Abstract

A double-tapered optical fiber tweezers (DOFTs) was fabricated by a chemical etching called interfacial layer etching. In this method, the second taper angle (STA) of DOFTs can be controlled easily by the interfacial layer etching time. Application of the DOFTs to the optical trapping of the yeast cells was presented. Effects of the STA on the axile trapping efficiency and the trapping position were investigated experimentally and theoretically. The experimental results are good agreement with the theoretical ones. The results demonstrated that the non-contact capture can be realized for the large STA (e.g. 90 deg) and there was an optimal axile trapping efficiency as the STA increasing. In order to obtain a more accurate measurement result of the trapping force, a correction factor to Stokes drag coefficient was introduced. This work provided a way of designing and fabricating an optical fiber tweezers (OFTs) with a high trapping efficient or a non-contact capture.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application

Zhihai Liu, Chengkai Guo, Jun Yang, and Libo Yuan
Opt. Express 14(25) 12510-12516 (2006)

Fabricating fiber probes for optical tweezers by an improved tube etching method

Y. X. Liu, B. Zhang, N. Zhang, and Z. L. Liu
Appl. Opt. 58(29) 7950-7956 (2019)

Graded-index fiber tip optical tweezers: Numerical simulation and trapping experiment

Yuan Gong, Ai-Yan Ye, Yu Wu, Yun-Jiang Rao, Yao Yao, and Song Xiao
Opt. Express 21(13) 16181-16190 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
    [Crossref] [PubMed]
  2. M. T. Wei, A. Zaorski, H. C. Yalcin, J. Wang, M. Hallow, S. N. Ghadiali, A. Chiou, and H. D. Ou-Yang, “A comparative study of living cell micromechanical properties by oscillatory optical tweezers,” Opt. Express 16(12), 8594–8603 (2008).
    [Crossref] [PubMed]
  3. Y. Li, C. Wen, H. Xie, A. Ye, and Y. Yin, “Mechanical property analysis of stored red blood cell using optical tweezers,” Coll. Surf. B Biointerf. 70(2), 169–173 (2009).
    [Crossref] [PubMed]
  4. M. C. Zhong, X. B. Wei, J. H. Zhou, Z. Q. Wang, and Y. M. Li, “Trapping red blood cells in living animals using optical tweezers,” Nat. Commun. 4, 1768 (2013).
    [Crossref] [PubMed]
  5. J. C. Crocker and D. G. Grier, “Microscopic measurement of the pair interaction potential of charge-stabilized colloid,” Phys. Rev. Lett. 73(2), 352–355 (1994).
    [Crossref] [PubMed]
  6. J. C. Crocker and D. G. Grier, “When like charges attract: The effects of geometrical confinement on long-range colloidal interactions,” Phys. Rev. Lett. 77(9), 1897–1900 (1996).
    [Crossref] [PubMed]
  7. P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78(2), 249–251 (2001).
    [Crossref]
  8. A. Lachish-Zalait, D. Zbaida, E. Klein, and M. Elbaum, “Direct surface patterning from solutions: Localized microchemistry using a focused laser,” Adv. Funct. Mater. 11(3), 218–223 (2001).
    [Crossref]
  9. D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. T. Lim, and C. W. Qiu, “Optical manipulation from the microscale to the nanoscale: Fundamentals, Advances, and Prospects,” Light Sci. Appl. 6, e17039 (2017).
  10. K. S. Mohanty, C. Liberale, S. K. Mohanty, and V. Degiorgio, “In depth fiber optic trapping of low-index microscopic objects,” Appl. Phys. Lett. 92(15), 151113 (2008).
    [Crossref]
  11. J.-B. Decombe, G. Dantelle, T. Gacoin, F. J. Valdivia-Valero, G. Colas des Francs, S. Huant, and J. Fick, “Micro- and nano-particle trapping using fibered optical nano-tweezers,” Proc. SPIE 9164, 916430 (2014).
    [Crossref]
  12. Y. C. Li, H. B. Xin, H. X. Lei, L. L. Liu, Y. Z. Li, Y. Zhang, and B. J. Li, “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,” Light Sci. Appl. 5(12), e16176 (2016).
    [Crossref]
  13. S. K. Mohanty, K. S. Mohanty, and M. W. Berns, “Organization of microscale objects using a microfabricated optical fiber,” Opt. Lett. 33(18), 2155–2157 (2008).
    [Crossref] [PubMed]
  14. H. Xin, R. Xu, and B. Li, “Optical formation and manipulation of particle and cell patterns using a tapered optical fiber,” Laser Photonics Rev. 7(5), 801–809 (2013).
    [Crossref]
  15. H. Xin, Y. Li, and B. Li, “Controllable patterning of different cells via optical assembly of 1D periodic cell structures,” Adv. Funct. Mater. 25(19), 2816–2823 (2015).
    [Crossref]
  16. E. R. Lyons and G. J. Sonek, “Confinement and bistability in a tapered hemispherically lensed optical fiber trap,” Appl. Phys. Lett. 66(13), 1584–1586 (1995).
    [Crossref]
  17. Y. Zhang, Z. Liu, J. Yang, and L. Yuan, “A non-contact single optical fiber multi-optical tweezers probe: Design and fabrication,” Opt. Commun. 285(20), 4068–4071 (2012).
    [Crossref]
  18. Z. Liu, C. Guo, J. Yang, and L. Yuan, “Tapered fiber optical tweezers for microscopic particle trapping: Fabrication and application,” Opt. Express 14(25), 12510–12516 (2006).
    [Crossref] [PubMed]
  19. H. Xin, Q. Liu, and B. Li, “Non-contact fiber-optical trapping of motile bacteria: Dynamics observation and energy estimation,” Sci. Rep. 4(1), 6576 (2015).
    [Crossref] [PubMed]
  20. S. K. Mohanty, K. S. Mohanty, and M. W. Berns, “Manipulation of mammalian cells using a single-fiber optical microbeam,” J. Biomed. Opt. 13(5), 054049 (2008).
    [Crossref] [PubMed]
  21. J. B. Decombe, S. Huant, and J. Fick, “Single and dual fiber nano-tip optical tweezers: trapping and analysis,” Opt. Express 21(25), 30521–30531 (2013).
    [Crossref] [PubMed]
  22. D. R. Turner, “Etch procedure for optical fibers,” US Patent 4 469 554, Sep. (1984).
  23. P. Hoffmann, B. Dutoit, and R. P. Salathe, “Comparison of mechanically drawn and protection layer chemically etched optical fiber tips,” Ultramicroscopy 61(1-4), 165–170 (1995).
    [Crossref]
  24. Z. Liu, X. Tang, Y. Zhang, and Y. Zhang, “A non-contact single optical fiber multi-optical tweezers based on Bessel-like beams,” in Asia-Pacific optical sensors Conference, OSA Technical Digest (online) (Optical Society of America, 2016), paper W4A.29.
  25. Y. H. Chuang, K. G. Sun, C. J. Wang, J. Y. Huang, and C. L. Pan, “A simple chemical etching technique for reproducible fabrication of robust scanning near-field fiber probes,” Rev. Sci. Instrum. 69(2), 437–439 (1998).
    [Crossref]
  26. S. Mononobe, “Fabrication of a double-tapered probe with enhanced aspect ratio for near-field scanning optical microscopy,” Appl. Phys., A Mater. Sci. Process. 121(4), 1365–1368 (2015).
    [Crossref]
  27. L. H. Haber, R. D. Schaller, J. C. Johnson, and R. J. Saykally, “Shape control of near-field probes using dynamic meniscus etching,” J. Microsc. 214(1), 27–35 (2004).
    [Crossref] [PubMed]
  28. K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
    [Crossref] [PubMed]
  29. T. Saiki, S. Mononobe, M. Ohtsu, N. Saito, and J. Kusano, “Tailoring a high-transmission fiber probe for photon scanning tunneling microscope,” Appl. Phys. Lett. 68(19), 2612–2614 (1996).
    [Crossref]
  30. S. Mononobe, “Fabrication of a double-tapered probe with enhanced aspect ratio for near-field scanning optical microscopy,” Appl. Phys., A Mater. Sci. Process. 121(4), 1365–1368 (2015).
    [Crossref]

