Abstract

Switchable two dimensional liquid crystal diffraction gratings are promising candidates in beam steering devices, multiplexers and holographic displays. For these areas of applications a high degree of integration in optical systems is much sought-after. In the context of diffraction gratings this means that the angle of diffraction should be rather high, which typically poses a problem as the fabrication of small grating periods is challenging. In this paper, we propose the use of nanosphere lithography (NSL) for the fabrication of two-dimensionally structured electrodes with a periodicity of a few micrometers. NSL is based on the self-assembly of micro- or nanometer sized spheres into monolayers. It allows for easy substrate structuring on wafer scale. The manufactured electrode is combined with a liquid crystalline polymer-stabilized blue phase, which facilitates sub-millisecond electrical switching of the diffraction efficiency at a diffraction angle of 21.4°.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Switching between transparent and translucent states of a two-dimensional liquid crystal phase grating device with crossed interdigitated electrodes

Tae-Hoon Choi, Jae-Won Huh, Jae-Hyeon Woo, Jin-Hun Kim, Young-Seo Jo, and Tae-Hoon Yoon
Opt. Express 25(10) 11275-11282 (2017)

Polymer-stabilized blue-phase liquid crystal grating cured with interfered visible light

Yachao Yuan, Yan Li, Chao Ping Chen, Shuxin Liu, Na Rong, Weihuan Li, Xiao Li, Pengcheng Zhou, Jiangang Lu, Ruili Liu, and Yikai Su
Opt. Express 23(15) 20007-20013 (2015)

Optically rewritable dynamic phase grating based on blue-phase-templated azobenzene liquid crystal

Hung-Chang Jau, Yi-Ting Lin, Cheng-Chang Li, Chun-Wei Chen, and Tsung-Hsien Lin
Opt. Express 27(8) 10580-10585 (2019)

References

  • View by:
  • |
  • |
  • |

  1. D. P. Resler, D. S. Hobbs, R. C. Sharp, L. J. Friedman, and T. A. Dorschner, “High-efficiency liquid-crystal optical phased-array beam steering,” Opt. Lett. 21, 689 (1996).
    [Crossref] [PubMed]
  2. B. Apter, U. Efron, and E. Bahat-Treidel, “On the fringing-field effect in liquid-crystal beam-steering devices,” Appl. Opt. 43, 11 (2004).
    [Crossref] [PubMed]
  3. R. K. Komanduri, W. M. Jones, C. Oh, and M. J. Escuti, “Polarization-independent modulation for projection displays using small-period lc polarization gratings,” J. Soc. Inf. Displ. 15, 589 (2007).
    [Crossref]
  4. I. Fujieda, O. Mikami, and A. Ozawa, “Active optical interconnect based on liquid-crystal grating,” Appl. Opt. 42, 1520 (2003).
    [Crossref] [PubMed]
  5. J. Albero and I. Moreno, “Grating beam splitting with liquid crystal adaptive optics,” J. Opt. 14, 075704 (2012).
    [Crossref]
  6. J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electro–optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67, 2588–2590 (1995).
    [Crossref]
  7. A. Redler, A. Hoischen, and H. Kitzerow, “Liquid crystal/polymer composites: Kinetic study of the grating formation in holographic polymer-dispersed liquid crystals,” Mol. Cryst. Liq. Cryst. 547, 97–107 (2011).
    [Crossref]
  8. V. Kapoustine, A. Kazakevitch, V. So, and R. Tam, “Simple method of formation of switchable liquid crystal gratings by introducing periodic photoalignment pattern into liquid crystal cell,” Opt. Commun. 266, 1–5 (2006).
    [Crossref]
  9. W. Hu, A. Kumar Srivastava, X.-W. Lin, X. Liang, Z.-J. Wu, J.-T. Sun, G. Zhu, V. Chigrinov, and Y.-Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100, 111116 (2012).
    [Crossref]
  10. I. Nys, J. Beeckman, and K. Neyts, “Switchable 3d liquid crystal grating generated by periodic photo-alignment on both substrates,” Soft Matter 11, 7802–7808 (2015).
    [Crossref] [PubMed]
  11. D.-K. Yang and S.-T. Wu, Fundamentals of liquid crystal devices, 2nd. ed., Wiley series in display technology (John Wiley & Sons Inc, Chichester, West Sussex, United Kingdom, 2014).
  12. P. R. Gerber, “Electro-optical effects of a small-pitch blue-phase system,” Mol. Cryst. Liq. Cryst. 116, 197–206 (1985).
    [Crossref]
  13. G. Heppke, H.-S. Kitzerow, and M. Krumrey, “Electric field induced variation of the refractive index in cholesteric blue phases,” Mol. Cryst. Liq. Cryst. 2, 59–65 (1985).
  14. H. S. Kitzerow, “The effect of electric fields on blue phases,” Mol. Cryst. Liq. Cryst. 202, 51–83 (1991).
    [Crossref]
  15. H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1, 64–68 (2002).
    [Crossref]
  16. Y. Hisakado, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic kerr effect in polymer-stabilized liquid-crystalline blue phases,” Adv. Mater. 17, 96–98 (2005).
    [Crossref]
  17. Y. Chen, D. Xu, S.-T. Wu, S.-I. Yamamoto, and Y. Haseba, “A low voltage and submillisecond-response polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 102, 141116 (2013).
    [Crossref]
  18. G. Nordendorf, A. Hoischen, J. Schmidtke, D. Wilkes, and H.-S. Kitzerow, “Polymer-stabilized blue phases: Promising mesophases for a new generation of liquid crystal displays,” Polymer. Adv. Tech. 25, 1195–1207 (2014)
    [Crossref]
  19. G. Nordendorf, J. Schmidtke, D. Wilkes, and H. Kitzerow, “Temperature-insensitive electro-optic response of polymer-stabilized blue phases,” J. Mater. Chem. C 5, 518–521 (2017).
    [Crossref]
  20. J. Yan, H.-C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S.-T. Wu, “Extended kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96, 071105 (2010).
    [Crossref]
  21. J.-L. Zhu, J.-G. Lu, J. Qiang, E.-W. Zhong, Z.-C. Ye, Z. He, X. Guo, C.-Y. Dong, Y. Su, and H.-P. D. Shieh, “1d/2d switchable grating based on field-induced polymer stabilized blue phase liquid crystal,” J. Appl. Phys. 111, 033101 (2012).
    [Crossref]
  22. Y.-T. Lin, H.-C. Jau, and T.-H. Lin, “Polarization-independent rapidly responding phase grating based on hybrid blue phase liquid crystal,” J. Appl. Phys. 113, 063103 (2013).
    [Crossref]
  23. J. Yan, Q. Li, and K. Hu, “Polarization independent blue phase liquid crystal gratings based on periodic polymer slices structure,” J. Appl. Phys. 114, 153104 (2013).
    [Crossref]
  24. Y. Yuan, Y. Li, C. P. Chen, S. Liu, N. Rong, W. Li, X. Li, P. Zhou, J. Lu, R. Liu, and Y. Su, “Polymer-stabilized blue-phase liquid crystal grating cured with interfered visible light,” Opt. Express 23, 20007–20013 (2015).
    [Crossref] [PubMed]
  25. D. Xu, G. Tan, and S.-T. Wu, “Large-angle and high-efficiency tunable phase grating using fringe field switching liquid crystal,” Opt. Express 23, 12274–12285 (2015).
    [Crossref] [PubMed]
  26. J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. van Duyne, “Nanosphere lithography: Size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103, 3854–3863 (1999).
    [Crossref]
  27. C. L. Haynes and R. P. van Duyne, “Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B 105, 5599–5611 (2001).
    [Crossref]
  28. G. Zhang, D. Wang, and H. Mohwald, “Ordered binary arrays of au nanoparticles derived from colloidal lithography,” Nano Lett. 7, 127–132 (2007).
    [Crossref] [PubMed]
  29. L. Yan, K. Wang, J. Wu, and L. Ye, “Hydrophobicity of model surfaces with loosely packed polystyrene spheres after plasma etching,” J. Phys. Chem. B 110, 11241–11246 (2006).
    [Crossref] [PubMed]
  30. D. Gogel, M. Weinl, J. K. Lindner, and B. Stritzker, “Plasma modification of nanosphere lithography masks made of polystyrene beads,” J. Optoelectron. Adv. Mater. 12, 740–744 (2010).
  31. K. Brassat, F. Assion, U. Hilleringmann, and J. K. N. Lindner, “Self-organization of nanospheres in trenches on silicon surfaces,” Phys. Status Solidi A 210, 1485–1489 (2013).
    [Crossref]
  32. “Comsol Multiphysics version 4.2”.
  33. A. Lien, “A detailed derivation of extended jones matrix representation for twisted nematic liquid crystal displays,” Liq. Cryst. 22, 171–175 (1997).
    [Crossref]
  34. L. Gao, F. Lemarchand, and M. Lequime, “Comparison of different dispersion models for single layer optical thin film index determination,” Thin Solid Films 520, 501–509 (2011).
    [Crossref]
  35. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271 (1998).
    [Crossref]
  36. K.-M. Chen, S. Gauza, H. Xianyu, and S.-T. Wu, “Hysteresis effects in blue-phase liquid crystals,” J. Displ. Technol. 6, 318–322 (2010).
    [Crossref]
  37. R. Caputo, A. de Luca, L. de Sio, L. Pezzi, G. Strangi, C. Umeton, A. Veltri, R. Asquini, A. d’Alessandro, D. Donisi, R. Beccherelli, A. V. Sukhov, and N. V. Tabiryan, “Policryps: A liquid crystal composed nano/microstructure with a wide range of optical and electro-optical applications,” J. Opt. A Pure Appl. Opt. 11, 024017 (2009).
    [Crossref]
  38. B. I. Senyuk, I. I. Smalyukh, and O. D. Lavrentovich, “Switchable two-dimensional gratings based on field-induced layer undulations in cholesteric liquid crystals,” Opt. Lett. 30, 349 (2005).
    [Crossref] [PubMed]

