commun. 8, 14808 (2017).
[Crossref] [PubMed]

Lalla, E.

S. F. Leon-Luis, U. R. Rodríguez-Mendoza, E. Lalla, and V. Lavín, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sens. Actuators B Chem. 158(1), 208–213 (2011).
[Crossref]

Lavín, V.

S. F. Leon-Luis, U. R. Rodríguez-Mendoza, E. Lalla, and V. Lavín, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sens. Actuators B Chem. 158(1), 208–213 (2011).
[Crossref]

Leon-Luis, S. F.

S. F. Leon-Luis, U. R. Rodríguez-Mendoza, E. Lalla, and V. Lavín, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sens. Actuators B Chem. 158(1), 208–213 (2011).
[Crossref]

Li, F.

Y. Huang, Q. Xiao, H. Hu, K. Zhang, Y. Feng, F. Li, J. Wang, X. Ding, J. Jiang, Y. Li, L. Shi, and H. Lin, “915 nm light-triggered photodynamic therapy and MR/CT dual-modal imaging of tumor based on the nonstoichiometric Na0.52YbF3.52:Er upconversion nanoprobes,” Small 12(31), 4200–4210 (2016).
[Crossref] [PubMed]

J. Zhou, Q. Liu, W. Feng, Y. Sun, and F. Li, “Upconversion luminescent materials: advances and applications,” Chem. Rev. 115(1), 395–465 (2015).
[Crossref] [PubMed]

Li, S.

G. Tian, Z. Gu, L. Zhou, W. Yin, X. Liu, L. Yan, S. Jin, W. Ren, G. Xing, S. Li, and Y. Zhao, “Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
[Crossref] [PubMed]

Li, W.

L. J. Zhou, Z. J. Gu, X. X. Liu, W. Y. Yin, G. Tian, L. Yan, S. Jin, W. L. Ren, G. M. Xing, W. Li, X. L. Chang, Z. B. Hu, and Y. L. Zhao, “Size-tunable synthesis of lanthanide-doped Gd2O3 nanoparticles and their applications for optical and magnetic resonance imaging,” J. Mater. Chem. 22(3), 966–974 (2012).
[Crossref]

Z. Z. Zhang, J. H. Zhang, W. Zhou, M. X. Song, W. Li, Q. Hu, and X. J. Zhao, “Structure and up-conversion luminescence properties of Er3+-Yb3+ co-doped TiO2 nanocrystals prepared by sol-gel method,” Adv. Mat. Res. 66, 167–170 (2009).
[Crossref]

Li, X.

X. Li, F. Zhang, and D. Zhao, “Lab on upconversion nanoparticles: optical properties and applications engineering via designed nanostructure,” Chem. Soc. Rev. 44(6), 1346–1378 (2015).
[Crossref] [PubMed]

W. Yang, X. Li, D. Chi, H. Zhang, and X. Liu, “Lanthanide-doped upconversion materials: emerging applications for photovoltaics and photocatalysis,” Nanotechnology 25(48), 482001 (2014).
[Crossref] [PubMed]

Li, X. S.

S. X. Liu, X. S. Li, X. B. Zhu, T. L. Zhao, J. L. Liu, and A. M. Zhu, “Gliding arc plasma synthesis of crystalline TiO2 nanopowders with high photocatalytic activity,” Plasma Chem. Plasma Process. 33(5), 827–838 (2013).
[Crossref]

Li, Y.

Y. Huang, Q. Xiao, H. Hu, K. Zhang, Y. Feng, F. Li, J. Wang, X. Ding, J. Jiang, Y. Li, L. Shi, and H. Lin, “915 nm light-triggered photodynamic therapy and MR/CT dual-modal imaging of tumor based on the nonstoichiometric Na0.52YbF3.52:Er upconversion nanoprobes,” Small 12(31), 4200–4210 (2016).
[Crossref] [PubMed]

Li, Y. D.

J. H. Zeng, J. Su, Z. H. Li, R. X. Yan, and Y. D. Li, “Synthesis and upconversion luminescence of hexagonal-phase NaYF4:Yb,Er3+ phosphors of controlled size and morphology,” Adv. Mater. 17(17), 2119–2123 (2005).
[Crossref]

Li, Z. H.

J. H. Zeng, J. Su, Z. H. Li, R. X. Yan, and Y. D. Li, “Synthesis and upconversion luminescence of hexagonal-phase NaYF4:Yb,Er3+ phosphors of controlled size and morphology,” Adv. Mater. 17(17), 2119–2123 (2005).
[Crossref]

Lia, G. L.

M. Y. Xie, X. N. Peng, X. F. Fu, J. J. Zhang, G. L. Lia, and X. F. Yu, “Synthesis of Yb3+/Er3+ co-doped MnF2 nanocrystals with bright red up-converted fluorescence,” Scr. Mater. 60(3), 190–193 (2009).
[Crossref]

Lin, H.

Y. Huang, Q. Xiao, H. Hu, K. Zhang, Y. Feng, F. Li, J. Wang, X. Ding, J. Jiang, Y. Li, L. Shi, and H. Lin, “915 nm light-triggered photodynamic therapy and MR/CT dual-modal imaging of tumor based on the nonstoichiometric Na0.52YbF3.52:Er upconversion nanoprobes,” Small 12(31), 4200–4210 (2016).
[Crossref] [PubMed]

Z. H. Bai, H. Lin, J. Johnson, S. C. R. Gui, K. Imakita, R. Montazami, M. Fujii, and N. Hashemi, “The single-band red upconversion luminescence from morphology and size controllable Er3+/Yb3+ doped MnF2 nanostructures,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(9), 1736–1741 (2014).
[Crossref]

Lin, S.

X. Zhang, S. Lin, T. Lin, P. Zhang, J. Xu, L. Xu, and K. Chen, “Improved sensitization efficiency in Er(3+) ions and SnO2 nanocrystals co-doped silica thin films,” Phys. Chem. Chem. Phys. 17(18), 11974–11980 (2015).
[Crossref] [PubMed]

X. Zhang, T. Lin, P. Zhang, J. Xu, S. Lin, L. Xu, and K. Chen, “Highly efficient near-infrared emission in Er3+ doped silica films containing size-tunable SnO2 nanocrystals,” Opt. Express 22(1), 369–376 (2014).
[Crossref] [PubMed]

Lin, S. B.

Y. Q. Wu, S. B. Lin, W. Y. Shao, X. W. Zhang, J. Xu, L. Y. Yu, and K. J. Chen, “Enhanced up-conversion luminescence from NaYF4:Yb,Er nanocrystals by Gd3+ ions induced phase transformation and plasmonic Au nanosphere arrays,” RSC Advances 6(105), 102869 (2016).
[Crossref] [PubMed]

Lin, T.

X. Zhang, S. Lin, T. Lin, P. Zhang, J. Xu, L. Xu, and K. Chen, “Improved sensitization efficiency in Er(3+) ions and SnO2 nanocrystals co-doped silica thin films,” Phys. Chem. Chem. Phys. 17(18), 11974–11980 (2015).
[Crossref] [PubMed]

X. Zhang, T. Lin, P. Zhang, J. Xu, S. Lin, L. Xu, and K. Chen, “Highly efficient near-infrared emission in Er3+ doped silica films containing size-tunable SnO2 nanocrystals,” Opt. Express 22(1), 369–376 (2014).
[Crossref] [PubMed]

T. Lin, X. W. Zhang, J. Xu, X. Liu, M. T. Swihart, L. Xu, and K. J. Chen, “Strong energy-transfer-induced enhancement of Er3+ luminescence in In2O3 nanocrystal codoped silica films,” Appl. Phys. Lett. 103(18), 181906 (2013).
[Crossref]

T. Lin, X. W. Zhang, Y. J. Wang, J. Xu, N. Wan, J. F. Liu, L. Xu, and K. J. Chen, “Luminescence enhancement due to energy transfer in ZnO nanoparticles and Eu3+ ions co-doped silica,” Thin Solid Films 520(17), 5815–5819 (2012).
[Crossref]

T. Lin, X. Y. Ding, J. Xu, N. Wan, L. Xu, and K. J. Chen, “Influences of doping and annealing conditions on the photoluminescence from In2O3 nanocrystals and Eu3+ ions co-doped sol-gel SiO2 films,” J. Appl. Phys. 109(8), 083512 (2011).
[Crossref]

Lin, Z. W.

Y. Q. Wu, Y. Ji, J. Xu, J. J. Liu, Z. W. Lin, Y. L. Zhao, Y. Sun, L. Xu, and K. J. Chen, “Crystalline phase and morphology controlling to enhance the up-conversion emission from NaYF4:Yb,Er nanocrystals,” Acta Mater. 131, 373–379 (2017).
[Crossref]

Liu, G.

G. Liu, “Advances in the theoretical understanding of photon upconversion in rare-earth activated nanophosphors,” Chem. Soc. Rev. 44(6), 1635–1652 (2015).
[Crossref] [PubMed]

Liu, H.

Z. Yi, T. Zeng, Y. Xu, W. Lu, C. Qian, H. Liu, S. Zeng, and J. Hao, “Multicolor tuning towards single red-emission band of upconversion nanoparticles for tunable optical component and optical/x-ray imaging agents via Ce3+ doping,” Nanotechnology 26(38), 385702 (2015).
[Crossref] [PubMed]

Liu, J. F.

T. Lin, X. W. Zhang, Y. J. Wang, J. Xu, N. Wan, J. F. Liu, L. Xu, and K. J. Chen, “Luminescence enhancement due to energy transfer in ZnO nanoparticles and Eu3+ ions co-doped silica,” Thin Solid Films 520(17), 5815–5819 (2012).
[Crossref]

Liu, J. J.