2017 (1)

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. T. Lim, and C. W. Qiu, “Optical manipulation from the microscale to the nanoscale: Fundamentals, Advances, and Prospects,” Light Sci. Appl. 6, e17039 (2017).

2016 (1)

Y. C. Li, H. B. Xin, H. X. Lei, L. L. Liu, Y. Z. Li, Y. Zhang, and B. J. Li, “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,” Light Sci. Appl. 5(12), e16176 (2016).
[Crossref]

2015 (4)

H. Xin, Y. Li, and B. Li, “Controllable patterning of different cells via optical assembly of 1D periodic cell structures,” Adv. Funct. Mater. 25(19), 2816–2823 (2015).
[Crossref]

H. Xin, Q. Liu, and B. Li, “Non-contact fiber-optical trapping of motile bacteria: Dynamics observation and energy estimation,” Sci. Rep. 4(1), 6576 (2015).
[Crossref] [PubMed]

S. Mononobe, “Fabrication of a double-tapered probe with enhanced aspect ratio for near-field scanning optical microscopy,” Appl. Phys., A Mater. Sci. Process. 121(4), 1365–1368 (2015).
[Crossref]

S. Mononobe, “Fabrication of a double-tapered probe with enhanced aspect ratio for near-field scanning optical microscopy,” Appl. Phys., A Mater. Sci. Process. 121(4), 1365–1368 (2015).
[Crossref]

2014 (1)

J.-B. Decombe, G. Dantelle, T. Gacoin, F. J. Valdivia-Valero, G. Colas des Francs, S. Huant, and J. Fick, “Micro- and nano-particle trapping using fibered optical nano-tweezers,” Proc. SPIE 9164, 916430 (2014).
[Crossref]

2013 (3)

H. Xin, R. Xu, and B. Li, “Optical formation and manipulation of particle and cell patterns using a tapered optical fiber,” Laser Photonics Rev. 7(5), 801–809 (2013).
[Crossref]

M. C. Zhong, X. B. Wei, J. H. Zhou, Z. Q. Wang, and Y. M. Li, “Trapping red blood cells in living animals using optical tweezers,” Nat. Commun. 4, 1768 (2013).
[Crossref] [PubMed]

J. B. Decombe, S. Huant, and J. Fick, “Single and dual fiber nano-tip optical tweezers: trapping and analysis,” Opt. Express 21(25), 30521–30531 (2013).
[Crossref] [PubMed]

2012 (1)

Y. Zhang, Z. Liu, J. Yang, and L. Yuan, “A non-contact single optical fiber multi-optical tweezers probe: Design and fabrication,” Opt. Commun. 285(20), 4068–4071 (2012).
[Crossref]

2009 (1)

Y. Li, C. Wen, H. Xie, A. Ye, and Y. Yin, “Mechanical property analysis of stored red blood cell using optical tweezers,” Coll. Surf. B Biointerf. 70(2), 169–173 (2009).
[Crossref] [PubMed]

2008 (4)

K. S. Mohanty, C. Liberale, S. K. Mohanty, and V. Degiorgio, “In depth fiber optic trapping of low-index microscopic objects,” Appl. Phys. Lett. 92(15), 151113 (2008).
[Crossref]

S. K. Mohanty, K. S. Mohanty, and M. W. Berns, “Manipulation of mammalian cells using a single-fiber optical microbeam,” J. Biomed. Opt. 13(5), 054049 (2008).
[Crossref] [PubMed]