2017 (1)

G. Nordendorf, J. Schmidtke, D. Wilkes, and H. Kitzerow, “Temperature-insensitive electro-optic response of polymer-stabilized blue phases,” J. Mater. Chem. C 5, 518–521 (2017).
[Crossref]

2015 (3)

2014 (1)

G. Nordendorf, A. Hoischen, J. Schmidtke, D. Wilkes, and H.-S. Kitzerow, “Polymer-stabilized blue phases: Promising mesophases for a new generation of liquid crystal displays,” Polymer. Adv. Tech. 25, 1195–1207 (2014)
[Crossref]

2013 (4)

Y. Chen, D. Xu, S.-T. Wu, S.-I. Yamamoto, and Y. Haseba, “A low voltage and submillisecond-response polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 102, 141116 (2013).
[Crossref]

Y.-T. Lin, H.-C. Jau, and T.-H. Lin, “Polarization-independent rapidly responding phase grating based on hybrid blue phase liquid crystal,” J. Appl. Phys. 113, 063103 (2013).
[Crossref]

J. Yan, Q. Li, and K. Hu, “Polarization independent blue phase liquid crystal gratings based on periodic polymer slices structure,” J. Appl. Phys. 114, 153104 (2013).
[Crossref]

K. Brassat, F. Assion, U. Hilleringmann, and J. K. N. Lindner, “Self-organization of nanospheres in trenches on silicon surfaces,” Phys. Status Solidi A 210, 1485–1489 (2013).
[Crossref]

2012 (3)

J.-L. Zhu, J.-G. Lu, J. Qiang, E.-W. Zhong, Z.-C. Ye, Z. He, X. Guo, C.-Y. Dong, Y. Su, and H.-P. D. Shieh, “1d/2d switchable grating based on field-induced polymer stabilized blue phase liquid crystal,” J. Appl. Phys. 111, 033101 (2012).
[Crossref]

W. Hu, A. Kumar Srivastava, X.-W. Lin, X. Liang, Z.-J. Wu, J.-T. Sun, G. Zhu, V. Chigrinov, and Y.-Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100, 111116 (2012).
[Crossref]

J. Albero and I. Moreno, “Grating beam splitting with liquid crystal adaptive optics,” J. Opt. 14, 075704 (2012).
[Crossref]

2011 (2)

A. Redler, A. Hoischen, and H. Kitzerow, “Liquid crystal/polymer composites: Kinetic study of the grating formation in holographic polymer-dispersed liquid crystals,” Mol. Cryst. Liq. Cryst. 547, 97–107 (2011).
[Crossref]

L. Gao, F. Lemarchand, and M. Lequime, “Comparison of different dispersion models for single layer optical thin film index determination,” Thin Solid Films 520, 501–509 (2011).
[Crossref]

2010 (3)

K.-M. Chen, S. Gauza, H. Xianyu, and S.-T. Wu, “Hysteresis effects in blue-phase liquid crystals,” J. Displ. Technol. 6, 318–322 (2010).
[Crossref]

D. Gogel, M. Weinl, J. K. Lindner, and B. Stritzker, “Plasma modification of nanosphere lithography masks made of polystyrene beads,” J. Optoelectron. Adv. Mater. 12, 740–744 (2010).

J. Yan, H.-C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S.-T. Wu, “Extended kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96, 071105 (2010).
[Crossref]

2009 (1)

R. Caputo, A. de Luca, L. de Sio, L. Pezzi, G. Strangi, C. Umeton, A. Veltri, R. Asquini, A. d’Alessandro, D. Donisi, R. Beccherelli, A. V. Sukhov, and N. V. Tabiryan, “Policryps: A liquid crystal composed nano/microstructure with a wide range of optical and electro-optical applications,” J. Opt. A Pure Appl. Opt. 11, 024017 (2009).
[Crossref]

2007 (2)

R. K. Komanduri, W. M. Jones, C. Oh, and M. J. Escuti, “Polarization-independent modulation for projection displays using small-period lc polarization gratings,” J. Soc. Inf. Displ. 15, 589 (2007).
[Crossref]

G. Zhang, D. Wang, and H. Mohwald, “Ordered binary arrays of au nanoparticles derived from colloidal lithography,” Nano Lett. 7, 127–132 (2007).
[Crossref] [PubMed]

2006 (2)

L. Yan, K. Wang, J. Wu, and L. Ye, “Hydrophobicity of model surfaces with loosely packed polystyrene spheres after plasma etching,” J. Phys. Chem. B 110, 11241–11246 (2006).
[Crossref] [PubMed]

V. Kapoustine, A. Kazakevitch, V. So, and R. Tam, “Simple method of formation of switchable liquid crystal gratings by introducing periodic photoalignment pattern into liquid crystal cell,” Opt. Commun. 266, 1–5 (2006).
[Crossref]

2005 (2)

Y. Hisakado, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic kerr effect in polymer-stabilized liquid-crystalline blue phases,” Adv. Mater. 17, 96–98 (2005).
[Crossref]