Y. Q. Wu, Y. Ji, J. Xu, J. J. Liu, Z. W. Lin, Y. L. Zhao, Y. Sun, L. Xu, and K. J. Chen, “Crystalline phase and morphology controlling to enhance the up-conversion emission from NaYF4:Yb,Er nanocrystals,” Acta Mater. 131, 373–379 (2017).
[Crossref]

Liu, J. L.

S. X. Liu, X. S. Li, X. B. Zhu, T. L. Zhao, J. L. Liu, and A. M. Zhu, “Gliding arc plasma synthesis of crystalline TiO2 nanopowders with high photocatalytic activity,” Plasma Chem. Plasma Process. 33(5), 827–838 (2013).
[Crossref]

Liu, K.

C. Zhao, X. Kong, X. Liu, L. Tu, F. Wu, Y. Zhang, K. Liu, Q. Zeng, and H. Zhang, “Li+ ion doping: an approach for improving the crystallinity and upconversion emissions of NaYF4:Yb3+, Tm3+ nanoparticles,” Nanoscale 5(17), 8084–8089 (2013).
[Crossref] [PubMed]

Liu, Q.

J. Zhou, Q. Liu, W. Feng, Y. Sun, and F. Li, “Upconversion luminescent materials: advances and applications,” Chem. Rev. 115(1), 395–465 (2015).
[Crossref] [PubMed]

Liu, S. X.

S. X. Liu, X. S. Li, X. B. Zhu, T. L. Zhao, J. L. Liu, and A. M. Zhu, “Gliding arc plasma synthesis of crystalline TiO2 nanopowders with high photocatalytic activity,” Plasma Chem. Plasma Process. 33(5), 827–838 (2013).
[Crossref]

Liu, X.

B. Zhou, B. Shi, D. Jin, and X. Liu, “Controlling upconversion nanocrystals for emerging applications,” Nat. Nanotechnol. 10(11), 924–936 (2015).
[Crossref] [PubMed]

W. Yang, X. Li, D. Chi, H. Zhang, and X. Liu, “Lanthanide-doped upconversion materials: emerging applications for photovoltaics and photocatalysis,” Nanotechnology 25(48), 482001 (2014).
[Crossref] [PubMed]

S. Han, R. Deng, X. Xie, and X. Liu, “Enhancing luminescence in lanthanide-doped upconversion nanoparticles,” Angew. Chem. Int. Ed. Engl. 53(44), 11702–11715 (2014).
[Crossref] [PubMed]

T. Lin, X. W. Zhang, J. Xu, X. Liu, M. T. Swihart, L. Xu, and K. J. Chen, “Strong energy-transfer-induced enhancement of Er3+ luminescence in In2O3 nanocrystal codoped silica films,” Appl. Phys. Lett. 103(18), 181906 (2013).
[Crossref]

C. Zhao, X. Kong, X. Liu, L. Tu, F. Wu, Y. Zhang, K. Liu, Q. Zeng, and H. Zhang, “Li+ ion doping: an approach for improving the crystallinity and upconversion emissions of NaYF4:Yb3+, Tm3+ nanoparticles,” Nanoscale 5(17), 8084–8089 (2013).
[Crossref] [PubMed]

G. Tian, Z. Gu, L. Zhou, W. Yin, X. Liu, L. Yan, S. Jin, W. Ren, G. Xing, S. Li, and Y. Zhao, “Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
[Crossref] [PubMed]

W. Yin, L. Zhao, L. Zhou, Z. Gu, X. Liu, G. Tian, S. Jin, L. Yan, W. Ren, G. Xing, and Y. Zhao, “Enhanced red emission from GdF3:Yb3+,Er3+ upconversion nanocrystals by Li+ doping and their application for bioimaging,” Chemistry 18(30), 9239–9245 (2012).
[Crossref] [PubMed]

J. Wang, F. Wang, C. Wang, Z. Liu, and X. Liu, “Single-Band Upconversion Emission in Lanthanide-Doped KMnF3 Nanocrystals,” Angew. Chem. Int. Ed. Engl. 50(44), 10369–10372 (2011).
[Crossref] [PubMed]

Liu, X. X.

L. J. Zhou, Z. J. Gu, X. X. Liu, W. Y. Yin, G. Tian, L. Yan, S. Jin, W. L. Ren, G. M. Xing, W. Li, X. L. Chang, Z. B. Hu, and Y. L. Zhao, “Size-tunable synthesis of lanthanide-doped Gd2O3 nanoparticles and their applications for optical and magnetic resonance imaging,” J. Mater. Chem. 22(3), 966–974 (2012).
[Crossref]

Liu, Y.

G. Y. Chen, G. Somesfalean, Y. Liu, Z. G. Zhang, Q. Sun, and F. P. Wang, “Upconversion mechanism for two-color emission in rare-earth-ion-doped ZrO2 nanocrystalsPhys,” Phys. Rev. B 75(19), 195204 (2007).
[Crossref]

Liu, Z.

J. Wang, F. Wang, C. Wang, Z. Liu, and X. Liu, “Single-Band Upconversion Emission in Lanthanide-Doped KMnF3 Nanocrystals,” Angew. Chem. Int. Ed. Engl. 50(44), 10369–10372 (2011).
[Crossref] [PubMed]

Lu, W.

Z. Yi, T. Zeng, Y. Xu, W. Lu, C. Qian, H. Liu, S. Zeng, and J. Hao, “Multicolor tuning towards single red-emission band of upconversion nanoparticles for tunable optical component and optical/x-ray imaging agents via Ce3+ doping,” Nanotechnology 26(38), 385702 (2015).
[Crossref] [PubMed]

Lusk, M. T.

D. H. Weingarten, M. D. LaCount, J. van de Lagemaat, G. Rumbles, M. T. Lusk, and S. E. Shaheen, “Experimental demonstration of photon upconversion via cooperative energy pooling,” Nat. Commun. 8, 14808 (2017).
[Crossref] [PubMed]

Ma, D. L.

Z. H. Xu, M. Quintanilla, F. Vetrone, A. O. Govorov, M. Chaker, and D. L. Ma, “Harvesting lost photons: plasmon and upconversion enhanced broadband photocatalytic activity in Core@Shell microspheres based on lanthanide-doped NaYF4, TiO2, and Au,” Adv. Funct. Mater. 25(20), 2950–2960 (2015).
[Crossref]

Meijerink, A.

J. de Wild, J. K. Rath, A. Meijerink, W. G. J. H. M. van Sark, and R. E. I. Schropp, “Enhanced near-infrared response of a-Si:H solar cells with β-NaYF4:Yb3+(18%), Er3+ (2%) upconversion phosphors,” Sol. Energy Mater. Sol. Cells 94(12), 2395–2398 (2010).
[Crossref]

Montazami, R.

Z. H. Bai, H. Lin, J. Johnson, S. C. R. Gui, K. Imakita, R. Montazami, M. Fujii, and N. Hashemi, “The single-band red upconversion luminescence from morphology and size controllable Er3+/Yb3+ doped MnF2 nanostructures,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(9), 1736–1741 (2014).
[Crossref]

Murray, C. B.

M. Saboktakin, X. Ye, U. K. Chettiar, N. Engheta, C. B. Murray, and C. R. Kagan, “Plasmonic enhancement of nanophosphor upconversion luminescence in Au nanohole arrays,” ACS Nano 7(8), 7186–7192 (2013).
[Crossref] [PubMed]

Parker, C. A.

C. A. Parker and C. G. Hatchard, “Delayed fluorescence from solutions of anthracene and phenanthrene,” Proc. R. Soc. Lond. A Math. Phys. Sci. 269(1339), 574–584 (1962).
[Crossref]

Peng, X. N.

M. Y. Xie, X. N. Peng, X. F. Fu, J. J. Zhang, G. L. Lia, and X. F. Yu, “Synthesis of Yb3+/Er3+ co-doped MnF2 nanocrystals with bright red up-converted fluorescence,” Scr. Mater. 60(3), 190–193 (2009).
[Crossref]

Peters, C. W.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical haramonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[Crossref]

Qian, C.

Z. Yi, T. Zeng, Y. Xu, W. Lu, C. Qian, H. Liu, S. Zeng, and J. Hao, “Multicolor tuning towards single red-emission band of upconversion nanoparticles for tunable optical component and optical/x-ray imaging agents via Ce3+ doping,” Nanotechnology 26(38), 385702 (2015).
[Crossref] [PubMed]

Quintanilla, M.

Z. H. Xu, M. Quintanilla, F. Vetrone, A. O. Govorov, M. Chaker, and D. L. Ma, “Harvesting lost photons: plasmon and upconversion enhanced broadband photocatalytic activity in Core@Shell microspheres based on lanthanide-doped NaYF4, TiO2, and Au,” Adv. Funct. Mater. 25(20), 2950–2960 (2015).
[Crossref]

Rath, J. K.

J. de Wild, J. K. Rath, A. Meijerink, W. G. J. H. M. van Sark, and R. E. I. Schropp, “Enhanced near-infrared response of a-Si:H solar cells with β-NaYF4:Yb3+(18%), Er3+ (2%) upconversion phosphors,” Sol. Energy Mater. Sol. Cells 94(12), 2395–2398 (2010).
[Crossref]

Ren, W.

G. Tian, Z. Gu, L. Zhou, W. Yin, X. Liu, L. Yan, S. Jin, W. Ren, G. Xing, S. Li, and Y. Zhao, “Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
[Crossref] [PubMed]

W. Yin, L. Zhao, L. Zhou, Z. Gu, X. Liu, G. Tian, S. Jin, L. Yan, W. Ren, G. Xing, and Y. Zhao, “Enhanced red emission from GdF3:Yb3+,Er3+ upconversion nanocrystals by Li+ doping and their application for bioimaging,” Chemistry 18(30), 9239–9245 (2012).
[Crossref] [PubMed]

Ren, W. L.