M. T. Wei, A. Zaorski, H. C. Yalcin, J. Wang, M. Hallow, S. N. Ghadiali, A. Chiou, and H. D. Ou-Yang, “A comparative study of living cell micromechanical properties by oscillatory optical tweezers,” Opt. Express 16(12), 8594–8603 (2008).
[Crossref] [PubMed]

S. K. Mohanty, K. S. Mohanty, and M. W. Berns, “Organization of microscale objects using a microfabricated optical fiber,” Opt. Lett. 33(18), 2155–2157 (2008).
[Crossref] [PubMed]

2006 (1)

2004 (1)

L. H. Haber, R. D. Schaller, J. C. Johnson, and R. J. Saykally, “Shape control of near-field probes using dynamic meniscus etching,” J. Microsc. 214(1), 27–35 (2004).
[Crossref] [PubMed]

2001 (2)

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78(2), 249–251 (2001).
[Crossref]

A. Lachish-Zalait, D. Zbaida, E. Klein, and M. Elbaum, “Direct surface patterning from solutions: Localized microchemistry using a focused laser,” Adv. Funct. Mater. 11(3), 218–223 (2001).
[Crossref]

1998 (1)

Y. H. Chuang, K. G. Sun, C. J. Wang, J. Y. Huang, and C. L. Pan, “A simple chemical etching technique for reproducible fabrication of robust scanning near-field fiber probes,” Rev. Sci. Instrum. 69(2), 437–439 (1998).
[Crossref]

1996 (2)

T. Saiki, S. Mononobe, M. Ohtsu, N. Saito, and J. Kusano, “Tailoring a high-transmission fiber probe for photon scanning tunneling microscope,” Appl. Phys. Lett. 68(19), 2612–2614 (1996).
[Crossref]

J. C. Crocker and D. G. Grier, “When like charges attract: The effects of geometrical confinement on long-range colloidal interactions,” Phys. Rev. Lett. 77(9), 1897–1900 (1996).
[Crossref] [PubMed]

1995 (2)

P. Hoffmann, B. Dutoit, and R. P. Salathe, “Comparison of mechanically drawn and protection layer chemically etched optical fiber tips,” Ultramicroscopy 61(1-4), 165–170 (1995).
[Crossref]

E. R. Lyons and G. J. Sonek, “Confinement and bistability in a tapered hemispherically lensed optical fiber trap,” Appl. Phys. Lett. 66(13), 1584–1586 (1995).
[Crossref]

1994 (2)

J. C. Crocker and D. G. Grier, “Microscopic measurement of the pair interaction potential of charge-stabilized colloid,” Phys. Rev. Lett. 73(2), 352–355 (1994).
[Crossref] [PubMed]

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
[Crossref] [PubMed]

1986 (1)

Ashkin, A.

Berns, M. W.

S. K. Mohanty, K. S. Mohanty, and M. W. Berns, “Organization of microscale objects using a microfabricated optical fiber,” Opt. Lett. 33(18), 2155–2157 (2008).
[Crossref] [PubMed]

S. K. Mohanty, K. S. Mohanty, and M. W. Berns, “Manipulation of mammalian cells using a single-fiber optical microbeam,” J. Biomed. Opt. 13(5), 054049 (2008).
[Crossref] [PubMed]

Bjorkholm, J. E.

Block, S. M.

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
[Crossref] [PubMed]

Chiou, A.

Chu, S.

Chuang, Y. H.

Y. H. Chuang, K. G. Sun, C. J. Wang, J. Y. Huang, and C. L. Pan, “A simple chemical etching technique for reproducible fabrication of robust scanning near-field fiber probes,” Rev. Sci. Instrum. 69(2), 437–439 (1998).
[Crossref]

Colas des Francs, G.

J.-B. Decombe, G. Dantelle, T. Gacoin, F. J. Valdivia-Valero, G. Colas des Francs, S. Huant, and J. Fick, “Micro- and nano-particle trapping using fibered optical nano-tweezers,” Proc. SPIE 9164, 916430 (2014).
[Crossref]

Crocker, J. C.

J. C. Crocker and D. G. Grier, “When like charges attract: The effects of geometrical confinement on long-range colloidal interactions,” Phys. Rev. Lett. 77(9), 1897–1900 (1996).
[Crossref] [PubMed]

J. C. Crocker and D. G. Grier, “Microscopic measurement of the pair interaction potential of charge-stabilized colloid,” Phys. Rev. Lett. 73(2), 352–355 (1994).
[Crossref] [PubMed]

Dantelle, G.

J.-B. Decombe, G. Dantelle, T. Gacoin, F. J. Valdivia-Valero, G. Colas des Francs, S. Huant, and J. Fick, “Micro- and nano-particle trapping using fibered optical nano-tweezers,” Proc. SPIE 9164, 916430 (2014).
[Crossref]

Decombe, J. B.

Decombe, J.-B.

J.-B. Decombe, G. Dantelle, T. Gacoin, F. J. Valdivia-Valero, G. Colas des Francs, S. Huant, and J. Fick, “Micro- and nano-particle trapping using fibered optical nano-tweezers,” Proc. SPIE 9164, 916430 (2014).
[Crossref]

Degiorgio, V.

K. S. Mohanty, C. Liberale, S. K. Mohanty, and V. Degiorgio, “In depth fiber optic trapping of low-index microscopic objects,” Appl. Phys. Lett. 92(15), 151113 (2008).
[Crossref]

Ding, W.

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. T. Lim, and C. W. Qiu, “Optical manipulation from the microscale to the nanoscale: Fundamentals, Advances, and Prospects,” Light Sci. Appl. 6, e17039 (2017).

Ding, X.

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. T. Lim, and C. W. Qiu, “Optical manipulation from the microscale to the nanoscale: Fundamentals, Advances, and Prospects,” Light Sci. Appl. 6, e17039 (2017).

Dutoit, B.