B. I. Senyuk, I. I. Smalyukh, and O. D. Lavrentovich, “Switchable two-dimensional gratings based on field-induced layer undulations in cholesteric liquid crystals,” Opt. Lett. 30, 349 (2005).
[Crossref] [PubMed]

2004 (1)

2003 (1)

2002 (1)

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1, 64–68 (2002).
[Crossref]

2001 (1)

C. L. Haynes and R. P. van Duyne, “Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B 105, 5599–5611 (2001).
[Crossref]

1999 (1)

J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. van Duyne, “Nanosphere lithography: Size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103, 3854–3863 (1999).
[Crossref]

1998 (1)

1997 (1)

A. Lien, “A detailed derivation of extended jones matrix representation for twisted nematic liquid crystal displays,” Liq. Cryst. 22, 171–175 (1997).
[Crossref]

1996 (1)

1995 (1)

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electro–optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67, 2588–2590 (1995).
[Crossref]

1991 (1)

H. S. Kitzerow, “The effect of electric fields on blue phases,” Mol. Cryst. Liq. Cryst. 202, 51–83 (1991).
[Crossref]

1985 (2)

P. R. Gerber, “Electro-optical effects of a small-pitch blue-phase system,” Mol. Cryst. Liq. Cryst. 116, 197–206 (1985).
[Crossref]

G. Heppke, H.-S. Kitzerow, and M. Krumrey, “Electric field induced variation of the refractive index in cholesteric blue phases,” Mol. Cryst. Liq. Cryst. 2, 59–65 (1985).

Albero, J.

J. Albero and I. Moreno, “Grating beam splitting with liquid crystal adaptive optics,” J. Opt. 14, 075704 (2012).
[Crossref]

Apter, B.

Asquini, R.

R. Caputo, A. de Luca, L. de Sio, L. Pezzi, G. Strangi, C. Umeton, A. Veltri, R. Asquini, A. d’Alessandro, D. Donisi, R. Beccherelli, A. V. Sukhov, and N. V. Tabiryan, “Policryps: A liquid crystal composed nano/microstructure with a wide range of optical and electro-optical applications,” J. Opt. A Pure Appl. Opt. 11, 024017 (2009).
[Crossref]

Assion, F.

K. Brassat, F. Assion, U. Hilleringmann, and J. K. N. Lindner, “Self-organization of nanospheres in trenches on silicon surfaces,” Phys. Status Solidi A 210, 1485–1489 (2013).
[Crossref]

Bahat-Treidel, E.

Beccherelli, R.

R. Caputo, A. de Luca, L. de Sio, L. Pezzi, G. Strangi, C. Umeton, A. Veltri, R. Asquini, A. d’Alessandro, D. Donisi, R. Beccherelli, A. V. Sukhov, and N. V. Tabiryan, “Policryps: A liquid crystal composed nano/microstructure with a wide range of optical and electro-optical applications,” J. Opt. A Pure Appl. Opt. 11, 024017 (2009).
[Crossref]

Beeckman, J.

I. Nys, J. Beeckman, and K. Neyts, “Switchable 3d liquid crystal grating generated by periodic photo-alignment on both substrates,” Soft Matter 11, 7802–7808 (2015).
[Crossref] [PubMed]

Bos, P. J.

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electro–optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67, 2588–2590 (1995).
[Crossref]

Brassat, K.

K. Brassat, F. Assion, U. Hilleringmann, and J. K. N. Lindner, “Self-organization of nanospheres in trenches on silicon surfaces,” Phys. Status Solidi A 210, 1485–1489 (2013).
[Crossref]

Caputo, R.

R. Caputo, A. de Luca, L. de Sio, L. Pezzi, G. Strangi, C. Umeton, A. Veltri, R. Asquini, A. d’Alessandro, D. Donisi, R. Beccherelli, A. V. Sukhov, and N. V. Tabiryan, “Policryps: A liquid crystal composed nano/microstructure with a wide range of optical and electro-optical applications,” J. Opt. A Pure Appl. Opt. 11, 024017 (2009).
[Crossref]

Chen, C. P.

Chen, J.

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electro–optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67, 2588–2590 (1995).
[Crossref]

Chen, K.-M.

K.-M. Chen, S. Gauza, H. Xianyu, and S.-T. Wu, “Hysteresis effects in blue-phase liquid crystals,” J. Displ. Technol. 6, 318–322 (2010).
[Crossref]

Chen, Y.

Y. Chen, D. Xu, S.-T. Wu, S.-I. Yamamoto, and Y. Haseba, “A low voltage and submillisecond-response polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 102, 141116 (2013).
[Crossref]

Cheng, H.-C.

J. Yan, H.-C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S.-T. Wu, “Extended kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96, 071105 (2010).
[Crossref]

Chigrinov, V.

W. Hu, A. Kumar Srivastava, X.-W. Lin, X. Liang, Z.-J. Wu, J.-T. Sun, G. Zhu, V. Chigrinov, and Y.-Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100, 111116 (2012).
[Crossref]

d’Alessandro, A.

R. Caputo, A. de Luca, L. de Sio, L. Pezzi, G. Strangi, C. Umeton, A. Veltri, R. Asquini, A. d’Alessandro, D. Donisi, R. Beccherelli, A. V. Sukhov, and N. V. Tabiryan, “Policryps: A liquid crystal composed nano/microstructure with a wide range of optical and electro-optical applications,” J. Opt. A Pure Appl. Opt. 11, 024017 (2009).
[Crossref]

de Luca, A.

R. Caputo, A. de Luca, L. de Sio, L. Pezzi, G. Strangi, C. Umeton, A. Veltri, R. Asquini, A. d’Alessandro, D. Donisi, R. Beccherelli, A. V. Sukhov, and N. V. Tabiryan, “Policryps: A liquid crystal composed nano/microstructure with a wide range of optical and electro-optical applications,” J. Opt. A Pure Appl. Opt. 11, 024017 (2009).
[Crossref]

de Sio, L.

R. Caputo, A. de Luca, L. de Sio, L. Pezzi, G. Strangi, C. Umeton, A. Veltri, R. Asquini, A. d’Alessandro, D. Donisi, R. Beccherelli, A. V. Sukhov, and N. V. Tabiryan, “Policryps: A liquid crystal composed nano/microstructure with a wide range of optical and electro-optical applications,” J. Opt. A Pure Appl. Opt. 11, 024017 (2009).
[Crossref]

Djurišic, A. B.

Dong, C.-Y.

J.-L. Zhu, J.-G. Lu, J. Qiang, E.-W. Zhong, Z.-C. Ye, Z. He, X. Guo, C.-Y. Dong, Y. Su, and H.-P. D. Shieh, “1d/2d switchable grating based on field-induced polymer stabilized blue phase liquid crystal,” J. Appl. Phys. 111, 033101 (2012).
[Crossref]

Donisi, D.

R. Caputo, A. de Luca, L. de Sio, L. Pezzi, G. Strangi, C. Umeton, A. Veltri, R. Asquini, A. d’Alessandro, D. Donisi, R. Beccherelli, A. V. Sukhov, and N. V. Tabiryan, “Policryps: A liquid crystal composed nano/microstructure with a wide range of optical and electro-optical applications,” J. Opt. A Pure Appl. Opt. 11, 024017 (2009).
[Crossref]

Dorschner, T. A.

Duval, M. L.

J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. van Duyne, “Nanosphere lithography: Size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103, 3854–3863 (1999).
[Crossref]

Efron, U.

Elazar, J. M.

Escuti, M. J.