L. J. Zhou, Z. J. Gu, X. X. Liu, W. Y. Yin, G. Tian, L. Yan, S. Jin, W. L. Ren, G. M. Xing, W. Li, X. L. Chang, Z. B. Hu, and Y. L. Zhao, “Size-tunable synthesis of lanthanide-doped Gd2O3 nanoparticles and their applications for optical and magnetic resonance imaging,” J. Mater. Chem. 22(3), 966–974 (2012).
[Crossref]

Rodríguez-Mendoza, U. R.

S. F. Leon-Luis, U. R. Rodríguez-Mendoza, E. Lalla, and V. Lavín, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sens. Actuators B Chem. 158(1), 208–213 (2011).
[Crossref]

Rufaihah, A. J.

D. K. Chatterjee, A. J. Rufaihah, and Y. Zhang, “Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals,” Biomaterials 29(7), 937–943 (2008).
[Crossref] [PubMed]

Rumbles, G.

D. H. Weingarten, M. D. LaCount, J. van de Lagemaat, G. Rumbles, M. T. Lusk, and S. E. Shaheen, “Experimental demonstration of photon upconversion via cooperative energy pooling,” Nat. Commun. 8, 14808 (2017).
[Crossref] [PubMed]

Saboktakin, M.

M. Saboktakin, X. Ye, U. K. Chettiar, N. Engheta, C. B. Murray, and C. R. Kagan, “Plasmonic enhancement of nanophosphor upconversion luminescence in Au nanohole arrays,” ACS Nano 7(8), 7186–7192 (2013).
[Crossref] [PubMed]

Schropp, R. E. I.

J. de Wild, J. K. Rath, A. Meijerink, W. G. J. H. M. van Sark, and R. E. I. Schropp, “Enhanced near-infrared response of a-Si:H solar cells with β-NaYF4:Yb3+(18%), Er3+ (2%) upconversion phosphors,” Sol. Energy Mater. Sol. Cells 94(12), 2395–2398 (2010).
[Crossref]

Shaheen, S. E.

D. H. Weingarten, M. D. LaCount, J. van de Lagemaat, G. Rumbles, M. T. Lusk, and S. E. Shaheen, “Experimental demonstration of photon upconversion via cooperative energy pooling,” Nat. Commun. 8, 14808 (2017).
[Crossref] [PubMed]

Shang, Q. K.

Q. K. Shang, H. Yu, X. G. Kong, H. D. Wang, X. Wang, Y. J. Sun, Y. L. Zhang, and Q. H. Zeng, “Green and red up-conversion emissions of Er3+-Yb3+ Co-doped TiO2 nanocrystals prepared by sol-gel method,” J. Lumin. 128(7), 1211–1216 (2008).
[Crossref]

Shao, W. Y.

Y. Q. Wu, S. B. Lin, W. Y. Shao, X. W. Zhang, J. Xu, L. Y. Yu, and K. J. Chen, “Enhanced up-conversion luminescence from NaYF4:Yb,Er nanocrystals by Gd3+ ions induced phase transformation and plasmonic Au nanosphere arrays,” RSC Advances 6(105), 102869 (2016).
[Crossref] [PubMed]

Shi, B.

B. Zhou, B. Shi, D. Jin, and X. Liu, “Controlling upconversion nanocrystals for emerging applications,” Nat. Nanotechnol. 10(11), 924–936 (2015).
[Crossref] [PubMed]

Shi, L.

Y. Huang, Q. Xiao, H. Hu, K. Zhang, Y. Feng, F. Li, J. Wang, X. Ding, J. Jiang, Y. Li, L. Shi, and H. Lin, “915 nm light-triggered photodynamic therapy and MR/CT dual-modal imaging of tumor based on the nonstoichiometric Na0.52YbF3.52:Er upconversion nanoprobes,” Small 12(31), 4200–4210 (2016).
[Crossref] [PubMed]

Shi, Q.

F. Zhang, Q. Shi, Y. Zhang, Y. Shi, K. Ding, D. Zhao, and G. D. Stucky, “Fluorescence upconversion microbarcodes for multiplexed biological detection: nucleic acid encoding,” Adv. Mater. 23(33), 3775–3779 (2011).
[Crossref] [PubMed]

Shi, Y.

F. Zhang, Q. Shi, Y. Zhang, Y. Shi, K. Ding, D. Zhao, and G. D. Stucky, “Fluorescence upconversion microbarcodes for multiplexed biological detection: nucleic acid encoding,” Adv. Mater. 23(33), 3775–3779 (2011).
[Crossref] [PubMed]

Somesfalean, G.

G. Y. Chen, G. Somesfalean, Y. Liu, Z. G. Zhang, Q. Sun, and F. P. Wang, “Upconversion mechanism for two-color emission in rare-earth-ion-doped ZrO2 nanocrystalsPhys,” Phys. Rev. B 75(19), 195204 (2007).
[Crossref]

Song, M.

B. S. Cao, Y. Y. He, Z. Q. Feng, M. Song, and B. Dong, “Crystalline-structure-dependent green and red upconversion emissions of Er3+-Yb3+-Li+ codoped TiO2,” Opt. Commun. 284(13), 3311–3314 (2011).
[Crossref]

Song, M. X.

Z. Z. Zhang, J. H. Zhang, W. Zhou, M. X. Song, W. Li, Q. Hu, and X. J. Zhao, “Structure and up-conversion luminescence properties of Er3+-Yb3+ co-doped TiO2 nanocrystals prepared by sol-gel method,” Adv. Mat. Res. 66, 167–170 (2009).
[Crossref]

Stucky, G. D.

F. Zhang, Q. Shi, Y. Zhang, Y. Shi, K. Ding, D. Zhao, and G. D. Stucky, “Fluorescence upconversion microbarcodes for multiplexed biological detection: nucleic acid encoding,” Adv. Mater. 23(33), 3775–3779 (2011).
[Crossref] [PubMed]

Su, J.

J. H. Zeng, J. Su, Z. H. Li, R. X. Yan, and Y. D. Li, “Synthesis and upconversion luminescence of hexagonal-phase NaYF4:Yb,Er3+ phosphors of controlled size and morphology,” Adv. Mater. 17(17), 2119–2123 (2005).
[Crossref]

Sun, Q.

G. Y. Chen, G. Somesfalean, Y. Liu, Z. G. Zhang, Q. Sun, and F. P. Wang, “Upconversion mechanism for two-color emission in rare-earth-ion-doped ZrO2 nanocrystalsPhys,” Phys. Rev. B 75(19), 195204 (2007).
[Crossref]

Sun, Y.

Y. Q. Wu, Y. Ji, J. Xu, J. J. Liu, Z. W. Lin, Y. L. Zhao, Y. Sun, L. Xu, and K. J. Chen, “Crystalline phase and morphology controlling to enhance the up-conversion emission from NaYF4:Yb,Er nanocrystals,” Acta Mater. 131, 373–379 (2017).
[Crossref]

J. Zhou, Q. Liu, W. Feng, Y. Sun, and F. Li, “Upconversion luminescent materials: advances and applications,” Chem. Rev. 115(1), 395–465 (2015).
[Crossref] [PubMed]

Sun, Y. J.

Q. K. Shang, H. Yu, X. G. Kong, H. D. Wang, X. Wang, Y. J. Sun, Y. L. Zhang, and Q. H. Zeng, “Green and red up-conversion emissions of Er3+-Yb3+ Co-doped TiO2 nanocrystals prepared by sol-gel method,” J. Lumin. 128(7), 1211–1216 (2008).
[Crossref]

Swihart, M. T.

T. Lin, X. W. Zhang, J. Xu, X. Liu, M. T. Swihart, L. Xu, and K. J. Chen, “Strong energy-transfer-induced enhancement of Er3+ luminescence in In2O3 nanocrystal codoped silica films,” Appl. Phys. Lett. 103(18), 181906 (2013).
[Crossref]

Tian, G.

W. Yin, L. Zhao, L. Zhou, Z. Gu, X. Liu, G. Tian, S. Jin, L. Yan, W. Ren, G. Xing, and Y. Zhao, “Enhanced red emission from GdF3:Yb3+,Er3+ upconversion nanocrystals by Li+ doping and their application for bioimaging,” Chemistry 18(30), 9239–9245 (2012).
[Crossref] [PubMed]

L. J. Zhou, Z. J. Gu, X. X. Liu, W. Y. Yin, G. Tian, L. Yan, S. Jin, W. L. Ren, G. M. Xing, W. Li, X. L. Chang, Z. B. Hu, and Y. L. Zhao, “Size-tunable synthesis of lanthanide-doped Gd2O3 nanoparticles and their applications for optical and magnetic resonance imaging,” J. Mater. Chem. 22(3), 966–974 (2012).
[Crossref]

G. Tian, Z. Gu, L. Zhou, W. Yin, X. Liu, L. Yan, S. Jin, W. Ren, G. Xing, S. Li, and Y. Zhao, “Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
[Crossref] [PubMed]

Ting, C. C.

S. Y. Chen, C. C. Ting, and W. F. Hsieh, “Comparison of visible fluorescence properties between sol-gel derived Er-Yb and Er-Y co-doped TiO2 films,” Thin Solid Films 434 (1-2), 171–177 (2003).
[Crossref]

Tu, L.

C. Zhao, X. Kong, X. Liu, L. Tu, F. Wu, Y. Zhang, K. Liu, Q. Zeng, and H. Zhang, “Li+ ion doping: an approach for improving the crystallinity and upconversion emissions of NaYF4:Yb3+, Tm3+ nanoparticles,” Nanoscale 5(17), 8084–8089 (2013).
[Crossref] [PubMed]

van de Lagemaat, J.

D. H. Weingarten, M. D. LaCount, J. van de Lagemaat, G. Rumbles, M. T. Lusk, and S. E. Shaheen, “Experimental demonstration of photon upconversion via cooperative energy pooling,” Nat. Commun. 8, 14808 (2017).
[Crossref] [PubMed]

van Sark, W. G. J. H. M.