P. Hoffmann, B. Dutoit, and R. P. Salathe, “Comparison of mechanically drawn and protection layer chemically etched optical fiber tips,” Ultramicroscopy 61(1-4), 165–170 (1995).
[Crossref]

Dziedzic, J. M.

Elbaum, M.

A. Lachish-Zalait, D. Zbaida, E. Klein, and M. Elbaum, “Direct surface patterning from solutions: Localized microchemistry using a focused laser,” Adv. Funct. Mater. 11(3), 218–223 (2001).
[Crossref]

Fick, J.

J.-B. Decombe, G. Dantelle, T. Gacoin, F. J. Valdivia-Valero, G. Colas des Francs, S. Huant, and J. Fick, “Micro- and nano-particle trapping using fibered optical nano-tweezers,” Proc. SPIE 9164, 916430 (2014).
[Crossref]

J. B. Decombe, S. Huant, and J. Fick, “Single and dual fiber nano-tip optical tweezers: trapping and analysis,” Opt. Express 21(25), 30521–30531 (2013).
[Crossref] [PubMed]

Gacoin, T.

J.-B. Decombe, G. Dantelle, T. Gacoin, F. J. Valdivia-Valero, G. Colas des Francs, S. Huant, and J. Fick, “Micro- and nano-particle trapping using fibered optical nano-tweezers,” Proc. SPIE 9164, 916430 (2014).
[Crossref]

Galajda, P.

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78(2), 249–251 (2001).
[Crossref]

Gao, D.

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. T. Lim, and C. W. Qiu, “Optical manipulation from the microscale to the nanoscale: Fundamentals, Advances, and Prospects,” Light Sci. Appl. 6, e17039 (2017).

Ghadiali, S. N.

Grier, D. G.

J. C. Crocker and D. G. Grier, “When like charges attract: The effects of geometrical confinement on long-range colloidal interactions,” Phys. Rev. Lett. 77(9), 1897–1900 (1996).
[Crossref] [PubMed]

J. C. Crocker and D. G. Grier, “Microscopic measurement of the pair interaction potential of charge-stabilized colloid,” Phys. Rev. Lett. 73(2), 352–355 (1994).
[Crossref] [PubMed]

Guo, C.

Haber, L. H.

L. H. Haber, R. D. Schaller, J. C. Johnson, and R. J. Saykally, “Shape control of near-field probes using dynamic meniscus etching,” J. Microsc. 214(1), 27–35 (2004).
[Crossref] [PubMed]

Hallow, M.

Hoffmann, P.

P. Hoffmann, B. Dutoit, and R. P. Salathe, “Comparison of mechanically drawn and protection layer chemically etched optical fiber tips,” Ultramicroscopy 61(1-4), 165–170 (1995).
[Crossref]

Huang, J. Y.

Y. H. Chuang, K. G. Sun, C. J. Wang, J. Y. Huang, and C. L. Pan, “A simple chemical etching technique for reproducible fabrication of robust scanning near-field fiber probes,” Rev. Sci. Instrum. 69(2), 437–439 (1998).
[Crossref]

Huant, S.

J.-B. Decombe, G. Dantelle, T. Gacoin, F. J. Valdivia-Valero, G. Colas des Francs, S. Huant, and J. Fick, “Micro- and nano-particle trapping using fibered optical nano-tweezers,” Proc. SPIE 9164, 916430 (2014).
[Crossref]

J. B. Decombe, S. Huant, and J. Fick, “Single and dual fiber nano-tip optical tweezers: trapping and analysis,” Opt. Express 21(25), 30521–30531 (2013).
[Crossref] [PubMed]

Johnson, J. C.

L. H. Haber, R. D. Schaller, J. C. Johnson, and R. J. Saykally, “Shape control of near-field probes using dynamic meniscus etching,” J. Microsc. 214(1), 27–35 (2004).
[Crossref] [PubMed]

Klein, E.

A. Lachish-Zalait, D. Zbaida, E. Klein, and M. Elbaum, “Direct surface patterning from solutions: Localized microchemistry using a focused laser,” Adv. Funct. Mater. 11(3), 218–223 (2001).
[Crossref]

Kusano, J.

T. Saiki, S. Mononobe, M. Ohtsu, N. Saito, and J. Kusano, “Tailoring a high-transmission fiber probe for photon scanning tunneling microscope,” Appl. Phys. Lett. 68(19), 2612–2614 (1996).
[Crossref]

Lachish-Zalait, A.

A. Lachish-Zalait, D. Zbaida, E. Klein, and M. Elbaum, “Direct surface patterning from solutions: Localized microchemistry using a focused laser,” Adv. Funct. Mater. 11(3), 218–223 (2001).
[Crossref]

Lei, H. X.

Y. C. Li, H. B. Xin, H. X. Lei, L. L. Liu, Y. Z. Li, Y. Zhang, and B. J. Li, “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,” Light Sci. Appl. 5(12), e16176 (2016).
[Crossref]

Li, B.

H. Xin, Y. Li, and B. Li, “Controllable patterning of different cells via optical assembly of 1D periodic cell structures,” Adv. Funct. Mater. 25(19), 2816–2823 (2015).
[Crossref]

H. Xin, Q. Liu, and B. Li, “Non-contact fiber-optical trapping of motile bacteria: Dynamics observation and energy estimation,” Sci. Rep. 4(1), 6576 (2015).
[Crossref] [PubMed]

H. Xin, R. Xu, and B. Li, “Optical formation and manipulation of particle and cell patterns using a tapered optical fiber,” Laser Photonics Rev. 7(5), 801–809 (2013).
[Crossref]

Li, B. J.

Y. C. Li, H. B. Xin, H. X. Lei, L. L. Liu, Y. Z. Li, Y. Zhang, and B. J. Li, “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,” Light Sci. Appl. 5(12), e16176 (2016).
[Crossref]

Li, Y.