R. K. Komanduri, W. M. Jones, C. Oh, and M. J. Escuti, “Polarization-independent modulation for projection displays using small-period lc polarization gratings,” J. Soc. Inf. Displ. 15, 589 (2007).
[Crossref]

Friedman, L. J.

Fujieda, I.

Gao, L.

L. Gao, F. Lemarchand, and M. Lequime, “Comparison of different dispersion models for single layer optical thin film index determination,” Thin Solid Films 520, 501–509 (2011).
[Crossref]

Gauza, S.

K.-M. Chen, S. Gauza, H. Xianyu, and S.-T. Wu, “Hysteresis effects in blue-phase liquid crystals,” J. Displ. Technol. 6, 318–322 (2010).
[Crossref]

J. Yan, H.-C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S.-T. Wu, “Extended kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96, 071105 (2010).
[Crossref]

Gerber, P. R.

P. R. Gerber, “Electro-optical effects of a small-pitch blue-phase system,” Mol. Cryst. Liq. Cryst. 116, 197–206 (1985).
[Crossref]

Gogel, D.

D. Gogel, M. Weinl, J. K. Lindner, and B. Stritzker, “Plasma modification of nanosphere lithography masks made of polystyrene beads,” J. Optoelectron. Adv. Mater. 12, 740–744 (2010).

Guo, X.

J.-L. Zhu, J.-G. Lu, J. Qiang, E.-W. Zhong, Z.-C. Ye, Z. He, X. Guo, C.-Y. Dong, Y. Su, and H.-P. D. Shieh, “1d/2d switchable grating based on field-induced polymer stabilized blue phase liquid crystal,” J. Appl. Phys. 111, 033101 (2012).
[Crossref]

Haseba, Y.

Y. Chen, D. Xu, S.-T. Wu, S.-I. Yamamoto, and Y. Haseba, “A low voltage and submillisecond-response polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 102, 141116 (2013).
[Crossref]

Haynes, C. L.

C. L. Haynes and R. P. van Duyne, “Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B 105, 5599–5611 (2001).
[Crossref]

He, Z.

J.-L. Zhu, J.-G. Lu, J. Qiang, E.-W. Zhong, Z.-C. Ye, Z. He, X. Guo, C.-Y. Dong, Y. Su, and H.-P. D. Shieh, “1d/2d switchable grating based on field-induced polymer stabilized blue phase liquid crystal,” J. Appl. Phys. 111, 033101 (2012).
[Crossref]

Heppke, G.

G. Heppke, H.-S. Kitzerow, and M. Krumrey, “Electric field induced variation of the refractive index in cholesteric blue phases,” Mol. Cryst. Liq. Cryst. 2, 59–65 (1985).

Hilleringmann, U.

K. Brassat, F. Assion, U. Hilleringmann, and J. K. N. Lindner, “Self-organization of nanospheres in trenches on silicon surfaces,” Phys. Status Solidi A 210, 1485–1489 (2013).
[Crossref]

Hisakado, Y.

Y. Hisakado, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic kerr effect in polymer-stabilized liquid-crystalline blue phases,” Adv. Mater. 17, 96–98 (2005).
[Crossref]

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1, 64–68 (2002).
[Crossref]

Hobbs, D. S.

Hoischen, A.

G. Nordendorf, A. Hoischen, J. Schmidtke, D. Wilkes, and H.-S. Kitzerow, “Polymer-stabilized blue phases: Promising mesophases for a new generation of liquid crystal displays,” Polymer. Adv. Tech. 25, 1195–1207 (2014)
[Crossref]

A. Redler, A. Hoischen, and H. Kitzerow, “Liquid crystal/polymer composites: Kinetic study of the grating formation in holographic polymer-dispersed liquid crystals,” Mol. Cryst. Liq. Cryst. 547, 97–107 (2011).
[Crossref]

Hu, K.

J. Yan, Q. Li, and K. Hu, “Polarization independent blue phase liquid crystal gratings based on periodic polymer slices structure,” J. Appl. Phys. 114, 153104 (2013).
[Crossref]

Hu, W.

W. Hu, A. Kumar Srivastava, X.-W. Lin, X. Liang, Z.-J. Wu, J.-T. Sun, G. Zhu, V. Chigrinov, and Y.-Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100, 111116 (2012).
[Crossref]

Hulteen, J. C.

J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. van Duyne, “Nanosphere lithography: Size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103, 3854–3863 (1999).
[Crossref]

Jau, H.-C.

Y.-T. Lin, H.-C. Jau, and T.-H. Lin, “Polarization-independent rapidly responding phase grating based on hybrid blue phase liquid crystal,” J. Appl. Phys. 113, 063103 (2013).
[Crossref]

Jensen, T. R.

J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. van Duyne, “Nanosphere lithography: Size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103, 3854–3863 (1999).
[Crossref]

Jiao, M.

J. Yan, H.-C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S.-T. Wu, “Extended kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96, 071105 (2010).
[Crossref]

Johnson, D. L.

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electro–optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67, 2588–2590 (1995).
[Crossref]

Jones, W. M.

R. K. Komanduri, W. M. Jones, C. Oh, and M. J. Escuti, “Polarization-independent modulation for projection displays using small-period lc polarization gratings,” J. Soc. Inf. Displ. 15, 589 (2007).
[Crossref]

Kajiyama, T.

Y. Hisakado, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic kerr effect in polymer-stabilized liquid-crystalline blue phases,” Adv. Mater. 17, 96–98 (2005).
[Crossref]

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1, 64–68 (2002).
[Crossref]

Kapoustine, V.

V. Kapoustine, A. Kazakevitch, V. So, and R. Tam, “Simple method of formation of switchable liquid crystal gratings by introducing periodic photoalignment pattern into liquid crystal cell,” Opt. Commun. 266, 1–5 (2006).
[Crossref]

Kazakevitch, A.

V. Kapoustine, A. Kazakevitch, V. So, and R. Tam, “Simple method of formation of switchable liquid crystal gratings by introducing periodic photoalignment pattern into liquid crystal cell,” Opt. Commun. 266, 1–5 (2006).
[Crossref]

Kikuchi, H.

Y. Hisakado, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic kerr effect in polymer-stabilized liquid-crystalline blue phases,” Adv. Mater. 17, 96–98 (2005).
[Crossref]

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1, 64–68 (2002).
[Crossref]

Kitzerow, H.

G. Nordendorf, J. Schmidtke, D. Wilkes, and H. Kitzerow, “Temperature-insensitive electro-optic response of polymer-stabilized blue phases,” J. Mater. Chem. C 5, 518–521 (2017).
[Crossref]

A. Redler, A. Hoischen, and H. Kitzerow, “Liquid crystal/polymer composites: Kinetic study of the grating formation in holographic polymer-dispersed liquid crystals,” Mol. Cryst. Liq. Cryst. 547, 97–107 (2011).
[Crossref]

Kitzerow, H. S.

H. S. Kitzerow, “The effect of electric fields on blue phases,” Mol. Cryst. Liq. Cryst. 202, 51–83 (1991).
[Crossref]

Kitzerow, H.-S.

G. Nordendorf, A. Hoischen, J. Schmidtke, D. Wilkes, and H.-S. Kitzerow, “Polymer-stabilized blue phases: Promising mesophases for a new generation of liquid crystal displays,” Polymer. Adv. Tech. 25, 1195–1207 (2014)
[Crossref]

G. Heppke, H.-S. Kitzerow, and M. Krumrey, “Electric field induced variation of the refractive index in cholesteric blue phases,” Mol. Cryst. Liq. Cryst. 2, 59–65 (1985).