J. de Wild, J. K. Rath, A. Meijerink, W. G. J. H. M. van Sark, and R. E. I. Schropp, “Enhanced near-infrared response of a-Si:H solar cells with β-NaYF4:Yb3+(18%), Er3+ (2%) upconversion phosphors,” Sol. Energy Mater. Sol. Cells 94(12), 2395–2398 (2010).
[Crossref]

van Veggel, F. C. J. M.

J. C. Boyer and F. C. J. M. van Veggel, “Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles,” Nanoscale 2(8), 1417–1419 (2010).
[Crossref] [PubMed]

Vetrone, F.

Z. H. Xu, M. Quintanilla, F. Vetrone, A. O. Govorov, M. Chaker, and D. L. Ma, “Harvesting lost photons: plasmon and upconversion enhanced broadband photocatalytic activity in Core@Shell microspheres based on lanthanide-doped NaYF4, TiO2, and Au,” Adv. Funct. Mater. 25(20), 2950–2960 (2015).
[Crossref]

Wan, N.

T. Lin, X. W. Zhang, Y. J. Wang, J. Xu, N. Wan, J. F. Liu, L. Xu, and K. J. Chen, “Luminescence enhancement due to energy transfer in ZnO nanoparticles and Eu3+ ions co-doped silica,” Thin Solid Films 520(17), 5815–5819 (2012).
[Crossref]

T. Lin, X. Y. Ding, J. Xu, N. Wan, L. Xu, and K. J. Chen, “Influences of doping and annealing conditions on the photoluminescence from In2O3 nanocrystals and Eu3+ ions co-doped sol-gel SiO2 films,” J. Appl. Phys. 109(8), 083512 (2011).
[Crossref]

Wang, C.

J. Wang, F. Wang, C. Wang, Z. Liu, and X. Liu, “Single-Band Upconversion Emission in Lanthanide-Doped KMnF3 Nanocrystals,” Angew. Chem. Int. Ed. Engl. 50(44), 10369–10372 (2011).
[Crossref] [PubMed]

Wang, F.

J. Wang, F. Wang, C. Wang, Z. Liu, and X. Liu, “Single-Band Upconversion Emission in Lanthanide-Doped KMnF3 Nanocrystals,” Angew. Chem. Int. Ed. Engl. 50(44), 10369–10372 (2011).
[Crossref] [PubMed]

Wang, F. P.

G. Y. Chen, G. Somesfalean, Y. Liu, Z. G. Zhang, Q. Sun, and F. P. Wang, “Upconversion mechanism for two-color emission in rare-earth-ion-doped ZrO2 nanocrystalsPhys,” Phys. Rev. B 75(19), 195204 (2007).
[Crossref]

Wang, H. D.

Q. K. Shang, H. Yu, X. G. Kong, H. D. Wang, X. Wang, Y. J. Sun, Y. L. Zhang, and Q. H. Zeng, “Green and red up-conversion emissions of Er3+-Yb3+ Co-doped TiO2 nanocrystals prepared by sol-gel method,” J. Lumin. 128(7), 1211–1216 (2008).
[Crossref]

Wang, J.

Y. Huang, Q. Xiao, H. Hu, K. Zhang, Y. Feng, F. Li, J. Wang, X. Ding, J. Jiang, Y. Li, L. Shi, and H. Lin, “915 nm light-triggered photodynamic therapy and MR/CT dual-modal imaging of tumor based on the nonstoichiometric Na0.52YbF3.52:Er upconversion nanoprobes,” Small 12(31), 4200–4210 (2016).
[Crossref] [PubMed]

J. Wang, F. Wang, C. Wang, Z. Liu, and X. Liu, “Single-Band Upconversion Emission in Lanthanide-Doped KMnF3 Nanocrystals,” Angew. Chem. Int. Ed. Engl. 50(44), 10369–10372 (2011).
[Crossref] [PubMed]

Wang, R. B.

W. Gao, H. R. Zheng, Q. Y. Han, E. J. He, F. Q. Gao, and R. B. Wang, “Enhanced red upconversion luminescence by codoping Ce3+ in β-NaY(Gd0.4)F4:Yb3+/Ho3+ nanocrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(27), 5327–5334 (2014).
[Crossref]

Wang, X.

Q. K. Shang, H. Yu, X. G. Kong, H. D. Wang, X. Wang, Y. J. Sun, Y. L. Zhang, and Q. H. Zeng, “Green and red up-conversion emissions of Er3+-Yb3+ Co-doped TiO2 nanocrystals prepared by sol-gel method,” J. Lumin. 128(7), 1211–1216 (2008).
[Crossref]

Wang, Y. J.

T. Lin, X. W. Zhang, Y. J. Wang, J. Xu, N. Wan, J. F. Liu, L. Xu, and K. J. Chen, “Luminescence enhancement due to energy transfer in ZnO nanoparticles and Eu3+ ions co-doped silica,” Thin Solid Films 520(17), 5815–5819 (2012).
[Crossref]

Wei, X.

J. Hao, Y. Zhang, and X. Wei, “Electric-induced enhancement and modulation of upconversion photoluminescence in epitaxial BaTiO3:Yb/Er thin films,” Angew. Chem. Int. Ed. Engl. 50(30), 6876–6880 (2011).
[Crossref] [PubMed]

Weingarten, D. H.

D. H. Weingarten, M. D. LaCount, J. van de Lagemaat, G. Rumbles, M. T. Lusk, and S. E. Shaheen, “Experimental demonstration of photon upconversion via cooperative energy pooling,” Nat. Commun. 8, 14808 (2017).
[Crossref] [PubMed]

Weinreich, G.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical haramonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[Crossref]

Wu, F.

C. Zhao, X. Kong, X. Liu, L. Tu, F. Wu, Y. Zhang, K. Liu, Q. Zeng, and H. Zhang, “Li+ ion doping: an approach for improving the crystallinity and upconversion emissions of NaYF4:Yb3+, Tm3+ nanoparticles,” Nanoscale 5(17), 8084–8089 (2013).
[Crossref] [PubMed]

Wu, Y. Q.

Y. Q. Wu, Y. Ji, J. Xu, J. J. Liu, Z. W. Lin, Y. L. Zhao, Y. Sun, L. Xu, and K. J. Chen, “Crystalline phase and morphology controlling to enhance the up-conversion emission from NaYF4:Yb,Er nanocrystals,” Acta Mater. 131, 373–379 (2017).
[Crossref]

Y. Q. Wu, S. B. Lin, W. Y. Shao, X. W. Zhang, J. Xu, L. Y. Yu, and K. J. Chen, “Enhanced up-conversion luminescence from NaYF4:Yb,Er nanocrystals by Gd3+ ions induced phase transformation and plasmonic Au nanosphere arrays,” RSC Advances 6(105), 102869 (2016).
[Crossref] [PubMed]

Xiao, Q.

Y. Huang, Q. Xiao, H. Hu, K. Zhang, Y. Feng, F. Li, J. Wang, X. Ding, J. Jiang, Y. Li, L. Shi, and H. Lin, “915 nm light-triggered photodynamic therapy and MR/CT dual-modal imaging of tumor based on the nonstoichiometric Na0.52YbF3.52:Er upconversion nanoprobes,” Small 12(31), 4200–4210 (2016).
[Crossref] [PubMed]

Xie, M. Y.

M. Y. Xie, X. N. Peng, X. F. Fu, J. J. Zhang, G. L. Lia, and X. F. Yu, “Synthesis of Yb3+/Er3+ co-doped MnF2 nanocrystals with bright red up-converted fluorescence,” Scr. Mater. 60(3), 190–193 (2009).
[Crossref]

Xie, X.

S. Han, R. Deng, X. Xie, and X. Liu, “Enhancing luminescence in lanthanide-doped upconversion nanoparticles,” Angew. Chem. Int. Ed. Engl. 53(44), 11702–11715 (2014).
[Crossref] [PubMed]

Xing, G.

W. Yin, L. Zhao, L. Zhou, Z. Gu, X. Liu, G. Tian, S. Jin, L. Yan, W. Ren, G. Xing, and Y. Zhao, “Enhanced red emission from GdF3:Yb3+,Er3+ upconversion nanocrystals by Li+ doping and their application for bioimaging,” Chemistry 18(30), 9239–9245 (2012).
[Crossref] [PubMed]

G. Tian, Z. Gu, L. Zhou, W. Yin, X. Liu, L. Yan, S. Jin, W. Ren, G. Xing, S. Li, and Y. Zhao, “Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
[Crossref] [PubMed]

Xing, G. M.

L. J. Zhou, Z. J. Gu, X. X. Liu, W. Y. Yin, G. Tian, L. Yan, S. Jin, W. L. Ren, G. M. Xing, W. Li, X. L. Chang, Z. B. Hu, and Y. L. Zhao, “Size-tunable synthesis of lanthanide-doped Gd2O3 nanoparticles and their applications for optical and magnetic resonance imaging,” J. Mater. Chem. 22(3), 966–974 (2012).
[Crossref]

Xu, J.