H. Xin, Y. Li, and B. Li, “Controllable patterning of different cells via optical assembly of 1D periodic cell structures,” Adv. Funct. Mater. 25(19), 2816–2823 (2015).
[Crossref]

Y. Li, C. Wen, H. Xie, A. Ye, and Y. Yin, “Mechanical property analysis of stored red blood cell using optical tweezers,” Coll. Surf. B Biointerf. 70(2), 169–173 (2009).
[Crossref] [PubMed]

Li, Y. C.

Y. C. Li, H. B. Xin, H. X. Lei, L. L. Liu, Y. Z. Li, Y. Zhang, and B. J. Li, “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,” Light Sci. Appl. 5(12), e16176 (2016).
[Crossref]

Li, Y. M.

M. C. Zhong, X. B. Wei, J. H. Zhou, Z. Q. Wang, and Y. M. Li, “Trapping red blood cells in living animals using optical tweezers,” Nat. Commun. 4, 1768 (2013).
[Crossref] [PubMed]

Li, Y. Z.

Y. C. Li, H. B. Xin, H. X. Lei, L. L. Liu, Y. Z. Li, Y. Zhang, and B. J. Li, “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,” Light Sci. Appl. 5(12), e16176 (2016).
[Crossref]

Liberale, C.

K. S. Mohanty, C. Liberale, S. K. Mohanty, and V. Degiorgio, “In depth fiber optic trapping of low-index microscopic objects,” Appl. Phys. Lett. 92(15), 151113 (2008).
[Crossref]

Lim, C. T.

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. T. Lim, and C. W. Qiu, “Optical manipulation from the microscale to the nanoscale: Fundamentals, Advances, and Prospects,” Light Sci. Appl. 6, e17039 (2017).

Liu, L. L.

Y. C. Li, H. B. Xin, H. X. Lei, L. L. Liu, Y. Z. Li, Y. Zhang, and B. J. Li, “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,” Light Sci. Appl. 5(12), e16176 (2016).
[Crossref]

Liu, Q.

H. Xin, Q. Liu, and B. Li, “Non-contact fiber-optical trapping of motile bacteria: Dynamics observation and energy estimation,” Sci. Rep. 4(1), 6576 (2015).
[Crossref] [PubMed]

Liu, Z.

Y. Zhang, Z. Liu, J. Yang, and L. Yuan, “A non-contact single optical fiber multi-optical tweezers probe: Design and fabrication,” Opt. Commun. 285(20), 4068–4071 (2012).
[Crossref]

Z. Liu, C. Guo, J. Yang, and L. Yuan, “Tapered fiber optical tweezers for microscopic particle trapping: Fabrication and application,” Opt. Express 14(25), 12510–12516 (2006).
[Crossref] [PubMed]

Lyons, E. R.

E. R. Lyons and G. J. Sonek, “Confinement and bistability in a tapered hemispherically lensed optical fiber trap,” Appl. Phys. Lett. 66(13), 1584–1586 (1995).
[Crossref]

Mohanty, K. S.

S. K. Mohanty, K. S. Mohanty, and M. W. Berns, “Organization of microscale objects using a microfabricated optical fiber,” Opt. Lett. 33(18), 2155–2157 (2008).
[Crossref] [PubMed]

K. S. Mohanty, C. Liberale, S. K. Mohanty, and V. Degiorgio, “In depth fiber optic trapping of low-index microscopic objects,” Appl. Phys. Lett. 92(15), 151113 (2008).
[Crossref]

S. K. Mohanty, K. S. Mohanty, and M. W. Berns, “Manipulation of mammalian cells using a single-fiber optical microbeam,” J. Biomed. Opt. 13(5), 054049 (2008).
[Crossref] [PubMed]

Mohanty, S. K.

S. K. Mohanty, K. S. Mohanty, and M. W. Berns, “Manipulation of mammalian cells using a single-fiber optical microbeam,” J. Biomed. Opt. 13(5), 054049 (2008).
[Crossref] [PubMed]

K. S. Mohanty, C. Liberale, S. K. Mohanty, and V. Degiorgio, “In depth fiber optic trapping of low-index microscopic objects,” Appl. Phys. Lett. 92(15), 151113 (2008).
[Crossref]

S. K. Mohanty, K. S. Mohanty, and M. W. Berns, “Organization of microscale objects using a microfabricated optical fiber,” Opt. Lett. 33(18), 2155–2157 (2008).
[Crossref] [PubMed]

Mononobe, S.

S. Mononobe, “Fabrication of a double-tapered probe with enhanced aspect ratio for near-field scanning optical microscopy,” Appl. Phys., A Mater. Sci. Process. 121(4), 1365–1368 (2015).
[Crossref]

S. Mononobe, “Fabrication of a double-tapered probe with enhanced aspect ratio for near-field scanning optical microscopy,” Appl. Phys., A Mater. Sci. Process. 121(4), 1365–1368 (2015).
[Crossref]

T. Saiki, S. Mononobe, M. Ohtsu, N. Saito, and J. Kusano, “Tailoring a high-transmission fiber probe for photon scanning tunneling microscope,” Appl. Phys. Lett. 68(19), 2612–2614 (1996).
[Crossref]

Nieto-Vesperinas, M.

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. T. Lim, and C. W. Qiu, “Optical manipulation from the microscale to the nanoscale: Fundamentals, Advances, and Prospects,” Light Sci. Appl. 6, e17039 (2017).

Ohtsu, M.

T. Saiki, S. Mononobe, M. Ohtsu, N. Saito, and J. Kusano, “Tailoring a high-transmission fiber probe for photon scanning tunneling microscope,” Appl. Phys. Lett. 68(19), 2612–2614 (1996).
[Crossref]

Ormos, P.

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78(2), 249–251 (2001).
[Crossref]

Ou-Yang, H. D.

Pan, C. L.