Komanduri, R. K.

R. K. Komanduri, W. M. Jones, C. Oh, and M. J. Escuti, “Polarization-independent modulation for projection displays using small-period lc polarization gratings,” J. Soc. Inf. Displ. 15, 589 (2007).
[Crossref]

Krumrey, M.

G. Heppke, H.-S. Kitzerow, and M. Krumrey, “Electric field induced variation of the refractive index in cholesteric blue phases,” Mol. Cryst. Liq. Cryst. 2, 59–65 (1985).

Kumar Srivastava, A.

W. Hu, A. Kumar Srivastava, X.-W. Lin, X. Liang, Z.-J. Wu, J.-T. Sun, G. Zhu, V. Chigrinov, and Y.-Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100, 111116 (2012).
[Crossref]

Lavrentovich, O. D.

Lemarchand, F.

L. Gao, F. Lemarchand, and M. Lequime, “Comparison of different dispersion models for single layer optical thin film index determination,” Thin Solid Films 520, 501–509 (2011).
[Crossref]

Lequime, M.

L. Gao, F. Lemarchand, and M. Lequime, “Comparison of different dispersion models for single layer optical thin film index determination,” Thin Solid Films 520, 501–509 (2011).
[Crossref]

Li, Q.

J. Yan, Q. Li, and K. Hu, “Polarization independent blue phase liquid crystal gratings based on periodic polymer slices structure,” J. Appl. Phys. 114, 153104 (2013).
[Crossref]

Li, W.

Li, X.

Li, Y.

Y. Yuan, Y. Li, C. P. Chen, S. Liu, N. Rong, W. Li, X. Li, P. Zhou, J. Lu, R. Liu, and Y. Su, “Polymer-stabilized blue-phase liquid crystal grating cured with interfered visible light,” Opt. Express 23, 20007–20013 (2015).
[Crossref] [PubMed]

J. Yan, H.-C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S.-T. Wu, “Extended kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96, 071105 (2010).
[Crossref]

Liang, X.

W. Hu, A. Kumar Srivastava, X.-W. Lin, X. Liang, Z.-J. Wu, J.-T. Sun, G. Zhu, V. Chigrinov, and Y.-Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100, 111116 (2012).
[Crossref]

Lien, A.

A. Lien, “A detailed derivation of extended jones matrix representation for twisted nematic liquid crystal displays,” Liq. Cryst. 22, 171–175 (1997).
[Crossref]

Lin, T.-H.

Y.-T. Lin, H.-C. Jau, and T.-H. Lin, “Polarization-independent rapidly responding phase grating based on hybrid blue phase liquid crystal,” J. Appl. Phys. 113, 063103 (2013).
[Crossref]

Lin, X.-W.

W. Hu, A. Kumar Srivastava, X.-W. Lin, X. Liang, Z.-J. Wu, J.-T. Sun, G. Zhu, V. Chigrinov, and Y.-Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100, 111116 (2012).
[Crossref]

Lin, Y.-T.

Y.-T. Lin, H.-C. Jau, and T.-H. Lin, “Polarization-independent rapidly responding phase grating based on hybrid blue phase liquid crystal,” J. Appl. Phys. 113, 063103 (2013).
[Crossref]

Lindner, J. K.

D. Gogel, M. Weinl, J. K. Lindner, and B. Stritzker, “Plasma modification of nanosphere lithography masks made of polystyrene beads,” J. Optoelectron. Adv. Mater. 12, 740–744 (2010).

Lindner, J. K. N.

K. Brassat, F. Assion, U. Hilleringmann, and J. K. N. Lindner, “Self-organization of nanospheres in trenches on silicon surfaces,” Phys. Status Solidi A 210, 1485–1489 (2013).
[Crossref]

Liu, R.

Liu, S.

Lu, J.

Lu, J.-G.

J.-L. Zhu, J.-G. Lu, J. Qiang, E.-W. Zhong, Z.-C. Ye, Z. He, X. Guo, C.-Y. Dong, Y. Su, and H.-P. D. Shieh, “1d/2d switchable grating based on field-induced polymer stabilized blue phase liquid crystal,” J. Appl. Phys. 111, 033101 (2012).
[Crossref]

Lu, Y.-Q.

W. Hu, A. Kumar Srivastava, X.-W. Lin, X. Liang, Z.-J. Wu, J.-T. Sun, G. Zhu, V. Chigrinov, and Y.-Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100, 111116 (2012).
[Crossref]

Majewski, M. L.

Mikami, O.

Mohwald, H.

G. Zhang, D. Wang, and H. Mohwald, “Ordered binary arrays of au nanoparticles derived from colloidal lithography,” Nano Lett. 7, 127–132 (2007).
[Crossref] [PubMed]

Moreno, I.

J. Albero and I. Moreno, “Grating beam splitting with liquid crystal adaptive optics,” J. Opt. 14, 075704 (2012).
[Crossref]

Nagamura, T.

Y. Hisakado, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic kerr effect in polymer-stabilized liquid-crystalline blue phases,” Adv. Mater. 17, 96–98 (2005).
[Crossref]

Neyts, K.

I. Nys, J. Beeckman, and K. Neyts, “Switchable 3d liquid crystal grating generated by periodic photo-alignment on both substrates,” Soft Matter 11, 7802–7808 (2015).
[Crossref] [PubMed]

Nordendorf, G.

G. Nordendorf, J. Schmidtke, D. Wilkes, and H. Kitzerow, “Temperature-insensitive electro-optic response of polymer-stabilized blue phases,” J. Mater. Chem. C 5, 518–521 (2017).
[Crossref]

G. Nordendorf, A. Hoischen, J. Schmidtke, D. Wilkes, and H.-S. Kitzerow, “Polymer-stabilized blue phases: Promising mesophases for a new generation of liquid crystal displays,” Polymer. Adv. Tech. 25, 1195–1207 (2014)
[Crossref]

Nys, I.

I. Nys, J. Beeckman, and K. Neyts, “Switchable 3d liquid crystal grating generated by periodic photo-alignment on both substrates,” Soft Matter 11, 7802–7808 (2015).
[Crossref] [PubMed]

Oh, C.

R. K. Komanduri, W. M. Jones, C. Oh, and M. J. Escuti, “Polarization-independent modulation for projection displays using small-period lc polarization gratings,” J. Soc. Inf. Displ. 15, 589 (2007).
[Crossref]

Ozawa, A.

Pezzi, L.

R. Caputo, A. de Luca, L. de Sio, L. Pezzi, G. Strangi, C. Umeton, A. Veltri, R. Asquini, A. d’Alessandro, D. Donisi, R. Beccherelli, A. V. Sukhov, and N. V. Tabiryan, “Policryps: A liquid crystal composed nano/microstructure with a wide range of optical and electro-optical applications,” J. Opt. A Pure Appl. Opt. 11, 024017 (2009).
[Crossref]

Qiang, J.

J.-L. Zhu, J.-G. Lu, J. Qiang, E.-W. Zhong, Z.-C. Ye, Z. He, X. Guo, C.-Y. Dong, Y. Su, and H.-P. D. Shieh, “1d/2d switchable grating based on field-induced polymer stabilized blue phase liquid crystal,” J. Appl. Phys. 111, 033101 (2012).
[Crossref]

Rakic, A. D.

Rao, L.

J. Yan, H.-C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S.-T. Wu, “Extended kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96, 071105 (2010).
[Crossref]

Redler, A.

A. Redler, A. Hoischen, and H. Kitzerow, “Liquid crystal/polymer composites: Kinetic study of the grating formation in holographic polymer-dispersed liquid crystals,” Mol. Cryst. Liq. Cryst. 547, 97–107 (2011).
[Crossref]

Resler, D. P.