Y. Q. Wu, Y. Ji, J. Xu, J. J. Liu, Z. W. Lin, Y. L. Zhao, Y. Sun, L. Xu, and K. J. Chen, “Crystalline phase and morphology controlling to enhance the up-conversion emission from NaYF4:Yb,Er nanocrystals,” Acta Mater. 131, 373–379 (2017).
[Crossref]

Y. Q. Wu, S. B. Lin, W. Y. Shao, X. W. Zhang, J. Xu, L. Y. Yu, and K. J. Chen, “Enhanced up-conversion luminescence from NaYF4:Yb,Er nanocrystals by Gd3+ ions induced phase transformation and plasmonic Au nanosphere arrays,” RSC Advances 6(105), 102869 (2016).
[Crossref] [PubMed]

X. Zhang, S. Lin, T. Lin, P. Zhang, J. Xu, L. Xu, and K. Chen, “Improved sensitization efficiency in Er(3+) ions and SnO2 nanocrystals co-doped silica thin films,” Phys. Chem. Chem. Phys. 17(18), 11974–11980 (2015).
[Crossref] [PubMed]

X. Zhang, T. Lin, P. Zhang, J. Xu, S. Lin, L. Xu, and K. Chen, “Highly efficient near-infrared emission in Er3+ doped silica films containing size-tunable SnO2 nanocrystals,” Opt. Express 22(1), 369–376 (2014).
[Crossref] [PubMed]

T. Lin, X. W. Zhang, J. Xu, X. Liu, M. T. Swihart, L. Xu, and K. J. Chen, “Strong energy-transfer-induced enhancement of Er3+ luminescence in In2O3 nanocrystal codoped silica films,” Appl. Phys. Lett. 103(18), 181906 (2013).
[Crossref]

T. Lin, X. W. Zhang, Y. J. Wang, J. Xu, N. Wan, J. F. Liu, L. Xu, and K. J. Chen, “Luminescence enhancement due to energy transfer in ZnO nanoparticles and Eu3+ ions co-doped silica,” Thin Solid Films 520(17), 5815–5819 (2012).
[Crossref]

T. Lin, X. Y. Ding, J. Xu, N. Wan, L. Xu, and K. J. Chen, “Influences of doping and annealing conditions on the photoluminescence from In2O3 nanocrystals and Eu3+ ions co-doped sol-gel SiO2 films,” J. Appl. Phys. 109(8), 083512 (2011).
[Crossref]

Xu, L.

Y. Q. Wu, Y. Ji, J. Xu, J. J. Liu, Z. W. Lin, Y. L. Zhao, Y. Sun, L. Xu, and K. J. Chen, “Crystalline phase and morphology controlling to enhance the up-conversion emission from NaYF4:Yb,Er nanocrystals,” Acta Mater. 131, 373–379 (2017).
[Crossref]

X. Zhang, S. Lin, T. Lin, P. Zhang, J. Xu, L. Xu, and K. Chen, “Improved sensitization efficiency in Er(3+) ions and SnO2 nanocrystals co-doped silica thin films,” Phys. Chem. Chem. Phys. 17(18), 11974–11980 (2015).
[Crossref] [PubMed]

X. Zhang, T. Lin, P. Zhang, J. Xu, S. Lin, L. Xu, and K. Chen, “Highly efficient near-infrared emission in Er3+ doped silica films containing size-tunable SnO2 nanocrystals,” Opt. Express 22(1), 369–376 (2014).
[Crossref] [PubMed]

T. Lin, X. W. Zhang, J. Xu, X. Liu, M. T. Swihart, L. Xu, and K. J. Chen, “Strong energy-transfer-induced enhancement of Er3+ luminescence in In2O3 nanocrystal codoped silica films,” Appl. Phys. Lett. 103(18), 181906 (2013).
[Crossref]

T. Lin, X. W. Zhang, Y. J. Wang, J. Xu, N. Wan, J. F. Liu, L. Xu, and K. J. Chen, “Luminescence enhancement due to energy transfer in ZnO nanoparticles and Eu3+ ions co-doped silica,” Thin Solid Films 520(17), 5815–5819 (2012).
[Crossref]

T. Lin, X. Y. Ding, J. Xu, N. Wan, L. Xu, and K. J. Chen, “Influences of doping and annealing conditions on the photoluminescence from In2O3 nanocrystals and Eu3+ ions co-doped sol-gel SiO2 films,” J. Appl. Phys. 109(8), 083512 (2011).
[Crossref]

Xu, Y.

Z. Yi, T. Zeng, Y. Xu, W. Lu, C. Qian, H. Liu, S. Zeng, and J. Hao, “Multicolor tuning towards single red-emission band of upconversion nanoparticles for tunable optical component and optical/x-ray imaging agents via Ce3+ doping,” Nanotechnology 26(38), 385702 (2015).
[Crossref] [PubMed]

Xu, Z. H.

Z. H. Xu, M. Quintanilla, F. Vetrone, A. O. Govorov, M. Chaker, and D. L. Ma, “Harvesting lost photons: plasmon and upconversion enhanced broadband photocatalytic activity in Core@Shell microspheres based on lanthanide-doped NaYF4, TiO2, and Au,” Adv. Funct. Mater. 25(20), 2950–2960 (2015).
[Crossref]

Yan, L.

L. J. Zhou, Z. J. Gu, X. X. Liu, W. Y. Yin, G. Tian, L. Yan, S. Jin, W. L. Ren, G. M. Xing, W. Li, X. L. Chang, Z. B. Hu, and Y. L. Zhao, “Size-tunable synthesis of lanthanide-doped Gd2O3 nanoparticles and their applications for optical and magnetic resonance imaging,” J. Mater. Chem. 22(3), 966–974 (2012).
[Crossref]

G. Tian, Z. Gu, L. Zhou, W. Yin, X. Liu, L. Yan, S. Jin, W. Ren, G. Xing, S. Li, and Y. Zhao, “Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
[Crossref] [PubMed]

W. Yin, L. Zhao, L. Zhou, Z. Gu, X. Liu, G. Tian, S. Jin, L. Yan, W. Ren, G. Xing, and Y. Zhao, “Enhanced red emission from GdF3:Yb3+,Er3+ upconversion nanocrystals by Li+ doping and their application for bioimaging,” Chemistry 18(30), 9239–9245 (2012).
[Crossref] [PubMed]

Yan, R. X.

J. H. Zeng, J. Su, Z. H. Li, R. X. Yan, and Y. D. Li, “Synthesis and upconversion luminescence of hexagonal-phase NaYF4:Yb,Er3+ phosphors of controlled size and morphology,” Adv. Mater. 17(17), 2119–2123 (2005).
[Crossref]

Yang, W.

W. Yang, X. Li, D. Chi, H. Zhang, and X. Liu, “Lanthanide-doped upconversion materials: emerging applications for photovoltaics and photocatalysis,” Nanotechnology 25(48), 482001 (2014).
[Crossref] [PubMed]

Ye, X.

M. Saboktakin, X. Ye, U. K. Chettiar, N. Engheta, C. B. Murray, and C. R. Kagan, “Plasmonic enhancement of nanophosphor upconversion luminescence in Au nanohole arrays,” ACS Nano 7(8), 7186–7192 (2013).
[Crossref] [PubMed]

Yi, Z.

Z. Yi, T. Zeng, Y. Xu, W. Lu, C. Qian, H. Liu, S. Zeng, and J. Hao, “Multicolor tuning towards single red-emission band of upconversion nanoparticles for tunable optical component and optical/x-ray imaging agents via Ce3+ doping,” Nanotechnology 26(38), 385702 (2015).
[Crossref] [PubMed]

Yin, W.

W. Yin, L. Zhao, L. Zhou, Z. Gu, X. Liu, G. Tian, S. Jin, L. Yan, W. Ren, G. Xing, and Y. Zhao, “Enhanced red emission from GdF3:Yb3+,Er3+ upconversion nanocrystals by Li+ doping and their application for bioimaging,” Chemistry 18(30), 9239–9245 (2012).
[Crossref] [PubMed]

G. Tian, Z. Gu, L. Zhou, W. Yin, X. Liu, L. Yan, S. Jin, W. Ren, G. Xing, S. Li, and Y. Zhao, “Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
[Crossref] [PubMed]

Yin, W. Y.

L. J. Zhou, Z. J. Gu, X. X. Liu, W. Y. Yin, G. Tian, L. Yan, S. Jin, W. L. Ren, G. M. Xing, W. Li, X. L. Chang, Z. B. Hu, and Y. L. Zhao, “Size-tunable synthesis of lanthanide-doped Gd2O3 nanoparticles and their applications for optical and magnetic resonance imaging,” J. Mater. Chem. 22(3), 966–974 (2012).
[Crossref]

Yu, H.

Q. K. Shang, H. Yu, X. G. Kong, H. D. Wang, X. Wang, Y. J. Sun, Y. L. Zhang, and Q. H. Zeng, “Green and red up-conversion emissions of Er3+-Yb3+ Co-doped TiO2 nanocrystals prepared by sol-gel method,” J. Lumin. 128(7), 1211–1216 (2008).
[Crossref]

Yu, L. Y.

Y. Q. Wu, S. B. Lin, W. Y. Shao, X. W. Zhang, J. Xu, L. Y. Yu, and K. J. Chen, “Enhanced up-conversion luminescence from NaYF4:Yb,Er nanocrystals by Gd3+ ions induced phase transformation and plasmonic Au nanosphere arrays,” RSC Advances 6(105), 102869 (2016).
[Crossref] [PubMed]

Yu, X. F.

M. Y. Xie, X. N. Peng, X. F. Fu, J. J. Zhang, G. L. Lia, and X. F. Yu, “Synthesis of Yb3+/Er3+ co-doped MnF2 nanocrystals with bright red up-converted fluorescence,” Scr. Mater. 60(3), 190–193 (2009).
[Crossref]

Zeng, J. H.

J. H. Zeng, J. Su, Z. H. Li, R. X. Yan, and Y. D. Li, “Synthesis and upconversion luminescence of hexagonal-phase NaYF4:Yb,Er3+ phosphors of controlled size and morphology,” Adv. Mater. 17(17), 2119–2123 (2005).
[Crossref]

Zeng, Q.

C. Zhao, X. Kong, X. Liu, L. Tu, F. Wu, Y. Zhang, K. Liu, Q. Zeng, and H. Zhang, “Li+ ion doping: an approach for improving the crystallinity and upconversion emissions of NaYF4:Yb3+, Tm3+ nanoparticles,” Nanoscale 5(17), 8084–8089 (2013).
[Crossref] [PubMed]

Zeng, Q. H.