Y. H. Chuang, K. G. Sun, C. J. Wang, J. Y. Huang, and C. L. Pan, “A simple chemical etching technique for reproducible fabrication of robust scanning near-field fiber probes,” Rev. Sci. Instrum. 69(2), 437–439 (1998).
[Crossref]

Qiu, C. W.

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. T. Lim, and C. W. Qiu, “Optical manipulation from the microscale to the nanoscale: Fundamentals, Advances, and Prospects,” Light Sci. Appl. 6, e17039 (2017).

Rahman, M.

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. T. Lim, and C. W. Qiu, “Optical manipulation from the microscale to the nanoscale: Fundamentals, Advances, and Prospects,” Light Sci. Appl. 6, e17039 (2017).

Saiki, T.

T. Saiki, S. Mononobe, M. Ohtsu, N. Saito, and J. Kusano, “Tailoring a high-transmission fiber probe for photon scanning tunneling microscope,” Appl. Phys. Lett. 68(19), 2612–2614 (1996).
[Crossref]

Saito, N.

T. Saiki, S. Mononobe, M. Ohtsu, N. Saito, and J. Kusano, “Tailoring a high-transmission fiber probe for photon scanning tunneling microscope,” Appl. Phys. Lett. 68(19), 2612–2614 (1996).
[Crossref]

Salathe, R. P.

P. Hoffmann, B. Dutoit, and R. P. Salathe, “Comparison of mechanically drawn and protection layer chemically etched optical fiber tips,” Ultramicroscopy 61(1-4), 165–170 (1995).
[Crossref]

Saykally, R. J.

L. H. Haber, R. D. Schaller, J. C. Johnson, and R. J. Saykally, “Shape control of near-field probes using dynamic meniscus etching,” J. Microsc. 214(1), 27–35 (2004).
[Crossref] [PubMed]

Schaller, R. D.

L. H. Haber, R. D. Schaller, J. C. Johnson, and R. J. Saykally, “Shape control of near-field probes using dynamic meniscus etching,” J. Microsc. 214(1), 27–35 (2004).
[Crossref] [PubMed]

Sonek, G. J.

E. R. Lyons and G. J. Sonek, “Confinement and bistability in a tapered hemispherically lensed optical fiber trap,” Appl. Phys. Lett. 66(13), 1584–1586 (1995).
[Crossref]

Sun, K. G.

Y. H. Chuang, K. G. Sun, C. J. Wang, J. Y. Huang, and C. L. Pan, “A simple chemical etching technique for reproducible fabrication of robust scanning near-field fiber probes,” Rev. Sci. Instrum. 69(2), 437–439 (1998).
[Crossref]

Svoboda, K.

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
[Crossref] [PubMed]

Valdivia-Valero, F. J.

J.-B. Decombe, G. Dantelle, T. Gacoin, F. J. Valdivia-Valero, G. Colas des Francs, S. Huant, and J. Fick, “Micro- and nano-particle trapping using fibered optical nano-tweezers,” Proc. SPIE 9164, 916430 (2014).
[Crossref]

Wang, C. J.

Y. H. Chuang, K. G. Sun, C. J. Wang, J. Y. Huang, and C. L. Pan, “A simple chemical etching technique for reproducible fabrication of robust scanning near-field fiber probes,” Rev. Sci. Instrum. 69(2), 437–439 (1998).
[Crossref]

Wang, J.

Wang, Z. Q.

M. C. Zhong, X. B. Wei, J. H. Zhou, Z. Q. Wang, and Y. M. Li, “Trapping red blood cells in living animals using optical tweezers,” Nat. Commun. 4, 1768 (2013).
[Crossref] [PubMed]

Wei, M. T.

Wei, X. B.

M. C. Zhong, X. B. Wei, J. H. Zhou, Z. Q. Wang, and Y. M. Li, “Trapping red blood cells in living animals using optical tweezers,” Nat. Commun. 4, 1768 (2013).
[Crossref] [PubMed]

Wen, C.

Y. Li, C. Wen, H. Xie, A. Ye, and Y. Yin, “Mechanical property analysis of stored red blood cell using optical tweezers,” Coll. Surf. B Biointerf. 70(2), 169–173 (2009).
[Crossref] [PubMed]

Xie, H.

Y. Li, C. Wen, H. Xie, A. Ye, and Y. Yin, “Mechanical property analysis of stored red blood cell using optical tweezers,” Coll. Surf. B Biointerf. 70(2), 169–173 (2009).
[Crossref] [PubMed]

Xin, H.

H. Xin, Y. Li, and B. Li, “Controllable patterning of different cells via optical assembly of 1D periodic cell structures,” Adv. Funct. Mater. 25(19), 2816–2823 (2015).
[Crossref]

H. Xin, Q. Liu, and B. Li, “Non-contact fiber-optical trapping of motile bacteria: Dynamics observation and energy estimation,” Sci. Rep. 4(1), 6576 (2015).
[Crossref] [PubMed]

H. Xin, R. Xu, and B. Li, “Optical formation and manipulation of particle and cell patterns using a tapered optical fiber,” Laser Photonics Rev. 7(5), 801–809 (2013).
[Crossref]

Xin, H. B.

Y. C. Li, H. B. Xin, H. X. Lei, L. L. Liu, Y. Z. Li, Y. Zhang, and B. J. Li, “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,” Light Sci. Appl. 5(12), e16176 (2016).
[Crossref]

Xu, R.

H. Xin, R. Xu, and B. Li, “Optical formation and manipulation of particle and cell patterns using a tapered optical fiber,” Laser Photonics Rev. 7(5), 801–809 (2013).
[Crossref]

Yalcin, H. C.

Yang, J.