Rong, N.

Schmidtke, J.

G. Nordendorf, J. Schmidtke, D. Wilkes, and H. Kitzerow, “Temperature-insensitive electro-optic response of polymer-stabilized blue phases,” J. Mater. Chem. C 5, 518–521 (2017).
[Crossref]

G. Nordendorf, A. Hoischen, J. Schmidtke, D. Wilkes, and H.-S. Kitzerow, “Polymer-stabilized blue phases: Promising mesophases for a new generation of liquid crystal displays,” Polymer. Adv. Tech. 25, 1195–1207 (2014)
[Crossref]

Senyuk, B. I.

Sharp, R. C.

Shieh, H.-P. D.

J.-L. Zhu, J.-G. Lu, J. Qiang, E.-W. Zhong, Z.-C. Ye, Z. He, X. Guo, C.-Y. Dong, Y. Su, and H.-P. D. Shieh, “1d/2d switchable grating based on field-induced polymer stabilized blue phase liquid crystal,” J. Appl. Phys. 111, 033101 (2012).
[Crossref]

Smalyukh, I. I.

Smith, M. T.

J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. van Duyne, “Nanosphere lithography: Size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103, 3854–3863 (1999).
[Crossref]

So, V.

V. Kapoustine, A. Kazakevitch, V. So, and R. Tam, “Simple method of formation of switchable liquid crystal gratings by introducing periodic photoalignment pattern into liquid crystal cell,” Opt. Commun. 266, 1–5 (2006).
[Crossref]

Strangi, G.

R. Caputo, A. de Luca, L. de Sio, L. Pezzi, G. Strangi, C. Umeton, A. Veltri, R. Asquini, A. d’Alessandro, D. Donisi, R. Beccherelli, A. V. Sukhov, and N. V. Tabiryan, “Policryps: A liquid crystal composed nano/microstructure with a wide range of optical and electro-optical applications,” J. Opt. A Pure Appl. Opt. 11, 024017 (2009).
[Crossref]

Stritzker, B.

D. Gogel, M. Weinl, J. K. Lindner, and B. Stritzker, “Plasma modification of nanosphere lithography masks made of polystyrene beads,” J. Optoelectron. Adv. Mater. 12, 740–744 (2010).

Su, Y.

Y. Yuan, Y. Li, C. P. Chen, S. Liu, N. Rong, W. Li, X. Li, P. Zhou, J. Lu, R. Liu, and Y. Su, “Polymer-stabilized blue-phase liquid crystal grating cured with interfered visible light,” Opt. Express 23, 20007–20013 (2015).
[Crossref] [PubMed]

J.-L. Zhu, J.-G. Lu, J. Qiang, E.-W. Zhong, Z.-C. Ye, Z. He, X. Guo, C.-Y. Dong, Y. Su, and H.-P. D. Shieh, “1d/2d switchable grating based on field-induced polymer stabilized blue phase liquid crystal,” J. Appl. Phys. 111, 033101 (2012).
[Crossref]

Sukhov, A. V.

R. Caputo, A. de Luca, L. de Sio, L. Pezzi, G. Strangi, C. Umeton, A. Veltri, R. Asquini, A. d’Alessandro, D. Donisi, R. Beccherelli, A. V. Sukhov, and N. V. Tabiryan, “Policryps: A liquid crystal composed nano/microstructure with a wide range of optical and electro-optical applications,” J. Opt. A Pure Appl. Opt. 11, 024017 (2009).
[Crossref]

Sun, J.-T.

W. Hu, A. Kumar Srivastava, X.-W. Lin, X. Liang, Z.-J. Wu, J.-T. Sun, G. Zhu, V. Chigrinov, and Y.-Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100, 111116 (2012).
[Crossref]

Tabiryan, N. V.

R. Caputo, A. de Luca, L. de Sio, L. Pezzi, G. Strangi, C. Umeton, A. Veltri, R. Asquini, A. d’Alessandro, D. Donisi, R. Beccherelli, A. V. Sukhov, and N. V. Tabiryan, “Policryps: A liquid crystal composed nano/microstructure with a wide range of optical and electro-optical applications,” J. Opt. A Pure Appl. Opt. 11, 024017 (2009).
[Crossref]

Tam, R.

V. Kapoustine, A. Kazakevitch, V. So, and R. Tam, “Simple method of formation of switchable liquid crystal gratings by introducing periodic photoalignment pattern into liquid crystal cell,” Opt. Commun. 266, 1–5 (2006).
[Crossref]

Tan, G.

Treichel, D. A.

J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. van Duyne, “Nanosphere lithography: Size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103, 3854–3863 (1999).
[Crossref]

Umeton, C.

R. Caputo, A. de Luca, L. de Sio, L. Pezzi, G. Strangi, C. Umeton, A. Veltri, R. Asquini, A. d’Alessandro, D. Donisi, R. Beccherelli, A. V. Sukhov, and N. V. Tabiryan, “Policryps: A liquid crystal composed nano/microstructure with a wide range of optical and electro-optical applications,” J. Opt. A Pure Appl. Opt. 11, 024017 (2009).
[Crossref]

van Duyne, R. P.

C. L. Haynes and R. P. van Duyne, “Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B 105, 5599–5611 (2001).
[Crossref]

J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. van Duyne, “Nanosphere lithography: Size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103, 3854–3863 (1999).
[Crossref]

Veltri, A.

R. Caputo, A. de Luca, L. de Sio, L. Pezzi, G. Strangi, C. Umeton, A. Veltri, R. Asquini, A. d’Alessandro, D. Donisi, R. Beccherelli, A. V. Sukhov, and N. V. Tabiryan, “Policryps: A liquid crystal composed nano/microstructure with a wide range of optical and electro-optical applications,” J. Opt. A Pure Appl. Opt. 11, 024017 (2009).
[Crossref]

Vithana, H.

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electro–optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67, 2588–2590 (1995).
[Crossref]

Wang, D.

G. Zhang, D. Wang, and H. Mohwald, “Ordered binary arrays of au nanoparticles derived from colloidal lithography,” Nano Lett. 7, 127–132 (2007).
[Crossref] [PubMed]

Wang, K.

L. Yan, K. Wang, J. Wu, and L. Ye, “Hydrophobicity of model surfaces with loosely packed polystyrene spheres after plasma etching,” J. Phys. Chem. B 110, 11241–11246 (2006).
[Crossref] [PubMed]

Weinl, M.

D. Gogel, M. Weinl, J. K. Lindner, and B. Stritzker, “Plasma modification of nanosphere lithography masks made of polystyrene beads,” J. Optoelectron. Adv. Mater. 12, 740–744 (2010).

Wilkes, D.

G. Nordendorf, J. Schmidtke, D. Wilkes, and H. Kitzerow, “Temperature-insensitive electro-optic response of polymer-stabilized blue phases,” J. Mater. Chem. C 5, 518–521 (2017).
[Crossref]

G. Nordendorf, A. Hoischen, J. Schmidtke, D. Wilkes, and H.-S. Kitzerow, “Polymer-stabilized blue phases: Promising mesophases for a new generation of liquid crystal displays,” Polymer. Adv. Tech. 25, 1195–1207 (2014)
[Crossref]

Wu, J.

L. Yan, K. Wang, J. Wu, and L. Ye, “Hydrophobicity of model surfaces with loosely packed polystyrene spheres after plasma etching,” J. Phys. Chem. B 110, 11241–11246 (2006).
[Crossref] [PubMed]

Wu, S.-T.