Q. K. Shang, H. Yu, X. G. Kong, H. D. Wang, X. Wang, Y. J. Sun, Y. L. Zhang, and Q. H. Zeng, “Green and red up-conversion emissions of Er3+-Yb3+ Co-doped TiO2 nanocrystals prepared by sol-gel method,” J. Lumin. 128(7), 1211–1216 (2008).
[Crossref]

Zeng, S.

Z. Yi, T. Zeng, Y. Xu, W. Lu, C. Qian, H. Liu, S. Zeng, and J. Hao, “Multicolor tuning towards single red-emission band of upconversion nanoparticles for tunable optical component and optical/x-ray imaging agents via Ce3+ doping,” Nanotechnology 26(38), 385702 (2015).
[Crossref] [PubMed]

Zeng, T.

Z. Yi, T. Zeng, Y. Xu, W. Lu, C. Qian, H. Liu, S. Zeng, and J. Hao, “Multicolor tuning towards single red-emission band of upconversion nanoparticles for tunable optical component and optical/x-ray imaging agents via Ce3+ doping,” Nanotechnology 26(38), 385702 (2015).
[Crossref] [PubMed]

Zhang, F.

X. Li, F. Zhang, and D. Zhao, “Lab on upconversion nanoparticles: optical properties and applications engineering via designed nanostructure,” Chem. Soc. Rev. 44(6), 1346–1378 (2015).
[Crossref] [PubMed]

F. Zhang, Q. Shi, Y. Zhang, Y. Shi, K. Ding, D. Zhao, and G. D. Stucky, “Fluorescence upconversion microbarcodes for multiplexed biological detection: nucleic acid encoding,” Adv. Mater. 23(33), 3775–3779 (2011).
[Crossref] [PubMed]

Zhang, H.

W. Yang, X. Li, D. Chi, H. Zhang, and X. Liu, “Lanthanide-doped upconversion materials: emerging applications for photovoltaics and photocatalysis,” Nanotechnology 25(48), 482001 (2014).
[Crossref] [PubMed]

C. Zhao, X. Kong, X. Liu, L. Tu, F. Wu, Y. Zhang, K. Liu, Q. Zeng, and H. Zhang, “Li+ ion doping: an approach for improving the crystallinity and upconversion emissions of NaYF4:Yb3+, Tm3+ nanoparticles,” Nanoscale 5(17), 8084–8089 (2013).
[Crossref] [PubMed]

Zhang, J. H.

Z. Z. Zhang, J. H. Zhang, W. Zhou, M. X. Song, W. Li, Q. Hu, and X. J. Zhao, “Structure and up-conversion luminescence properties of Er3+-Yb3+ co-doped TiO2 nanocrystals prepared by sol-gel method,” Adv. Mat. Res. 66, 167–170 (2009).
[Crossref]

Zhang, J. J.

M. Y. Xie, X. N. Peng, X. F. Fu, J. J. Zhang, G. L. Lia, and X. F. Yu, “Synthesis of Yb3+/Er3+ co-doped MnF2 nanocrystals with bright red up-converted fluorescence,” Scr. Mater. 60(3), 190–193 (2009).
[Crossref]

Zhang, K.

Y. Huang, Q. Xiao, H. Hu, K. Zhang, Y. Feng, F. Li, J. Wang, X. Ding, J. Jiang, Y. Li, L. Shi, and H. Lin, “915 nm light-triggered photodynamic therapy and MR/CT dual-modal imaging of tumor based on the nonstoichiometric Na0.52YbF3.52:Er upconversion nanoprobes,” Small 12(31), 4200–4210 (2016).
[Crossref] [PubMed]

Zhang, P.

X. Zhang, S. Lin, T. Lin, P. Zhang, J. Xu, L. Xu, and K. Chen, “Improved sensitization efficiency in Er(3+) ions and SnO2 nanocrystals co-doped silica thin films,” Phys. Chem. Chem. Phys. 17(18), 11974–11980 (2015).
[Crossref] [PubMed]

X. Zhang, T. Lin, P. Zhang, J. Xu, S. Lin, L. Xu, and K. Chen, “Highly efficient near-infrared emission in Er3+ doped silica films containing size-tunable SnO2 nanocrystals,” Opt. Express 22(1), 369–376 (2014).
[Crossref] [PubMed]

Zhang, X.

X. Zhang, S. Lin, T. Lin, P. Zhang, J. Xu, L. Xu, and K. Chen, “Improved sensitization efficiency in Er(3+) ions and SnO2 nanocrystals co-doped silica thin films,” Phys. Chem. Chem. Phys. 17(18), 11974–11980 (2015).
[Crossref] [PubMed]

X. Zhang, T. Lin, P. Zhang, J. Xu, S. Lin, L. Xu, and K. Chen, “Highly efficient near-infrared emission in Er3+ doped silica films containing size-tunable SnO2 nanocrystals,” Opt. Express 22(1), 369–376 (2014).
[Crossref] [PubMed]

Zhang, X. W.

Y. Q. Wu, S. B. Lin, W. Y. Shao, X. W. Zhang, J. Xu, L. Y. Yu, and K. J. Chen, “Enhanced up-conversion luminescence from NaYF4:Yb,Er nanocrystals by Gd3+ ions induced phase transformation and plasmonic Au nanosphere arrays,” RSC Advances 6(105), 102869 (2016).
[Crossref] [PubMed]

T. Lin, X. W. Zhang, J. Xu, X. Liu, M. T. Swihart, L. Xu, and K. J. Chen, “Strong energy-transfer-induced enhancement of Er3+ luminescence in In2O3 nanocrystal codoped silica films,” Appl. Phys. Lett. 103(18), 181906 (2013).
[Crossref]

T. Lin, X. W. Zhang, Y. J. Wang, J. Xu, N. Wan, J. F. Liu, L. Xu, and K. J. Chen, “Luminescence enhancement due to energy transfer in ZnO nanoparticles and Eu3+ ions co-doped silica,” Thin Solid Films 520(17), 5815–5819 (2012).
[Crossref]

Zhang, Y.

C. Zhao, X. Kong, X. Liu, L. Tu, F. Wu, Y. Zhang, K. Liu, Q. Zeng, and H. Zhang, “Li+ ion doping: an approach for improving the crystallinity and upconversion emissions of NaYF4:Yb3+, Tm3+ nanoparticles,” Nanoscale 5(17), 8084–8089 (2013).
[Crossref] [PubMed]

J. Hao, Y. Zhang, and X. Wei, “Electric-induced enhancement and modulation of upconversion photoluminescence in epitaxial BaTiO3:Yb/Er thin films,” Angew. Chem. Int. Ed. Engl. 50(30), 6876–6880 (2011).
[Crossref] [PubMed]

F. Zhang, Q. Shi, Y. Zhang, Y. Shi, K. Ding, D. Zhao, and G. D. Stucky, “Fluorescence upconversion microbarcodes for multiplexed biological detection: nucleic acid encoding,” Adv. Mater. 23(33), 3775–3779 (2011).
[Crossref] [PubMed]

D. K. Chatterjee, A. J. Rufaihah, and Y. Zhang, “Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals,” Biomaterials 29(7), 937–943 (2008).
[Crossref] [PubMed]

Zhang, Y. L.

Q. K. Shang, H. Yu, X. G. Kong, H. D. Wang, X. Wang, Y. J. Sun, Y. L. Zhang, and Q. H. Zeng, “Green and red up-conversion emissions of Er3+-Yb3+ Co-doped TiO2 nanocrystals prepared by sol-gel method,” J. Lumin. 128(7), 1211–1216 (2008).
[Crossref]

Zhang, Z. G.

G. Y. Chen, G. Somesfalean, Y. Liu, Z. G. Zhang, Q. Sun, and F. P. Wang, “Upconversion mechanism for two-color emission in rare-earth-ion-doped ZrO2 nanocrystalsPhys,” Phys. Rev. B 75(19), 195204 (2007).
[Crossref]

Zhang, Z. Z.

Z. Z. Zhang, J. H. Zhang, W. Zhou, M. X. Song, W. Li, Q. Hu, and X. J. Zhao, “Structure and up-conversion luminescence properties of Er3+-Yb3+ co-doped TiO2 nanocrystals prepared by sol-gel method,” Adv. Mat. Res. 66, 167–170 (2009).
[Crossref]

Zhao, C.

C. Zhao, X. Kong, X. Liu, L. Tu, F. Wu, Y. Zhang, K. Liu, Q. Zeng, and H. Zhang, “Li+ ion doping: an approach for improving the crystallinity and upconversion emissions of NaYF4:Yb3+, Tm3+ nanoparticles,” Nanoscale 5(17), 8084–8089 (2013).
[Crossref] [PubMed]

Zhao, D.

X. Li, F. Zhang, and D. Zhao, “Lab on upconversion nanoparticles: optical properties and applications engineering via designed nanostructure,” Chem. Soc. Rev. 44(6), 1346–1378 (2015).
[Crossref] [PubMed]

F. Zhang, Q. Shi, Y. Zhang, Y. Shi, K. Ding, D. Zhao, and G. D. Stucky, “Fluorescence upconversion microbarcodes for multiplexed biological detection: nucleic acid encoding,” Adv. Mater. 23(33), 3775–3779 (2011).
[Crossref] [PubMed]

Zhao, L.

W. Yin, L. Zhao, L. Zhou, Z. Gu, X. Liu, G. Tian, S. Jin, L. Yan, W. Ren, G. Xing, and Y. Zhao, “Enhanced red emission from GdF3:Yb3+,Er3+ upconversion nanocrystals by Li+ doping and their application for bioimaging,” Chemistry 18(30), 9239–9245 (2012).
[Crossref] [PubMed]

Zhao, T. L.