Y. Zhang, Z. Liu, J. Yang, and L. Yuan, “A non-contact single optical fiber multi-optical tweezers probe: Design and fabrication,” Opt. Commun. 285(20), 4068–4071 (2012).
[Crossref]

Z. Liu, C. Guo, J. Yang, and L. Yuan, “Tapered fiber optical tweezers for microscopic particle trapping: Fabrication and application,” Opt. Express 14(25), 12510–12516 (2006).
[Crossref] [PubMed]

Ye, A.

Y. Li, C. Wen, H. Xie, A. Ye, and Y. Yin, “Mechanical property analysis of stored red blood cell using optical tweezers,” Coll. Surf. B Biointerf. 70(2), 169–173 (2009).
[Crossref] [PubMed]

Yin, Y.

Y. Li, C. Wen, H. Xie, A. Ye, and Y. Yin, “Mechanical property analysis of stored red blood cell using optical tweezers,” Coll. Surf. B Biointerf. 70(2), 169–173 (2009).
[Crossref] [PubMed]

Yuan, L.

Y. Zhang, Z. Liu, J. Yang, and L. Yuan, “A non-contact single optical fiber multi-optical tweezers probe: Design and fabrication,” Opt. Commun. 285(20), 4068–4071 (2012).
[Crossref]

Z. Liu, C. Guo, J. Yang, and L. Yuan, “Tapered fiber optical tweezers for microscopic particle trapping: Fabrication and application,” Opt. Express 14(25), 12510–12516 (2006).
[Crossref] [PubMed]

Zaorski, A.

Zbaida, D.

A. Lachish-Zalait, D. Zbaida, E. Klein, and M. Elbaum, “Direct surface patterning from solutions: Localized microchemistry using a focused laser,” Adv. Funct. Mater. 11(3), 218–223 (2001).
[Crossref]

Zhang, T.

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. T. Lim, and C. W. Qiu, “Optical manipulation from the microscale to the nanoscale: Fundamentals, Advances, and Prospects,” Light Sci. Appl. 6, e17039 (2017).

Zhang, Y.

Y. C. Li, H. B. Xin, H. X. Lei, L. L. Liu, Y. Z. Li, Y. Zhang, and B. J. Li, “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,” Light Sci. Appl. 5(12), e16176 (2016).
[Crossref]

Y. Zhang, Z. Liu, J. Yang, and L. Yuan, “A non-contact single optical fiber multi-optical tweezers probe: Design and fabrication,” Opt. Commun. 285(20), 4068–4071 (2012).
[Crossref]

Zhong, M. C.

M. C. Zhong, X. B. Wei, J. H. Zhou, Z. Q. Wang, and Y. M. Li, “Trapping red blood cells in living animals using optical tweezers,” Nat. Commun. 4, 1768 (2013).
[Crossref] [PubMed]

Zhou, J. H.

M. C. Zhong, X. B. Wei, J. H. Zhou, Z. Q. Wang, and Y. M. Li, “Trapping red blood cells in living animals using optical tweezers,” Nat. Commun. 4, 1768 (2013).
[Crossref] [PubMed]

Adv. Funct. Mater. (2)

A. Lachish-Zalait, D. Zbaida, E. Klein, and M. Elbaum, “Direct surface patterning from solutions: Localized microchemistry using a focused laser,” Adv. Funct. Mater. 11(3), 218–223 (2001).
[Crossref]

H. Xin, Y. Li, and B. Li, “Controllable patterning of different cells via optical assembly of 1D periodic cell structures,” Adv. Funct. Mater. 25(19), 2816–2823 (2015).
[Crossref]

Annu. Rev. Biophys. Biomol. Struct. (1)

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
[Crossref] [PubMed]

Appl. Phys. Lett. (4)

T. Saiki, S. Mononobe, M. Ohtsu, N. Saito, and J. Kusano, “Tailoring a high-transmission fiber probe for photon scanning tunneling microscope,” Appl. Phys. Lett. 68(19), 2612–2614 (1996).
[Crossref]

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78(2), 249–251 (2001).
[Crossref]

E. R. Lyons and G. J. Sonek, “Confinement and bistability in a tapered hemispherically lensed optical fiber trap,” Appl. Phys. Lett. 66(13), 1584–1586 (1995).
[Crossref]

K. S. Mohanty, C. Liberale, S. K. Mohanty, and V. Degiorgio, “In depth fiber optic trapping of low-index microscopic objects,” Appl. Phys. Lett. 92(15), 151113 (2008).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (2)

S. Mononobe, “Fabrication of a double-tapered probe with enhanced aspect ratio for near-field scanning optical microscopy,” Appl. Phys., A Mater. Sci. Process. 121(4), 1365–1368 (2015).
[Crossref]

S. Mononobe, “Fabrication of a double-tapered probe with enhanced aspect ratio for near-field scanning optical microscopy,” Appl. Phys., A Mater. Sci. Process. 121(4), 1365–1368 (2015).
[Crossref]

Coll. Surf. B Biointerf. (1)

Y. Li, C. Wen, H. Xie, A. Ye, and Y. Yin, “Mechanical property analysis of stored red blood cell using optical tweezers,” Coll. Surf. B Biointerf. 70(2), 169–173 (2009).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

S. K. Mohanty, K. S. Mohanty, and M. W. Berns, “Manipulation of mammalian cells using a single-fiber optical microbeam,” J. Biomed. Opt. 13(5), 054049 (2008).
[Crossref] [PubMed]

J. Microsc. (1)

L. H. Haber, R. D. Schaller, J. C. Johnson, and R. J. Saykally, “Shape control of near-field probes using dynamic meniscus etching,” J. Microsc. 214(1), 27–35 (2004).
[Crossref] [PubMed]

Laser Photonics Rev. (1)

H. Xin, R. Xu, and B. Li, “Optical formation and manipulation of particle and cell patterns using a tapered optical fiber,” Laser Photonics Rev. 7(5), 801–809 (2013).
[Crossref]

Light Sci. Appl. (2)

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. T. Lim, and C. W. Qiu, “Optical manipulation from the microscale to the nanoscale: Fundamentals, Advances, and Prospects,” Light Sci. Appl. 6, e17039 (2017).