D. Xu, G. Tan, and S.-T. Wu, “Large-angle and high-efficiency tunable phase grating using fringe field switching liquid crystal,” Opt. Express 23, 12274–12285 (2015).
[Crossref] [PubMed]

Y. Chen, D. Xu, S.-T. Wu, S.-I. Yamamoto, and Y. Haseba, “A low voltage and submillisecond-response polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 102, 141116 (2013).
[Crossref]

K.-M. Chen, S. Gauza, H. Xianyu, and S.-T. Wu, “Hysteresis effects in blue-phase liquid crystals,” J. Displ. Technol. 6, 318–322 (2010).
[Crossref]

J. Yan, H.-C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S.-T. Wu, “Extended kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96, 071105 (2010).
[Crossref]

D.-K. Yang and S.-T. Wu, Fundamentals of liquid crystal devices, 2nd. ed., Wiley series in display technology (John Wiley & Sons Inc, Chichester, West Sussex, United Kingdom, 2014).

Wu, Z.-J.

W. Hu, A. Kumar Srivastava, X.-W. Lin, X. Liang, Z.-J. Wu, J.-T. Sun, G. Zhu, V. Chigrinov, and Y.-Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100, 111116 (2012).
[Crossref]

Xianyu, H.

K.-M. Chen, S. Gauza, H. Xianyu, and S.-T. Wu, “Hysteresis effects in blue-phase liquid crystals,” J. Displ. Technol. 6, 318–322 (2010).
[Crossref]

Xu, D.

D. Xu, G. Tan, and S.-T. Wu, “Large-angle and high-efficiency tunable phase grating using fringe field switching liquid crystal,” Opt. Express 23, 12274–12285 (2015).
[Crossref] [PubMed]

Y. Chen, D. Xu, S.-T. Wu, S.-I. Yamamoto, and Y. Haseba, “A low voltage and submillisecond-response polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 102, 141116 (2013).
[Crossref]

Yamamoto, S.-I.

Y. Chen, D. Xu, S.-T. Wu, S.-I. Yamamoto, and Y. Haseba, “A low voltage and submillisecond-response polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 102, 141116 (2013).
[Crossref]

Yan, J.

J. Yan, Q. Li, and K. Hu, “Polarization independent blue phase liquid crystal gratings based on periodic polymer slices structure,” J. Appl. Phys. 114, 153104 (2013).
[Crossref]

J. Yan, H.-C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S.-T. Wu, “Extended kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96, 071105 (2010).
[Crossref]

Yan, L.

L. Yan, K. Wang, J. Wu, and L. Ye, “Hydrophobicity of model surfaces with loosely packed polystyrene spheres after plasma etching,” J. Phys. Chem. B 110, 11241–11246 (2006).
[Crossref] [PubMed]

Yang, D.-K.

D.-K. Yang and S.-T. Wu, Fundamentals of liquid crystal devices, 2nd. ed., Wiley series in display technology (John Wiley & Sons Inc, Chichester, West Sussex, United Kingdom, 2014).

Yang, H.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1, 64–68 (2002).
[Crossref]

Ye, L.

L. Yan, K. Wang, J. Wu, and L. Ye, “Hydrophobicity of model surfaces with loosely packed polystyrene spheres after plasma etching,” J. Phys. Chem. B 110, 11241–11246 (2006).
[Crossref] [PubMed]

Ye, Z.-C.

J.-L. Zhu, J.-G. Lu, J. Qiang, E.-W. Zhong, Z.-C. Ye, Z. He, X. Guo, C.-Y. Dong, Y. Su, and H.-P. D. Shieh, “1d/2d switchable grating based on field-induced polymer stabilized blue phase liquid crystal,” J. Appl. Phys. 111, 033101 (2012).
[Crossref]

Yokota, M.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1, 64–68 (2002).
[Crossref]

Yuan, Y.

Zhang, G.

G. Zhang, D. Wang, and H. Mohwald, “Ordered binary arrays of au nanoparticles derived from colloidal lithography,” Nano Lett. 7, 127–132 (2007).
[Crossref] [PubMed]

Zhong, E.-W.

J.-L. Zhu, J.-G. Lu, J. Qiang, E.-W. Zhong, Z.-C. Ye, Z. He, X. Guo, C.-Y. Dong, Y. Su, and H.-P. D. Shieh, “1d/2d switchable grating based on field-induced polymer stabilized blue phase liquid crystal,” J. Appl. Phys. 111, 033101 (2012).
[Crossref]

Zhou, P.

Zhu, G.

W. Hu, A. Kumar Srivastava, X.-W. Lin, X. Liang, Z.-J. Wu, J.-T. Sun, G. Zhu, V. Chigrinov, and Y.-Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100, 111116 (2012).
[Crossref]

Zhu, J.-L.

J.-L. Zhu, J.-G. Lu, J. Qiang, E.-W. Zhong, Z.-C. Ye, Z. He, X. Guo, C.-Y. Dong, Y. Su, and H.-P. D. Shieh, “1d/2d switchable grating based on field-induced polymer stabilized blue phase liquid crystal,” J. Appl. Phys. 111, 033101 (2012).
[Crossref]

Adv. Mater. (1)

Y. Hisakado, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic kerr effect in polymer-stabilized liquid-crystalline blue phases,” Adv. Mater. 17, 96–98 (2005).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (4)

Y. Chen, D. Xu, S.-T. Wu, S.-I. Yamamoto, and Y. Haseba, “A low voltage and submillisecond-response polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 102, 141116 (2013).
[Crossref]

J. Yan, H.-C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S.-T. Wu, “Extended kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96, 071105 (2010).
[Crossref]

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electro–optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67, 2588–2590 (1995).
[Crossref]

W. Hu, A. Kumar Srivastava, X.-W. Lin, X. Liang, Z.-J. Wu, J.-T. Sun, G. Zhu, V. Chigrinov, and Y.-Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100, 111116 (2012).
[Crossref]

J. Appl. Phys. (3)

J.-L. Zhu, J.-G. Lu, J. Qiang, E.-W. Zhong, Z.-C. Ye, Z. He, X. Guo, C.-Y. Dong, Y. Su, and H.-P. D. Shieh, “1d/2d switchable grating based on field-induced polymer stabilized blue phase liquid crystal,” J. Appl. Phys. 111, 033101 (2012).
[Crossref]

Y.-T. Lin, H.-C. Jau, and T.-H. Lin, “Polarization-independent rapidly responding phase grating based on hybrid blue phase liquid crystal,” J. Appl. Phys. 113, 063103 (2013).
[Crossref]

J. Yan, Q. Li, and K. Hu, “Polarization independent blue phase liquid crystal gratings based on periodic polymer slices structure,” J. Appl. Phys. 114, 153104 (2013).
[Crossref]

J. Displ. Technol. (1)

K.-M. Chen, S. Gauza, H. Xianyu, and S.-T. Wu, “Hysteresis effects in blue-phase liquid crystals,” J. Displ. Technol. 6, 318–322 (2010).
[Crossref]

J. Mater. Chem. C (1)

G. Nordendorf, J. Schmidtke, D. Wilkes, and H. Kitzerow, “Temperature-insensitive electro-optic response of polymer-stabilized blue phases,” J. Mater. Chem. C 5, 518–521 (2017).
[Crossref]

J. Opt. (1)

J. Albero and I. Moreno, “Grating beam splitting with liquid crystal adaptive optics,” J. Opt. 14, 075704 (2012).
[Crossref]

J. Opt. A Pure Appl. Opt. (1)

R. Caputo, A. de Luca, L. de Sio, L. Pezzi, G. Strangi, C. Umeton, A. Veltri, R. Asquini, A. d’Alessandro, D. Donisi, R. Beccherelli, A. V. Sukhov, and N. V. Tabiryan, “Policryps: A liquid crystal composed nano/microstructure with a wide range of optical and electro-optical applications,” J. Opt. A Pure Appl. Opt. 11, 024017 (2009).
[Crossref]

J. Optoelectron. Adv. Mater. (1)

D. Gogel, M. Weinl, J. K. Lindner, and B. Stritzker, “Plasma modification of nanosphere lithography masks made of polystyrene beads,” J. Optoelectron. Adv. Mater. 12, 740–744 (2010).