S. X. Liu, X. S. Li, X. B. Zhu, T. L. Zhao, J. L. Liu, and A. M. Zhu, “Gliding arc plasma synthesis of crystalline TiO2 nanopowders with high photocatalytic activity,” Plasma Chem. Plasma Process. 33(5), 827–838 (2013).
[Crossref]

Zhao, X. J.

Z. Z. Zhang, J. H. Zhang, W. Zhou, M. X. Song, W. Li, Q. Hu, and X. J. Zhao, “Structure and up-conversion luminescence properties of Er3+-Yb3+ co-doped TiO2 nanocrystals prepared by sol-gel method,” Adv. Mat. Res. 66, 167–170 (2009).
[Crossref]

Zhao, Y.

W. Yin, L. Zhao, L. Zhou, Z. Gu, X. Liu, G. Tian, S. Jin, L. Yan, W. Ren, G. Xing, and Y. Zhao, “Enhanced red emission from GdF3:Yb3+,Er3+ upconversion nanocrystals by Li+ doping and their application for bioimaging,” Chemistry 18(30), 9239–9245 (2012).
[Crossref] [PubMed]

G. Tian, Z. Gu, L. Zhou, W. Yin, X. Liu, L. Yan, S. Jin, W. Ren, G. Xing, S. Li, and Y. Zhao, “Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
[Crossref] [PubMed]

Zhao, Y. L.

Y. Q. Wu, Y. Ji, J. Xu, J. J. Liu, Z. W. Lin, Y. L. Zhao, Y. Sun, L. Xu, and K. J. Chen, “Crystalline phase and morphology controlling to enhance the up-conversion emission from NaYF4:Yb,Er nanocrystals,” Acta Mater. 131, 373–379 (2017).
[Crossref]

L. J. Zhou, Z. J. Gu, X. X. Liu, W. Y. Yin, G. Tian, L. Yan, S. Jin, W. L. Ren, G. M. Xing, W. Li, X. L. Chang, Z. B. Hu, and Y. L. Zhao, “Size-tunable synthesis of lanthanide-doped Gd2O3 nanoparticles and their applications for optical and magnetic resonance imaging,” J. Mater. Chem. 22(3), 966–974 (2012).
[Crossref]

Zheng, H. R.

W. Gao, H. R. Zheng, Q. Y. Han, E. J. He, F. Q. Gao, and R. B. Wang, “Enhanced red upconversion luminescence by codoping Ce3+ in β-NaY(Gd0.4)F4:Yb3+/Ho3+ nanocrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(27), 5327–5334 (2014).
[Crossref]

Zhou, B.

B. Zhou, B. Shi, D. Jin, and X. Liu, “Controlling upconversion nanocrystals for emerging applications,” Nat. Nanotechnol. 10(11), 924–936 (2015).
[Crossref] [PubMed]

Zhou, J.

J. Zhou, Q. Liu, W. Feng, Y. Sun, and F. Li, “Upconversion luminescent materials: advances and applications,” Chem. Rev. 115(1), 395–465 (2015).
[Crossref] [PubMed]

Zhou, L.

G. Tian, Z. Gu, L. Zhou, W. Yin, X. Liu, L. Yan, S. Jin, W. Ren, G. Xing, S. Li, and Y. Zhao, “Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
[Crossref] [PubMed]

W. Yin, L. Zhao, L. Zhou, Z. Gu, X. Liu, G. Tian, S. Jin, L. Yan, W. Ren, G. Xing, and Y. Zhao, “Enhanced red emission from GdF3:Yb3+,Er3+ upconversion nanocrystals by Li+ doping and their application for bioimaging,” Chemistry 18(30), 9239–9245 (2012).
[Crossref] [PubMed]

Zhou, L. J.

L. J. Zhou, Z. J. Gu, X. X. Liu, W. Y. Yin, G. Tian, L. Yan, S. Jin, W. L. Ren, G. M. Xing, W. Li, X. L. Chang, Z. B. Hu, and Y. L. Zhao, “Size-tunable synthesis of lanthanide-doped Gd2O3 nanoparticles and their applications for optical and magnetic resonance imaging,” J. Mater. Chem. 22(3), 966–974 (2012).
[Crossref]

Zhou, W.

Z. Z. Zhang, J. H. Zhang, W. Zhou, M. X. Song, W. Li, Q. Hu, and X. J. Zhao, “Structure and up-conversion luminescence properties of Er3+-Yb3+ co-doped TiO2 nanocrystals prepared by sol-gel method,” Adv. Mat. Res. 66, 167–170 (2009).
[Crossref]

Zhu, A. M.

S. X. Liu, X. S. Li, X. B. Zhu, T. L. Zhao, J. L. Liu, and A. M. Zhu, “Gliding arc plasma synthesis of crystalline TiO2 nanopowders with high photocatalytic activity,” Plasma Chem. Plasma Process. 33(5), 827–838 (2013).
[Crossref]

Zhu, X. B.

S. X. Liu, X. S. Li, X. B. Zhu, T. L. Zhao, J. L. Liu, and A. M. Zhu, “Gliding arc plasma synthesis of crystalline TiO2 nanopowders with high photocatalytic activity,” Plasma Chem. Plasma Process. 33(5), 827–838 (2013).
[Crossref]

ACS Nano (1)

M. Saboktakin, X. Ye, U. K. Chettiar, N. Engheta, C. B. Murray, and C. R. Kagan, “Plasmonic enhancement of nanophosphor upconversion luminescence in Au nanohole arrays,” ACS Nano 7(8), 7186–7192 (2013).
[Crossref] [PubMed]

Acta Mater. (1)

Y. Q. Wu, Y. Ji, J. Xu, J. J. Liu, Z. W. Lin, Y. L. Zhao, Y. Sun, L. Xu, and K. J. Chen, “Crystalline phase and morphology controlling to enhance the up-conversion emission from NaYF4:Yb,Er nanocrystals,” Acta Mater. 131, 373–379 (2017).
[Crossref]

Adv. Funct. Mater. (1)

Z. H. Xu, M. Quintanilla, F. Vetrone, A. O. Govorov, M. Chaker, and D. L. Ma, “Harvesting lost photons: plasmon and upconversion enhanced broadband photocatalytic activity in Core@Shell microspheres based on lanthanide-doped NaYF4, TiO2, and Au,” Adv. Funct. Mater. 25(20), 2950–2960 (2015).
[Crossref]

Adv. Mat. Res. (1)

Z. Z. Zhang, J. H. Zhang, W. Zhou, M. X. Song, W. Li, Q. Hu, and X. J. Zhao, “Structure and up-conversion luminescence properties of Er3+-Yb3+ co-doped TiO2 nanocrystals prepared by sol-gel method,” Adv. Mat. Res. 66, 167–170 (2009).
[Crossref]

Adv. Mater. (3)

F. Zhang, Q. Shi, Y. Zhang, Y. Shi, K. Ding, D. Zhao, and G. D. Stucky, “Fluorescence upconversion microbarcodes for multiplexed biological detection: nucleic acid encoding,” Adv. Mater. 23(33), 3775–3779 (2011).
[Crossref] [PubMed]

J. H. Zeng, J. Su, Z. H. Li, R. X. Yan, and Y. D. Li, “Synthesis and upconversion luminescence of hexagonal-phase NaYF4:Yb,Er3+ phosphors of controlled size and morphology,” Adv. Mater. 17(17), 2119–2123 (2005).
[Crossref]

G. Tian, Z. Gu, L. Zhou, W. Yin, X. Liu, L. Yan, S. Jin, W. Ren, G. Xing, S. Li, and Y. Zhao, “Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (3)

S. Han, R. Deng, X. Xie, and X. Liu, “Enhancing luminescence in lanthanide-doped upconversion nanoparticles,” Angew. Chem. Int. Ed. Engl. 53(44), 11702–11715 (2014).
[Crossref] [PubMed]

J. Wang, F. Wang, C. Wang, Z. Liu, and X. Liu, “Single-Band Upconversion Emission in Lanthanide-Doped KMnF3 Nanocrystals,” Angew. Chem. Int. Ed. Engl. 50(44), 10369–10372 (2011).
[Crossref] [PubMed]

J. Hao, Y. Zhang, and X. Wei, “Electric-induced enhancement and modulation of upconversion photoluminescence in epitaxial BaTiO3:Yb/Er thin films,” Angew. Chem. Int. Ed. Engl. 50(30), 6876–6880 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

T. Lin, X. W. Zhang, J. Xu, X. Liu, M. T. Swihart, L. Xu, and K. J. Chen, “Strong energy-transfer-induced enhancement of Er3+ luminescence in In2O3 nanocrystal codoped silica films,” Appl. Phys. Lett. 103(18), 181906 (2013).
[Crossref]

Biomaterials (1)

D. K. Chatterjee, A. J. Rufaihah, and Y. Zhang, “Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals,” Biomaterials 29(7), 937–943 (2008).
[Crossref] [PubMed]

Chem. Rev. (1)

J. Zhou, Q. Liu, W. Feng, Y. Sun, and F. Li, “Upconversion luminescent materials: advances and applications,” Chem. Rev. 115(1), 395–465 (2015).
[Crossref] [PubMed]

Chem. Soc. Rev. (2)

G. Liu, “Advances in the theoretical understanding of photon upconversion in rare-earth activated nanophosphors,” Chem. Soc. Rev. 44(6), 1635–1652 (2015).
[Crossref] [PubMed]

X. Li, F. Zhang, and D. Zhao, “Lab on upconversion nanoparticles: optical properties and applications engineering via designed nanostructure,” Chem. Soc. Rev. 44(6), 1346–1378 (2015).
[Crossref] [PubMed]

Chemistry (1)

W. Yin, L. Zhao, L. Zhou, Z. Gu, X. Liu, G. Tian, S. Jin, L. Yan, W. Ren, G. Xing, and Y. Zhao, “Enhanced red emission from GdF3:Yb3+,Er3+ upconversion nanocrystals by Li+ doping and their application for bioimaging,” Chemistry 18(30), 9239–9245 (2012).
[Crossref] [PubMed]