Y. C. Li, H. B. Xin, H. X. Lei, L. L. Liu, Y. Z. Li, Y. Zhang, and B. J. Li, “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,” Light Sci. Appl. 5(12), e16176 (2016).
[Crossref]

Nat. Commun. (1)

M. C. Zhong, X. B. Wei, J. H. Zhou, Z. Q. Wang, and Y. M. Li, “Trapping red blood cells in living animals using optical tweezers,” Nat. Commun. 4, 1768 (2013).
[Crossref] [PubMed]

Opt. Commun. (1)

Y. Zhang, Z. Liu, J. Yang, and L. Yuan, “A non-contact single optical fiber multi-optical tweezers probe: Design and fabrication,” Opt. Commun. 285(20), 4068–4071 (2012).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. Lett. (2)

J. C. Crocker and D. G. Grier, “Microscopic measurement of the pair interaction potential of charge-stabilized colloid,” Phys. Rev. Lett. 73(2), 352–355 (1994).
[Crossref] [PubMed]

J. C. Crocker and D. G. Grier, “When like charges attract: The effects of geometrical confinement on long-range colloidal interactions,” Phys. Rev. Lett. 77(9), 1897–1900 (1996).
[Crossref] [PubMed]

Proc. SPIE (1)

J.-B. Decombe, G. Dantelle, T. Gacoin, F. J. Valdivia-Valero, G. Colas des Francs, S. Huant, and J. Fick, “Micro- and nano-particle trapping using fibered optical nano-tweezers,” Proc. SPIE 9164, 916430 (2014).
[Crossref]

Rev. Sci. Instrum. (1)

Y. H. Chuang, K. G. Sun, C. J. Wang, J. Y. Huang, and C. L. Pan, “A simple chemical etching technique for reproducible fabrication of robust scanning near-field fiber probes,” Rev. Sci. Instrum. 69(2), 437–439 (1998).
[Crossref]

Sci. Rep. (1)

H. Xin, Q. Liu, and B. Li, “Non-contact fiber-optical trapping of motile bacteria: Dynamics observation and energy estimation,” Sci. Rep. 4(1), 6576 (2015).
[Crossref] [PubMed]

Ultramicroscopy (1)

P. Hoffmann, B. Dutoit, and R. P. Salathe, “Comparison of mechanically drawn and protection layer chemically etched optical fiber tips,” Ultramicroscopy 61(1-4), 165–170 (1995).
[Crossref]

Other (2)

Z. Liu, X. Tang, Y. Zhang, and Y. Zhang, “A non-contact single optical fiber multi-optical tweezers based on Bessel-like beams,” in Asia-Pacific optical sensors Conference, OSA Technical Digest (online) (Optical Society of America, 2016), paper W4A.29.

D. R. Turner, “Etch procedure for optical fibers,” US Patent 4 469 554, Sep. (1984).

Supplementary Material (2)

NameDescription
» Visualization 1       Trapping and moving a 5-um yeast cell by the fiber tip with the second taper angle of 48 deg. The trapping power is 20 mW.
» Visualization 2       Trapping and moving a 5-um yeast cell by the fiber tip with the second taper angle of 90 deg. The trapping power is 50 mW.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Optical microscope images (a) (b), and SEM image (c), of the tapered SMF tip etched by 40% HF acid at temperature 19°C. (a) a single-tapered fiber tip obtained by 63-minutes meniscus etching, (b) a double-tapered fiber tip obtained by 63-minutes meniscus etching and next 37- minutes interfacial layer etching. The second taper can be seen clearly in (b) and (c). θ1 and θ2 are the first and second taper angles, respectively.
Fig. 2
Fig. 2 The second taper angle (STA) vs. the interfacial layer etching time. Square markers with error bars indicated the data measured. The error resulted from the STA fluctuation of four fiber tips fabricated under the same interfacial layer etching time but in different batches. The blue solid line was fitting line.
Fig. 3
Fig. 3 Images of a trapped 5-μm yeast cell (see Visualization 1 and Visualization 2, respectively). The STAs of the tips in (a) and (b) are 48 deg and 90 deg, respectively. The trapping powers are 20mW in (a) and 50mW in (b). The insert: optical microscope photograph of the tip.
Fig. 4
Fig. 4 Geometrical model of the DOFTs. D is the gap between the particle and the tip. θ1 and θ2 are the first and the second taper angles, respectively.
Fig. 5
Fig. 5 Distributions of the flow fields near (a) the compounded configuration composed of the sphere and the tip, and (b) an isolated sphere. Black areas indicated the fiber tip and the sphere. The blue line and the red arrow indicated the streamline and the direction of the flow, respectively.
Fig. 6
Fig. 6 The correction factor f vs. the gap D2 = 63 deg) and the STA, θ2 (D = 0), respectively.
Fig. 7
Fig. 7 The maximal axile trapping forces of the five double-tapered fiber tips vs. the input power in fiber probe. The color markers and the solid lines are the experimental and the linear fitted data, respectively.
Fig. 8
Fig. 8 (a) – (e) The normalized electric intensity | E |2 of the double-tapered fiber tip with different STA. The five figures are normalized individually. (f) The focal length (the distance from the focus to the surface of the tip, normalized to λ) of the double-tapered fiber tip vs. the STA. In which the negative focal length indicates the focus locates inside of the tip.
Fig. 9
Fig. 9 The axile trapping efficiency ζ vs. the gap D. In which the FTAs of the five fiber tips are all 23 deg. (a) Different STA. The inset shows the maximum trapping efficiencies ζmax as a function of the STA. (b) Different particles’ radius rp. The STA is 48 deg.

Tables (1)

Tables Icon

Table 1 Maximal Axile Trapping Efficiency ζmax and Trapping Position D0a

Metrics