J. Phys. Chem. B (3)

L. Yan, K. Wang, J. Wu, and L. Ye, “Hydrophobicity of model surfaces with loosely packed polystyrene spheres after plasma etching,” J. Phys. Chem. B 110, 11241–11246 (2006).
[Crossref] [PubMed]

J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. van Duyne, “Nanosphere lithography: Size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103, 3854–3863 (1999).
[Crossref]

C. L. Haynes and R. P. van Duyne, “Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B 105, 5599–5611 (2001).
[Crossref]

J. Soc. Inf. Displ. (1)

R. K. Komanduri, W. M. Jones, C. Oh, and M. J. Escuti, “Polarization-independent modulation for projection displays using small-period lc polarization gratings,” J. Soc. Inf. Displ. 15, 589 (2007).
[Crossref]

Liq. Cryst. (1)

A. Lien, “A detailed derivation of extended jones matrix representation for twisted nematic liquid crystal displays,” Liq. Cryst. 22, 171–175 (1997).
[Crossref]

Mol. Cryst. Liq. Cryst. (4)

A. Redler, A. Hoischen, and H. Kitzerow, “Liquid crystal/polymer composites: Kinetic study of the grating formation in holographic polymer-dispersed liquid crystals,” Mol. Cryst. Liq. Cryst. 547, 97–107 (2011).
[Crossref]

P. R. Gerber, “Electro-optical effects of a small-pitch blue-phase system,” Mol. Cryst. Liq. Cryst. 116, 197–206 (1985).
[Crossref]

G. Heppke, H.-S. Kitzerow, and M. Krumrey, “Electric field induced variation of the refractive index in cholesteric blue phases,” Mol. Cryst. Liq. Cryst. 2, 59–65 (1985).

H. S. Kitzerow, “The effect of electric fields on blue phases,” Mol. Cryst. Liq. Cryst. 202, 51–83 (1991).
[Crossref]

Nano Lett. (1)

G. Zhang, D. Wang, and H. Mohwald, “Ordered binary arrays of au nanoparticles derived from colloidal lithography,” Nano Lett. 7, 127–132 (2007).
[Crossref] [PubMed]

Nat. Mater. (1)

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1, 64–68 (2002).
[Crossref]

Opt. Commun. (1)

V. Kapoustine, A. Kazakevitch, V. So, and R. Tam, “Simple method of formation of switchable liquid crystal gratings by introducing periodic photoalignment pattern into liquid crystal cell,” Opt. Commun. 266, 1–5 (2006).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Phys. Status Solidi A (1)

K. Brassat, F. Assion, U. Hilleringmann, and J. K. N. Lindner, “Self-organization of nanospheres in trenches on silicon surfaces,” Phys. Status Solidi A 210, 1485–1489 (2013).
[Crossref]

Polymer. Adv. Tech. (1)

G. Nordendorf, A. Hoischen, J. Schmidtke, D. Wilkes, and H.-S. Kitzerow, “Polymer-stabilized blue phases: Promising mesophases for a new generation of liquid crystal displays,” Polymer. Adv. Tech. 25, 1195–1207 (2014)
[Crossref]

Soft Matter (1)

I. Nys, J. Beeckman, and K. Neyts, “Switchable 3d liquid crystal grating generated by periodic photo-alignment on both substrates,” Soft Matter 11, 7802–7808 (2015).
[Crossref] [PubMed]

Thin Solid Films (1)

L. Gao, F. Lemarchand, and M. Lequime, “Comparison of different dispersion models for single layer optical thin film index determination,” Thin Solid Films 520, 501–509 (2011).
[Crossref]

Other (2)

“Comsol Multiphysics version 4.2”.

D.-K. Yang and S.-T. Wu, Fundamentals of liquid crystal devices, 2nd. ed., Wiley series in display technology (John Wiley & Sons Inc, Chichester, West Sussex, United Kingdom, 2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic representation of the electrode preparation process: deposited sphere monolayer, spheres shrunk by reactive ion etching, metal deposition, sphere removal. (b, c) SEM images of the sphere monolayer and the shrunk spheres. (d) AFM image of the prepared structured electrodes.
Fig. 2
Fig. 2 (a) Schematic representation of the assembled cell with the structured electrode at the bottom, the ITO counter electrode on top and the blue phase in between. The unit cell of this structure is marked with dashed lines. (b) Magnified unit cell with pitch Λ and cell thickness d.
Fig. 3
Fig. 3 (a) Diffraction pattern on a screen caused by the structured electrodes sample at a distance of 36.4 cm in the field-off state. (b) Average measured diffraction efficiency (open circles) of the first diffraction order.
Fig. 4
Fig. 4 (a) Three dimensional representation of the unit cell used for calculating the electric fields. The red area marks the (x, z)-cut plane. (b) Distribution of the absolute electric field within the (x, z)-cut plane. The surface plot is scaled logarithmically. (c) Induced birefringence Δn(E) in the (x, z)-cut plane for different voltages.
Fig. 5
Fig. 5 Phase profiles of the optical field after passing through the sample for different voltage. The phase changes induced by the structured electrode materials is included. (a) The plane of polarization (POP) is parallel to the x-direction, i. e. ψ = 0°. (b) Phase profile for a POP of ψ = 30° at V = 100 V.
Fig. 6
Fig. 6 Diffraction efficiencies for first order diffraction spots: (a, b) experimental, (c, d) theoretical from fast Fourier transform. The efficiencies are labeled according to the inset in (a). The insets in (a) and (b) show the real space structure with the corresponding plane of polarization (POP). The experimental curves are only shown for increasing voltage. (a, c) x-polarized light, i. e. ψ = 0° (s. inset). (b, d) Polarization tilted by 30° with respect to the x-axis. The insets in (c) and (d) show the calculated diffraction patterns, the arrows indicate the polarization.
Fig. 7
Fig. 7 Switching on and off behavior due to a square wave of 65 V at a frequency of 100 Hz (blue). The red circles show the measured values and the black line shows an exponential fit.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Δ n ( E ) = Δ n s { 1 exp [ ( E E s ) 2 ] } .
n e = n ¯ BP + 2 3 Δ n ( E ) n o = n ¯ BP 1 3 Δ n ( E ) ,
n eff 2 = n o 2 n e 2 n o 2 sin 2 ( θ ) + n e 2 cos 2 ( θ )
ϕ 0 ( x , y ) = { d Au n Au + d Ti n Ti , on the metal film , ( d Au + d Ti ) n BP , on the dielectric ,
t ( x , y ) = { ( 1 r ) t 0 , on the metal film , 1 , on the dielectric ,
E out ( x , y ) = t ( x , y ) J ( x , y ) E in ,
E out ( x , y ) = t ( x , y ) exp [ i Δ ϕ ( x , y ) ] E in ,

Metrics