J. Appl. Phys. (1)

T. Lin, X. Y. Ding, J. Xu, N. Wan, L. Xu, and K. J. Chen, “Influences of doping and annealing conditions on the photoluminescence from In2O3 nanocrystals and Eu3+ ions co-doped sol-gel SiO2 films,” J. Appl. Phys. 109(8), 083512 (2011).
[Crossref]

J. Lumin. (1)

Q. K. Shang, H. Yu, X. G. Kong, H. D. Wang, X. Wang, Y. J. Sun, Y. L. Zhang, and Q. H. Zeng, “Green and red up-conversion emissions of Er3+-Yb3+ Co-doped TiO2 nanocrystals prepared by sol-gel method,” J. Lumin. 128(7), 1211–1216 (2008).
[Crossref]

J. Mater. Chem. (1)

L. J. Zhou, Z. J. Gu, X. X. Liu, W. Y. Yin, G. Tian, L. Yan, S. Jin, W. L. Ren, G. M. Xing, W. Li, X. L. Chang, Z. B. Hu, and Y. L. Zhao, “Size-tunable synthesis of lanthanide-doped Gd2O3 nanoparticles and their applications for optical and magnetic resonance imaging,” J. Mater. Chem. 22(3), 966–974 (2012).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (2)

W. Gao, H. R. Zheng, Q. Y. Han, E. J. He, F. Q. Gao, and R. B. Wang, “Enhanced red upconversion luminescence by codoping Ce3+ in β-NaY(Gd0.4)F4:Yb3+/Ho3+ nanocrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(27), 5327–5334 (2014).
[Crossref]

Z. H. Bai, H. Lin, J. Johnson, S. C. R. Gui, K. Imakita, R. Montazami, M. Fujii, and N. Hashemi, “The single-band red upconversion luminescence from morphology and size controllable Er3+/Yb3+ doped MnF2 nanostructures,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(9), 1736–1741 (2014).
[Crossref]

Nanoscale (2)

C. Zhao, X. Kong, X. Liu, L. Tu, F. Wu, Y. Zhang, K. Liu, Q. Zeng, and H. Zhang, “Li+ ion doping: an approach for improving the crystallinity and upconversion emissions of NaYF4:Yb3+, Tm3+ nanoparticles,” Nanoscale 5(17), 8084–8089 (2013).
[Crossref] [PubMed]

J. C. Boyer and F. C. J. M. van Veggel, “Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles,” Nanoscale 2(8), 1417–1419 (2010).
[Crossref] [PubMed]

Nanotechnology (2)

W. Yang, X. Li, D. Chi, H. Zhang, and X. Liu, “Lanthanide-doped upconversion materials: emerging applications for photovoltaics and photocatalysis,” Nanotechnology 25(48), 482001 (2014).
[Crossref] [PubMed]

Z. Yi, T. Zeng, Y. Xu, W. Lu, C. Qian, H. Liu, S. Zeng, and J. Hao, “Multicolor tuning towards single red-emission band of upconversion nanoparticles for tunable optical component and optical/x-ray imaging agents via Ce3+ doping,” Nanotechnology 26(38), 385702 (2015).
[Crossref] [PubMed]

Nat. Commun. (1)

D. H. Weingarten, M. D. LaCount, J. van de Lagemaat, G. Rumbles, M. T. Lusk, and S. E. Shaheen, “Experimental demonstration of photon upconversion via cooperative energy pooling,” Nat. Commun. 8, 14808 (2017).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

B. Zhou, B. Shi, D. Jin, and X. Liu, “Controlling upconversion nanocrystals for emerging applications,” Nat. Nanotechnol. 10(11), 924–936 (2015).
[Crossref] [PubMed]

Opt. Commun. (1)

B. S. Cao, Y. Y. He, Z. Q. Feng, M. Song, and B. Dong, “Crystalline-structure-dependent green and red upconversion emissions of Er3+-Yb3+-Li+ codoped TiO2,” Opt. Commun. 284(13), 3311–3314 (2011).
[Crossref]

Opt. Express (1)

Phys. Chem. Chem. Phys. (1)

X. Zhang, S. Lin, T. Lin, P. Zhang, J. Xu, L. Xu, and K. Chen, “Improved sensitization efficiency in Er(3+) ions and SnO2 nanocrystals co-doped silica thin films,” Phys. Chem. Chem. Phys. 17(18), 11974–11980 (2015).
[Crossref] [PubMed]

Phys. Rev. B (1)

G. Y. Chen, G. Somesfalean, Y. Liu, Z. G. Zhang, Q. Sun, and F. P. Wang, “Upconversion mechanism for two-color emission in rare-earth-ion-doped ZrO2 nanocrystalsPhys,” Phys. Rev. B 75(19), 195204 (2007).
[Crossref]

Phys. Rev. Lett. (1)

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical haramonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[Crossref]

Plasma Chem. Plasma Process. (1)

S. X. Liu, X. S. Li, X. B. Zhu, T. L. Zhao, J. L. Liu, and A. M. Zhu, “Gliding arc plasma synthesis of crystalline TiO2 nanopowders with high photocatalytic activity,” Plasma Chem. Plasma Process. 33(5), 827–838 (2013).
[Crossref]

Proc. R. Soc. Lond. A Math. Phys. Sci. (1)

C. A. Parker and C. G. Hatchard, “Delayed fluorescence from solutions of anthracene and phenanthrene,” Proc. R. Soc. Lond. A Math. Phys. Sci. 269(1339), 574–584 (1962).
[Crossref]

RSC Advances (1)

Y. Q. Wu, S. B. Lin, W. Y. Shao, X. W. Zhang, J. Xu, L. Y. Yu, and K. J. Chen, “Enhanced up-conversion luminescence from NaYF4:Yb,Er nanocrystals by Gd3+ ions induced phase transformation and plasmonic Au nanosphere arrays,” RSC Advances 6(105), 102869 (2016).
[Crossref] [PubMed]

Scr. Mater. (1)

M. Y. Xie, X. N. Peng, X. F. Fu, J. J. Zhang, G. L. Lia, and X. F. Yu, “Synthesis of Yb3+/Er3+ co-doped MnF2 nanocrystals with bright red up-converted fluorescence,” Scr. Mater. 60(3), 190–193 (2009).
[Crossref]

Sens. Actuators B Chem. (1)

S. F. Leon-Luis, U. R. Rodríguez-Mendoza, E. Lalla, and V. Lavín, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sens. Actuators B Chem. 158(1), 208–213 (2011).
[Crossref]

Small (1)

Y. Huang, Q. Xiao, H. Hu, K. Zhang, Y. Feng, F. Li, J. Wang, X. Ding, J. Jiang, Y. Li, L. Shi, and H. Lin, “915 nm light-triggered photodynamic therapy and MR/CT dual-modal imaging of tumor based on the nonstoichiometric Na0.52YbF3.52:Er upconversion nanoprobes,” Small 12(31), 4200–4210 (2016).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

J. de Wild, J. K. Rath, A. Meijerink, W. G. J. H. M. van Sark, and R. E. I. Schropp, “Enhanced near-infrared response of a-Si:H solar cells with β-NaYF4:Yb3+(18%), Er3+ (2%) upconversion phosphors,” Sol. Energy Mater. Sol. Cells 94(12), 2395–2398 (2010).
[Crossref]

Thin Solid Films (2)

T. Lin, X. W. Zhang, Y. J. Wang, J. Xu, N. Wan, J. F. Liu, L. Xu, and K. J. Chen, “Luminescence enhancement due to energy transfer in ZnO nanoparticles and Eu3+ ions co-doped silica,” Thin Solid Films 520(17), 5815–5819 (2012).
[Crossref]

S. Y. Chen, C. C. Ting, and W. F. Hsieh, “Comparison of visible fluorescence properties between sol-gel derived Er-Yb and Er-Y co-doped TiO2 films,” Thin Solid Films 434 (1-2), 171–177 (2003).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

XRD patterns of TiO2:Yb,Er (Yb:10 mol%, Er:2 mol%) nanocrystals annealed at different temperatures.

Fig. 2
Fig. 2

TEM images of TiO2:Yb,Er (Yb:10 mol%, Er:2 mol%) nanocrystals annealed at different temperatures: (a) 700 °C, (b) 800 °C, (c) 900 °C and (d) 1000 °C. The insets of (a), (b), (c) and (d) are high resolution images and Fast Fourier Transform images of the selected area in (a), (b), (c) and (d), respectively.

Fig. 3
Fig. 3

(a) UC emission spectra of TiO2:Yb,Er (Yb:10 mol%, Er:2 mol%) nanocrystals with different annealing temperatures. (b) Intensity ratio of IR/IG (where IR and IG represent the intensities of red and green UC emission, respectively) with different annealing temperatures. The dotted curves of (b) are the PL intensities of red and green UC emission respectively.

Fig. 4
Fig. 4

Schematic diagram of UC processes in TiO2:Yb,Er nanocrystals.

Fig. 5
Fig. 5

(a) UC emission spectra of TiO2:Yb,Er nanocrystals annealed at 900 °C with different concentrations of Yb3+ ions under 980 nm laser diode excitation; (b) Intensity ratio of IR/IG with different concentration of Yb3+ ions. The dotted curves of (b) are the PL intensities of red and green UC emission respectively.

Fig. 6
Fig. 6

Log-log plot of the UC red emission(661 nm) intensity versus pump power for the TiO2:Yb,Er (Yb:10 mol%, Er:2 mol%, annealed at 900 °C) nanocrystals under 980 nm laser diode excitation. Inset is the UC emission intensity of TiO2:Yb,Er nanocrystals under 980 nm excitation with the power of 127 mW.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

D= Kλ βcosθ
I em ( P pump ) n

Metrics